1
|
Park JH, Lee DG. Nitric Oxide initiates oxidative independent apoptosis-like death in Candida albicans by lupeol. Biochimie 2025:S0300-9084(25)00097-5. [PMID: 40414340 DOI: 10.1016/j.biochi.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Lupeol, a dietary triterpene-type phytochemical flavonoid, was investigated for its mode of action in Candida albicans by assessing reactive species generation. While increased intracellular nitric oxide (NO) levels were detected, negligible levels were observed for other reactive oxygen species (ROS) and peroxynitrite(ONOO-). The major NO scavenger L-NAME was applied in further experiments to determine whether NO was responsible for the observed processes. DNA damage, including fragmentation and condensation, occurred when the NO concentration increased. Additionally, G1 to S phase cell cycle arrest was induced, followed by mitochondrial dysfunction, including mitochondria mass variation and membrane depolarization. Consequently, typical apoptotic hallmarks such as caspase activation and phosphatidyl serine exposure were monitored. Thus, this study demonstrates that NO can exclusively exert lethal damage without the contribution of highly cytotoxic ROS. In conclusion, lupeol triggers downstream effects in fungal cells following DNA damage, mitochondrial dysfunction, cell cycle arrest, and caspase activation in response to apoptosis-like cell death under NO influence.
Collapse
Affiliation(s)
- Ji Hyun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Zhang X, Chen X, Qian F, Zhu Y, He G, Yang J, Wu X, Zhang H, Yu X, Liu X. Deubiquitinase USP19 modulates apoptotic calcium release and endoplasmic reticulum stress by deubiquitinating BAG6 in triple negative breast cancer. Clin Transl Med 2023; 13:e1398. [PMID: 37700495 PMCID: PMC10497826 DOI: 10.1002/ctm2.1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), a heterogeneous subtype of breast cancer (BC), had poor prognosis. Endoplasmic reticulum (ER) stress was responsible for cellular processes and played a crucial role in the cell function. ER stress is a complex and dynamic process that can induce abnormal apoptosis and death. However, the underlying mechanism of ER stress involved in TNBC is not well defined. METHODS We identified ubiquitin-specific protease 19 (USP19) as a TNBC negative regulator for further investigation. The effects of USP19 on BC proliferation were assessed in vitro using proliferation test and cell-cycle assays, while the effects in vivo were examined using a mouse tumorigenicity model. Through in vitro flow cytometric analyses and in vivo TUNEL assays, cell apoptosis was assessed. Proteomics was used to examine the proteins that interact with USP19. RESULTS Multiple in vitro and in vivo tests showed that USP19 decreases TNBC cell growth while increasing apoptosis. Then, we demonstrated that USP19 interacts with deubiquitinates and subsequently stabilises family molecular chaperone regulator 6 (BAG6). BAG6 can boost B-cell lymphoma 2 (BCL2) ubiquitination and degradation, thereby raising ER calcium (Ca2+ ) levels and causing ER stress. We also found that the N6 -methyladenosine (m6 A) "writer" methyltransferase-like 14 (METTL14) increased global m6 A modification. CONCLUSIONS Our study reveals that USP19 elevates the intracellular Ca2+ concentration to alter ER stress via regulation of BAG6 and BCL2 stability and may be a viable therapeutic target for TNBC therapy.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital)HangzhouChina
| | - Xuyu Chen
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Fangze Qian
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yanhui Zhu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Gao He
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Junzhe Yang
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Xian Wu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Hongfei Zhang
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Xiafei Yu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Xiaoan Liu
- Breast Disease CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Saadeldin IM, Tanga BM, Bang S, Seo C, Maigoro AY, Kang H, Cha D, Yun SH, Kim SI, Lee S, Cho J. Isolation, characterization, proteome, miRNAome, and the embryotrophic effects of chicken egg yolk nanovesicles (vitellovesicles). Sci Rep 2023; 13:4204. [PMID: 36918605 PMCID: PMC10014936 DOI: 10.1038/s41598-023-31012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Egg yolk constitutes about a third of the structure of the chicken egg however, the molecular structure and physiological effects of egg yolk-derived lipid membranous vesicles are not clearly understood. In this study, for the first record, the egg yolk nanovesicles (vitellovesicles, VVs) were isolated, characterized, and used as a supplement for porcine embryo culture. Yolks of ten freshly oviposited eggs were filtered and ultracentrifuged at 100,000 × g for 3 h to obtain a pellet. Cryogenic transmission electron microscopy and nanoparticle tracking analysis of the pellet revealed bilipid membranous vesicles. Protein contents of the pellet were analyzed using tandem mass spectrometry and the miRNA content was also profiled through BGISEQ-500 sequencer. VVs were supplemented with the in vitro culture medium of day-7 hatched parthenogenetic blastocysts. After 2 days of blastocyst culture, the embryonic cell count was increased in VVs supplemented embryos in comparison to the non-supplemented embryos. TUNEL assay showed that apoptotic cells were increased in control groups when compared with the VVs supplemented group. Reduced glutathione was increased by 2.5 folds in the VVs supplemented group while reactive oxygen species were increased by 5.3 folds in control groups. Quantitative PCR analysis showed that VVs significantly increased the expression of lipid metabolism-associated genes (monoglyceride lipase and lipase E), anti-apoptotic gene (BCL2), and superoxide dismutase, while significantly reducing apoptotic gene (BAX). Culturing embryos on Matrigel basement membrane matrix indicated that VVs significantly enhanced embryo attachment and embryonic stem cell outgrowths compared to the non-supplemented group. This considers the first report to characterize the molecular bioactive cargo contents of egg yolk nanovesicles to show their embryotrophic effect on mammalian embryos. This effect might be attributed to the protein and miRNA cargo contents of VVs. VVs can be used for the formulation of in vitro culture medium for mammalian embryos including humans.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Chaerim Seo
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Abdulkadir Y Maigoro
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heejae Kang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Proestou DA, Sullivan ME, Lundgren KM, Ben-Horin T, Witkop EM, Hart KM. Understanding Crassostrea virginica tolerance of Perkinsus marinus through global gene expression analysis. Front Genet 2023; 14:1054558. [PMID: 36741318 PMCID: PMC9892467 DOI: 10.3389/fgene.2023.1054558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Disease tolerance, a host's ability to limit damage from a given parasite burden, is quantified by the relationship between pathogen load and host survival or reproduction. Dermo disease, caused by the protozoan parasite P. marinus, negatively impacts survival in both wild and cultured eastern oyster (C. virginica) populations. Resistance to P. marinus has been the focus of previous studies, but tolerance also has important consequences for disease management in cultured and wild populations. In this study we measured dermo tolerance and evaluated global expression patterns of two sensitive and two tolerant eastern oyster families experimentally challenged with distinct doses of P. marinus (0, 106, 107, and 108 parasite spores per gram wet weight, n = 3-5 individuals per family per dose). Weighted Gene Correlation Network Analysis (WGCNA) identified several modules correlated with increasing parasite dose/infection intensity, as well as phenotype. Modules positively correlated with dose included transcripts and enriched GO terms related to hemocyte activation and cell cycle activity. Additionally, these modules included G-protein coupled receptor, toll-like receptor, and tumor necrosis factor pathways, which are important for immune effector molecule and apoptosis activation. Increased metabolic activity was also positively correlated with treatment. The module negatively correlated with infection intensity was enriched with GO terms associated with normal cellular activity and growth, indicating a trade-off with increased immune response. The module positively correlated with the tolerant phenotype was enriched for transcripts associated with "programmed cell death" and contained a large number of tripartite motif-containing proteins. Differential expression analysis was also performed on the 108 dosed group using the most sensitive family as the comparison reference. Results were consistent with the network analysis, but signals for "programmed cell death" and serine protease inhibitors were stronger in one tolerant family than the other, suggesting that there are multiple avenues for disease tolerance. These results provide new insight for defining dermo response traits and have important implications for applying selective breeding for disease management.
Collapse
Affiliation(s)
- Dina A. Proestou
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Mary E. Sullivan
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Kathryn Markey Lundgren
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| | - Tal Ben-Horin
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, United States
| | - Erin M. Witkop
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI, United States
| | - Keegan M. Hart
- National Cold Water Marine Aquaculture Center, USDA Agricultural Research Service, Kingston, RI, United States
| |
Collapse
|
5
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
6
|
Gan L, Velásquez-Hernández MDJ, Emmerstorfer-Augustin A, Wied P, Wolinski H, Zilio SD, Solomon M, Liang W, Doonan C, Falcaro P. Multi-layered ZIF-coated cells for the release of bioactive molecules in hostile environments. Chem Commun (Camb) 2022; 58:10004-10007. [PMID: 35942713 PMCID: PMC9453912 DOI: 10.1039/d2cc03072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) coatings on cells enhance viability in cytotoxic environments. Here, we show how protective multi-layered MOF bio-composite shells on a model cell system (yeast) enhance the proliferation of...
Collapse
Affiliation(s)
- Lei Gan
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | | | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz,, Petergasse 14, Graz, 8010, Austria
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | - Heimo Wolinski
- Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Graz, Austria
| | - Simone Dal Zilio
- Istituto Officina dei Materiali CNR, Basovizza, Edificio MM-SS, Trieste, Italy
| | - Marcello Solomon
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | - Weibin Liang
- School of Physical Sciences, Faculty of Sciences, University of Adelaide, South Australia, 5005, Australia.
| | - Christian Doonan
- School of Physical Sciences, Faculty of Sciences, University of Adelaide, South Australia, 5005, Australia.
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| |
Collapse
|
7
|
Gupta S, Vandevord JM, Loftus LM, Toupin N, Al-Afyouni MH, Rohrabaugh TN, Turro C, Kodanko JJ. Ru(II)-Based Acetylacetonate Complexes Induce Apoptosis Selectively in Cancer Cells. Inorg Chem 2021; 60:18964-18974. [PMID: 34846875 DOI: 10.1021/acs.inorgchem.1c02796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis, chemical and biological characterization of seven Ru(II) polypyridyl complexes containing acetylacetonate (acac) ligands are reported. Electronic absorption spectra were determined and electrochemical potentials consistent with Ru(III/II) couples ranging from +0.60 to +0.73 V vs Ag/AgCl were measured. A series of complexes were screened against MDA-MB-231, DU-145, and MCF-10A cell lines to evaluate their cytotoxicities in cancer and normal cell lines. Although most complexes were either nontoxic or equipotent in cancer cells and normal cell lines, compound 1, [Ru(dpqy)(acac)(py)](PF6), where dqpy is 2,6-di(quinolin-2-yl)pyridine, showed up to 2.5:1.0 selectivity for cancer as compared to normal cells, along with nanomolar EC50 values in MDA-MB-231 cells. Lipophilicity, determined as the octanol/water partition coefficient, log Po/w, ranged from -0.33 (0.06) to 1.15 (0.10) for the complexes. Although cytotoxicity was not correlated with electrochemical potentials, a moderate linear correlation between lipophilicity and toxicities was observed. Cell death mechanism studies indicated that several of the Ru-acac compounds, including 1, induce apoptosis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sayak Gupta
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jessica M Vandevord
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lauren M Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Malik H Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
Nie M, Oravcová M, Jami‐Alahmadi Y, Wohlschlegel JA, Lazzerini‐Denchi E, Boddy MN. FAM111A induces nuclear dysfunction in disease and viral restriction. EMBO Rep 2021; 22:e50803. [PMID: 33369867 PMCID: PMC7857424 DOI: 10.15252/embr.202050803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the nuclear trypsin-like serine protease FAM111A cause Kenny-Caffey syndrome (KCS2) with hypoparathyroidism and skeletal dysplasia or perinatally lethal osteocraniostenosis (OCS). In addition, FAM111A was identified as a restriction factor for certain host range mutants of the SV40 polyomavirus and VACV orthopoxvirus. However, because FAM111A function is poorly characterized, its roles in restricting viral replication and the etiology of KCS2 and OCS remain undefined. We find that FAM111A KCS2 and OCS patient mutants are hyperactive and cytotoxic, inducing apoptosis-like phenotypes such as disruption of nuclear structure and pore distribution, in a protease-dependent manner. Moreover, wild-type FAM111A activity causes similar nuclear phenotypes, including the loss of nuclear barrier function, when SV40 host range mutants attempt to replicate in restrictive cells. Interestingly, pan-caspase inhibitors do not block these FAM111A-induced phenotypes, implying it acts independently or upstream of caspases. In this regard, we identify nucleoporins and the associated GANP transcription/replication factor as FAM111A interactors and candidate targets. Overall, we reveal a potentially unifying mechanism through which deregulated FAM111A activity restricts viral replication and causes KCS2 and OCS.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Martina Oravcová
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Yasaman Jami‐Alahmadi
- Department of Biological ChemistryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - James A Wohlschlegel
- Department of Biological ChemistryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | | | - Michael N Boddy
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| |
Collapse
|
9
|
Zhang JQ, Ren QL, Chen JF, Gao BW, Wang XW, Zhang ZJ, Wang J, Xu ZJ, Xing BS. Autophagy Contributes to Oxidative Stress-Induced Apoptosis in Porcine Granulosa Cells. Reprod Sci 2020; 28:2147-2160. [PMID: 33079330 DOI: 10.1007/s43032-020-00340-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022]
Abstract
Oxidative stress-induced granulosa cell (GC) death is a major cause of follicular atresia. As the major types of programmed cell death, autophagy and apoptosis have been observed in response to H2O2-mediated oxidative stress and have been demonstrated to be responsible for porcine GC death. To date, however, the cellular reactions linking autophagy to the apoptosis of porcine GC under oxidative stress are still poorly understood. Porcine GC were treated with H2O2, and autophagic flux was examined by western blotting. Cell viability and cell death assays were performed after cotreatment of porcine GC with autophagy activator (rapamycin) or inhibitor (3-methyladenine, 3-MA) together with H2O2. We revealed that short exposure (1-3 h) of porcine GC to H2O2 dramatically increased autophagic flux (1.8- to 2.5-fold over that in the control), whereas 6-12 h prolonged treatment decreased autophagy but elevated the caspase-3 activity and GC apoptotic rate. Furthermore, we showed that pretreatment with rapamycin exacerbated H2O2-mediated cytotoxicity and caspase-3 activation but that 3-MA or siRNAs specific for Beclin 1 and Atg7 genes ameliorated H2O2-mediated GC apoptosis. Together, our results indicate that autophagy plays a pivotal role in H2O2-mediated porcine GC apoptosis. Importantly, we show that the early induction of autophagic flux contributes to oxidative stress-induced apoptosis in porcine GC. The results also suggest that regulating the autophagy response in porcine GC under oxidative stress might be a new strategy for abnormal follicular atresia.
Collapse
Affiliation(s)
- Jia-Qing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China.
| | - Qiao-Ling Ren
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Jun-Feng Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Bin-Wen Gao
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Xian-Wei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, 450008, China
| | - Zi-Jing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| | - Ze-Jun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, 450008, China
| | - Bao-Song Xing
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Zhengzhou, 450002, China
| |
Collapse
|
10
|
Wehrli M, Schneider C, Cortinas-Elizondo F, Verschoor D, Frias Boligan K, Adams OJ, Hlushchuk R, Engelmann C, Daudel F, Villiger PM, Seibold F, Yawalkar N, Vonarburg C, Miescher S, Lötscher M, Kaufmann T, Münz C, Mueller C, Djonov V, Simon HU, von Gunten S. IgA Triggers Cell Death of Neutrophils When Primed by Inflammatory Mediators. THE JOURNAL OF IMMUNOLOGY 2020; 205:2640-2648. [PMID: 33008951 DOI: 10.4049/jimmunol.1900883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
IVIG preparations consisting of pooled IgG are increasingly used for the treatment of autoimmune diseases. IVIG is known to regulate the viability of immune cells, including neutrophils. We report that plasma-derived IgA efficiently triggers death of neutrophils primed by cytokines or TLR agonists. IgA-mediated programmed neutrophil death was PI3K-, p38 MAPK-, and JNK-dependent and evoked anti-inflammatory cytokines in macrophage cocultures. Neutrophils from patients with acute Crohn's disease, rheumatoid arthritis, or sepsis were susceptible to both IgA- and IVIG-mediated death. In contrast to IVIG, IgA did not promote cell death of quiescent neutrophils. Our findings suggest that plasma-derived IgA might provide a therapeutic option for the treatment of neutrophil-associated inflammatory disorders.
Collapse
Affiliation(s)
- Marc Wehrli
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | | - Olivia Joan Adams
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Ruslan Hlushchuk
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Fritz Daudel
- Intensive Care Unit, Spital Thun, 3600 Thun, Switzerland
| | - Peter M Villiger
- Department of Rheumatology/Clinical Immunology/Allergology, University Hospital Bern, 3008 Bern, Switzerland
| | - Frank Seibold
- Gastroenterologie, Spitalnetz Bern, 3004 Bern, Switzerland.,Gastroenterologie, Praxis Balsiger, Seibold und Partner am Lindenhofspital, 3012 Bern, Switzerland
| | - Nikhil Yawalkar
- Department of Dermatology, University Hospital Bern, University of Bern, 3010 Bern, Switzerland
| | | | | | | | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christoph Mueller
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; and
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow 119991, Russia
| | | |
Collapse
|
11
|
Cytotoxicity Produced by Silicate Nanoplatelets: Study of Cell Death Mechanisms. Toxins (Basel) 2020; 12:toxins12100623. [PMID: 33003487 PMCID: PMC7600961 DOI: 10.3390/toxins12100623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
Nano-silicate platelets (NSP), an exfoliated product from natural clays, have been validated for biosafety and as an effective supplement to alleviate mycotoxicosis. Since NSP induced noticeable cell death, we therefore investigated further the mechanism of cytotoxicity caused by NSP. Exposure to NSP impaired membrane integrity and caused cell death in a dose-dependent manner. Reactive oxygen species (ROS) generation other than of NADH oxidase origin, and subcellular interactions by internalized NSP also contributed to NSP-induced cell death. NSP persistently provoked receptor-interacting protein 1 Ser/Thr (RIP1) kinase and caspase 6 and 3/7 activation without altering caspase 8 activity and induced evident chromatolysis of necrosis in the later stage. These events proceeded along with increased ER stress and mitochondrial permeability, to final Cyt-C (Cytochrome C) release and AIF (apoptosis inducing factor) translocation, a hallmark of cell necroptosis. Fluorescent probing further manifested NSP traffic, mostly adherence on the cell surfaces, or via internalization, being compartmentalized in the nuclei, cytosols, and mitochondria. Pharmacological approaches with specific inhibitors suggested that endocytosis and particularly RIP1 kinase provocation mediate NSP-induced cell death independent of caspase activation. In conclusion, the necroptotic process contributes to most of the cell death induced by NSP due to membrane interactions/impaired integrity, ROS generation, and subcellular interactions by internalized NSP.
Collapse
|
12
|
Zhan C, Liu W, Zhang F, Zhang X. Microcystin-LR triggers different endoplasmic reticulum stress pathways in the liver, ovary, and offspring of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121939. [PMID: 31884362 DOI: 10.1016/j.jhazmat.2019.121939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The existence of microcystins (MCs), the secondary metabolite of cyanobacteria, has become a growing public health concern. Previous researches have proved that MCs can trigger endoplasmic reticulum stress (ERS), but the underlying mechanisms remain unclear. In the present study, adult female zebrafish were exposed to MC-LR (0, 1, 5 and 20 μg/L) for 30 d, and the offspring derived from the treated females and healthy males were cultured in water without MC-LR until 96 h post fertilization (hpf). Our data suggested that MC-LR causes a significant increase in the eif2s1a, atf4, and eif2ak3 transcription levels in the liver and ovary. The mRNA levels of atf4, atf6, bcl-2, hspa5, eif2s1a and eif2ak3 upregulated notably in the offspring. JNK phosphorylation level and cleaved-caspase3 protein expression elevated obviously in the liver and ovary, but had no remarkable change in the offspring. Furthermore, TUNEL results showed that MC-LR significantly induced apoptosis in the liver and ovary, while acridine orange (AO) staining indicated that MC-LR did not cause abnormal apoptosis in offspring. Concisely, the present study indicated that MC-LR leads to apoptosis through different ERS pathways in the liver, ovary and offspring, and also provides a new perspective for understanding the apoptosis caused by MC-LR.
Collapse
Affiliation(s)
- Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Feng Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
13
|
Zhu FC, Sun J, Yan GY, Huang JM, Chen C, He LS. Insights into the strategy of micro-environmental adaptation: Transcriptomic analysis of two alvinocaridid shrimps at a hydrothermal vent. PLoS One 2020; 15:e0227587. [PMID: 31923275 PMCID: PMC6953826 DOI: 10.1371/journal.pone.0227587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Diffusing fluid at a deep-sea hydrothermal vent creates rapid, acute physico-chemical gradients that correlate strongly with the distribution of the vent fauna. Two alvinocaridid shrimps, Alvinocaris longirostris and Shinkaicaris leurokolos occupy distinct microhabitats around these vents and exhibit different thermal preferences. S. leurokolos inhabits the central area closer to the active chimney, while A. longirostris inhabits the peripheral area. In this study, we screened candidate genes that might be involved in niche separation and microhabitat adaptation through comparative transcriptomics. The results showed that among the top 20% of overexpressed genes, gene families related to protein synthesis and structural components were much more abundant in S. leurokolos compared to A. longirostris. Moreover, 15 out of 25 genes involved in cellular carbohydrate metabolism were related to trehalose biosynthesis, versus 1 out of 5 in A. longirostris. Trehalose, a non-reducing disaccharide, is a multifunctional molecule and has been proven to act as a protectant responsible for thermotolerance in Saccharomyces cerevisiae. Putative positively selected genes involved in chitin metabolism and the immune system (lectin, serine protease and antimicrobial peptide) were enriched in S. leurokolos. In particular, one collagen and two serine proteases were found to have experienced strong positive selection. In addition, sulfotransferase-related genes were both overexpressed and positively selected in S. leurokolos. Finally, genes related to structural proteins, immune proteins and protectants were overexpressed or positively selected. These characteristics could represent adaptations of S. leurokolos to its microhabitat, which need to be confirmed by more evidence, such as data from large samples and different development stages of these alvinocaridid shrimps.
Collapse
Affiliation(s)
- Fang-Chao Zhu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guo-Yong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Jiao-Mei Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chong Chen
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Li-Sheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
- * E-mail:
| |
Collapse
|
14
|
Sabir N, Hussain T, Liao Y, Wang J, Song Y, Shahid M, Cheng G, Mangi MH, Yao J, Yang L, Zhao D, Zhou X. Kallikrein 12 Regulates Innate Resistance of Murine Macrophages against Mycobacterium bovis Infection by Modulating Autophagy and Apoptosis. Cells 2019; 8:cells8050415. [PMID: 31060300 PMCID: PMC6562459 DOI: 10.3390/cells8050415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1β, IL-6, IL-12 and TNF-α were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-β expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB.
Collapse
Affiliation(s)
- Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yi Liao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jie Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yinjuan Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Muhammad Shahid
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Guangyu Cheng
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lifeng Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Kartiko BH, Siswanto FM. Overtraining elevates serum protease level, increases renal p16INK4α gene expression and induces apoptosis in rat kidney. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0433-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Xu D, Zhou S, Sun L. RNA-seq based transcriptional analysis reveals dynamic genes expression profiles and immune-associated regulation under heat stress in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2018; 78:169-176. [PMID: 29684611 DOI: 10.1016/j.fsi.2018.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
In this study, we explored the gene expression profiles in Apostichopus japonicus under continuous heat stress (6 h, 48 h and 192 h) by applying RNA-seq technique. A total of 676, 1010 and 1083 differentially expressed genes were detected at three heat stress groups respectively, which suggested complex regulation of various biological processes. Then we focused on the changing of immune system under HS in sea cucumbers. Key immune-associated genes were involved in heat stress response, which were classified into six groups: heat shock proteins, transferrin superfamily members, effector genes, proteases, complement system, and pattern recognition receptors and signaling. Moreover, the mRNA expression of the immune-associated genes were validated by the real time PCR. Our results showed that an immunological strategy in this species was developed to confront abrupt elevated temperatures in the environment.
Collapse
Affiliation(s)
- Dongxue Xu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun Zhou
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Reinhart R, Kaufmann T. IL-4 enhances survival of in vitro-differentiated mouse basophils through transcription-independent signaling downstream of PI3K. Cell Death Dis 2018; 9:713. [PMID: 29915306 PMCID: PMC6006176 DOI: 10.1038/s41419-018-0754-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 4 (IL-4) is a critical cytokine implicated with TH2 immune reactions, which are linked to pathologic conditions of allergic diseases. In that context, the initiation of TH2 responses can critically depend on early basophil-derived IL-4 to activate T-cell responses, which then amplify IL-4 secretion. As a pleiotropic cytokine, IL-4 acts on a broad variety of hematopoietic and non-hematopoietic cells. However, the effect of IL-4 on basophils themselves, which are emerging as relevant players in allergic as well as autoimmune diseases, was only scarcely addressed so far. Here we used in vitro-differentiated mouse basophils to investigate the direct effects of IL-4 on cellular viability and surface expression of the high-affinity receptor for IgE, FcεRI. We observed that IL-4 elicits pronounced pro-survival signaling in basophils, delaying spontaneous apoptosis in vitro to a degree comparable to the known pro-survival effects of IL-3. Our data indicate that IL-4-mediated survival depends on PI3K/AKT signaling and—in contrast to IL-3—seems to be largely independent of transcriptional changes but effectuated by post-translational mechanisms affecting BCL-2 family members among others. Additionally, we found that IL-4 signaling has a stabilizing effect on the surface expression levels of the critical basophil activation receptor FcεRI. In summary, our findings indicate an important regulatory role of IL-4 on in vitro-differentiated mouse basophils enhancing their survival and stabilizing FcεRI receptor expression through PI3K-dependent signaling. A better understanding of the regulation of basophil survival will help to define promising targets and consequently treatment strategies in basophil-driven diseases.
Collapse
Affiliation(s)
- Ramona Reinhart
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
| |
Collapse
|
18
|
Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss. Int J Mol Sci 2018; 19:ijms19030684. [PMID: 29495595 PMCID: PMC5877545 DOI: 10.3390/ijms19030684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID.
Collapse
|
19
|
Wang Y, Bai X, Zhu H, Wang X, Shi H, Tang B, Boireau P, Cai X, Luo X, Liu M, Liu X. Immunoproteomic analysis of the excretory-secretory products of Trichinella pseudospiralis adult worms and newborn larvae. Parasit Vectors 2017; 10:579. [PMID: 29157262 PMCID: PMC5697079 DOI: 10.1186/s13071-017-2522-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022] Open
Abstract
Background The nematode Trichinella pseudospiralis is an intracellular parasite of mammalian skeletal muscle cells and exists in a non-encapsulated form. Previous studies demonstrated that T. pseudospiralis could induce a lower host inflammatory response. Excretory-secretory (ES) proteins as the most important products of host-parasite interaction may play the main functional role in alleviating host inflammation. However, the ES products of T. pseudospiralis early stage are still unknown. The identification of the ES products of the early stage facilitates the understanding of the molecular mechanisms of the immunomodulation and may help finding early diagnostic markers. Results In this study, we used two-dimensional gel electrophoresis (2-DE)-based western blotting coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS/MS) to separate and identify the T. pseudospiralis adult worms ES products immunoreaction-positive proteins. In total, 400 protein spots were separated by 2-DE. Twenty-eight protein spots were successfully identified using the sera from infected pigs and were characterized to correlate with 12 different proteins of T. pseudospiralis, including adult-specific DNase II-10, poly-cysteine and histidine-tailed protein isoform 2, serine protease, serine/threonine-protein kinase ULK3, enolase, putative venom allergen 5, chymotrypsin-like elastase family member 1, uncharacterized protein, peptidase inhibitor 16, death-associated protein 1, deoxyribonuclease II superfamily and golgin-45. Bioinformatic analyses showed that the identified proteins have a wide diversity of molecular functions, especially deoxyribonuclease II (DNase II) activity and serine-type endopeptidase activity. Conclusions Early candidate antigens from the ES proteins of T. pseudospiralis have been screened and identified. Our results suggest these proteins may play key roles during the T. pseudospiralis infection and suppress the host immune response. Further, they are the most likely antigen for early diagnosis and the development of a vaccine against the parasite.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine/College of Basic Medical Science, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine/College of Basic Medical Science, Jilin University, Changchun, China
| | - Haichao Zhu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine/College of Basic Medical Science, Jilin University, Changchun, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine/College of Basic Medical Science, Jilin University, Changchun, China
| | - Haining Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital East, Boston, USA
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine/College of Basic Medical Science, Jilin University, Changchun, China
| | - Pascal Boireau
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine/College of Basic Medical Science, Jilin University, Changchun, China.,ANSES, INRA, ENVA, Universite Paris Est, Laboratory for Animal Health, Maisons Alfort, Paris, France
| | - Xuepeng Cai
- China Institute of Veterinary Drugs Control, Beijing, 100000, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine/College of Basic Medical Science, Jilin University, Changchun, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine/College of Basic Medical Science, Jilin University, Changchun, China.
| |
Collapse
|
20
|
Fuchslocher Chico J, Saggau C, Adam D. Proteolytic control of regulated necrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2147-2161. [DOI: 10.1016/j.bbamcr.2017.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
|
21
|
Reinhart R, Rohner L, Wicki S, Fux M, Kaufmann T. BH3 mimetics efficiently induce apoptosis in mouse basophils and mast cells. Cell Death Differ 2017; 25:204-216. [PMID: 28960207 PMCID: PMC5729523 DOI: 10.1038/cdd.2017.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/28/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Basophil granulocytes and mast cells are recognized for their roles in immunity and are central effectors of diverse immunological disorders. Despite their similarities, there is emerging evidence for non-redundant roles of the circulating yet scarce basophils and tissue-resident mast cells, respectively. Because of their importance in allergic pathogenesis, specific induction of apoptosis in basophils and mast cells may represent an interesting novel treatment strategy. The pro-inflammatory cytokine interleukin-3 serves as a key factor for basophil and mouse mast cell survival. Interleukin-3 increases the expression of anti-apoptotic BCL-2 family members, such as BCL-2, BCL-XL or MCL-1; however, little is known how strongly these individual proteins contribute to basophil survival. Here, we were applying small molecule inhibitors called BH3 mimetics, some of which show remarkable success in cancer treatments, to neutralize the function of anti-apoptotic BCL-2 family members. We observed that expression levels of anti-apoptotic BCL-2 proteins do not necessarily correlate with their respective importance for basophil survival. Whereas naive in vitro-differentiated mouse basophils efficiently died upon BCL-2 or BCL-XL inhibition, interleukin-3 priming rendered the cells highly resistant toward apoptosis, and this could only be overcome upon combined targeting of BCL-2 and BCL-XL. Of note, human basophils differed from mouse basophils as they depended on BCL-2 and MCL-1, but not on BCL-XL, for their survival at steady state. On the other hand, and in contrast to mouse basophils, MCL-1 proved critical in mediating survival of interleukin-3 stimulated mouse mast cells, whereas BCL-XL seemed dispensable. Taken together, our results indicate that by choosing the right combination of BH3 mimetic compounds, basophils and mast cells can be efficiently killed, even after stimulation with potent pro-survival cytokines such as interleukin-3. Because of the tolerable side effects of BH3 mimetics, targeting basophils or mast cells for apoptosis opens interesting possibilities for novel treatment approaches.
Collapse
Affiliation(s)
- Ramona Reinhart
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Lionel Rohner
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Simone Wicki
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Michaela Fux
- University Institute of Clinical Chemistry, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Sprenkle NT, Sims SG, Sánchez CL, Meares GP. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 2017; 12:42. [PMID: 28545479 PMCID: PMC5445486 DOI: 10.1186/s13024-017-0183-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Persistent endoplasmic reticulum (ER) stress is thought to drive the pathology of many chronic disorders due to its potential to elicit aberrant inflammatory signaling and facilitate cell death. In neurodegenerative diseases, the accumulation of misfolded proteins and concomitant induction of ER stress in neurons contributes to neuronal dysfunction. In addition, ER stress responses induced in the surrounding neuroglia may promote disease progression by coordinating damaging inflammatory responses, which help fuel a neurotoxic milieu. Nevertheless, there still remains a gap in knowledge regarding the cell-specific mechanisms by which ER stress mediates neuroinflammation. In this review, we will discuss recently uncovered inflammatory pathways linked to the ER stress response. Moreover, we will summarize the present literature delineating how ER stress is generated in Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis, and highlight how ER stress and neuroinflammation intersect mechanistically within the central nervous system. The mechanisms by which stress-induced inflammation contributes to the pathogenesis and progression of neurodegenerative diseases remain poorly understood. Further examination of this interplay could present unappreciated insights into the development of neurodegenerative diseases, and reveal new therapeutic targets.
Collapse
Affiliation(s)
- Neil T Sprenkle
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Savannah G Sims
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Cristina L Sánchez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA. .,Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
23
|
Kashyap MK, Amaya-Chanaga CI, Kumar D, Simmons B, Huser N, Gu Y, Hallin M, Lindquist K, Yafawi R, Choi MY, Amine AA, Rassenti LZ, Zhang C, Liu SH, Smeal T, Fantin VR, Kipps TJ, Pernasetti F, Castro JE. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J Hematol Oncol 2017. [PMID: 28526063 DOI: 10.1186/s13045-017-0435-x,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL)-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. METHODS Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. RESULTS PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD). PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity activity (CDC). PF-06747143 had significant combinatorial effect with standard of care (SOC) agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A), ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy, and in combination with bendamustine. CONCLUSIONS We show evidence that PF-06747143 has biological activity in CLL primary cells, supporting a rationale for evaluation of PF-06747143 for the treatment of CLL patients.
Collapse
Affiliation(s)
- Manoj K Kashyap
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Carlos I Amaya-Chanaga
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Brett Simmons
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Nanni Huser
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Yin Gu
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Max Hallin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: Mirati Therapeutics, San Diego, CA, USA
| | - Kevin Lindquist
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Rolla Yafawi
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, La Jolla, CA, USA
| | - Michael Y Choi
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ale-Ali Amine
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cathy Zhang
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Shu-Hui Liu
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Tod Smeal
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Valeria R Fantin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.,Present Address: ORIC Pharmaceuticals, South San Francisco, CA, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Flavia Pernasetti
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.
| | - Januario E Castro
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA. .,CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Kashyap MK, Amaya-Chanaga CI, Kumar D, Simmons B, Huser N, Gu Y, Hallin M, Lindquist K, Yafawi R, Choi MY, Amine AA, Rassenti LZ, Zhang C, Liu SH, Smeal T, Fantin VR, Kipps TJ, Pernasetti F, Castro JE. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J Hematol Oncol 2017; 10:112. [PMID: 28526063 PMCID: PMC5438492 DOI: 10.1186/s13045-017-0435-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The CXCR4-CXCL12 axis plays an important role in the chronic lymphocytic leukemia (CLL)-microenvironment interaction. Overexpression of CXCR4 has been reported in different hematological malignancies including CLL. Binding of the pro-survival chemokine CXCL12 with its cognate receptor CXCR4 induces cell migration. CXCL12/CXCR4 signaling axis promotes cell survival and proliferation and may contribute to the tropism of leukemia cells towards lymphoid tissues and bone marrow. Therefore, we hypothesized that targeting CXCR4 with an IgG1 antibody, PF-06747143, may constitute an effective therapeutic approach for CLL. METHODS Patient-derived primary CLL-B cells were assessed for cytotoxicity in an in vitro model of CLL microenvironment. PF-06747143 was analyzed for cell death induction and for its potential to interfere with the chemokine CXCL12-induced mechanisms, including migration and F-actin polymerization. PF-06747143 in vivo efficacy was determined in a CLL murine xenograft tumor model. RESULTS PF-06747143, a novel-humanized IgG1 CXCR4 antagonist antibody, induced cell death of patient-derived primary CLL-B cells, in presence or absence of stromal cells. Moreover, cell death induction by the antibody was independent of CLL high-risk prognostic markers. The cell death mechanism was dependent on CXCR4 expression, required antibody bivalency, involved reactive oxygen species production, and did not require caspase activation, all characteristics reminiscent of programmed cell death (PCD). PF-06747143 also induced potent B-CLL cytotoxicity via Fc-driven antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity activity (CDC). PF-06747143 had significant combinatorial effect with standard of care (SOC) agents in B-CLL treatment, including rituximab, fludarabine (F-ara-A), ibrutinib, and bendamustine. In a CLL xenograft model, PF-06747143 decreased tumor burden and improved survival as a monotherapy, and in combination with bendamustine. CONCLUSIONS We show evidence that PF-06747143 has biological activity in CLL primary cells, supporting a rationale for evaluation of PF-06747143 for the treatment of CLL patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- CHO Cells
- Cell Death/drug effects
- Cricetulus
- Female
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice, Inbred BALB C
- Mice, SCID
- Reactive Oxygen Species/immunology
- Receptors, CXCR4/analysis
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/immunology
- Signal Transduction/drug effects
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Manoj K Kashyap
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Carlos I Amaya-Chanaga
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Brett Simmons
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Nanni Huser
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Yin Gu
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Max Hallin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: Mirati Therapeutics, San Diego, CA, USA
| | - Kevin Lindquist
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Rolla Yafawi
- Drug Safety Research & Development, Pfizer Worldwide Research & Development, La Jolla, CA, USA
| | - Michael Y Choi
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ale-Ali Amine
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cathy Zhang
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
| | - Shu-Hui Liu
- Oncology Research & Development-Rinat Biotechnology Unit, Pfizer Worldwide Research & Development, South San Francisco, CA, USA
| | - Tod Smeal
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Valeria R Fantin
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA
- Present Address: ORIC Pharmaceuticals, South San Francisco, CA, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Flavia Pernasetti
- Oncology Research & Development, Pfizer Worldwide Research & Development, 10646 Science Center Drive, San Diego, CA, 92121, USA.
| | - Januario E Castro
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.
- CLL Research Consortium, and Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
Na KR, Choi H, Jeong JY, Lee KW, Chang YK, Choi DE. Nafamostat Mesilate Attenuates Ischemia-Reperfusion-Induced Renal Injury. Transplant Proc 2017; 48:2192-9. [PMID: 27569970 DOI: 10.1016/j.transproceed.2016.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND It has been reported that nafamostat mesilate (NM) inhibits inflammatory injury via inhibition of complement activation in ischemic heart, liver, and intestine. However, it is unclear if NM also inhibits apoptosis in ischemia-reperfusion (IR)-injured kidney. We therefore investigated whether NM attenuates IR renal injury that involves inhibition of apoptosis. METHODS HK-2 cells and male C57BL/6 mice were used for this study. C57Bl/6 mice were divided into 4 groups: sham, NM (2 mg/kg) + sham, IR injury (IR injury; reperfusion 27 minutes after clamping of both the renal artery and vein), and NM + IR injury. Kidneys were harvested 24 hours after IR injury, and functional and molecular parameters were evaluated. For in vitro studies, HK-2 cells were incubated for 6 hours with mineral paraffin oil to induce hypoxic injury, and then treated with various doses of NM to evaluate the antiapoptotic effects. RESULTS Blood urea nitrogen, serum creatinine levels, and renal tissue injury scores in NM + IR-injured mice were significantly lower than those of control IR mice (all P < .01). NM significantly improved cell survival in hypoxic HK-2 cells (P < .01), significantly decreased renal Bax expression (P < .05), and increased renal Bcl-2 protein levels in IR kidneys and hypoxic HK-2 cells compared with those of the sham and control groups. The numbers of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling- and 8-oxo-2'-deoxyguanosine-positive cells were significantly lower in NM + IR-injured kidneys compared with those in control IR-injured mice (P < .05); NM treatment decreased the expression of inducible and endothelial nitric oxide synthase in IR-injured mice (P < .05). CONCLUSIONS NM ameliorates IR renal injury via inhibition of apoptosis by, at least in part, lowering nitric oxide overproduction, reducing Bax, and increasing Bcl-2.
Collapse
Affiliation(s)
- K-R Na
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - H Choi
- Clinical Research Institute, Daejeon St Mary Hospital, Daejeon, Korea
| | - J Y Jeong
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon, Korea; Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - K W Lee
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Y-K Chang
- Department of Nephrology, College of Medicine, The Catholic University of Korea, Seoul, Korea; Department of Nephrology, Daejeon St Mary Hospital, Daejeon, Korea.
| | - D E Choi
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon, Korea.
| |
Collapse
|
26
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
27
|
Adak A, Das G, Barman S, Mohapatra S, Bhunia D, Jana B, Ghosh S. Biodegradable Neuro-Compatible Peptide Hydrogel Promotes Neurite Outgrowth, Shows Significant Neuroprotection, and Delivers Anti-Alzheimer Drug. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5067-5076. [PMID: 28090777 DOI: 10.1021/acsami.6b12114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel neuro-compatible peptide-based hydrogel has been designed and developed, which contains microtubule stabilizing and neuroprotective short peptide. This hydrogel shows strong three-dimensional cross-linked fibrillary networks, which can capture water molecules. Interestingly, this hydrogel serves as excellent biocompatible soft material for 2D and 3D (neurosphere) neuron cell culture and provides stability of key cytoskeleton filaments such as microtubule and actin. Remarkably, it was observed that this hydrogel slowly enzymatically degrades and releases neuroprotective peptide, which promotes neurite outgrowth of neuron cell as well as exhibits excellent neuroprotection against anti-NGF-induced toxicity in neuron cells. Further, it can encapsulate anti-Alzheimer and anticancer hydrophobic drug curcumin, releases slowly, and inhibits significantly the growth of a 3D spheroid of neuron cancer cells. Thus, this novel neuroprotective hydrogel can be used for both neuronal cell transplantation for repairing brain damage as well as a delivery vehicle for neuroprotective agents, anti-Alzheimer, and anticancer molecules.
Collapse
Affiliation(s)
- Anindyasundar Adak
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal India
| | - Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal India
| | - Saswat Mohapatra
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus , 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Debmalya Bhunia
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal India
| | - Batakrishna Jana
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology Campus , 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
28
|
Sun Y, Chao JR, Xu W, Pourpak A, Boyd K, Moshiach S, Qi GY, Fu A, Shao HR, Pounds S, Morris SW. MLF1 is a proapoptotic antagonist of HOP complex-mediated survival. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:719-727. [PMID: 28137643 DOI: 10.1016/j.bbamcr.2017.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
In the HAX1/HtrA2-OMI/PARL (HOP) mitochondrial protein complex, anti-apoptotic signals are generated by cleavage and activation of the serine protease HtrA2/OMI by the rhomboid protease PARL upon recruitment of both proteases to inner mitochondrial membrane protein HAX1 (HS1-associated protein X-1). Here we report the negative regulation of the HOP complex by human leukemia-associated myeloid leukemia factor 1 (MLF1). We demonstrate that MLF1 physically and functionally associates with HAX1 and HtrA2. Increased interaction of MLF1 with HAX1 and HtrA2 displaces HtrA2 from the HOP complex and inhibits HtrA2 cleavage and activation, resulting in the apoptotic cell death. Conversely, over-expressed HAX1 neutralizes MLF1's effect and inhibits MLF1-induced apoptosis. Importantly, Mlf1 deletion reverses B- and T-cell lymphopenia and significantly ameliorates the progressive striatal and cerebellar neurodegeneration observed in Hax1-/- mice, with a doubling of the lifespan of Mlf1-/-/Hax1-/- animals compared to Hax1-/- animals. Collectively, these data indicate that MLF1 serves as a proapoptotic antagonist that interacts with the HOP mitochondrial complex to modulate cell survival.
Collapse
Affiliation(s)
- Yi Sun
- Department of Oncology, ShiJiaZhuangShi First Hospital, 36 FanXiLu, ShiJiaZhuangShi, Hebei 050011, PR China; Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| | - Jyh-Rong Chao
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Alan Pourpak
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Kelli Boyd
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Simon Moshiach
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Guo-Yan Qi
- Department of Oncology, ShiJiaZhuangShi First Hospital, 36 FanXiLu, ShiJiaZhuangShi, Hebei 050011, PR China
| | - Amina Fu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Hua-Rong Shao
- Department of Orthopaedics, ShiJiaZhuangShi First Hospital, 36 FanXiLu, ShiJiaZhuangShi, Hebei 050011, PR China
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Stephan W Morris
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
29
|
Elechalawar CK, Sridharan K, Pal A, Ahmed MT, Yousuf M, Adhikari SS, Banerjee R. Cationic folate-mediated liposomal delivery of bis-arylidene oxindole induces efficient melanoma tumor regression. Biomater Sci 2017; 5:1898-1909. [DOI: 10.1039/c7bm00405b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The folate receptor (FR) is a well-validated and common target for cancer due to its high over-expression in many different cancer cells.
Collapse
Affiliation(s)
- Chandra Kumar Elechalawar
- Chemical Biology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kathyayani Sridharan
- Chemical Biology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Abhishek Pal
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| | - Mohammed Tanveer Ahmed
- Chemical Biology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Mohammed Yousuf
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| | | | - Rajkumar Banerjee
- Chemical Biology Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
30
|
Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death Dis 2016; 7:e2422. [PMID: 27735938 PMCID: PMC5133978 DOI: 10.1038/cddis.2016.311] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023]
Abstract
Neutrophils are essential players in the first-line defense against invading bacteria and fungi. Besides its antiapoptotic role, the inhibitor of apoptosis protein (IAP) family member X-linked IAP (XIAP) has been shown to regulate innate immune signaling. Whereas the role of XIAP in innate signaling pathways is derived mostly from work in macrophages and dendritic cells, it is not known if and how XIAP contributes to these pathways in neutrophils. Here we show that in response to bacterial lipopolysaccharides (LPS), mouse neutrophils secreted considerable amounts of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) and, in accordance with earlier reports, XIAP prevented LPS-induced hypersecretion of IL-1β also in neutrophils. Interestingly, and in contrast to macrophages or dendritic cells, Xiap-deficient neutrophils were insensitive to LPS-induced cell death. However, combined loss of function of XIAP and cIAP1/-2 resulted in rapid neutrophil cell death in response to LPS. This cell death occurred by classical apoptosis initiated by a TNFα- and RIPK1-dependent, but RIPK3- and MLKL-independent, pathway. Inhibition of caspases under the same experimental conditions caused a shift to RIPK3-dependent cell death. Accordingly, we demonstrate that treatment of neutrophils with high concentrations of TNFα induced apoptotic cell death, which was fully blockable by pancaspase inhibition in wild-type neutrophils. However, in the absence of XIAP, caspase inhibition resulted in a shift from apoptosis to RIPK3- and MLKL-dependent necroptosis. Loss of XIAP further sensitized granulocyte–macrophage colony-stimulating factor (GM-CSF)-primed neutrophils to TNFα-induced killing. These data suggest that XIAP antagonizes the switch from TNFα-induced apoptosis to necroptosis in mouse neutrophils. Moreover, our data may implicate an important role of neutrophils in the development of hyperinflammation and disease progression of patients diagnosed with X-linked lymphoproliferative syndrome type 2, which are deficient in XIAP.
Collapse
|
31
|
Thansa K, Yocawibun P, Suksodsai H. The cellular death pattern of primary haemocytes isolated from the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2016; 57:243-251. [PMID: 27561625 DOI: 10.1016/j.fsi.2016.08.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
A key to successfully generate the penaeid shrimp cell line is to find out how primary cells died. The most suitable period to culture Penaeus monodon haemocytes was in the first 48 h of culture because cells had normal morphology, high percent of viable cells (65.29 ± 5.43%), low percent of early (11.75 ± 1.30%) and late apoptotic cells (15.47 ± 11.71%) determined by Annexin V and TUNEL including constant IAP (0.06 ± 0.01-0.07 ± 0.01) and caspase-3 expression (0.30 ± 0.06-0.39 ± 0.10) by real-time PCR throughout the experiment. Moreover, adding 50 and 250 μM of the cell permeable pan caspase inhibitor Z-VAD-FMK produced some melanised cells since the 48(th) hour, while percent of viable cells was decreased since the 24(th) hour with no difference in percent of early and late apoptotic cells compared to control at each time point. No difference of IAP and caspase-3 expression level in both Z-VAD-FMK groups was found compared to control and vehicle groups at each time point, excluding caspase-3 in 250 μM Z-VAD-FMK at the 24(th) hour was higher than control and vehicle. Supplementing sodium fluoride (NaF) induced cell membrane damage and cellular shrinkage of primary haemocytes within 2 h. Even percent of viable cells was reduced down to zero and percent of late apoptotic cells was increased by 2 h of incubation in 25 and 50 mM NaF, IAP and caspase-3 in all NaF groups was not different from control. These results indicate that a number of primary haemocytes derived in this study die through the apoptotic process.
Collapse
Affiliation(s)
- Kwanta Thansa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| | - Patchari Yocawibun
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Hathaitip Suksodsai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
32
|
Bhattacharjee J, Das B, Sharma D, Sahay P, Jain K, Mishra A, Iyer S, Nagpal P, Scaria V, Nagarajan P, Khanduri P, Mukhopadhyay A, Upadhyay P. Autologous NeoHep Derived from Chronic Hepatitis B Virus Patients' Blood Monocytes by Upregulation of c-MET Signaling. Stem Cells Transl Med 2016; 6:174-186. [PMID: 28170202 PMCID: PMC5442753 DOI: 10.5966/sctm.2015-0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
In view of the escalating need for autologous cell‐based therapy for treatment of liver diseases, a novel candidate has been explored in the present study. The monocytes isolated from hepatitis B surface antigen (HBsAg) nucleic acid test (NAT)‐positive (HNP) blood were differentiated to hepatocyte‐like cells (NeoHep) in vitro by a two‐step culture procedure. The excess neutrophils present in HNP blood were removed before setting up the culture. In the first step of culture, apoptotic cells were depleted and genes involved in hypoxia were induced, which was followed by the upregulation of genes involved in the c‐MET signaling pathway in the second step. The NeoHep were void of hepatitis B virus and showed expression of albumin, connexin 32, hepatocyte nuclear factor 4‐α, and functions such as albumin secretion and cytochrome P450 enzyme‐mediated detoxification of xenobiotics. The engraftment of NeoHep derived from HBsAg‐NAT‐positive blood monocytes in partially hepatectomized NOD.CB17‐Prkdcscid/J mice liver and the subsequent secretion of human albumin and clotting factor VII activity in serum make NeoHep a promising candidate for cell‐based therapy. Stem Cells Translational Medicine2017;6:174–186
Collapse
Affiliation(s)
| | - Barun Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Disha Sharma
- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Preeti Sahay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Kshama Jain
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Alaknanda Mishra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Srikanth Iyer
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Puja Nagpal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vinod Scaria
- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Perumal Nagarajan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Asok Mukhopadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pramod Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
33
|
Lipinski KA, Britschgi C, Schrader K, Christinat Y, Frischknecht L, Krek W. Colorectal cancer cells display chaperone dependency for the unconventional prefoldin URI1. Oncotarget 2016; 7:29635-47. [PMID: 27105489 PMCID: PMC5045422 DOI: 10.18632/oncotarget.8816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/28/2016] [Indexed: 01/12/2023] Open
Abstract
Chaperone dependency of cancer cells is an emerging trait that relates to the need of transformed cells to cope with the various stresses associated with the malignant state. URI1 (unconventional prefoldin RPB5 interactor 1) encodes a member of the prefoldin (PFD) family of molecular chaperones that acts as part of a heterohexameric PFD complex, the URI1 complex (URI1C), to promote assembly of multiprotein complexes involved in cell signaling and transcription processes. Here, we report that human colorectal cancer (CRCs) cell lines demonstrate differential dependency on URI1 and on the URI1 partner PFD STAP1 for survival, suggesting that this differential vulnerability of CRC cells is directly linked to URI1C chaperone function. Interestingly, in URI1-dependent CRC cells, URI1 deficiency is associated with non-genotoxic p53 activation and p53-dependent apoptosis. URI1-independent CRC cells do not exhibit such effects even in the context of wildtype p53. Lastly, in tumor xenografts, the conditional depletion of URI1 in URI1-dependent CRC cells was, after tumor establishment, associated with severe inhibition of subsequent tumor growth and activation of p53 target genes. Thus, a subset of CRC cells has acquired a dependency on the URI1 chaperone system for survival, providing an example of 'non-oncogene addiction' and vulnerability for therapeutic targeting.
Collapse
Affiliation(s)
| | - Christian Britschgi
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Karen Schrader
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yann Christinat
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lukas Frischknecht
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
34
|
Song L, Wang Y, Wang J, Yang F, Li X, Wu Y. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells. Med Sci Monit 2015; 21:3434-41. [PMID: 26551326 PMCID: PMC4644021 DOI: 10.12659/msm.894169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. Material/Methods HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. Results The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. Conclusions TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway.
Collapse
Affiliation(s)
- Li Song
- Department of Occupational and Environmental Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yue Wang
- Department of Occupational and Environmental Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Jun Wang
- Department of Occupational and Environmental Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Fan Yang
- Department of Occupational Poisoning, Heilongjiang Institute of Labor, Health, and Occupational Disease, Harbin, Heilongjiang, China (mainland)
| | - Xiaojun Li
- Department of Occupational and Environmental Health, Heilongjiang Institute of Labor, Health, and Occupational Disease, Harbin, Heilongjiang, China (mainland)
| | - Yonghui Wu
- Department of Occupational and Environmental Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
35
|
Broecker-Preuss M, Becher-Boveleth N, Gall S, Rehmann K, Schenke S, Mann K. Induction of atypical cell death in thyroid carcinoma cells by the indirubin derivative 7-bromoindirubin-3'-oxime (7BIO). Cancer Cell Int 2015; 15:97. [PMID: 26464561 PMCID: PMC4603293 DOI: 10.1186/s12935-015-0251-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The indirubin derivative 7-bromoindirubin-3'-oxime (7BIO) has already shown anticancer properties by causing cell death in some tumour cell lines and may be a new therapeutic option for treatment-resistant tumour cells. Since dedifferentiated and anaplastic thyroid carcinomas do not take up radioiodine and are insensitive to chemotherapeutic treatment and external radiation, direct cell death induction in these tumour cells may be a promising approach. We thus investigated the effect of 7BIO on thyroid carcinoma cell lines of different histological origins and characterized the type of cell death induction by 7BIO. METHODS Cell viability was measured with MTT assay. Cell death was analysed by caspase 3/7 activity, lactate dehydrogenase liberation, caspase cleavage products, DNA fragmentation, cell cycle phase distribution and LC3B analysis. RESULTS After 7BIO treatment, cell viability was reduced in all 14 thyroid carcinoma cell lines investigated. Treated cells showed DNA fragmentation, cell cycle arrest and lactate dehydrogenase liberation but no LC3B cleavage. Caspase activation following 7BIO treatment was found in five of six cell lines investigated. Interestingly, inhibition of caspases had no effect on viability of the cells after 7BIO incubation. CONCLUSIONS Our results indicate that 7BIO efficiently killed dedifferentiated thyroid carcinoma cells. It induced a non-classical kind of cell death that was caspase-independent and includes DNA fragmentation. 7BIO and related indirubin components thus may have value as a new therapeutic option for dedifferentiated thyroid cancer irrespective of the exact target molecules and the kind of cell death they induce.
Collapse
Affiliation(s)
- Martina Broecker-Preuss
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Department of Clinical Chemistry, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Nina Becher-Boveleth
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Clinic of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Susanne Gall
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Katrin Rehmann
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Department of Clinical Chemistry, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Susann Schenke
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Klaus Mann
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Center of Endocrinology Alter Hof München, Dienerstr. 12, Munich, Germany
| |
Collapse
|
36
|
Effect of 3-bromopyruvate and atovaquone on infection during in vitro interaction of Toxoplasma gondii and LLC-MK2 cells. Antimicrob Agents Chemother 2015; 59:5239-49. [PMID: 26077255 DOI: 10.1128/aac.00337-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/08/2015] [Indexed: 01/14/2023] Open
Abstract
Toxoplasma gondii infection can be severe during pregnancy and in immunocompromised patients. Current therapies for toxoplasmosis are restricted to tachyzoites and have little or no effect on bradyzoites, which are maintained in tissue cysts. Consequently, new therapeutic alternatives have been proposed as the use of atovaquone has demonstrated partial efficacy against tachyzoites and bradyzoites. This work studies the effect of 3-bromopyruvate (3-BrPA), a compound that is being tested against cancer cells, on the infection of LLC-MK2 cells with T. gondii tachyzoites, RH strain. No effect of 3-BrPA on host cell proliferation or viability was observed, but it inhibited the proliferation of T. gondii. The incubation of cultures with lectin Dolichos biflorus agglutinin (DBA) showed the development of cystogenesis, and an ultrastructural analysis of parasite intracellular development confirmed morphological characteristics commonly found in tissue cysts. Moreover, the presence of degraded parasites and the influence of 3-BrPA on endodyogeny were observed. Infected cultures were alternatively treated with a combination of this compound plus atovaquone. This resulted in a 73% reduction in intracellular parasites after 24 h of treatment and a 71% reduction after 48 h; cyst wall formation did not occur in these cultures. Therefore, we conclude that the use of 3-BrPA may serve as an important tool for the study of (i) in vitro cystogenesis; (ii) parasite metabolism, requiring a deeper understanding of the target of action of this compound on T. gondii; (iii) the alternative parasite metabolic pathways; and (iv) the molecular/cellular mechanisms that trigger parasite death.
Collapse
|
37
|
Papaianni E, El Maadidi S, Schejtman A, Neumann S, Maurer U, Marino-Merlo F, Mastino A, Borner C. Phylogenetically Distant Viruses Use the Same BH3-Only Protein Puma to Trigger Bax/Bak-Dependent Apoptosis of Infected Mouse and Human Cells. PLoS One 2015; 10:e0126645. [PMID: 26030884 PMCID: PMC4452691 DOI: 10.1371/journal.pone.0126645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/04/2015] [Indexed: 12/12/2022] Open
Abstract
Viruses can trigger apoptosis of infected host cells if not counteracted by cellular or viral anti-apoptotic proteins. These protective proteins either inhibit the activation of caspases or they act as Bcl-2 homologs to prevent Bax/Bak-mediated outer mitochondrial membrane permeabilization (MOMP). The exact mechanism by which viruses trigger MOMP has however remained enigmatic. Here we use two distinct types of viruses, a double stranded DNA virus, herpes simplex virus-1 (HSV-1) and a positive sense, single stranded RNA virus, Semliki Forest virus (SFV) to show that the BH3-only protein Puma is the major mediator of virus-induced Bax/Bak activation and MOMP induction. Indeed, when Puma was genetically deleted or downregulated by shRNA, mouse embryonic fibroblasts and IL-3-dependent monocytes as well as human colon carcinoma cells were as resistant to virus-induced apoptosis as their Bax/Bak double deficient counterparts (Bax/Bak-/-). Puma protein expression started to augment after 2 h postinfection with both viruses. Puma mRNA levels increased as well, but this occurred after apoptosis initiation (MOMP) because it was blocked in cells lacking Bax/Bak or overexpressing Bcl-xL. Moreover, none of the classical Puma transcription factors such as p53, p73 or p65 NFκB were involved in HSV-1-induced apoptosis. Our data suggest that viruses use a Puma protein-dependent mechanism to trigger MOMP and apoptosis in host cells.
Collapse
Affiliation(s)
- Emanuela Papaianni
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d’Alcontres 31, I-98166, Messina, Italy
- The Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, I-00133, Rome, Italy
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, D-79104, Freiburg, Germany
| | - Souhayla El Maadidi
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, D-79104, Freiburg, Germany
- Faculty of Biology, Albert Ludwigs University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Andrea Schejtman
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, D-79104, Freiburg, Germany
- IMBS Program between Albert Ludwigs University of Freiburg, Freiburg, Germany, and University of Buenos Aires, Buenos Aires, Argentina
| | - Simon Neumann
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, D-79104, Freiburg, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, D-79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University of Freiburg, Albertstrasse 19a, D-79104, Freiburg, Germany
- BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, D-79104, Freiburg, Germany
| | - Francesca Marino-Merlo
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d’Alcontres 31, I-98166, Messina, Italy
| | - Antonio Mastino
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d’Alcontres 31, I-98166, Messina, Italy
- The Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, I-00133, Rome, Italy
- * E-mail: (AM); (CB)
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, D-79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University of Freiburg, Albertstrasse 19a, D-79104, Freiburg, Germany
- BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, D-79104, Freiburg, Germany
- * E-mail: (AM); (CB)
| |
Collapse
|
38
|
Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound. PLoS One 2015; 10:e0125381. [PMID: 25927702 PMCID: PMC4415924 DOI: 10.1371/journal.pone.0125381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/23/2015] [Indexed: 01/01/2023] Open
Abstract
Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.
Collapse
|
39
|
Oliveira-Silva R, Pinto da Costa J, Vitorino R, Daniel-da-Silva AL. Magnetic chelating nanoprobes for enrichment and selective recovery of metalloproteases from human saliva. J Mater Chem B 2015; 3:238-249. [DOI: 10.1039/c4tb01189a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic nanoparticles effective in the selective recovery of metalloproteases from human saliva were fabricated by surface modification of Fe3O4@SiO2nanoparticles with EDTA-TMS.
Collapse
Affiliation(s)
- Rui Oliveira-Silva
- Organic Chemistry
- Natural and Agro-Food Products Research Unit (QOPNA)
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - João Pinto da Costa
- Organic Chemistry
- Natural and Agro-Food Products Research Unit (QOPNA)
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Rui Vitorino
- Organic Chemistry
- Natural and Agro-Food Products Research Unit (QOPNA)
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
| | - Ana L. Daniel-da-Silva
- CICECO
- Department of Chemistry
- Aveiro Institute of Nanotechnology
- University of Aveiro
- 3810-193 Aveiro
| |
Collapse
|
40
|
Rakashanda S, Qazi AK, Majeed R, Andrabi SM, Hamid A, Sharma PR, Amin S. Plant-derived protease inhibitors LC-pi (Lavatera cashmeriana) inhibit human lung cancer cell proliferation in vitro. Nutr Cancer 2014; 67:156-66. [PMID: 25412192 DOI: 10.1080/01635581.2015.967876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to check the anticancer activity of purified protease inhibitors of Lavatera cashmeriana viz LC-pi I, II, III, and IV (Lavatera cashmeriana protease inhibitors) on A549 (lung) cell. It was found that LC-pi I and II significantly inhibited the proliferation of A549 cells with IC₅₀ value of 54 μg/ml and 38 μg/ml, respectively, whereas inhibition by LC-pi III and IV was negligible. LC-pi I and II were further found to inhibit formation of colonies in a dose-dependent manner. Also, both inhibitors were found to induce apoptosis causing chromatin condensation and DNA fragmentation, without loss of mitochondrial membrane potential. Cell cycle revealed a significant increase of subG₀/G₁ phase cells that are apoptotic cells. We also demonstrated a dose-dependent decrease in migration of A549 cells on cell migration assay by both inhibitors. Taken together, we demonstrate that LC-pi I and II inhibited proliferation through arresting cells before apoptosis, inducing apoptosis and inhibiting cell migration in human lung cancer cells, but the study warrants further investigation. Our results support the notion that plant protease inhibitors may have the potential to advance as chemopreventive agents.
Collapse
Affiliation(s)
- Syed Rakashanda
- a Department of Biochemistry , The University of Kashmir , Srinagar , India
| | | | | | | | | | | | | |
Collapse
|
41
|
Biradar V, Narwade S, Paingankar M, Deobagkar D. White Spot Syndrome Virus infection in Penaeus monodon is facilitated by housekeeping molecules. J Biosci 2014; 38:917-24. [PMID: 24296895 DOI: 10.1007/s12038-013-9386-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
White Spot Syndrome Virus (WSSV) is a major pathogen in shrimp aquaculture, and its rampant spread has resulted in great economic loss. Identification of host cellular proteins interacting with WSSV will help in unravelling the repertoire of host proteins involved in WSSV infection. In this study, we have employed one-dimensional and two-dimension virus overlay protein binding assay (VOPBA) followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the host proteins of Penaeus monodon that could interact with WSSV. The VOPBA results suggest that WSSV interacted with housekeeping proteins such as heat shock protein 70, ATP synthase subunit beta, phosphopyruvate hydratase, allergen Pen m 2, glyceraldehyde-3-phosphate dehydrogenase, sarcoplasmic calcium-binding protein, actin and 14-3-3-like protein. Our findings suggest that WSSV exploits an array of housekeeping proteins for its transmission and propagation in P. monodon.
Collapse
Affiliation(s)
- Vinayak Biradar
- Molecular Biology Research Laboratory, Department of Zoology, Centre for Advance Studies, University of Pune, Pune 411 007, India
| | | | | | | |
Collapse
|
42
|
Itkonen O, Stenman UH. TATI as a biomarker. Clin Chim Acta 2014; 431:260-9. [DOI: 10.1016/j.cca.2014.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/22/2022]
|
43
|
El Maadidi S, Faletti L, Berg B, Wenzl C, Wieland K, Chen ZJ, Maurer U, Borner C. A novel mitochondrial MAVS/Caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. THE JOURNAL OF IMMUNOLOGY 2014; 192:1171-83. [PMID: 24391214 DOI: 10.4049/jimmunol.1300842] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Semliki Forest virus (SFV) requires RNA replication and Bax/Bak for efficient apoptosis induction. However, cells lacking Bax/Bak continue to die in a caspase-dependent manner. In this study, we show in both mouse and human cells that this Bax/Bak-independent pathway involves dsRNA-induced innate immune signaling via mitochondrial antiviral signaling (MAVS) and caspase-8. Bax/Bak-deficient or Bcl-2- or Bcl-xL-overexpressing cells lacking MAVS or caspase-8 expression are resistant to SFV-induced apoptosis. The signaling pathway triggered by SFV does neither involve death receptors nor the classical MAVS effectors TNFR-associated factor-2, IRF-3/7, or IFN-β but the physical interaction of MAVS with caspase-8 on mitochondria in a FADD-independent manner. Consistently, caspase-8 and -3 activation are reduced in MAVS-deficient cells. Thus, after RNA virus infection MAVS does not only elicit a type I antiviral response but also recruits caspase-8 to mitochondria to mediate caspase-3 activation and apoptosis in a Bax/Bak-independent manner.
Collapse
Affiliation(s)
- Souhayla El Maadidi
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sanchez-Lopez E, Zimmerman T, Gomez del Pulgar T, Moyer MP, Lacal Sanjuan JC, Cebrian A. Choline kinase inhibition induces exacerbated endoplasmic reticulum stress and triggers apoptosis via CHOP in cancer cells. Cell Death Dis 2013; 4:e933. [PMID: 24287694 PMCID: PMC3847329 DOI: 10.1038/cddis.2013.453] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/06/2013] [Accepted: 10/14/2013] [Indexed: 11/09/2022]
Abstract
Endoplasmic reticulum (ER) is a central organelle in eukaryotic cells that regulates protein synthesis and maturation. Perturbation of ER functions leads to ER stress, which has been previously associated with a broad variety of diseases. ER stress is generally regarded as compensatory, but prolonged ER stress has been involved in apoptosis induced by several cytotoxic agents. Choline kinase α (ChoKα), the first enzyme in the Kennedy pathway, is responsible for the generation of phosphorylcholine (PCho) that ultimately renders phosphatidylcholine. ChoKα overexpression and high PCho levels have been detected in several cancer types. Inhibition of ChoKα has demonstrated antiproliferative and antitumor properties; however, the mechanisms underlying these activities remain poorly understood. Here, we demonstrate that ChoKα inhibitors (ChoKIs), MN58b and RSM932A, induce cell death in cancer cells (T47D, MCF7, MDA-MB231, SW620 and H460), through the prolonged activation of ER stress response. Evidence of ChoKIs-induced ER stress includes enhanced production of glucose-regulated protein, 78 kDa (GRP78), protein disulfide isomerase, IRE1α, CHOP, CCAAT/enhancer-binding protein beta (C/EBPβ) and TRB3. Although partial reduction of ChoKα levels by small interfering RNA was not sufficient to increase the production of ER stress proteins, silencing of ChoKα levels also show a decrease in CHOP overproduction induced by ChoKIs, which suggests that ER stress induction is due to a change in ChoKα protein folding after binding to ChoKIs. Silencing of CHOP expression leads to a reduction in C/EBPβ, ATF3 and GRP78 protein levels and abrogates apoptosis in tumor cells after treatment with ChoKIs, suggesting that CHOP maintains ER stress responses and triggers the pro-apoptotic signal. Consistent with the differential effect of ChoKIs in cancer and primary cells previously described, ChoKIs only promoted a transient and moderated ER stress response in the non-tumorogenic cells MCF10A. In conclusion, pharmacological inhibition of ChoKα induces cancer cell death through a mechanism that involves the activation of exaggerated and persistent ER stress supported by CHOP overproduction.
Collapse
Affiliation(s)
- E Sanchez-Lopez
- Department of Pharmacology, School of Medicine, UCSD, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
45
|
Li K, Lv XX, Hua F, Lin H, Sun W, Cao WB, Fu XM, Xie J, Yu JJ, Li Z, Liu H, Han MZ, Hu ZW. Targeting acute myeloid leukemia with a proapoptotic peptide conjugated to a toll-like receptor 2-mediated cell-penetrating peptide. Int J Cancer 2013; 134:692-702. [DOI: 10.1002/ijc.28382] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Ke Li
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Xiao-Xi Lv
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Fang Hua
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Heng Lin
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Wei Sun
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Wen-Bin Cao
- State Key Laboratory of Experimental Hematology; Institute of Hematology & Blood Diseases Hospital; Chinese Academy of Medical Science & Peking Union Medical College; Tianjin People's Republic of China
| | - Xiao-Ming Fu
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Jing Xie
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Jiao-Jiao Yu
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Zhe Li
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Hong Liu
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| | - Ming-Zhe Han
- State Key Laboratory of Experimental Hematology; Institute of Hematology & Blood Diseases Hospital; Chinese Academy of Medical Science & Peking Union Medical College; Tianjin People's Republic of China
| | - Zhuo-Wei Hu
- Molecular Immunology and Pharmacology Group; State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing People's Republic of China
| |
Collapse
|
46
|
Kim HK, Lee WY, Kwon JT, Sohn DR, Hong SJ, Kim HJ. Association of ultraviolet radiation resistance-associated gene polymorphisms with rheumatoid arthritis. Biomed Rep 2013; 2:117-121. [PMID: 24649081 DOI: 10.3892/br.2013.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/08/2013] [Indexed: 11/05/2022] Open
Abstract
The ultraviolet radiation resistance-associated gene (UVRAG) protein binds to the Beclin 1/PI3-kinase III complex and promotes autophagy. Autophagy may be upregulated by endoplasmic reticulum (ER) stress. Persistent and excessive ER stress may alter synovial fibroblast apoptosis and this alteration may affect the pathogenesis of rheumatoid arthritis (RA). In this study, we investigated whether UVRAG genetic polymorphisms are associated with RA. To determine the association between UVRAG polymorphisms and RA, we genotyped five UVRAG single-nucleotide polymorphisms (SNPs; rs7111334, intron C/T; rs7933235, intron A/G; rs1380075, intron T/A; rs1458836, near the 5' gene terminal G/A; and rs636420, exon 15 C/T) using a direct sequencing method in 243 RA patients and 417 control subjects. Among these, one SNP (rs7111334) exhibited significant genotypic/allelic differences between RA patients and the control group. Therefore, this study suggested a possible association between UVRAG polymorphisms and RA susceptibility.
Collapse
Affiliation(s)
- Hyung-Ki Kim
- Department of Clinical Pharmacology, Soonchunhyang University, Cheonan, Republic of Korea
| | - Wha-Young Lee
- Soonchunhyang Medical Research Institute, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, Soonchunhyang University, Cheonan, Republic of Korea
| | - Dong-Ryul Sohn
- Department of Clinical Pharmacology, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seung-Jae Hong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, Soonchunhyang University, Cheonan, Republic of Korea ; Soonchunhyang Medical Research Institute, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
47
|
Sosna J, Voigt S, Mathieu S, Kabelitz D, Trad A, Janssen O, Meyer-Schwesinger C, Schütze S, Adam D. The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commun Signal 2013; 11:76. [PMID: 24090154 PMCID: PMC3850939 DOI: 10.1186/1478-811x-11-76] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/01/2013] [Indexed: 11/23/2022] Open
Abstract
Background In apoptosis, proteolysis by caspases is the primary mechanism for both initiation and execution of programmed cell death (PCD). In contrast, the impact of proteolysis on the regulation and execution of caspase-independent forms of PCD (programmed necrosis, necroptosis) is only marginally understood. Likewise, the identity of the involved proteases has remained largely obscure. Here, we have investigated the impact of proteases in TNF-induced necroptosis. Results The serine protease inhibitor TPKC protected from TNF-induced necroptosis in multiple murine and human cells systems whereas inhibitors of metalloproteinases or calpain/cysteine and cathepsin proteases had no effect. A screen for proteins labeled by a fluorescent TPCK derivative in necroptotic cells identified HtrA2/Omi (a serine protease previously implicated in PCD) as a promising candidate. Demonstrating its functional impact, pharmacological inhibition or genetic deletion of HtrA2/Omi protected from TNF-induced necroptosis. Unlike in apoptosis, HtrA2/Omi did not cleave another protease, ubiquitin C-terminal hydrolase (UCH-L1) during TNF-induced necroptosis, but rather induced monoubiquitination indicative for UCH-L1 activation. Correspondingly, pharmacologic or RNA interference-mediated inhibition of UCH-L1 protected from TNF-induced necroptosis. We found that UCH-L1 is a mediator of caspase-independent, non-apoptotic cell death also in diseased kidney podocytes by measuring cleavage of the protein PARP-1, caspase activity, cell death and cell morphology. Indicating a role of TNF in this process, podocytes with stably downregulated UCH-L1 proved resistant to TNF-induced necroptosis. Conclusions The proteases HtrA2/Omi and UCH-L1 represent two key components of TNF-induced necroptosis, validating the relevance of proteolysis not only for apoptosis, but also for caspase-independent PCD. Since UCH-L1 clearly contributes to the non-apoptotic death of podocytes, interference with the necroptotic properties of HtrA2/Omi and UCH-L1 may prove beneficial for the treatment of patients, e.g. in kidney failure.
Collapse
Affiliation(s)
- Justyna Sosna
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr, 5, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huai J, Vögtle FN, Jöckel L, Li Y, Kiefer T, Ricci JE, Borner C. TNFα-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspase-mediated NDUFS1 cleavage and ROS formation. J Cell Sci 2013; 126:4015-25. [PMID: 23788428 DOI: 10.1242/jcs.129999] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
When NF-κB activation or protein synthesis is inhibited, tumor necrosis factor alpha (TNFα) can induce apoptosis through Bax- and Bak-mediated mitochondrial outer membrane permeabilization (MOMP) leading to caspase-3 activation. Additionally, previous studies have implicated lysosomal membrane permeability (LMP) and formation of reactive oxygen species (ROS) as early steps of TNFα-induced apoptosis. However, how these two events connect to MOMP and caspase-3 activation has been largely debated. Here, we present the novel finding that LMP induced by the addition of TNFα plus cycloheximide (CHX), the release of lysosomal cathepsins and ROS formation do not occur upstream but downstream of MOMP and require the caspase-3-mediated cleavage of the p75 NDUFS1 subunit of respiratory complex I. Both a caspase non-cleavable p75 mutant and the mitochondrially localized antioxidant MitoQ prevent LMP mediated by TNFα plus CHX and partially interfere with apoptosis induction. Moreover, LMP is completely blocked in cells deficient in both Bax and Bak, Apaf-1, caspase-9 or both caspase-3 and -7. Thus, after MOMP, active caspase-3 exerts a feedback action on complex I to produce ROS. ROS then provoke LMP, cathepsin release and further caspase activation to amplify TNFα apoptosis signaling.
Collapse
Affiliation(s)
- Jisen Huai
- Institute of Molecular Medicine and Cell Research (ZBMZ), Albert Ludwigs University Freiburg, Stefan Meier Strasse 17, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Echeverry N, Bachmann D, Ke F, Strasser A, Simon HU, Kaufmann T. Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ 2013; 20:785-99. [PMID: 23429263 PMCID: PMC3647236 DOI: 10.1038/cdd.2013.10] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/22/2012] [Accepted: 01/11/2013] [Indexed: 12/21/2022] Open
Abstract
The pro-apoptotic BCL-2 family member BOK is widely expressed and resembles the multi-BH domain proteins BAX and BAK based on its amino acid sequence. The genomic region encoding BOK was reported to be frequently deleted in human cancer and it has therefore been hypothesized that BOK functions as a tumor suppressor. However, little is known about the molecular functions of BOK. We show that enforced expression of BOK activates the intrinsic (mitochondrial) apoptotic pathway in BAX/BAK-proficient cells but fails to kill cells lacking both BAX and BAK or sensitize them to cytotoxic insults. Interestingly, major portions of endogenous BOK are localized to and partially inserted into the membranes of the Golgi apparatus as well as the endoplasmic reticulum (ER) and associated membranes. The C-terminal transmembrane domain of BOK thereby constitutes a 'tail-anchor' specific for targeting to the Golgi and ER. Overexpression of full-length BOK causes early fragmentation of ER and Golgi compartments. A role for BOK on the Golgi apparatus and the ER is supported by an abnormal response of Bok-deficient cells to the Golgi/ER stressor brefeldin A. Based on these results, we propose that major functions of BOK are exerted at the Golgi and ER membranes and that BOK induces apoptosis in a manner dependent on BAX and BAK.
Collapse
Affiliation(s)
- N Echeverry
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - D Bachmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - F Ke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - A Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - H U Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - T Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Sun T, Cai M, Cui J, Shen P. Evaluation of Coupled Nuclear and Cytoplasmic p53 Dynamics. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The tumor suppressor protein p53 predominantly serves as a sequence specific transcription factor that may be activated upon exposure to diverse stimuli. One potent death inducer, p53-upregulated mediator of apoptosis (PUMA), is transcriptionally induced by p53. Once released into the cytoplasm, PUMA can lead to the activation of Bcl-2 apoptotic network. The cytoplasmic proapoptotic roles of p53 have recently been discovered, and these findings have placed p53 into the chemical interaction network with Bcl-2 family members. PUMA can also relieve p53 from the sequestration of antiapoptotic members. Released p53 further enters the nucleus and induces PUMA expression. We proposed that this positive feedback loop could lead to bistability. Further sensitivity analysis suggested that the system which covers the interactions between p53 and BCL-2 family members is considerably sensitive to p53 production rate. Meanwhile, downstream network components are much more affected by certain parameters than upstream effectors. Therefore, this newly discovered positive feedback loop might play critical roles in apoptotic network.
Collapse
|