1
|
Tsuboi A, Yoshihara S. Arx revisited: involved in the development of GABAergic interneurons. Front Cell Dev Biol 2025; 13:1563515. [PMID: 40226590 PMCID: PMC11985837 DOI: 10.3389/fcell.2025.1563515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
The aristaless-related homeobox (Arx) transcription factor, located on the X chromosome, has been implicated in a wide range of neurological disorders, including intellectual disability and epilepsy, as well as diabetes and pancreatic developmental disorders. In the mouse brain, Arx is expressed not only in the olfactory bulb (OB) and cerebral cortex progenitor cells but also in these gamma-aminobutyric acid (GABA)-releasing interneurons. In the initial study, constitutive Arx knockout (KO) mice showed aberrant migration and a reduction in GABAergic interneurons in the neonatal OB. However, constitutive Arx KO mice with perinatal lethality preclude further analysis in adolescent or adult mice. To overcome this, Arx-floxed mice have been crossed with Cre driver mice to generate conditional KO mice with selective Arx deletion in distinct interneuron progenitors. These studies have identified Arx as a key transcriptional regulator involved in the generation, fate determination, and migration of cortical interneurons. This review focuses on the critical role of Arx in the development of progenitor cells and the migration of interneurons in the mouse OB and cerebral cortex, and discusses differences in Arx mutant-based abnormality between mouse mutants and human patients.
Collapse
Affiliation(s)
- Akio Tsuboi
- Department of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Seiich Yoshihara
- Laboratory for Molecular Biology of Neural Systems, Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
2
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
3
|
Down a Rabbit Hole: Burrowing Behaviour and Larger Home Ranges are Related to Larger Brains in Leporids. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractStudies on the evolution of brain size variation usually focus on large clades encompassing broad phylogenetic groups. This risks introducing ‘noise’ in the results, often obscuring effects that might be detected in less inclusive clades. Here, we focus on a sample of endocranial volumes (endocasts) of 18 species of rabbits and hares (Lagomorpha: Leporidae), which are a discrete radiation of mammals with a suitably large range of body sizes. Using 60 individuals, we test five popular hypotheses on brain size and olfactory bulb evolution in mammals. We also address the pervasive issue of missing data, using multiple phylogenetic imputations as to conserve the full sample size for all analyses. Our analyses show that home range and burrowing behaviour are the only predictors of leporid brain size variation. Litter size, which is one of the most widely reported constraints on brain size, was unexpectedly not associated with brain size. However, a constraining effect may be masked by a strong association of litter size with temperature seasonality, warranting further study. Lastly, we show that unreasonable estimations of phylogenetic signal (Pagel’s lamba) warrant additional caution when using small sample sizes, such as ours, in comparative studies.
Collapse
|
4
|
Aleo S, Cinnante C, Avignone S, Prada E, Scuvera G, Ajmone PF, Selicorni A, Costantino MA, Triulzi F, Marchisio P, Gervasini C, Milani D. Olfactory Malformations in Mendelian Disorders of the Epigenetic Machinery. Front Cell Dev Biol 2020; 8:710. [PMID: 32850830 PMCID: PMC7417603 DOI: 10.3389/fcell.2020.00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Usually overlooked by physicians, olfactory abnormalities are not uncommon. Olfactory malformations have recently been reported in an emerging group of genetic disorders called Mendelian Disorders of the Epigenetic Machinery (MDEM). This study aims to determine the prevalence of olfactory malformations in a heterogeneous group of subjects with MDEM. We reviewed the clinical data of 35 patients, 20 females and 15 males, with a mean age of 9.52 years (SD 4.99). All patients had a MDEM and an already available high-resolution brain MRI scan. Two experienced neuroradiologists reviewed the MR images, noting abnormalities and classifying olfactory malformations. Main findings included Corpus Callosum, Cerebellar vermis, and olfactory defects. The latter were found in 11/35 cases (31.4%), of which 7/11 had Rubinstein-Taybi syndrome (RSTS), 2/11 had CHARGE syndrome, 1/11 had Kleefstra syndrome (KLFS), and 1/11 had Weaver syndrome (WVS). The irregularities mainly concerned the olfactory bulbs and were bilateral in 9/11 patients. With over 30% of our sample having an olfactory malformation, this study reveals a possible new diagnostic marker for MDEM and links the epigenetic machinery to the development of the olfactory bulbs.
Collapse
Affiliation(s)
- Sebastiano Aleo
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cinnante
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Università degli Studi di Milano, Milan, Italy
| | - Sabrina Avignone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Prada
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulietta Scuvera
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Francesca Ajmone
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Maria Antonella Costantino
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Università degli Studi di Milano, Milan, Italy
| | - Paola Marchisio
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Division of Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Sánchez-González R, Figueres-Oñate M, Ojalvo-Sanz AC, López-Mascaraque L. Cell Progeny in the Olfactory Bulb After Targeting Specific Progenitors with Different UbC-StarTrack Approaches. Genes (Basel) 2020; 11:genes11030305. [PMID: 32183100 PMCID: PMC7140809 DOI: 10.3390/genes11030305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
The large phenotypic variation in the olfactory bulb may be related to heterogeneity in the progenitor cells. Accordingly, the progeny of subventricular zone (SVZ) progenitor cells that are destined for the olfactory bulb is of particular interest, specifically as there are many facets of these progenitors and their molecular profiles remain unknown. Using modified StarTrack genetic tracing strategies, specific SVZ progenitor cells were targeted in E12 mice embryos, and the cell fate of these neural progenitors was determined in the adult olfactory bulb. This study defined the distribution and the phenotypic diversity of olfactory bulb interneurons from specific SVZ-progenitor cells, focusing on their spatial pallial origin, heterogeneity, and genetic profile.
Collapse
|
6
|
Wright AA, Todorovic M, Murtaza M, St John JA, Ekberg JA. Macrophage migration inhibitory factor and its binding partner HTRA1 are expressed by olfactory ensheathing cells. Mol Cell Neurosci 2019; 102:103450. [PMID: 31794879 DOI: 10.1016/j.mcn.2019.103450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an important regulator of innate immunity with key roles in neural regeneration and responses to pathogens, amongst a multitude of other functions. The expression of MIF and its binding partners has been characterised throughout the nervous system, with one key exception: the primary olfactory nervous system. Here, we showed in young mice (postnatal day 10) that MIF is expressed in the olfactory nerve by olfactory ensheathing glial cells (OECs) and by olfactory nerve fibroblasts. We also examined the expression of potential binding partners for MIF, and found that the serine protease HTRA1, known to be inhibited by MIF, was also expressed at high levels by OECs and olfactory fibroblasts in vivo and in vitro. We also demonstrated that MIF mediated segregation between OECs and J774a.1 cells (a monocyte/macrophage cell line) in co-culture, which suggests that MIF contributes to the fact that macrophages are largely absent from olfactory nerve fascicles. Phagocytosis assays of axonal debris demonstrated that MIF strongly stimulates phagocytosis by OECs, which indicates that MIF may play a role in the response of OECs to the continual turnover of olfactory axons that occurs throughout life.
Collapse
Affiliation(s)
- A A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - M Todorovic
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - M Murtaza
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - J A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - J A Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
7
|
Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, Xu Z, Shang Z, Guo T, Su Z, Chen H, You Y, Li J, Yang Z. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol 2019; 527:2931-2947. [DOI: 10.1002/cne.24719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Xiaolei Song
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zicong Shang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Teng Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Zihao Su
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Haotian Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| | - Jiada Li
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life SciencesCentral South University Changsha Hunan PR China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology, Zhongshan HospitalFudan University Shanghai PR China
| |
Collapse
|
8
|
Semaphorin 3A as an inhibitive factor for migration of olfactory ensheathing cells through cofilin activation is involved in formation of olfactory nerve layer. Mol Cell Neurosci 2018; 92:27-39. [PMID: 29940213 DOI: 10.1016/j.mcn.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 01/27/2023] Open
Abstract
Olfactory ensheathing cells (OECs) migrate from olfactory epithelium towards olfactory bulb (OB), contributing to formation of the presumptive olfactory nerve layer during development. However, it remains unclear that molecular mechanism of regulation of OEC migration in OB. In the present study, we found that OECs highly expressed the receptors of semaphorin 3A (Sema3A) in vitro and in vivo, whereas Sema3A displayed a gradient expression pattern with higher in inner layer of OB and lower in outer layer of OB. Furthermore, the collapse assays, Boyden chamber migration assays and single-cell migration assays showed that Sema3A induced the collapse of leading front of OECs and inhibited OEC migration. Thirdly, the leading front of OECs exhibited adaptation in a protein synthesis-independent manner, and endocytosis-dependent manner during Sema3A-induced OEC migration. Finally, Sema3A-induced collapse of leading front was required the decrease of focal adhesion and a retrograde F-actin flow in a cofilin activation-dependent manner. Taken together, these results demonstrate that Sema3A as an inhibitive migratory factor for OEC migration through cofilin activation is involved in the formation of olfactory nerve layer.
Collapse
|
9
|
Maier AM, Breer H, Strotmann J. Adult Born Periglomerular Cells of Odorant Receptor Specific Glomeruli. Front Neuroanat 2018; 12:26. [PMID: 29692711 PMCID: PMC5902569 DOI: 10.3389/fnana.2018.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
The OR37 subsystem is characterized by a variety of unique features. The odorant receptors (ORs) of this subfamily are selectively tuned to specific ligands which are supposed to play a role in social communication. OR37 expressing sensory neurons project their axons to a single receptor specific glomerulus per bulb which have been shown to be unusually stable in size and to possess a distinct repertoire of periglomerular cells. Since the neuronal network surrounding glomeruli is typically modified by the integration of adult born neurons, in this study it was investigated whether the number of adult born cells might be different for OR37 glomeruli compared to other OR-specific glomeruli. Towards this goal, 23 days after BrdU injection, BrdU labeled cells in the proximity of OR37A glomeruli as well as around OR18-2 and OR256-17 glomeruli were determined. It was found that the number of BrdU labeled cells in the periglomerular region of OR37A glomeruli was significantly lower compared to glomeruli of the other OR types. This finding was in line with a lower number of neuroblasts visualized by the marker protein doublecortin. Double labeling experiments for BrdU and marker proteins revealed that despite a relatively high number of calretinin expressing cells at the OR37A glomeruli, the number of cells co-stained with BrdU was quite low compared to other glomeruli, which may point to an individual turnover rate of this cell type for different glomeruli. Together, the results of the present study support the notion that the neuronal network at the OR37 glomeruli is less dynamic than that of other glomerulus types. This indicates a specific processing of social information in OR37 glomerular networks.
Collapse
Affiliation(s)
- Anna-Maria Maier
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Strotmann
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
10
|
Jaafar C, Omais S, Al Lafi S, El Jamal N, Noubani M, Skaf L, Ghanem N. Role of Rb during Neurogenesis and Axonal Guidance in the Developing Olfactory System. Front Mol Neurosci 2016; 9:81. [PMID: 27667971 PMCID: PMC5016521 DOI: 10.3389/fnmol.2016.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/24/2016] [Indexed: 11/19/2022] Open
Abstract
The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB). We show that mice carrying a telencephalic-specific deletion of Rb display several neurogenic defects in the OS during late development. In the OE, loss of Rb leads to ectopic proliferation of late-born progenitors (Tuj-1+), abnormal radial migration and terminal maturation of olfactory sensory neurons (OSNs). In the OB, deletion of Rb causes severe lamination defects with loss of clear boundaries between distinct layers. Importantly, starting around E15.5 when OB glomerulogenesis is initiated, many OSNs axons that project along the olfactory nerve layer (ONL) fail to properly innervate the nascent bulb, thus resulting in partial loss of connectivity between OE-OB and gradual neuronal degeneration in both tissues peaking at birth. This deficiency correlates with deregulated expressions of two key chemo-repellant molecules, Robo2/Slit1 and Nrp2/Sema3F that control the formation of dorsal-ventral topographic map of OSNs connections with OB glomeruli. This study highlights a critical requirement for Rb during neurogenesis and the establishment of proper synaptic connections inside the OS during development.
Collapse
Affiliation(s)
- Carine Jaafar
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Saad Omais
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Sawsan Al Lafi
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Nadim El Jamal
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Mohammad Noubani
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Larissa Skaf
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut Beirut, Lebanon
| |
Collapse
|
11
|
Li Z, Zhang T, Lin Z, Hou C, Zhang J, Men Y, Li H, Gao J. Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice. PLoS One 2016; 11:e0162126. [PMID: 27603780 PMCID: PMC5014313 DOI: 10.1371/journal.pone.0162126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022] Open
Abstract
Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice.
Collapse
Affiliation(s)
- Zhenzu Li
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | - Tingting Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | - Zhuchun Lin
- Jinan First People's Hospital, Jinan, 250011, Shandong, China
| | - Congzhe Hou
- The Second Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Jian Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | - Yuqin Men
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | - Huashun Li
- SARITEX Center for Stem Cell, Engineering Translational Medicine, Shanghai East Hospital, Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, 200123, China.,Center for Stem Cell&Nano-Medicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200123, China.,Shenzhen Key Laboratory for Molecular Biology of Neural Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, Guangdong, China
| | - Jiangang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| |
Collapse
|
12
|
Bachmann C, Nguyen H, Rosenbusch J, Pham L, Rabe T, Patwa M, Sokpor G, Seong RH, Ashery-Padan R, Mansouri A, Stoykova A, Staiger JF, Tuoc T. mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium. PLoS Genet 2016; 12:e1006274. [PMID: 27611684 PMCID: PMC5017785 DOI: 10.1371/journal.pgen.1006274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development.
Collapse
Affiliation(s)
| | - Huong Nguyen
- University Medical Center, Georg-August-University, Goettingen, Germany
| | | | - Linh Pham
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Tamara Rabe
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Megha Patwa
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Godwin Sokpor
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Rho H. Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Ruth Ashery-Padan
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ahmed Mansouri
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Anastassia Stoykova
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Jochen F. Staiger
- University Medical Center, Georg-August-University, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Tran Tuoc
- University Medical Center, Georg-August-University, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| |
Collapse
|
13
|
Calderón-Garcidueñas L, Franco-Lira M, Torres-Jardón R, Henriquez-Roldán C, Barragán-Mejía G, Valencia-Salazar G, González-Maciel A, Reynoso-Robles R, Villarreal-Calderón R, Reed W. Pediatric Respiratory and Systemic Effects of Chronic Air Pollution Exposure: Nose, Lung, Heart, and Brain Pathology. Toxicol Pathol 2016; 35:154-62. [PMID: 17325984 DOI: 10.1080/01926230601059985] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer’s-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1β (IL-1β) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of β-amyloid peptide (Aβ42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer’s disease (AD) is characterized by brain inflammation and the accumulation of Aβ42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1β expression and Aβ42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.
Collapse
|
14
|
Forni PE, Wray S. GnRH, anosmia and hypogonadotropic hypogonadism--where are we? Front Neuroendocrinol 2015; 36:165-77. [PMID: 25306902 PMCID: PMC4703044 DOI: 10.1016/j.yfrne.2014.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
Gonadotropin releasing hormone (GnRH) neurons originate the nasal placode and migrate into the brain during prenatal development. Once within the brain, these cells become integral components of the hypothalamic-pituitary-gonadal axis, essential for reproductive function. Disruption of this system causes hypogonadotropic hypogonadism (HH). HH associated with anosmia is clinically defined as Kallman syndrome (KS). Recent work examining the developing nasal region has shed new light on cellular composition, cell interactions and molecular cues responsible for the development of this system in different species. This review discusses some developmental aspects, animal models and current advancements in our understanding of pathologies affecting GnRH. In addition we discuss how development of neural crest derivatives such as the glia of the olfactory system and craniofacial structures control GnRH development and reproductive function.
Collapse
Affiliation(s)
- Paolo E Forni
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States.
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
15
|
Cellular and molecular mechanisms regulating embryonic neurogenesis in the rodent olfactory epithelium. Int J Dev Neurosci 2014; 37:76-86. [PMID: 25003986 DOI: 10.1016/j.ijdevneu.2014.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 02/08/2023] Open
Abstract
Mechanisms that regulate cellular differentiation in developing embryos are maintained across multiple physiological systems, including the nervous system where neurons and glia are generated. The olfactory epithelium, which arises from the olfactory pit, is a stratified tissue in which the stepwise generation of neurons and support cells can easily be assessed and followed during embryogenesis and throughout adulthood. During olfactory epithelium morphogenesis, progenitor cells respond to factors that control their proliferation, survival, and differentiation in order to generate olfactory receptor neurons that detect odorants in the environment and glia-like sustentacular cells. The tight temporal regulation of expression of proneural genes in dividing progenitor cells, including Mash-1, Neurogenin-1, and NeuroD1, plays a central role in the production of olfactory receptor neurons. Multiple factors that either positively or negatively affect the generation of olfactory receptor neurons have been identified and shown to impinge on the transcriptional regulatory network in dividing progenitor cells. Several growth factors, such as FGF-8, act to promote neurogenesis by ensuring survival of progenitor cells that will give rise to olfactory receptor neurons. In contrast, other molecules, including members of the large TGF-β family of proteins, have negative impacts on neurogenesis by restricting progenitor cell proliferation and stalling their differentiation. Since recent reviews have focused on neurogenesis in the regenerating adult olfactory epithelium, this review describes neurogenesis at embryonic stages of olfactory epithelium development and summarizes our current understanding of how both cell intrinsic and extrinsic factors control this process.
Collapse
|
16
|
Figueres-Oñate M, Gutiérrez Y, López-Mascaraque L. Unraveling Cajal's view of the olfactory system. Front Neuroanat 2014; 8:55. [PMID: 25071462 PMCID: PMC4078396 DOI: 10.3389/fnana.2014.00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/10/2014] [Indexed: 01/23/2023] Open
Abstract
The olfactory system has a highly regular organization of interconnected synaptic circuits from the periphery. It is therefore an excellent model for understanding general principles about how the brain processes information. Cajal revealed the basic cell types and their interconnections at the end of the XIX century. Since his original descriptions, the observation and analysis of the olfactory system and its components represents a major topic in neuroscience studies, providing important insights into the neural mechanisms. In this review, we will highlight the importance of Cajal contributions and his legacy to the actual knowledge of the olfactory system.
Collapse
Affiliation(s)
| | | | - Laura López-Mascaraque
- Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal (CSIC)Madrid, Spain
| |
Collapse
|
17
|
Bondi CO, Cheng JP, Tennant HM, Monaco CM, Kline AE. Old dog, new tricks: the attentional set-shifting test as a novel cognitive behavioral task after controlled cortical impact injury. J Neurotrauma 2014; 31:926-37. [PMID: 24397572 DOI: 10.1089/neu.2013.3295] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cognitive impairment associated with prefrontal cortical dysfunction is a major component of disability in traumatic brain injury (TBI) survivors. Specifically, deficits of cognitive flexibility and attentional set-shifting are present across all levels of injury severity. Though alterations in spatial learning have been extensively described in experimental models of TBI, studies investigating more complex cognitive deficits are relatively scarce. Hence, the aim of this preclinical study was to expand on this important issue by evaluating the effect of three injury levels on executive function and behavioral flexibility performance as assessed using an attentional set-shifting test (AST). Isoflurane-anesthetized male rats received a controlled cortical impact (CCI) injury (2.6, 2.8, and 3.0 mm cortical depth at 4 m/sec) or sham injury, whereas an additional group had no surgical manipulation (naïve). Four weeks postsurgery, rats were tested on the AST, which involved a series of discriminative tasks of increasing difficulty, such as simple and compound discriminations, stimulus reversals, and intra- and extradimensional (ED) shifts. TBI produced accompanying impact depth-dependent increases in cortical lesion volumes, with the 3.0-mm cortical depth group displaying significantly larger injury volumes than the 2.6-mm group (p=0.05). Further, injury severity-induced deficits in ED set-shifting and stimulus reversals, as well as increases in total response error rates and total set loss errors, were observed. These novel findings demonstrate executive function and behavioral flexibility deficits in our animal model of CCI injury and provide the impetus to integrate the AST in the standard neurotrauma behavioral battery to further evaluate cognitive dysfunction after TBI. Ongoing experiments in our laboratory are assessing AST performance after pharmacological and rehabilitative therapies post-TBI, as well as elucidating possible mechanisms underlying the observed neuropsychological deficits.
Collapse
Affiliation(s)
- Corina O Bondi
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
18
|
Conte I, Banfi S, Bovolenta P. Non-coding RNAs in the development of sensory organs and related diseases. Cell Mol Life Sci 2013; 70:4141-55. [PMID: 23588489 PMCID: PMC11113508 DOI: 10.1007/s00018-013-1335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Genomes are transcribed well beyond the conventionally annotated protein-encoding genes and produce many thousands of regulatory non-coding RNAs (ncRNAs). In the last few years, ncRNAs, especially microRNAs and long non-coding RNA, have received increasing attention because of their implication in the function of chromatin-modifying complexes and in the regulation of transcriptional and post-transcriptional events. The morphological events and the genetic networks responsible for the development of sensory organs have been well delineated and therefore sensory organs have provided a useful scenario to address the role of ncRNAs. In this review, we summarize the current information on the importance of microRNAs and long non-coding RNAs during the development of the eye, inner ear, and olfactory system in vertebrates. We will also discuss those cases in which alteration of ncRNA expression has been linked to pathological conditions affecting these organs.
Collapse
Affiliation(s)
- Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Bovolenta
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC–UAM, c/Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
- CIBER de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
19
|
Hu Y, Poopalasundaram S, Graham A, Bouloux PM. GnRH neuronal migration and olfactory bulb neurite outgrowth are dependent on FGF receptor 1 signaling, specifically via the PI3K p110α isoform in chick embryo. Endocrinology 2013; 154:388-99. [PMID: 23150492 DOI: 10.1210/en.2012-1555] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor (FGF) signaling is essential for both olfactory bulb (OB) morphogenesis and the specification, migration, and maturation of the GnRH-secreting neurons. Disruption of FGF signaling contributes to Kallmann syndrome characterized by both anosmia and sexual immaturity. However, several unanswered questions remain as to which specific FGF receptor (FGFR)-1 signaling pathways are necessary for OB and GnRH neuronal development. Here, using pharmacological phosphatidylinositol 3-kinase (PI3K) isoform-specific inhibitors, we demonstrate a central role for the PI3K p110α isoform as a downstream effector of FGFR1 signaling for both GnRH neuronal migration and OB development. We show that signaling via the PI3K p110α isoform is required for GnRH neuronal migration in explant cultures of embryonic day (E) 4 chick olfactory placodes. We also show that in ovo administration of LY294002, a global PI3K inhibitor as well as an inhibitor to the PI3K p110α isoform into the olfactory placode of E3 chick embryo impairs GnRH neuronal migration toward the forebrain. In contrast, in ovo PI3K inhibitor treatment produced no obvious defects on primary olfactory sensory neuron axonal targeting and bundle formation. We also demonstrate that anosmin-1 and FGF2 induced neuronal migration of immortalized human embryonic GnRH neuroblast cells (FNC-B4-hTERT) is mediated by modulating FGFR1 signaling via the PI3K p110α isoform, specifically through phosphorylation of the PI3K downstream effectors, Akt and glycogen synthase kinase-3β. Finally, we show that neurite outgrowth and elongation of OB neurons in E10 chick OB explants are also dependent on the PI3K p110α isoform downstream of FGFR1. This study provides mechanistic insight into the etiology of Kallmann syndrome.
Collapse
Affiliation(s)
- Youli Hu
- Centre for Neuroendocrinology, University College London Medical School, Royal Free Campus, London NW3 2PF, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Suárez R, García-González D, de Castro F. Mutual influences between the main olfactory and vomeronasal systems in development and evolution. Front Neuroanat 2012; 6:50. [PMID: 23269914 PMCID: PMC3529325 DOI: 10.3389/fnana.2012.00050] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/26/2012] [Indexed: 12/14/2022] Open
Abstract
The sense of smell plays a crucial role in the sensory world of animals. Two chemosensory systems have been traditionally thought to play-independent roles in mammalian olfaction. According to this, the main olfactory system (MOS) specializes in the detection of environmental odorants, while the vomeronasal system (VNS) senses pheromones and semiochemicals produced by individuals of the same or different species. Although both systems differ in their anatomy and function, recent evidence suggests they act synergistically in the perception of scents. These interactions include similar responses to some ligands, overlap of telencephalic connections and mutual influences in the regulation of olfactory-guided behavior. In the present work, we propose the idea that the relationships between systems observed at the organismic level result from a constant interaction during development and reflects a common history of ecological adaptations in evolution. We review the literature to illustrate examples of developmental and evolutionary processes that evidence these interactions and propose that future research integrating both systems may shed new light on the mechanisms of olfaction.
Collapse
Affiliation(s)
- Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, St Lucia Brisbane, QLD, Australia ; Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | | | | |
Collapse
|
21
|
Martín-López E, Corona R, López-Mascaraque L. Postnatal characterization of cells in the accessory olfactory bulb of wild type and reeler mice. Front Neuroanat 2012; 6:15. [PMID: 22661929 PMCID: PMC3357593 DOI: 10.3389/fnana.2012.00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/03/2012] [Indexed: 11/19/2022] Open
Abstract
Olfaction is the most relevant chemosensory sense of the rodents. General odors are primarily detected by the main olfactory system while most pheromonal signals are received by the accessory olfactory system. The first relay in the brain occurs in the olfactory bulb, which is subdivided in the main and accessory olfactory bulb (MOB/AOB). Given that the cell generation time is different between AOB and MOB, and the cell characterization of AOB remains limited, the goal of this work was first, the definition of the layering of AOB/MOB and second, the determination of cellular phenotypes in the AOB in a time window corresponding to the early postnatal development. Moreover, since reelin (Reln) deficiency has been related to olfactory learning deficits, we analyzed reeler mice. First, we compared the layering between AOB and MOB at early embryonic stages. Then, cell phenotypes were established using specific neuronal and glial markers as well as the Reln adaptor protein Dab1 to analyse differences in both genetic backgrounds. There was no apparent difference in the cell phenotypes among AOB and MOB or between wild type (wt) and reeler animals. However, a disruption in the granular cell layer of reeler with respect to wt mice was observed. In conclusion, the AOB in Reln-deficient mice showed similar neuronal and glial cell types being only affected the organization of granular neurons.
Collapse
Affiliation(s)
- Eduardo Martín-López
- Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal (CSIC) Madrid, Spain
| | | | | |
Collapse
|
22
|
Netrin1 is required for neural and glial precursor migrations into the olfactory bulb. Dev Biol 2011; 355:101-14. [DOI: 10.1016/j.ydbio.2011.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/23/2011] [Accepted: 04/15/2011] [Indexed: 11/23/2022]
|
23
|
Weinandy F, Ninkovic J, Götz M. Restrictions in time and space--new insights into generation of specific neuronal subtypes in the adult mammalian brain. Eur J Neurosci 2011; 33:1045-54. [PMID: 21395847 DOI: 10.1111/j.1460-9568.2011.07602.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Key questions in regard to neuronal repair strategies are which cells are best suited to regenerate specific neuronal subtypes and how much of a neuronal circuit needs to persist in order to allow its functional repair. Here we discuss recent findings in the field of adult neurogenesis, which shed new light on these questions. Neural stem cells in the adult brain generate very distinct types of neurons depending on their regional and temporal specification. Moreover, distinct brain regions differ in the mode of neuron addition in adult neurogenesis, suggesting that different brain circuits may be able to cope differently with the incorporation of new neurons. These new insights are then considered in regard to the choice of cells with the appropriate region-specific identity for repair strategies.
Collapse
Affiliation(s)
- Franziska Weinandy
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 München/Neuherberg, Germany
| | | | | |
Collapse
|
24
|
Ohmomo H, Ehara A, Yoshida S, Shutoh F, Ueda SI, Hisano S. Temporally distinct expression of vesicular glutamate transporters 1 and 2 during embryonic development of the rat olfactory system. Neurosci Res 2011; 70:376-82. [PMID: 21609737 DOI: 10.1016/j.neures.2011.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
To study the development of glutamatergic neurons during the main olfactory bulb morphogenesis in rats, we examined the expression of vesicular glutamate transporters 1 (VGLUT1) and 2 (VGLUT2). On VGLUT1, expressions of mRNA and immunoreactivity were first detected in the mitral cell layer on embryonic day (E) 17.5 and E18.5, respectively, and persisted in the E20.5 olfactory bulb. Much earlier (on E12.5) than VGLUT1, expressions of VGLUT2 mRNA and/or immunoreactivity were found in the olfactory epithelium, migratory cells and telencephalon. On E14.5, the mRNA expression was also observed in the prospective bulbar region and vomeronasal organ, while immunoreactivity existed in migratory cells and growing fibers. Some fibers were observed in the deep telencephalic wall. From E16.5 onward, mRNA expression became gradually detectable in cells of the mitral cell layer with development. On E17.5, immunoreactivity was first found in fibers of the developing olfactory bulb and in some immature mitral cells from E18.5 to E20.5. The present study clarifies the expression of VGLUT2 precedent to VGLUT1 during olfactory bulb morphogenesis, suggesting differential contribution of the two VGLUT subtypes to glutamate-mediated embryonic events.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Blanchart A, Martín-López E, De Carlos JA, López-Mascaraque L. Peripheral contributions to olfactory bulb cell populations (migrations towards the olfactory bulb). Glia 2011; 59:278-92. [PMID: 21125652 DOI: 10.1002/glia.21100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The olfactory system represents one of the most suitable models to study interactions between the peripheral and central nervous systems. The developing olfactory epithelium (olfactory placode and pit) gives rise to several cell populations that migrate towards the telencephalic vesicle. One of these cell populations, called the Migratory Mass (MM), accompanies the first emerging olfactory axons from the olfactory placode, but the fate of these cells and their contribution to the Olfactory Bulb (OB) populations has not been properly addressed. To asses this issue we performed ultrasound-guided in utero retroviral injections at embryonic day (E) 11 revealing the MM as an early source of Olfactory Ensheathing Cells in later postnatal stages. Employing a wide number of antibodies to identify the nature of the infected cells we described that those cells generated within the MM at E11 belong to different cell populations both in the mesenchyma, where they envelop olfactory axons and express the most common glial markers, and in the olfactory bulb, where they are restricted to the Olfactory Nerve and Glomerular layers. Thus, the data reveal the existence of a novel progenitor class within the MM, potentially derived from the olfactory placode which gives rise to different neural cell population including some CNS neurons, glia and olfactory ensheathing cells.
Collapse
Affiliation(s)
- A Blanchart
- Instituto Cajal, CSIC, Department of Cellular, Molecular and Developmental Neurobiology, Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Abstract
AbstractThe olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.
Collapse
|
27
|
García-González D, Clemente D, Coelho M, Esteban PF, Soussi-Yanicostas N, de Castro F. Dynamic roles of FGF-2 and Anosmin-1 in the migration of neuronal precursors from the subventricular zone during pre- and postnatal development. Exp Neurol 2010; 222:285-95. [PMID: 20083104 DOI: 10.1016/j.expneurol.2010.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/18/2009] [Accepted: 01/10/2010] [Indexed: 10/20/2022]
Abstract
FGF-2 and Anosmin-1 are diffusible proteins which act in cell proliferation and/or migration during CNS development. We describe their developmental expression patterns in the subventricular zone (SVZ) of the forebrain and the neuronal precursors (NPs) that migrate from this neurogenic site towards the olfactory bulb, forming the rostral migratory stream (RMS). The analysis is carried out before (E14), during (E17, P5) and after (P15) the peaks of migration along the RMS and before this acquires its mature conformation. At all these stages, FGF-2 exerts a FGFR1-mediated motogenic effect on NPs and induces the proliferation of SVZ astrocytes (putatively type B cells from triads), and Anosmin-1 works as a typical chemotropic agent for the NPs (mediated by FGFR1 at P5-P15). Altogether, our results are consistent with the notion that FGF-2 increases cell proliferation in the SVZ and would be the motogenic cue which feeds the migration of the newly produced NPs once generated, from early development (E14) and at least until P15, while Anosmin-1 cooperates in this migration attracting the NPs. In this sense, both cues should be considered as two of the first to be chronologically identified as actors in the formation of the RMS.
Collapse
Affiliation(s)
- Diego García-González
- Grupo de Neurobiología del Desarrollo-GNDe, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, E-45071-Toledo, Spain
| | | | | | | | | | | |
Collapse
|
28
|
de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci 2009; 3:52. [PMID: 20582279 PMCID: PMC2858608 DOI: 10.3389/neuro.22.004.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022] Open
Abstract
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
29
|
Blanchart A, Romaguera M, García-Verdugo JM, de Carlos JA, López-Mascaraque L. Synaptogenesis in the mouse olfactory bulb during glomerulus development. Eur J Neurosci 2008; 27:2838-46. [PMID: 18588529 DOI: 10.1111/j.1460-9568.2008.06283.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptogenesis is essential for the development of neuronal networks in the brain. In the olfactory bulb (OB) glomeruli, numerous synapses must form between sensory olfactory neurons and the dendrites of mitral/tufted and periglomerular cells. Glomeruli develop from E13 to E16 in the mouse, coincident with an increment of the neuropil in the border between the external plexiform (EPL) and olfactory nerve layers (ONL), coupled to an extensive labelling of phalloidin and GAP-43 from the ONL to EPL. We have tracked synaptogenesis in the OB during this period by electron microscopy (EM) and immunolabelling of the transmembrane synaptic vesicle glycoprotein SV-2. No SV-2 labelling or synapses were detected at E13, although electrodense junctions lacking synaptic vesicles could be observed by EM. At E14, sparse SV-2 labelling appears in the most ventral and medial part of the incipient OB, which displays a ventro-dorsal gradient by E15 but covers the entire OB by E16. These data establish a spatio-temporal pattern of synaptogenesis, which perfectly matches with the glomeruli formation in developing OB.
Collapse
Affiliation(s)
- Albert Blanchart
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Harrison SJ, Nishinakamura R, Monaghan AP. Sall1 regulates mitral cell development and olfactory nerve extension in the developing olfactory bulb. Cereb Cortex 2008; 18:1604-17. [PMID: 18024993 DOI: 10.1093/cercor/bhm191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sall1 is a zinc finger containing transcription factor that is highly expressed during mammalian embryogenesis. In humans, the developmental disorder Townes Brocks Syndrome is associated with mutations in the SALL1 gene. Sall1-deficient animals die at birth due to kidney deficits; however, its function in the nervous system has not been characterized. We examined the role of Sall1 in the developing olfactory system. We demonstrate that Sall1 is expressed by cells in the olfactory epithelium and olfactory bulb (OB). Sall1-deficient OBs are reduced in size and exhibit alterations in neurogenesis and mitral cell production. In addition, the olfactory nerve failed to extend past the ventral-medial region of the OB in Sall1-deficient animals. We observed intrinsic patterns of neurogenesis during olfactory development in control animals. In Sall1-mutant animals, these patterns of neurogenesis were disrupted. These findings suggest a role for Sall1 in regulating neuronal differentiation and maturation in developing neural structures.
Collapse
Affiliation(s)
- Susan J Harrison
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
31
|
Nomura T, Haba H, Osumi N. Role of a transcription factor Pax6 in the developing vertebrate olfactory system. Dev Growth Differ 2007; 49:683-90. [PMID: 17908181 DOI: 10.1111/j.1440-169x.2007.00965.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The olfactory system is responsible for capturing and processing odorant information, which significantly influences a variety of behaviors in animals. The vertebrate olfactory system consists of several neuronal components including the olfactory epithelium, olfactory bulb and olfactory cortex, which originate from distinct embryonic tissues. The transcription factor Pax6 is strongly expressed in the embryonic and postnatal olfactory systems, and regulates neuronal specification, migration and differentiation. Here we review classical and recent studies focusing on the role of Pax6 in the developing olfactory system, and highlight the cellular and molecular mechanisms underlying the highly coordinated developmental processes of the vertebrate olfactory system.
Collapse
Affiliation(s)
- Tadashi Nomura
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi Aoba-ku, Sendai, 980-8575, Japan.
| | | | | |
Collapse
|
32
|
García-Moreno F, López-Mascaraque L, de Carlos JA. Early telencephalic migration topographically converging in the olfactory cortex. ACTA ACUST UNITED AC 2007; 18:1239-52. [PMID: 17878174 DOI: 10.1093/cercor/bhm154] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurons that participate in the olfactory system arise in different areas of the developing mouse telencephalon. The generation of these different cell populations and their tangential migration into the olfactory cortex (OC) was tracked by tracer injection and in toto embryo culture. Cells originating in the dorsal lateral ganglionic eminence (LGE) migrate tangentially along the anteroposterior axis to settle in the piriform cortex (PC). Those originating in the ventral domain of this structure occupy the thickness of the olfactory tubercle (OT), whereas cells from the rostral LGE migrate tangentially into the most anterior telencephalon, at the level of the prospective olfactory bulb (pOB). Neurons from the dorsal telencephalon migrate ventrally, bordering the PC, toward olfactory structures. Two cell populations migrate tangentially from the rostromedial telencephalic wall to the OT and the PC, passing through the ventromedial and dorsolateral face of the telencephalon. Some cells from the germinative area of the rostral telencephalon, at the level of the septoeminential sulcus, migrate rostrally to the pOB or caudally to the OC. Thus, we demonstrate multiple telencephalic origins for the first olfactory neurons and each population following different migratory routes to colonize the OC according to an accurate topographic map.
Collapse
|
33
|
Long JE, Garel S, Alvarez-Dolado M, Yoshikawa K, Osumi N, Alvarez-Buylla A, Rubenstein JLR. Dlx-dependent and -independent regulation of olfactory bulb interneuron differentiation. J Neurosci 2007; 27:3230-43. [PMID: 17376983 PMCID: PMC4922751 DOI: 10.1523/jneurosci.5265-06.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Olfactory bulb interneuron development is a complex multistep process that involves cell specification in the ventral telencephalon, tangential migration into the olfactory bulb, and local neuronal maturation. Although several transcription factors have been implicated in this process, how or when they act remains to be elucidated. Here we explore the mechanisms that result in olfactory bulb interneuron defects in Dlx1&2-/- (distal-less homeobox 1 and 2) and Mash1-/- (mammalian achaete-schute homolog 1) mutants. We provide evidence that Dlx1&2 and Mash1 regulate parallel molecular pathways that are required for the generation of these cells, thereby providing new insights into the mechanisms underlying olfactory bulb development. The analysis also defined distinct anatomical zones related to olfactory bulb development. Finally we show that Dlx1&2 are required for promoting tangential migration to the olfactory bulb, potentially via regulating the expression of ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4), Robo2 (roundabout homolog 2), Slit1 (slit homolog 1), and PK2 (prokineticin 2), which have all been shown to play essential roles in this migration.
Collapse
Affiliation(s)
- Jason E. Long
- Nina Ireland Laboratory of Developmental Neurobiology and
| | - Sonia Garel
- Nina Ireland Laboratory of Developmental Neurobiology and
- Institut National de la Santé et de la Recherche Médicale, Unité 784, École Normale Supérieure, 75230 Paris cedex 05, France
| | - Manuel Alvarez-Dolado
- Department of Neurological Surgery and Developmental and Stem Cell Biology Program, University of California at San Francisco, San Francisco, California 94143
- Laboratorio de Regeneración Celular, Centro Investigación Príncipe Felipe, 46013 Valencia, Spain
| | - Kazuaki Yoshikawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Noriko Osumi
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and Developmental and Stem Cell Biology Program, University of California at San Francisco, San Francisco, California 94143
| | | |
Collapse
|
34
|
Curto GG, Lara JM, Parrilla M, Aijón J, Velasco A. Modifications of the retina neuronal populations of the heterozygous mutant small eye mouse, the Sey(Dey). Brain Res 2006; 1127:163-76. [PMID: 17113047 DOI: 10.1016/j.brainres.2006.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
We analyzed the modifications of the retinal neurons in a heterozygous mutant small eye mouse, the Sey(Dey). This mouse presents a mutation in chromosome 2 which affects the gene Pax6 and other nearby genes, such as the Wt1 gene and the gene of the Reticulocalbin. The eyes of these animals do not have lenses and their retinas present important morphological alterations: in the anterior portion they are joined to the cornea, they are found detached from the pigment epithelium, they present folds that form rosettes in some zones and alteration of the lamination can be observed. The partial loss of the genes affected does not prevent the formation of the different layers of the retina, but does affect its thickness, principally of the plexiform layers; moreover, the internal limiting membrane is found disorganized. All the neuronal populations are present in the retina of these animals and express the same neurochemical markers as the control animals, but the number of Pax6(+) cells is notably reduced. In these retinas a marked disorganization of the distribution of the dendrites and axons is observed and a notable reduction in the axons of ganglion cells. These results suggest that, although it does not appear determinant in the differentiation of the distinct neuronal types of the retina, the partial lack of genes of the heterozygotes +/Sey(Dey) provokes important morphological and neurochemical modifications in the cytoarchitecture of the retina.
Collapse
Affiliation(s)
- Gloria González Curto
- Instituto de Neurociencias de Castilla y León, Departamento de Biología Celular, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
35
|
Laub F, Dragomir C, Ramirez F. Mice without transcription factor KLF7 provide new insight into olfactory bulb development. Brain Res 2006; 1103:108-13. [PMID: 16814267 DOI: 10.1016/j.brainres.2006.05.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 11/28/2022]
Abstract
Recent genetic studies have excluded that peripheral innervation plays a substantial role in the initial outgrowth of the olfactory bulb. Mice without Kruppel-like factor 7 activity die at birth and display hypoplastic olfactory bulbs which lack peripheral innervation. Here, we report that incomplete penetrance of the mutation is responsible for partial bulb innervation in a small fraction of Klf7 null mice. Analysis of the partially innervated bulbs of mutant embryos, newborns and adult mice revealed an obligatory correlation with local restoration of laminar architecture, neuronal cell differentiation and neuronal activity. The degree of normal OB maturation in Klf7-/- OBs was proportional to the degree of peripheral innervation. These findings therefore indicate that peripheral innervation contributes to bulb maturation late in development by promoting cell morphogenesis and differentiation.
Collapse
Affiliation(s)
- Friedrich Laub
- Child Health Institute of New Jersey-UMDNJ-Robert W. Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
36
|
Blanchart A, De Carlos JA, López-Mascaraque L. Time frame of mitral cell development in the mice olfactory bulb. J Comp Neurol 2006; 496:529-43. [PMID: 16572431 DOI: 10.1002/cne.20941] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Along with tufted cells, mitral cells are the principal projection neurons in the olfactory bulb (OB). During the development of the OB, mitral cells migrate from the ventricular zone to the intermediate zone, where they begin to send axons along the lateral olfactory tract (LOT) to the cortical olfactory zones. Subsequently, they lose their tangential orientation, enabling them to make contact with the axons of the olfactory sensory neurons (OSN) that innervate the whole OB. Here, we investigated the distinct morphological features displayed by developing mitral cells and analyzed the relationship between the changes undertaken by these neurons and the arrival of the OSN axons. Immunostaining for specific markers of developing axons and dendrites, coupled with the use of fluorescent tracers, revealed the morphological changes, the continuous reorientation, and the final refinement that these cells undergo. We found that some of these changes are dependent on the arrival of the OSN axons. Indeed, we identified three main chronological events: 1) newly generated neurons become established in the intermediate zone and project to the LOT; 2) the cells reorient and spread their dendrites at the same time as OSN axons penetrate the OB (this is a sensitive period between embryonic day (E)15-16, in which the arrival of afferents establishes a spatial and temporal gradient that facilitates protoglomerulus and glomerulus formation); and 3) final refinement of the radially orientated cells to adopt a mature morphology. These results suggest that both afferent inputs and intrinsic factors participate to produce the well-defined sensory system.
Collapse
|
37
|
Matsumoto SI, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y. Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci U S A 2006; 103:4140-5. [PMID: 16537498 PMCID: PMC1449660 DOI: 10.1073/pnas.0508881103] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prokineticins, multifunctional secreted proteins, activate two endogenous G protein-coupled receptors PKR1 and PKR2. From in situ analysis of the mouse brain, we discovered that PKR2 is predominantly expressed in the olfactory bulb (OB). To examine the role of PKR2 in the OB, we created PKR1- and PKR2-gene-disrupted mice (Pkr1(-/-) and Pkr2(-/-), respectively). Phenotypic analysis indicated that not Pkr1(-/-)but Pkr2(-/-)mice exhibited hypoplasia of the OB. This abnormality was observed in the early developmental stages of fetal OB in the Pkr2(-/-) mice. In addition, the Pkr2(-/-) mice showed severe atrophy of the reproductive system, including the testis, ovary, uterus, vagina, and mammary gland. In the Pkr2(-/-) mice, the plasma levels of testosterone and follicle-stimulating hormone were decreased, and the mRNA transcription levels of gonadotropin-releasing hormone in the hypothalamus and luteinizing hormone and follicle-stimulating hormone in the pituitary were also significantly reduced. Immunohistochemical analysis revealed that gonadotropin-releasing hormone neurons were absent in the hypothalamus in the Pkr2(-/-) mice. The phenotype of the Pkr2(-/-) mice showed similarity to the clinical features of Kallmann syndrome, a human disease characterized by association of hypogonadotropic hypogonadism and anosmia. Our current findings demonstrated that physiological activation of PKR2 is essential for normal development of the OB and sexual maturation.
Collapse
Affiliation(s)
- Shun-ichiro Matsumoto
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
- To whom correspondence may be addressed. E-mail:
or
| | - Chihiro Yamazaki
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
- Trans Genic, Inc., Tokyo Office, Houkoku Building 7th Floor, 3-9-2 Kyobashi, Chuo-ku, Tokyo 104-0031, Japan; and
| | - Koh-hei Masumoto
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
- Department of Physics, Informatics, and Biology, Yamaguchi University, Yoshida, Yamaguchi 753-8512, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masanori Naito
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Takatoshi Soga
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hideki Hiyama
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Mitsuyuki Matsumoto
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Jun Takasaki
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masazumi Kamohara
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ayako Matsuo
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hiroyuki Ishii
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masato Kobori
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masao Katoh
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hitoshi Matsushime
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kiyoshi Furuichi
- *Molecular Medicine Research Laboratories, Drug Discovery Research, Astellas Pharma, Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
38
|
Kim J, Lauderdale JD. Analysis of Pax6 expression using a BAC transgene reveals the presence of a paired-less isoform of Pax6 in the eye and olfactory bulb. Dev Biol 2006; 292:486-505. [PMID: 16464444 DOI: 10.1016/j.ydbio.2005.12.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/08/2005] [Accepted: 12/21/2005] [Indexed: 11/19/2022]
Abstract
Pax6, a member of the paired-family of transcription factors, exhibits restricted expression and essential functions in the developing eye, olfactory system, central nervous system, and pancreas. To understand Pax6 function, which critically depends on induction of proper expression levels during development, it is necessary to elucidate the molecular mechanisms governing Pax6 transcription. Although previous studies using classic transgenic approaches have provided a wealth of information about the distribution and types of regulatory elements involved in Pax6 regulation, genetic studies in both humans and mice indicate that these enhancers alone are not sufficient for fully regulated Pax6 expression. We report here our analysis of mice transgenic for a 160 kb mouse Pax6 BAC transgene, which was generated as a necessary first step towards testing the long-range control of Pax6 expression in vivo. We show that this BAC transgene replicates Pax6 expression in the eye. This is the first time that a reporter transgene has been expressed in a normal Pax6-like pattern in all of the tissues of the eye and defines an eye regulatory region within the Pax6 downstream regulatory region (DRR). Second, we show that this BAC transgene contains all of the cis regulatory elements required for normal Pax6 expression within the developing embryo, except for within the diencephalon and olfactory bulb. Third, we show that this transgene is subject to Pax6 autoregulation. Lastly, we identify, for the first time in mammals, an isoform of the Pax6 protein lacking the paired domain. This isoform is expressed in the developing olfactory bulb and eye. Over-expression of Pax6DeltaPD causes a microphthalmic phenotype in both Pax6(+/+) mice and Pax6(+/-) mice. These results demonstrate a role for Pax6DeltaPD in eye development, which appears to be different than that ascribed to either canonical Pax6 or Pax6(5a).
Collapse
Affiliation(s)
- Jiha Kim
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
39
|
Salazar I, Sanchez-Quinteiro P, Cifuentes JM, Fernandez De Troconiz P. General organization of the perinatal and adult accessory olfactory bulb in mice. ACTA ACUST UNITED AC 2006; 288:1009-25. [PMID: 16892425 DOI: 10.1002/ar.a.20366] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The vomeronasal system is currently a topical issue since the dual functional specificity, vomeronasal system-pheromones, has recently been questioned. Irrespective of the tools used to put such specificity in doubt, the diversity of the anatomy of the system itself in the animal kingdom is probably of more importance than has previously been considered. It has to be pointed out that a true vomeronasal system is integrated by the vomeronasal organ, the accessory olfactory bulb, and the so-called vomeronasal amygdala. Therefore, it seems reasonable to establish the corresponding differences between a well-developed vomeronasal system and other areas of the nasal cavity in which putative olfactory receptors, perhaps present in other kinds of mammals, may be able to detect pheromones and to process them. In consequence, a solid pattern for one such system in one particular species needs to be chosen. Here we report on an analysis of the general morphological characteristics of the accessory olfactory bulb in mice, a species commonly used in the study of the vomeronasal system, during growth and in adults. Our results indicate that the critical period for the formation of this structure comprises the stages between the first and the fifth day after birth, when the stratification of the bulb, the peculiarities of each type of cell, and the final building of glomeruli are completed. In addition, our data suggest that the conventional plexiform layers of the main olfactory bulb are not present in the accessory bulb.
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy and Animal Production, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain.
| | | | | | | |
Collapse
|
40
|
López-Mascaraque L, García C, Blanchart A, De Carlos JA. Olfactory epithelium influences the orientation of mitral cell dendrites during development. Dev Dyn 2005; 232:325-35. [PMID: 15614760 DOI: 10.1002/dvdy.20239] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We have established previously that, although the olfactory epithelium is absent in the homozygous Pax-6 mutant mouse, an olfactory bulb-like structure (OBLS) does develop. Moreover, this OBLS contains cells that correspond to mitral cells, the primary projection neurons in the olfactory bulb. The current study aimed to address whether the dendrites of mitral cells in the olfactory bulb or in the OBLS mitral-like cells, exhibit a change in orientation in the presence of the olfactory epithelium. The underlying hypothesis is that the olfactory epithelium imparts a trophic signal on mitral and mitral-like cell that influences the growth of their primary dendrites, orientating them toward the surface of the olfactory bulb. Hence, we cultured hemibrains from wild-type and Pax 6 mutant mice from two different embryonic stages (embryonic days 14 and 15) either alone or in coculture with normal olfactory epithelial explants or control tissue (cerebellum). Our results indicate that the final dendritic orientation of mitral and mitral-like cells is directly influenced both by age and indeed by the presence of the olfactory epithelium.
Collapse
|
41
|
Yoshihara SI, Omichi K, Yanazawa M, Kitamura K, Yoshihara Y. Arx homeobox gene is essential for development of mouse olfactory system. Development 2005; 132:751-62. [PMID: 15677725 DOI: 10.1242/dev.01619] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The olfactory system provides an excellent model in which to study cell proliferation, migration, differentiation, axon guidance, dendritic morphogenesis, and synapse formation. We report here crucial roles of the Arx homeobox gene in the developing olfactory system by analyzing its mutant phenotypes. Arx protein was expressed strongly in the interneurons and weakly in the radial glia of the olfactory bulb, but in neither the olfactory sensory neurons nor bulbar projection neurons. Arx-deficient mice showed severe anatomical abnormalities in the developing olfactory system: (1) size reduction of the olfactory bulb, (2) reduced proliferation and impaired entry into the olfactory bulb of interneuron progenitors, (3) loss of tyrosine hydroxylase-positive periglomerular cells, (4) disorganization of the layer structure of the olfactory bulb, and (5) abnormal axonal termination of olfactory sensory neurons in an unusual axon-tangled structure, the fibrocellular mass. Thus, Arx is required for not only the proper developmental processes of Arx-expressing interneurons, but also the establishment of functional olfactory neural circuitry by affecting Arx-non-expressing sensory neurons and projection neurons. These findings suggest a likely role of Arx in regulating the expression of putative instructive signals produced in the olfactory bulb for the proper innervation of olfactory sensory axons.
Collapse
Affiliation(s)
- Sei-ichi Yoshihara
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
42
|
Inaki K, Nishimura S, Nakashiba T, Itohara S, Yoshihara Y. Laminar organization of the developing lateral olfactory tract revealed by differential expression of cell recognition molecules. J Comp Neurol 2005; 479:243-56. [PMID: 15457507 DOI: 10.1002/cne.20270] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The projection neurons in the olfactory bulb (mitral and tufted cells) send axons through the lateral olfactory tract (LOT) onto several structures of the olfactory cortex. However, little is known of the molecular and cellular mechanisms underlying establishment of functional connectivity from the bulb to the cortex. Here, we investigated the developmental process of LOT formation by observing expression patterns of cell recognition molecules in embryonic mice. We immunohistochemically identified a dozen molecules expressed in the developing LOT and some of them were localized to subsets of mitral cell axons. Combinatorial immunostaining for these molecules revealed that the developing LOT consists of three laminas: superficial, middle, and deep. Detailed immunohistochemical, in situ hybridization, and 5-bromodeoxyuridine labeling analyses suggested that the laminar organization reflects: 1) the segregated pathways from the accessory and main olfactory bulbs, and 2) the different maturity of mitral cell axons. Mitral cell axons of the accessory olfactory bulb were localized to the deep lamina, segregated from those of the main olfactory bulb. In the main olfactory pathway, axons of mature mitral cells, whose somata is located in the apical sublayer of the mitral cell layer, were localized to the middle lamina within LOT, while those of immature mitral cells that located in the basal sublayer were complementarily localized to the superficial lamina. These results suggest that newly generated immature axons are added to the most superficial lamina of LOT successively, leading to the formation of piled laminas with different maturational stages of the mitral cell axons.
Collapse
Affiliation(s)
- Koichiro Inaki
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
43
|
Granados-Fuentes D, Saxena MT, Prolo LM, Aton SJ, Herzog ED. Olfactory bulb neurons express functional, entrainable circadian rhythms. Eur J Neurosci 2004; 19:898-906. [PMID: 15009137 PMCID: PMC3474850 DOI: 10.1111/j.0953-816x.2004.03117.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian pacemakers drive many daily molecular, physiological and behavioural rhythms. We investigated whether the main olfactory bulb is a functional circadian pacemaker in rats. Long-term, multielectrode recordings revealed that individual, cultured bulb neurons expressed near 24-h oscillations in firing rate. Real-time recordings of Period1 gene activity showed that a population of cells within the bulb expressed synchronized rhythmicity starting on embryonic day 19. This rhythmicity was intrinsic to the mitral, and not the granule, cell layer, entrainable to physiological temperature cycles and temperature compensated in its period. However, removal of the olfactory bulbs had no effect on running wheel behaviour. These results indicate that individual mitral/tufted cells are competent circadian pacemakers which normally synchronize to each other. The daily rhythms in gene expression and firing rate intrinsic to the olfactory bulb are not required for circadian patterns of locomotion, indicating that they are involved in rhythms outside the canonical circadian system.
Collapse
|
44
|
|