1
|
Li XH, Qian SD, Chen D, Li ZZ, Chen KY, Pan YP, Lv XH, Jia RQ, Yu XF. A new mechanism in steroid-induced osteonecrosis of the femoral head and the protective role of simvastatin. Exp Cell Res 2025; 446:114471. [PMID: 39978720 DOI: 10.1016/j.yexcr.2025.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Steroid-induced osteonecrosis of the femoral head (SONFH) is a debilitating bone condition associated with femoral head collapse and hip joint dysfunction. The pathogenesis of SONFH is still not fully elucidated. This study aims to explore the role of mitochondrial cardiolipin metabolism disruption in SONFH and the potential protective effects of simvastatin (SIM). METHODS Osteoblasts were cultured in vitro under high concentrations of dexamethasone (DEX) to mimic the effects of glucocorticoid exposure seen in SONFH. Mitochondrial structural changes and cardiolipin distribution were examined using transmission electron microscopy and confocal microscopy. Osteoblast proliferation and apoptosis were assessed using CCK-8 assays and flow cytometry. Mitochondrial cardiolipin content was quantified by ELISA, while cytochrome c (Cyt-c) expression was measured through Western blotting. Mitochondrial staining with NAO was analyzed using confocal microscopy and flow cytometry. RESULTS DEX exposure led to mitochondrial cardiolipin metabolism disorder and redistribution, resulting in significant mitochondrial structural damage. This disruption was associated with increased release of Cyt-c into the cytoplasm, which correlated with heightened osteoblast apoptosis. SIM treatment mitigated these effects, reducing osteoblast apoptosis by preserving mitochondrial function and modulating cardiolipin content and distribution. CONCLUSION This study demonstrates, for the first time, that glucocorticoid-induced disruptions in mitochondrial cardiolipin metabolism contribute to the pathogenesis of SONFH by inducing Cyt-c release and subsequent osteoblast apoptosis. SIM exerts a protective effect by preserving mitochondrial integrity and function, offering a potential therapeutic avenue for treating hormone-induced osteoblast damage in SONFH.
Collapse
Affiliation(s)
- Xu-Huan Li
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shi-da Qian
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Dan Chen
- First Affiliated Hospital of Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhou-Zhou Li
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; Rehabilitation College of Nanchang University, Nanchang, Jiangxi, China
| | - Kai-Yun Chen
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong-Ping Pan
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiu-Hua Lv
- Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Run-Qing Jia
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Xue-Feng Yu
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Luo X, Xie X, Zhang L, Shi Y, Fu B, Yuan L, Zhang Y, Jiang Y, Ke W, Yang B. Uncovering the mechanisms of host mitochondrial cardiolipin release in syphilis: Insights from human microvascular endothelial cells. Int J Med Microbiol 2024; 316:151627. [PMID: 38908301 DOI: 10.1016/j.ijmm.2024.151627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024] Open
Abstract
The release of host mitochondrial cardiolipin is believed to be the main factor that contributes to the production of anti-cardiolipin antibodies in syphilis. However, the precise mechanism by which mitochondria release cardiolipin in this context remains elusive. This study aimed to elucidate the mechanisms underlying mitochondrial cardiolipin release in syphilis. We conducted a cardiolipin quantitative assay and immunofluorescence analysis to detect mitochondrial cardiolipin release in human microvascular endothelial cells (HMEC-1), with and without Treponema pallidum (Tp) infection. Furthermore, we explored apoptosis, a key mechanism for mitochondrial cardiolipin release. The potential mediator molecules were then analyzed through RNA-sequence and subsequently validated using in vitro knockout techniques mediated by CRISPR-Cas9 and pathway-specific inhibitors. Our findings confirm that live-Tp is capable of initiating the release of mitochondrial cardiolipin, whereas inactivated-Tp does not exhibit this capability. Additionally, apoptosis detection further supports the notion that the release of mitochondrial cardiolipin occurs independently of apoptosis. The RNA-sequencing results indicated that microtubule-associated protein2 (MAP2), an axonogenesis and dendrite development gene, was up-regulated in HMEC-1 treated with Tp, which was further confirmed in syphilitic lesions by immunofluorescence. Notably, genetic knockout of MAP2 inhibited Tp-induced mitochondrial cardiolipin release in HMEC-1. Mechanically, Tp-infection regulated MAP2 expression via the MEK-ERK-HES1 pathway, and MEK/ERK phosphorylation inhibitors effectively block Tp-induced mitochondrial cardiolipin release. This study demonstrated that the infection of live-Tp enhanced the expression of MAP2 via the MEK-ERK-HES1 pathway, thereby contributing to our understanding of the role of anti-cardiolipin antibodies in the diagnosis of syphilis.
Collapse
Affiliation(s)
- Xi Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaoyuan Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yanqiang Shi
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Bo Fu
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Liyan Yuan
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yan Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
3
|
Wang Y, Pan R, Hu J. Impact of acute heat stress on mitochondrial function, ultrastructure and cardiolipin distribution in Arabidopsis. ABIOTECH 2024; 5:362-367. [PMID: 39279852 PMCID: PMC11399366 DOI: 10.1007/s42994-024-00151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 09/18/2024]
Abstract
Besides providing energy to sustain life, mitochondria also play crucial roles in stress response and programmed cell death. The mitochondrial hallmark lipid, cardiolipin (CL), is essential to the maintenance of mitochondrial structure and function. However, how mitochondria and CL are involved in stress response is not as well defined in plants as in animal and yeast cells. We previously revealed a role for CL in mitochondrial fission and in heat stress response in Arabidopsis. To further determine the involvement of mitochondria and CL in plant heat response, here we treated Arabidopsis seedlings with varied lengths of acute heat stress. These treatments resulted in decreases in mitochondrial membrane potential, disruption of mitochondrial ultrastructure, accumulation of mitochondrial reactive-oxygen species (ROS), and redistribution of CL to the outer mitochondrial membrane and to a novel type of vesicle. The level of the observed changes correlated with the severeness of the heat stress, indicating the strong relevance of these processes to stress response. Our findings provide the basis for studying mechanisms underpinning the role of mitochondria and CL in plant stress response.
Collapse
Affiliation(s)
- Yukang Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
4
|
Fernandes T, Melo T, Conde T, Neves B, Domingues P, Resende R, Pereira CF, Moreira PI, Domingues MR. Mapping the lipidome in mitochondria-associated membranes (MAMs) in an in vitro model of Alzheimer's disease. J Neurochem 2024; 168:1237-1253. [PMID: 38327008 DOI: 10.1111/jnc.16072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.
Collapse
Affiliation(s)
- Tânia Fernandes
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia F Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Degli Esposti M. Did mitophagy follow the origin of mitochondria? Autophagy 2024; 20:985-993. [PMID: 38361280 PMCID: PMC11135861 DOI: 10.1080/15548627.2024.2307215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
Mitophagy is the process of selective autophagy that removes superfluous and dysfunctional mitochondria. Mitophagy was first characterized in mammalian cells and is now recognized to follow several pathways including basal forms in specific organs. Mitophagy pathways are regulated by multiple, often interconnected factors. The present review aims to streamline this complexity and evaluate common elements that may define the evolutionary origin of mitophagy. Key issues surrounding mitophagy signaling at the mitochondrial surface may fundamentally derive from mitochondrial membrane dynamics. Elements of such membrane dynamics likely originated during the endosymbiosis of the alphaproteobacterial ancestor of our mitochondria but underwent an evolutionary leap forward in basal metazoa that determined the currently known variations in mitophagy signaling.Abbreviations: AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ATG, autophagy related; BCL2L13, BCL2 like 13; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; CALCOCO, calcium binding and coiled-coil domain; CL, cardiolipin; ER, endoplasmic reticulum; ERMES, ER-mitochondria encounter structure; FBXL4, F-box and leucine rich repeat protein 4; FUNDC1, FUN14 domain containing 1; GABARAPL1, GABA type A receptor associated protein like 1; HIF, hypoxia inducible factor; IMM, inner mitochondrial membrane; LBPA/BMP, lysobisphosphatidic acid; LIR, LC3-interacting region; LPA, lysophosphatidic acid; MAM, mitochondria-associated membranes; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MCL, monolysocardiolipin; ML, maximum likelihood; NBR1, NBR1 autophagy cargo receptor; OMM, outer mitochondrial membrane; PA, phosphatidic acid; PACS2, phosphofurin acidic cluster sorting protein 2; PC/PLC, phosphatidylcholine; PE, phosphatidylethanolamine; PHB2, prohibitin 2; PINK1, PTEN induced kinase 1; PtdIns, phosphatidylinositol; SAR, Stramenopiles, Apicomplexa and Rhizaria; TAX1BP1, Tax1 binding protein 1; ULK1, unc-51 like autophagy activating kinase 1; VDAC/porin, voltage dependent anion channel.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
6
|
Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal S, Wang T, Black SM. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol 2024; 70:103049. [PMID: 38295575 PMCID: PMC10844980 DOI: 10.1016/j.redox.2024.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alejandro Garcia-Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - David Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Maria C Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, UC San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
7
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
8
|
Wenzel TJ, Murray TE, Noyovitz B, Narayana K, Gray TE, Le J, He J, Simtchouk S, Gibon J, Alcorn J, Mousseau DD, Zandberg WF, Klegeris A. Cardiolipin released by microglia can act on neighboring glial cells to facilitate the uptake of amyloid-β (1-42). Mol Cell Neurosci 2023; 124:103804. [PMID: 36592800 DOI: 10.1016/j.mcn.2022.103804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/16/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiolipin is a mitochondrial phospholipid that is also detected in serum inferring its extracellular release; however, this process has not been directly demonstrated for any of the brain cell types. Nevertheless, extracellular cardiolipin has been shown to modulate several neuroimmune functions of microglia and astrocytes, including upregulation of their endocytic activity. Low cardiolipin levels are associated with brain aging, and may thus hinder uptake of amyloid-β (Αβ) in Alzheimer's disease. We hypothesized that glial cells are one of the sources of extracellular cardiolipin in the brain parenchyma where this phospholipid interacts with neighboring cells to upregulate the endocytosis of Αβ. Liquid chromatography-mass spectrophotometry identified 31 different species of cardiolipin released from murine BV-2 microglial cells and revealed this process was accelerated by exposure to Aβ42. Extracellular cardiolipin upregulated internalization of fluorescently-labeled Aβ42 by primary murine astrocytes, human U118 MG astrocytic cells, and murine BV-2 microglia. Increased endocytic activity in the presence of extracellular cardiolipin was also demonstrated by studying uptake of Aβ42 and pHrodo™ Bioparticles™ by human induced pluripotent stem cells (iPSCs)-derived microglia, as well as iPSC-derived human brain organoids containing microglia, astrocytes, oligodendrocytes and neurons. Our observations indicate that Aβ42 augments the release of cardiolipin from microglia into the extracellular space, where it can act on microglia and astrocytes to enhance their endocytosis of Aβ42. Our observations suggest that the reduced glial uptake of Aβ due to the decreased levels of cardiolipin could be at least partially responsible for the extracellular accumulation of Aβ in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Benjamin Noyovitz
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Kamal Narayana
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Taylor E Gray
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Jennifer Le
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Jim He
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Svetlana Simtchouk
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Wesley F Zandberg
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
9
|
Chernyshova DN, Tyulin AA, Ostroumova OS, Efimova SS. Discovery of the Potentiator of the Pore-Forming Ability of Lantibiotic Nisin: Perspectives for Anticancer Therapy. MEMBRANES 2022; 12:membranes12111166. [PMID: 36422158 PMCID: PMC9694817 DOI: 10.3390/membranes12111166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 05/12/2023]
Abstract
This study was focused on the action of lantibiotic nisin on the phospholipid membranes. Nisin did not produce ion-permeable pores in the membranes composed of DOPC or DOPE. The introduction of DOPS into bilayer lipid composition led to a decrease in the threshold detergent concentration of nisin. An addition of nisin to DOPG- and TOCL-enriched bilayers caused the formation of well-defined ion pores of various conductances. The transmembrane macroscopic current increased with the second power of the lantibiotic aqueous concentration, suggesting that the dimer of nisin was at least involved in the formation of conductive subunit. The pore-forming ability of lantibiotic decreased in the series: DOPC/TOCL ≈ DOPE/TOCL >> DOPC/DOPG ≥ DOPE/DOPG. The preferential interaction of nisin to cardiolipin-enriched bilayers might explain its antitumor activity by pore-formation in mitochondrial membranes. Small natural molecules, phloretin and capsaicin, were found to potentiate the membrane activity of nisin in the TOCL-containing membranes. The effect was referred to as changes in the membrane boundary potential at the adsorption of small molecules. We concluded that the compounds diminishing the membrane boundary potential should be considered as the potentiator of the nisin pore-forming ability that can be used to develop innovative formulations for anticancer therapy.
Collapse
|
10
|
Rusin A, Li M, Cocchetto A, Seymour C, Mothersill C. Radiation exposure and mitochondrial insufficiency in chronic fatigue and immune dysfunction syndrome. Med Hypotheses 2021; 154:110647. [PMID: 34358921 DOI: 10.1016/j.mehy.2021.110647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/19/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Chronic fatigue and Immune Dysfunction Syndrome (CFIDS) is a heterogeneous disease that may be promoted by various environmental stressors, including viral infection, toxin uptake, and ionizing radiation exposure. Previous studies have identified mitochondrial dysfunction in CFIDS patients, including modulation of mitochondrial respiratory chain activity, deletions in the mitochondrial genome, and upregulation of reactive oxygen species (ROS). This paper focuses on radiation effects and hypothesizes that CFIDS is primarily caused by stressor-induced mitochondrial metabolic insufficiency, which results in decreased energy production and anabolic metabolites required for normal cellular metabolism. Furthermore, tissues neighbouring or distant from directly perturbed tissues compensate for this dysfunction, which causes symptoms associated with CFIDS. This hypothesis is justified by reviewing the links between radiation exposure and CFIDS, cancer, immune dysfunction, and induction of oxidative stress. Moreover, the relevance of mitochondria in cellular responses to radiation and metabolism are discussed and putative mitochondrial biomarkers for CFIDS are introduced. Implications for diagnosis are then described, including a potential urine assay and PCR test for mitochondrial genome mutations. Finally, future research needs are offered with an emphasis on where rapid progress may be made to assist the afflicted.
Collapse
Affiliation(s)
- Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON Canada.
| | - Megan Li
- Department of Physics and Astronomy, McMaster University, Department of Physics and Astronomy, McMaster University, Hamilton, ON Canada
| | - Alan Cocchetto
- National CFIDS Foundation Inc., 103 Aletha Road, Needham, MA USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON Canada
| | | |
Collapse
|
11
|
TTAPE-Me dye is not selective to cardiolipin and binds to common anionic phospholipids nonspecifically. Biophys J 2021; 120:3776-3786. [PMID: 34280369 DOI: 10.1016/j.bpj.2021.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
Identification, visualization, and quantitation of cardiolipin (CL) in biological membranes is of great interest because of the important structural and physiological roles of this lipid. Selective fluorescent detection of CL using noncovalently bound fluorophore 1,1,2,2-tetrakis[4-(2-trimethylammonioethoxy)-phenylethene (TTAPE-Me) has been recently proposed. However, this dye was only tested on wild-type mitochondria or liposomes containing negligible amounts of other anionic lipids, such as phosphatidylglycerol (PG) and phosphatidylserine (PS). No clear preference of TTAPE-Me for binding to CL compared to PG and PS was found in our experiments on artificial liposomes, Escherichia coli inside-out vesicles, or Saccharomyces cerevisiae mitochondria in vitro or in situ, respectively. The shapes of the emission spectra for these anionic phospholipids were also found to be indistinguishable. Thus, TTAPE-Me is not suitable for detection, visualization, and localization of CL in the presence of other anionic lipids present in substantial physiological amounts. Our experiments and complementary molecular dynamics simulations suggest that fluorescence intensity of TTAPE-Me is regulated by dynamic equilibrium between emitting dye aggregates, stabilized by unspecific but thermodynamically favorable electrostatic interactions with anionic lipids, and nonemitting dye monomers. These results should be taken into consideration when interpreting past and future results of CL detection and localization studies with this probe in vitro and in vivo. Provided methodology emphasizes minimal experimental requirements, which should be considered as a guideline during the development of novel lipid-specific probes.
Collapse
|
12
|
Structure and function at the lipid-protein interface of a pentameric ligand-gated ion channel. Proc Natl Acad Sci U S A 2021; 118:2100164118. [PMID: 34083441 DOI: 10.1073/pnas.2100164118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although it has long been proposed that membrane proteins may contain tightly bound lipids, their identity, the structure of their binding sites, and their functional and structural relevance have remained elusive. To some extent, this is because tightly bound lipids are often located at the periphery of proteins, where the quality of density maps is usually poorer, and because they may be outcompeted by detergent molecules used during standard purification procedures. As a step toward characterizing natively bound lipids in the superfamily of pentameric ligand-gated ion channels (pLGICs), we applied single-particle cryogenic electron microscopy to fragments of native membrane obtained in the complete absence of detergent-solubilization steps. Because of the heterogeneous lipid composition of membranes in the secretory pathway of eukaryotic cells, we chose to study a bacterial pLGIC (ELIC) expressed in Escherichia coli's inner membrane. We obtained a three-dimensional reconstruction of unliganded ELIC (2.5-Å resolution) that shows clear evidence for two types of tightly bound lipid at the protein-bulk-membrane interface. One of them was consistent with a "regular" diacylated phospholipid, in the cytoplasmic leaflet, whereas the other one was consistent with the tetra-acylated structure of cardiolipin, in the periplasmic leaflet. Upon reconstitution in E. coli polar-lipid bilayers, ELIC retained the functional properties characteristic of members of this superfamily, and thus, the fitted atomic model is expected to represent the (long-debated) unliganded-closed, "resting" conformation of this ion channel. Notably, the addition of cardiolipin to phosphatidylcholine membranes restored the ion-channel activity that is largely lost in phosphatidylcholine-only bilayers.
Collapse
|
13
|
Amorim R, Simões ICM, Veloso C, Carvalho A, Simões RF, Pereira FB, Thiel T, Normann A, Morais C, Jurado AS, Wieckowski MR, Teixeira J, Oliveira PJ. Exploratory Data Analysis of Cell and Mitochondrial High-Fat, High-Sugar Toxicity on Human HepG2 Cells. Nutrients 2021; 13:nu13051723. [PMID: 34069635 PMCID: PMC8161147 DOI: 10.3390/nu13051723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH), one of the deleterious stages of non-alcoholic fatty liver disease, remains a significant cause of liver-related morbidity and mortality worldwide. In the current work, we used an exploratory data analysis to investigate time-dependent cellular and mitochondrial effects of different supra-physiological fatty acids (FA) overload strategies, in the presence or absence of fructose (F), on human hepatoma-derived HepG2 cells. We measured intracellular neutral lipid content and reactive oxygen species (ROS) levels, mitochondrial respiration and morphology, and caspases activity and cell death. FA-treatments induced a time-dependent increase in neutral lipid content, which was paralleled by an increase in ROS. Fructose, by itself, did not increase intracellular lipid content nor aggravated the effects of palmitic acid (PA) or free fatty acids mixture (FFA), although it led to an up-expression of hepatic fructokinase. Instead, F decreased mitochondrial phospholipid content, as well as OXPHOS subunits levels. Increased lipid accumulation and ROS in FA-treatments preceded mitochondrial dysfunction, comprising altered mitochondrial membrane potential (ΔΨm) and morphology, and decreased oxygen consumption rates, especially with PA. Consequently, supra-physiological PA alone or combined with F prompted the activation of caspase pathways leading to a time-dependent decrease in cell viability. Exploratory data analysis methods support this conclusion by clearly identifying the effects of FA treatments. In fact, unsupervised learning algorithms created homogeneous and cohesive clusters, with a clear separation between PA and FFA treated samples to identify a minimal subset of critical mitochondrial markers in order to attain a feasible model to predict cell death in NAFLD or for high throughput screening of possible therapeutic agents, with particular focus in measuring mitochondrial function.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; (R.A.); (C.V.); (A.C.); (R.F.S.); (J.T.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Inês C. M. Simões
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.R.W.)
| | - Caroline Veloso
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; (R.A.); (C.V.); (A.C.); (R.F.S.); (J.T.)
| | - Adriana Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; (R.A.); (C.V.); (A.C.); (R.F.S.); (J.T.)
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Rui F. Simões
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; (R.A.); (C.V.); (A.C.); (R.F.S.); (J.T.)
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Francisco B. Pereira
- Center for Informatics and Systems, University of Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal;
- Coimbra Polytechnic-ISEC, 3030-190 Coimbra, Portugal
| | - Theresa Thiel
- Mediagnostic, D-72770 Reutlingen, Germany; (T.T.); (A.N.)
| | - Andrea Normann
- Mediagnostic, D-72770 Reutlingen, Germany; (T.T.); (A.N.)
| | - Catarina Morais
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (C.M.); (A.S.J.)
| | - Amália S. Jurado
- Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (C.M.); (A.S.J.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.R.W.)
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; (R.A.); (C.V.); (A.C.); (R.F.S.); (J.T.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; (R.A.); (C.V.); (A.C.); (R.F.S.); (J.T.)
- Correspondence:
| |
Collapse
|
14
|
Extracellular cardiolipin modulates microglial phagocytosis and cytokine secretion in a toll-like receptor (TLR) 4-dependent manner. J Neuroimmunol 2021; 353:577496. [PMID: 33517251 DOI: 10.1016/j.jneuroim.2021.577496] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Microglia-driven neuroinflammation contributes to neurodegenerative diseases. Mitochondrial phospholipid cardiolipin acts as a signaling molecule when released from damaged cells. We demonstrate that extracellular cardiolipin induces the secretion of monocyte chemoattractant protein-1 and interferon gamma-induced protein 10 by resting microglia while inhibiting secretion of cytokines by microglia stimulated with lipopolysaccharide, amyloid Aβ42 peptides, or α-synuclein. Extracellular cardiolipin also induces nitric oxide secretion by microglia-like cells and upregulates microglial phagocytosis. By using blocking antibodies, we determine that toll-like receptor 4 mediates the latter effect. Under physiological and pathological conditions characterized by cell death, extracellularly released cardiolipin may regulate immune responses of microglia.
Collapse
|
15
|
Bertero E, Kutschka I, Maack C, Dudek J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165803. [PMID: 32348916 DOI: 10.1016/j.bbadis.2020.165803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).
Collapse
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Ilona Kutschka
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
16
|
Pisetsky DS, Spencer DM, Mobarrez F, Fuzzi E, Gunnarsson I, Svenungsson E. The binding of SLE autoantibodies to mitochondria. Clin Immunol 2020; 212:108349. [PMID: 31982644 PMCID: PMC10538439 DOI: 10.1016/j.clim.2020.108349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by immune complexes. Because these complexes contain mitochondrial components, we assessed the presence of antibodies to whole mitochondria (wMITO) using an ELISA in which mitochondria from mouse liver are bound to microtiter plates pre-coated with poly-l-lysine. Studies with this ELISA demonstrated that SLE plasmas contain abundant anti-wMITO activity. While digestion with DNase 1 did not affect anti-wMITO activity, adsorption of plasma on DNA affinity columns could reduce binding activity. Assay for anti-mitochondrial antibodies (AMA) by immunofluorescence and an ELISA with the M2 antigen (2-oxo-acid dehydrogenase protein complex) showed a low frequency of positivity, indicating that AMA and anti-wMITO are distinct specificities. In the study of 204 patients with SLE, the levels of anti-wMITO were higher in active SLE and correlated with levels of anti-DNA. These findings suggest that anti-wMITO can form immune complexes with mitochondria which may drive pathogenesis.
Collapse
Affiliation(s)
- David S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States of America; Medical Research Service, VA Medical Center, Durham, NC, United States of America.
| | - Diane M Spencer
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States of America
| | - Fariborz Mobarrez
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enrico Fuzzi
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| | - Iva Gunnarsson
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Acaz-Fonseca E, Ortiz-Rodriguez A, Garcia-Segura LM, Astiz M. Sex differences and gonadal hormone regulation of brain cardiolipin, a key mitochondrial phospholipid. J Neuroendocrinol 2020; 32:e12774. [PMID: 31323169 DOI: 10.1111/jne.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Cardiolipin (CL) is a phospholipid that is almost exclusively located in the inner mitochondrial membrane of eukaryotic cells. As a result of its unique structure and distribution, CL establishes non-covalent bonds with a long list of proteins involved in ATP production, mitochondria biogenesis, mitophagy and apoptosis. Thus, the amount of CL, as well as its fatty acid composition and location, strongly impacts upon mitochondrial-dependent functions and therefore the metabolic homeostasis of different tissues. The brain is particularly sensitive to mitochondrial dysfunction as a result of its high metabolic demand. Several mitochondrial related-neurodegenerative disorders, as well as physiological ageing, show altered CL metabolism. Furthermore, mice lacking enzymes involved in CL synthesis show cognitive impairments. CL content and metabolism are regulated by gonadal hormones in the developing and adult brain. In neuronal cultures, oestradiol increases CL content, whereas adult ovariectomy decreases CL content and alters CL metabolism in the hippocampal mitochondria. Transient sex differences in brain CL metabolism have been detected during development. At birth, brain CL has a higher proportion of unsaturated fatty acids in the brain of male mice than in the brain of females. In addition, the expression of enzymes involved in CL de novo and recycling synthetic pathways is higher in males. Most of these sex differences are abolished by the neonatal androgenisation of females, suggesting a role for testosterone in the generation of sex differences in brain CL. The regulation of brain CL by gonadal hormones may be linked to their homeostatic and protective actions in neural cells, as well as the manifestation of sex differences in neurodegenerative disorders.
Collapse
Affiliation(s)
- Estefania Acaz-Fonseca
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis Miguel Garcia-Segura
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariana Astiz
- Institute of Neurobiology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Sghaier R, Zarrouk A, Nury T, Badreddine I, O'Brien N, Mackrill JJ, Vejux A, Samadi M, Nasser B, Caccia C, Leoni V, Moreau T, Cherkaoui-Malki M, Salhedine Masmoudi A, Lizard G. Biotin attenuation of oxidative stress, mitochondrial dysfunction, lipid metabolism alteration and 7β-hydroxycholesterol-induced cell death in 158N murine oligodendrocytes. Free Radic Res 2019; 53:535-561. [PMID: 31039616 DOI: 10.1080/10715762.2019.1612891] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are involved in neurodegenerative diseases associated with an enhancement of lipid peroxidation products such as 7β-hydroxycholesterol (7β-OHC). It is, therefore, important to study the ability of 7β-OHC to trigger mitochondrial defects, oxidative stress, metabolic dysfunctions and cell death, which are hallmarks of neurodegeneration, and to identify cytoprotective molecules. The effects of biotin were evaluated on 158N murine oligodendrocytes, which are myelin synthesizing cells, exposed to 7β-OHC (50 µM) with or without biotin (10 and 100 nM) or α-tocopherol (positive control of cytoprotection). The effects of biotin on 7β-OHC activities were determined using different criteria: cell adhesion; plasma membrane integrity; redox status. The impact on mitochondria was characterized by the measurement of transmembrane mitochondrial potential (ΔΨm), reactive oxygen species (ROS) overproduction, mitochondrial mass, quantification of cardiolipins and organic acids. Sterols and fatty acids were also quantified. Cell death (apoptosis, autophagy) was characterized by the enumeration of apoptotic cells, caspase-3 activation, identification of autophagic vesicles, and activation of LC3-I into LC3-II. Biotin attenuates 7β-OHC-induced cytotoxicity: loss of cell adhesion was reduced; antioxidant activities were normalized. ROS overproduction, protein and lipid oxidation products were decreased. Biotin partially restores mitochondrial functions: attenuation of the loss of ΔΨm; reduced levels of mitochondrial O2•- overproduction; normalization of cardiolipins and organic acid levels. Biotin also normalizes cholesterol and fatty acid synthesis, and prevents apoptosis and autophagy (oxiapoptophagy). Our data support that biotin, which prevents oligodendrocytes damages, could be useful in the treatment of neurodegeneration and demyelination.
Collapse
Affiliation(s)
- Randa Sghaier
- University Bourgogne Franche-Comté/Inserm , Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' , Dijon , France.,Laboratory of Biochemistry, Faculty of Medicine , University Sousse , Sousse , Tunisia.,Faculty of Medicine, Laboratory - NAFS "Nutrition - Functional Food & Vascular Health" , Monastir & University Sousse , Sousse , Tunisia.,Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources , University Manouba, Higher Institute of Biotechnology , Sidi Thabet , Tunisia
| | - Amira Zarrouk
- Laboratory of Biochemistry, Faculty of Medicine , University Sousse , Sousse , Tunisia.,Faculty of Medicine, Laboratory - NAFS "Nutrition - Functional Food & Vascular Health" , Monastir & University Sousse , Sousse , Tunisia.,School of Food and Nutritional Sciences , University College Cork , Cork , Ireland.,Department of Physiology , Biosciences Institute, University College Cork , Cork , Ireland
| | - Thomas Nury
- University Bourgogne Franche-Comté/Inserm , Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' , Dijon , France
| | - Ilham Badreddine
- University Bourgogne Franche-Comté/Inserm , Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' , Dijon , France.,University Ibn Zohr, Lab. 'Valorisation des Ressources Naturelles et Environnement' , Taroudant , Morocco.,Laboratory Neuroscience and Biochemistry , University Hassan 1er , Settat , Morocco
| | - Nora O'Brien
- School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| | - John J Mackrill
- Department of Physiology , Biosciences Institute, University College Cork , Cork , Ireland
| | - Anne Vejux
- University Bourgogne Franche-Comté/Inserm , Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' , Dijon , France
| | - Mohammad Samadi
- Department of Chemistry , University Lorraine, Metz Technopôle , Metz , France
| | - Boubker Nasser
- Laboratory Neuroscience and Biochemistry , University Hassan 1er , Settat , Morocco
| | - Claudio Caccia
- Laboratory of Medical Genetics and Neurogenetics , Foundation IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry , Hospital of Varese, ASST-Settelaghi , Milan , Italy
| | - Thibault Moreau
- University Bourgogne Franche-Comté/Inserm , Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' , Dijon , France.,Department of Neurology , University Hospital , Dijon , France
| | - Mustapha Cherkaoui-Malki
- University Bourgogne Franche-Comté/Inserm , Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' , Dijon , France
| | - Ahmed Salhedine Masmoudi
- Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources , University Manouba, Higher Institute of Biotechnology , Sidi Thabet , Tunisia
| | - Gérard Lizard
- University Bourgogne Franche-Comté/Inserm , Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' , Dijon , France
| |
Collapse
|
19
|
Suematsu R, Miyamoto T, Saijo S, Yamasaki S, Tada Y, Yoshida H, Miyake Y. Identification of lipophilic ligands of Siglec5 and -14 that modulate innate immune responses. J Biol Chem 2019; 294:16776-16788. [PMID: 31551352 DOI: 10.1074/jbc.ra119.009835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Indexed: 01/22/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of cell-surface immune receptors that bind to sialic acid at terminal glycan residues. Siglecs also recognize nonsialic acid ligands, many of which remain to be characterized. Here, we found that Siglec5 and Siglec14 recognize lipid compounds produced by Trichophyton, a fungal genus containing several pathogenic species. Biochemical approaches revealed that the Siglec ligands are fungal alkanes and triacylglycerols, an unexpected finding that prompted us to search for endogenous lipid ligands of Siglecs. Siglec5 weakly recognized several endogenous lipids, but the mitochondrial lipid cardiolipin and the anti-inflammatory lipid 5-palmitic acid-hydroxystearic acid exhibited potent ligand activity on Siglec5. Further, the hydrophobic stretch in the Siglec5 N terminus region was found to be required for efficient recognition of these lipids. Notably, this hydrophobic stretch was dispensable for recognition of sialic acid. Siglec5 inhibited cell activation upon ligand binding, and accordingly, the lipophilic ligands suppressed interleukin-8 (IL-8) production in Siglec5-expressing human monocytic cells. Siglec14 and Siglec5 have high sequence identity in the extracellular region, and Siglec14 also recognized the endogenous lipids. However, unlike Siglec5, Siglec14 transduces activating signals upon ligand recognition. Indeed, the endogenous lipids induced IL-8 production in Siglec14-expressing human monocytic cells. These results indicated that Siglec5 and Siglec14 can recognize lipophilic ligands that thereby modulate innate immune responses. To our knowledge, this is the first study reporting the binding of Siglecs to lipid ligands, expanding our understanding of the biological function and importance of Siglecs in the innate immunity.
Collapse
Affiliation(s)
- Rie Suematsu
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan.,Department of Rheumatology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
| | - Yoshifumi Tada
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
20
|
Gerling CJ, Mukai K, Chabowski A, Heigenhauser GJF, Holloway GP, Spriet LL, Jannas-Vela S. Incorporation of Omega-3 Fatty Acids Into Human Skeletal Muscle Sarcolemmal and Mitochondrial Membranes Following 12 Weeks of Fish Oil Supplementation. Front Physiol 2019; 10:348. [PMID: 30984028 PMCID: PMC6449797 DOI: 10.3389/fphys.2019.00348] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Fish oil (FO) supplementation in humans results in the incorporation of omega-3 fatty acids (FAs) eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic acid (DHA; C20:6) into skeletal muscle membranes. However, despite the importance of membrane composition in structure–function relationships, a paucity of information exists regarding how different muscle membranes/organelles respond to FO supplementation. Therefore, the purpose of the present study was to determine the effects 12 weeks of FO supplementation (3g EPA/2g DHA daily) on the phospholipid composition of sarcolemmal and mitochondrial fractions, as well as whole muscle responses, in healthy young males. FO supplementation increased the total phospholipid content in whole muscle (57%; p < 0.05) and the sarcolemma (38%; p = 0.05), but did not alter the content in mitochondria. The content of omega-3 FAs, EPA and DHA, were increased (+3-fold) in whole muscle, and mitochondrial membranes, and as a result the omega-6/omega-3 ratios were dramatically decreased (-3-fold), while conversely the unsaturation indexes were increased. Intriguingly, before supplementation the unsaturation index (UI) of sarcolemmal membranes was ∼3 times lower (p < 0.001) than either whole muscle or mitochondrial membranes. While supplementation also increased DHA within sarcolemmal membranes, EPA was not altered, and as a result the omega-6/omega-3 ratio and UI of these membranes were not altered. All together, these data revealed that mitochondrial and sarcolemmal membranes display unique phospholipid compositions and responses to FO supplementation.
Collapse
Affiliation(s)
- Christopher J Gerling
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kazutaka Mukai
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | | | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Sebastian Jannas-Vela
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
21
|
Ren M, Xu Y, Erdjument-Bromage H, Donelian A, Phoon CKL, Terada N, Strathdee D, Neubert TA, Schlame M. Extramitochondrial cardiolipin suggests a novel function of mitochondria in spermatogenesis. J Cell Biol 2019; 218:1491-1502. [PMID: 30914420 PMCID: PMC6504895 DOI: 10.1083/jcb.201808131] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/29/2018] [Accepted: 03/07/2019] [Indexed: 12/03/2022] Open
Abstract
The acrosome is a protease-rich organelle in sperm essential for fertilization but little is known about acrosome biogenesis. Ren et al. find that the mitochondrial lipid cardiolipin and some mitochondrial proteins translocate to the acrosome during spermatogenesis, suggesting that mitochondria directly contribute to the assembly of this sperm-specific organelle. Mitochondria contain cardiolipin (CL), an organelle-specific phospholipid that carries four fatty acids with a strong preference for unsaturated chains. Unsaturation is essential for the stability and for the function of mitochondrial CL. Surprisingly, we found tetrapalmitoyl-CL (TPCL), a fully saturated species, in the testes of humans and mice. TPCL was absent from other mouse tissues but was the most abundant CL species in testicular germ cells. Most intriguingly, TPCL was not localized in mitochondria but was in other cellular membranes even though mitochondrial CL was the substrate from which TPCL was synthesized. During spermiogenesis, TPCL became associated with the acrosome, a sperm-specific organelle, along with a subset of authentic mitochondrial proteins, including Ant4, Suox, and Spata18. Our data suggest that mitochondria-derived membranes are assembled into the acrosome, challenging the concept that this organelle is strictly derived from the Golgi apparatus and revealing a novel function of mitochondria.
Collapse
Affiliation(s)
- Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, NY .,Department of Cell Biology, New York University School of Medicine, New York, NY
| | - Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, NY
| | - Hediye Erdjument-Bromage
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | - Alec Donelian
- Department of Anesthesiology, New York University School of Medicine, New York, NY
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, NY
| | - Naohiro Terada
- Department of Pathology, University of Florida College of Medicine, Gainesville, FL
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Glasgow, UK
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, NY .,Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
22
|
Pointer CB, Wenzel TJ, Klegeris A. Extracellular cardiolipin regulates select immune functions of microglia and microglia-like cells. Brain Res Bull 2019; 146:153-163. [PMID: 30625370 DOI: 10.1016/j.brainresbull.2019.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Cardiolipin is a mitochondrial membrane phospholipid with several well-defined metabolic roles. Cardiolipin can be released extracellularly by damaged cells and has been shown to affect peripheral immune functions. We hypothesized that extracellular cardiolipin can also regulate functions of microglia, the resident immune cells of the central nervous system (CNS). We demonstrate that extracellular cardiolipin increases microglial phagocytosis and neurotrophic factor expression, as well as decreases the release of inflammatory mediators and cytotoxins by activated microglia-like cells. These results identify extracellular cardiolipin as a potential CNS intercellular signaling molecule that can regulate key microglial immune functions associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Caitlin B Pointer
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
23
|
Bajwa E, Pointer CB, Klegeris A. The Role of Mitochondrial Damage-Associated Molecular Patterns in Chronic Neuroinflammation. Mediators Inflamm 2019; 2019:4050796. [PMID: 31065234 PMCID: PMC6466851 DOI: 10.1155/2019/4050796] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction has been established as a common feature of neurodegenerative disorders that contributes to disease pathology by causing impaired cellular energy production. Mitochondrial molecules released into the extracellular space following neuronal damage or death may also play a role in these diseases by acting as signaling molecules called damage-associated molecular patterns (DAMPs). Mitochondrial DAMPs have been shown to initiate proinflammatory immune responses from nonneuronal glial cells, including microglia and astrocytes; thereby, they have the potential to contribute to the chronic neuroinflammation present in these disorders accelerating the degeneration of neurons. In this review, we highlight the mitochondrial DAMPs cytochrome c (CytC), mitochondrial transcription factor A (TFAM), and cardiolipin and explore their potential role in the central nervous system disorders including Alzheimer's disease and Parkinson's disease, which are characterized by neurodegeneration and chronic neuroinflammation.
Collapse
Affiliation(s)
- Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Caitlin B. Pointer
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| |
Collapse
|
24
|
Dudek J, Hartmann M, Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochim Biophys Acta Mol Basis Dis 2018; 1865:810-821. [PMID: 30837070 DOI: 10.1016/j.bbadis.2018.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
Mitochondria play an essential role in the energy metabolism of the heart. Many of the essential functions are associated with mitochondrial membranes and oxidative phosphorylation driven by the respiratory chain. Mitochondrial membranes are unique in the cell as they contain the phospholipid cardiolipin. The important role of cardiolipin in cardiovascular health is highlighted by several cardiac diseases, in which cardiolipin plays a fundamental role. Barth syndrome, Sengers syndrome, and Dilated cardiomyopathy with ataxia (DCMA) are genetic disorders, which affect cardiolipin biosynthesis. Other cardiovascular diseases including ischemia/reperfusion injury and heart failure are also associated with changes in the cardiolipin pool. Here, we summarize molecular functions of cardiolipin in mitochondrial biogenesis and morphology. We highlight the role of cardiolipin for the respiratory chain, metabolite carriers, and mitochondrial metabolism and describe links to apoptosis and mitochondria specific autophagy (mitophagy) with possible implications in cardiac disease.
Collapse
Affiliation(s)
- Jan Dudek
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Magnus Hartmann
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
25
|
Grazioli S, Pugin J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front Immunol 2018; 9:832. [PMID: 29780380 PMCID: PMC5946030 DOI: 10.3389/fimmu.2018.00832] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Over the recent years, much has been unraveled about the pro-inflammatory properties of various mitochondrial molecules once they are leaving the mitochondrial compartment. On entering the cytoplasm or the extracellular space, mitochondrial DAMPs (also known as mitochondrial alarmins) can become pro-inflammatory and initiate innate and adaptive immune responses by activating cell surface and intracellular receptors. Current evidence indicates that uncontrolled and excessive release of mitochondrial DAMPs is associated with severity, has prognosis value in human diseases, and contributes to the dysregulated process observed in numerous inflammatory and autoimmune conditions, as well as in ischemic heart disease and cancer. Herein, we review that the expanding research field of mitochondrial DAMPs in innate immune responses and the current knowledge on the association between mitochondrial DAMPs and human diseases.
Collapse
Affiliation(s)
- Serge Grazioli
- Pediatric Intensive Care Unit, Department of Pediatrics, University Hospital of Geneva, University of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérôme Pugin
- Intensive Care Unit, Department of Anesthesiology, Faculty of Medicine, University Hospital of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Alessandri C, Agmon-Levin N, Conti F, Perricone C, Ortona E, Pendolino M, Capozzi A, Delunardo F, Mancini R, Truglia S, Spinelli FR, Ceccarelli F, Sorice M, Shoenfeld Y, Valesini G. Anti-mutated citrullinated vimentin antibodies in antiphospholipid syndrome: diagnostic value and relationship with clinical features. Immunol Res 2018; 65:524-531. [PMID: 28215033 DOI: 10.1007/s12026-017-8899-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antiphospholipid antibodies (aPLs) are a heterogeneous group of autoantibodies essential for the diagnosis of antiphospholipid syndrome (APS) but do not predict clinical manifestations or disease progression. Hence, the co-presence of other antibodies may prove useful. Autoimmunity directed toward vimentin and other citrullinated peptides was established in rheumatoid arthritis (RA) and in other autoimmune conditions including systemic lupus erythematosus (SLE). We have previously described the presence of autoantibodies directed against vimentin/cardiolipin complex in patients with antiphospholipid syndrome (APS), but there are no data on the role of citrullinated vimentin in APS. Thus, we evaluated the prevalence and clinical significance of anti-MCV in APS patients. The study group consisted of 79 unselected outpatients with APS. Control groups included 25 patients with SLE, 30 patients with RA, and 20 healthy subjects age- and sex-matched. To detect anti-MCV, anti-vimentin, anti-vimentin/cardiolipin, and anti-CCP2 antibodies, commercial or homemade enzyme-linked immunosorbent assays (ELISA) were performed. Anti-MCV antibodies were found in a high percentage of APS patients (26.6%). A significant correlation between anti-MCV and anti-vimentin/cardiolipin serum levels was observed (p = 0.029). Moreover, vimentin reactivity was increased by its citrullination or conjugation with cardiolipin (p = 0.01 and p < 0.001, respectively). Interestingly, anti-MCV was found associated with the presence of arthritis (p = 0.011) and anti-vimentin/cardiolipin was highly specific for the presence of arterial or venous thrombosis in APS (p = 0.003 and p = 0.002, respectively). The detection of additional autoantibodies may contribute to clinical assessment of APS patients. Citrullination may occur in APS and play a role in the pathogenesis of this condition. KEY POINTS •Anti-MCV antibodies can be found in APS patients and are associated with the presence of arthritis. •Anti-vimentin/cardiolipin is strongly associated with the presence of thrombosis (both arterial and venous). •Citrullination occurs in APS, participate in disease pathogenesis, and influence clinical picture.
Collapse
Affiliation(s)
- Cristiano Alessandri
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Nancy Agmon-Levin
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Fabrizio Conti
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Carlo Perricone
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Elena Ortona
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Pendolino
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Antonella Capozzi
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Federica Delunardo
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy
| | - Riccardo Mancini
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Simona Truglia
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Francesca Romana Spinelli
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Fulvia Ceccarelli
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maurizio Sorice
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Guido Valesini
- Lupus Clinic, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
27
|
Degli Esposti M, Matarrese P, Tinari A, Longo A, Recalchi S, Khosravi-Far R, Malorni W, Misasi R, Garofalo T, Sorice M. Changes in membrane lipids drive increased endocytosis following Fas ligation. Apoptosis 2018; 22:681-695. [PMID: 28299505 DOI: 10.1007/s10495-017-1362-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles.
Collapse
Affiliation(s)
| | - Paola Matarrese
- Department of Drug Research and Evaluation, Istituto Superiore Sanita', Rome, Italy
| | - Antonella Tinari
- Department of Drug Research and Evaluation, Istituto Superiore Sanita', Rome, Italy
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore Sanita', Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
28
|
Lam SM, Wang R, Miao H, Li B, Shui G. An integrated method for direct interrogation of sphingolipid homeostasis in the heart and brain tissues of mice through postnatal development up to reproductive senescence. Anal Chim Acta 2018; 1037:152-158. [PMID: 30292289 DOI: 10.1016/j.aca.2018.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022]
Abstract
Development of rapid metabolomic methods poised for pathway discovery is expected to facilitate the identification of therapeutic candidates in the metabolomic approach to translational medicine. Using sphingolipid homeostasis as a prototype, we present herein an integrated method to facilitate a fast interrogation of altered sphingolipid (and phospholipid) metabolism associated with perturbed endolysosomal functions in mammalian systems. Constructed upon high performance liquid chromatography coupled to mass spectrometry, this method allows semi-quantitative measurements of more than 300 individual species within 20 min. The method was applied to investigate cardiac- and neural-specific developmental changes in sphingolipid regulation from the postnatal stage to reproductive senescence in mice, revealing that endogenous lysobisphosphatidic acids and specific complex glycosphingolipids are tightly co-regulated to foster concerted reductions in sphingolipid levels at distinct stages of postnatal development. Our lipidomic data suggest that such changing regulatory patterns in sphingolipid homeostasis is attributed to differential endolysosomal degradation of complex sphingolipids, which may be critical in ensuring efficient sphingolipid catabolism and organismal health at each stage of postnatal development.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Raoxu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huan Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bowen Li
- Lipidall Technologies Company Limited, Changzhou 213022, Jiangsu Province, People's Republic of China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
29
|
Dudek J. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front Cell Dev Biol 2017; 5:90. [PMID: 29034233 PMCID: PMC5626828 DOI: 10.3389/fcell.2017.00090] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
The phospholipid cardiolipin (CL) is an essential constituent of mitochondrial membranes and plays a role in many mitochondrial processes, including respiration and energy conversion. Pathological changes in CL amount or species composition can have deleterious consequences for mitochondrial function and trigger the production of reactive oxygen species. Signaling networks monitor mitochondrial function and trigger an adequate cellular response. Here, we summarize the role of CL in cellular signaling pathways and focus on tissues with high-energy demand, like the heart. CL itself was recently identified as a precursor for the formation of lipid mediators. We highlight the concept of CL as a signaling platform. CL is exposed to the outer mitochondrial membrane upon mitochondrial stress and CL domains serve as a binding site in many cellular signaling events. During mitophagy, CL interacts with essential players of mitophagy like Beclin 1 and recruits the autophagic machinery by its interaction with LC3. Apoptotic signaling pathways require CL as a binding platform to recruit apoptotic factors such as tBid, Bax, caspase-8. CL required for the activation of the inflammasome and plays a role in inflammatory signaling. As changes in CL species composition has been observed in many diseases, the signaling pathways described here may play a general role in pathology.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Sepsis-Induced Cardiomyopathy: Oxidative Implications in the Initiation and Resolution of the Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7393525. [PMID: 29057035 PMCID: PMC5625757 DOI: 10.1155/2017/7393525] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/14/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Cardiac dysfunction may complicate the course of severe sepsis and septic shock with significant implications for patient's survival. The basic pathophysiologic mechanisms leading to septic cardiomyopathy have not been fully clarified until now. Disease-specific treatment is lacking, and care is still based on supportive modalities. Septic state causes destruction of redox balance in many cell types, cardiomyocytes included. The production of reactive oxygen and nitrogen species is increased, and natural antioxidant systems fail to counterbalance the overwhelming generation of free radicals. Reactive species interfere with many basic cell functions, mainly through destruction of protein, lipid, and nucleic acid integrity, compromising enzyme function, mitochondrial structure and performance, and intracellular signaling, all leading to cardiac contractile failure. Takotsubo cardiomyopathy may result from oxidative imbalance. This review will address the multiple aspects of cardiomyocyte bioenergetic failure in sepsis and discuss potential therapeutic interventions.
Collapse
|
31
|
Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion 2017; 35:70-79. [PMID: 28533168 DOI: 10.1016/j.mito.2017.05.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/31/2017] [Accepted: 05/17/2017] [Indexed: 01/11/2023]
Abstract
Mitochondrial dysfunction has been implicated in a multitude of diseases and pathological conditions- the organelles that are essential for life can also be major players in contributing to cell death and disease. Because mitochondria are so well established in our existence, being present in all cell types except for red blood cells and having the responsibility of providing most of our energy needs for survival, then dysfunctional mitochondria can elicit devastating cellular pathologies that can be widespread across the entire organism. As such, the field of "mitochondrial medicine" is emerging in which disease states are being targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. New and compelling research investigating novel techniques for mitochondrial transplantation to replace damaged or dysfunctional mitochondria with exogenous healthy mitochondria has shown promising results, including tissue sparing accompanied by increased energy production and decreased oxidative damage. Various experimental techniques have been attempted and each has been challenged to accomplish successful transplantation. The purpose of this review is to present the history of mitochondrial transplantation, the different techniques used for both in vitro and in vivo delivery, along with caveats and pitfalls that have been discovered along the way. Results from such pioneering studies are promising and could be the next big wave of "mitochondrial medicine" once technical hurdles are overcome.
Collapse
Affiliation(s)
- Jenna L Gollihue
- University of Kentucky, Department of Physiology and Spinal Cord & Brain Injury Research Center, Lexington, KY 40536-0509, United States
| | - Alexander G Rabchevsky
- University of Kentucky, Department of Physiology and Spinal Cord & Brain Injury Research Center, Lexington, KY 40536-0509, United States.
| |
Collapse
|
32
|
Nicolson GL, Ash ME. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1704-1724. [PMID: 28432031 DOI: 10.1016/j.bbamem.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon, TQ12 4SG, UK
| |
Collapse
|
33
|
Pichaud N, Ekström A, Hellgren K, Sandblom E. Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout. ACTA ACUST UNITED AC 2017; 220:1674-1683. [PMID: 28202582 DOI: 10.1242/jeb.152421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/13/2017] [Indexed: 01/06/2023]
Abstract
Although the mitochondrial metabolism responses to warm acclimation have been widely studied in fish, the time course of this process is less understood. Here, we characterized the changes of rainbow trout (Oncorhynchus mykiss) cardiac mitochondrial metabolism during acute warming from 10 to 16°C, and during the subsequent warm acclimation for 39 days. We repeatedly measured mitochondrial oxygen consumption in cardiac permeabilized fibers and the functional integrity of mitochondria (i.e. mitochondrial coupling and cytochrome c effect) at two assay temperatures (10 and 16°C), as well as the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) at room temperature. LDH and CS activities significantly increased between day 0 (10°C acclimated fish) and day 1 (acute warming to 16°C) while mitochondrial oxygen consumption measured at respective in vivo temperatures did not change. Enzymatic activities and mitochondrial oxygen consumption rates significantly decreased by day 2, and remained stable during warm acclimation (days 2-39). The decrease in rates of oxygen between day 0 and day 1 coincided with an increased cytochrome c effect and a decreased mitochondrial coupling, suggesting a structural/functional impairment of mitochondria during acute warming. We suggest that after 2 days of warm acclimation, a new homeostasis is reached, which may involve the removal of dysfunctional mitochondria. Interestingly, from day 2 onwards, there was a lack of differences in mitochondrial oxygen consumption rates between the assay temperatures, suggesting that warm acclimation reduces the acute thermal sensitivity of mitochondria. This study provides significant knowledge on the thermal sensitivity of cardiac mitochondria that is essential to delineate the contribution of cellular processes to warm acclimation.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Department of Chemistry and Biochemistry, University of Moncton, Moncton, New Brunswick, Canada E1A 3E9 .,Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Kim Hellgren
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
34
|
Nishino T, Matsunaga R, Jikihara H, Uchida M, Maeda A, Qi G, Abe T, Kiyonari H, Tashiro S, Inagaki-Ohara K, Shimamoto F, Konishi H. Antagonizing effect of CLPABP on the function of HuR as a regulator of ARE-containing leptin mRNA stability and the effect of its depletion on obesity in old male mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1816-1827. [PMID: 27616329 DOI: 10.1016/j.bbalip.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/10/2023]
Abstract
Cardiolipin and phosphatidic acid-binding protein (CLPABP) is a pleckstrin homology domain-containing protein and is localized on the surface of mitochondria of cultured cells as a large protein-RNA complex. To analyze the physiological functions of CLPABP, we established and characterized a CLPABP knockout (KO) mouse. Although expression levels of CLPABP transcripts in the developmental organs were high, CLPABP KO mice were normal at birth and grew normally when young. However, old male mice presented a fatty phenotype, similar to that seen in metabolic syndrome, in parallel with elevated male- and age-dependent CLPABP gene expression. One of the reasons for this obesity in CLPABP KO mice is dependence on increases in leptin concentration in plasma. The leptin transcripts were also upregulated in the adipose tissue of KO mice compared with wild-type (WT) mice. To understand the difference in levels of the transcriptional product, we focused on the effect of CLPABP on the stability of mRNA involving an AU-rich element (ARE) in its 3'UTR dependence on the RNA stabilizer, human antigen R (HuR), which is one of the CLPABP-binding proteins. Increase in stability of ARE-containing mRNAs of leptin by HuR was antagonized by the expression of CLPABP in cultured cells. Depletion of CLPABP disturbed the normal subcellular localization of HuR to stress granules, and overexpression of CLPABP induced instability of leptin mRNA by inhibiting HuR function. Consequently, leptin levels in old male mice might be regulated by CLPABP expression, which might lead to body weight control.
Collapse
Affiliation(s)
- Tasuku Nishino
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Ryota Matsunaga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Hiroshi Jikihara
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Moe Uchida
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Akane Maeda
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Guangying Qi
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan; Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi,Chuou-ku, Kobe 650-0047, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kyoko Inagaki-Ohara
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan
| | - Fumio Shimamoto
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Hiroaki Konishi
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
35
|
Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:114-129. [PMID: 27502688 DOI: 10.1016/j.bbalip.2016.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
Autophagy is an evolutionarily conserved mechanism that maintains nutrient homeostasis by degrading protein aggregates and damaged organelles. Autophagy is reduced in aging, which is implicated in the pathogenesis of aging-related diseases, including cancers, obesity, type 2 diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria-derived phospholipids cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol are critical throughout the autophagic process, from initiation and phagophore formation to elongation and fusion with endolysosomal vesicles. Cardiolipin is also required for mitochondrial fusion and fission, an important step in isolating dysfunctional mitochondria for mitophagy. Furthermore, genetic screen in yeast has identified a surprising role for cardiolipin in regulating lysosomal function. Phosphatidylethanolamine plays a pivotal role in supporting the autophagic process, including autophagosome elongation as part of lipidated Atg8/LC3. An emerging role for phosphatidylglycerol in AMPK and mTORC1 signaling as well as mitochondrial fission may provide the first glimpse into the function of phosphatidylglycerol apart from being a precursor for cardiolipin. This review examines the effects of manipulating phospholipids on autophagy and mitophagy in health and diseases, as well as current limitations in the field. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
36
|
Zhang J, Yang Y, He W, Sun L. Necrosome core machinery: MLKL. Cell Mol Life Sci 2016; 73:2153-63. [PMID: 27048809 PMCID: PMC11108342 DOI: 10.1007/s00018-016-2190-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
In the study of regulated cell death, the rapidly expanding field of regulated necrosis, in particular necroptosis, has been drawing much attention. The signaling of necroptosis represents a sophisticated form of a death pathway. Anti-caspase mechanisms (e.g., using inhibitors of caspases, or genetic ablation of caspase-8) switch cell fate from apoptosis to necroptosis. The initial extracellular death signals regulate RIP1 and RIP3 kinase activation. The RIP3-associated death complex assembly is necessary and sufficient to initiate necroptosis. MLKL was initially identified as an essential mediator of RIP1/RIP3 kinase-initiated necroptosis. Recent studies on the signal transduction using chemical tools and biomarkers support the idea that MLKL is able to make more functional sense for the core machinery of the necroptosis death complex, called the necrosome, to connect to the necroptosis execution. The experimental data available now have pointed that the activated MLKL forms membrane-disrupting pores causing membrane leakage, which extends the prototypical concept of morphological and biochemical events following necroptosis happening in vivo. The key role of MLKL in necroptosis signaling thus sheds light on the logic underlying this unique "membrane-explosive" cell death pathway. In this review, we provide the general concepts and strategies that underlie signal transduction of this form of cell death, and then focus specifically on the role of MLKL in necroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Yu Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Wenyan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Liming Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China.
| |
Collapse
|
37
|
Bradley RM, Stark KD, Duncan RE. Influence of tissue, diet, and enzymatic remodeling on cardiolipin fatty acyl profile. Mol Nutr Food Res 2016; 60:1804-18. [PMID: 27061349 DOI: 10.1002/mnfr.201500966] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/10/2022]
Abstract
Cardiolipin is a specialized phospholipid found primarily in the inner mitochondrial membrane. Because of its unique dimeric structure, cardiolipin plays an important role in mitochondrial function, stability, and membrane fluidity. As such, cardiolipin is subject to a high degree of remodeling by phospholipases, acyltransferases, and transacylases that create a fatty acyl profile that tends to be highly tissue-specific. Despite this overarching regulation, the molecular species of cardiolipin produced are also influenced by dietary lipid composition. A number of studies have characterized the tissue-specific profile of cardiolipin species and have investigated the specific nature of cardiolipin remodeling, including the role of both enzymes and diet. The aim of this review is to highlight tissue specific differences in cardiolipin composition and, collectively, the enzymatic and dietary factors that contribute to these differences. Consequences of aberrant cardiolipin fatty acyl remodeling are also discussed.
Collapse
Affiliation(s)
- Ryan M Bradley
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Ken D Stark
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Robin E Duncan
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
38
|
Zhou Y, Peisker H, Dörmann P. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry. J Lipid Res 2016; 57:1308-21. [PMID: 27179363 DOI: 10.1194/jlr.d068429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/20/2022] Open
Abstract
Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined.
Collapse
Affiliation(s)
- Yonghong Zhou
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
39
|
Matsuzaki W, Takahashi H, Nakamura H, Murayama T. Effects of Glycerophospholipids on Ceramide Kinase Activity: Cardiolipin-Affected Cellular Formation of Ceramide-1-phosphate. Biol Pharm Bull 2016; 39:1708-1717. [DOI: 10.1248/bpb.b16-00535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wataru Matsuzaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiromasa Takahashi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
40
|
Nakahira K, Hisata S, Choi AMK. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal 2015; 23:1329-50. [PMID: 26067258 PMCID: PMC4685486 DOI: 10.1089/ars.2015.6407] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria, vital cellular power plants to generate energy, are involved in immune responses. Mitochondrial damage-associated molecular patterns (DAMPs) are molecules that are released from mitochondria to extracellular space during cell death and include not only proteins but also DNA or lipids. Mitochondrial DAMPs induce inflammatory responses and are critically involved in the pathogenesis of various diseases. RECENT ADVANCES Recent studies elucidate the molecular mechanisms by which mitochondrial DAMPs are released and initiate immune responses by use of genetically modulated cells or animals. Importantly, the levels of mitochondrial DAMPs in patients are often associated with severity and prognosis of human diseases, such as infection, asthma, ischemic heart disease, and cancer. CRITICAL ISSUES Although mitochondrial DAMPs can represent proinflammatory molecules in various experimental models, their roles in human diseases may be multifunctional and complex. It remains unclear where and how mitochondrial DAMPs are liberated into extracellular spaces and exert their biological functions particularly in vivo. In addition, while mitochondria can secrete several types of DAMPs during cell death, the interaction of each mitochondrial DAMP (e.g., synergistic effects) remains unclear. FUTURE DIRECTIONS Regulation of mitochondrial DAMP-mediated immune responses may be important to alter the progression of human diseases. In addition, measuring mitochondrial DAMPs in patients may be clinically useful as biomarkers to predict prognosis or response to therapies. Further studies of the mechanisms by which mitochondrial DAMPs impact the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway. Antioxid.
Collapse
Affiliation(s)
- Kiichi Nakahira
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Shu Hisata
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| | - Augustine M K Choi
- 1 Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital , New York, New York.,2 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
41
|
Zou C, Synan MJ, Li J, Xiong S, Manni ML, Liu Y, Chen BB, Zhao Y, Shiva S, Tyurina YY, Jiang J, Lee JS, Das S, Ray A, Ray P, Kagan VE, Mallampalli RK. LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1. J Cell Sci 2015; 129:51-64. [PMID: 26604221 DOI: 10.1242/jcs.176701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
Cardiolipin (also known as PDL6) is an indispensable lipid required for mitochondrial respiration that is generated through de novo synthesis and remodeling. Here, the cardiolipin remodeling enzyme, acyl-CoA:lysocardiolipin-acyltransferase-1 (Alcat1; SwissProt ID, Q6UWP7) is destabilized in epithelia by lipopolysaccharide (LPS) impairing mitochondrial function. Exposure to LPS selectively decreased levels of carbon 20 (C20)-containing cardiolipin molecular species, whereas the content of C18 or C16 species was not significantly altered, consistent with decreased levels of Alcat1. Alcat1 is a labile protein that is lysosomally degraded by the ubiquitin E3 ligase Skp-Cullin-F-box containing the Fbxo28 subunit (SCF-Fbxo28) that targets Alcat1 for monoubiquitylation at residue K183. Interestingly, K183 is also an acetylation-acceptor site, and acetylation conferred stability to the enzyme. Histone deacetylase 2 (HDAC2) interacted with Alcat1, and expression of a plasmid encoding HDAC2 or treatment of cells with LPS deacetylated and destabilized Alcat1, whereas treatment of cells with a pan-HDAC inhibitor increased Alcat1 levels. Alcat1 degradation was partially abrogated in LPS-treated cells that had been silenced for HDAC2 or treated with MLN4924, an inhibitor of Cullin-RING E3 ubiquitin ligases. Thus, LPS increases HDAC2-mediated Alcat1 deacetylation and facilitates SCF-Fbxo28-mediated disposal of Alcat1, thus impairing mitochondrial integrity.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew J Synan
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jin Li
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Michelle L Manni
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianfei Jiang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Janet S Lee
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sudipta Das
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anuradha Ray
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Prabir Ray
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Valerian E Kagan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Cell Biology and Physiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
42
|
Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, Coosemans A, Coulie PG, De Ruysscher D, Dini L, de Witte P, Dudek-Peric AM, Faggioni A, Fucikova J, Gaipl US, Golab J, Gougeon ML, Hamblin MR, Hemminki A, Herrmann M, Hodge JW, Kepp O, Kroemer G, Krysko DV, Land WG, Madeo F, Manfredi AA, Mattarollo SR, Maueroder C, Merendino N, Multhoff G, Pabst T, Ricci JE, Riganti C, Romano E, Rufo N, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Vacchelli E, Vandenabeele P, Vandenberk L, Van den Eynde BJ, Van Gool S, Velotti F, Zitvogel L, Agostinis P. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Front Immunol 2015; 6:588. [PMID: 26635802 PMCID: PMC4653610 DOI: 10.3389/fimmu.2015.00588] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Lorenzo Galluzzi
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Lionel Apetoh
- U866, INSERM , Dijon , France ; Faculté de Médecine, Université de Bourgogne , Dijon , France ; Centre Georges François Leclerc , Dijon , France
| | - Thais Baert
- Department of Gynaecology and Obstetrics, UZ Leuven , Leuven , Belgium ; Laboratory of Gynaecologic Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven , Leuven , Belgium
| | - Raymond B Birge
- Department of Microbiology, Biochemistry, and Molecular Genetics, University Hospital Cancer Center, Rutgers Cancer Institute of New Jersey, New Jersey Medical School , Newark, NJ , USA
| | - José Manuel Bravo-San Pedro
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel , Jette , Belgium
| | - David Brough
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Ricardo Chaurio
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome , Rome , Italy
| | - An Coosemans
- Department of Gynaecology and Obstetrics, UZ Leuven , Leuven , Belgium ; Laboratory of Gynaecologic Oncology, Department of Oncology, Leuven Cancer Institute, KU Leuven , Leuven , Belgium
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology, University Hospitals Leuven, KU Leuven - University of Leuven , Leuven , Belgium
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology, University of Salento , Salento , Italy
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven , Leuven , Belgium
| | - Aleksandra M Dudek-Peric
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | | | - Jitka Fucikova
- SOTIO , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen , Erlangen , Germany
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw , Warsaw , Poland
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital , Boston, MA , USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Transplantation Laboratory, Haartman Institute, University of Helsinki , Helsinki , Finland ; Helsinki University Hospital Comprehensive Cancer Center , Helsinki , Finland ; TILT Biotherapeutics Ltd. , Helsinki , Finland
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - James W Hodge
- Recombinant Vaccine Group, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Oliver Kepp
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute , Villejuif , France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP , Paris , France ; Department of Women's and Children's Health, Karolinska University Hospital , Stockholm , Sweden
| | - Dmitri V Krysko
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB , Ghent , Belgium ; Department of Biomedical Molecular Biology, Ghent University , Ghent , Belgium
| | - Walter G Land
- Molecular ImmunoRheumatology, INSERM UMRS1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria
| | - Angelo A Manfredi
- IRRCS Istituto Scientifico San Raffaele, Università Vita-Salute San Raffaele , Milan , Italy
| | - Stephen R Mattarollo
- Translational Research Institute, University of Queensland Diamantina Institute, University of Queensland , Wooloongabba, QLD , Australia
| | - Christian Maueroder
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nurnberg , Erlangen , Germany
| | - Nicolò Merendino
- Laboratory of Cellular and Molecular Nutrition, Department of Ecological and Biological Sciences, Tuscia University , Viterbo , Italy
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München , Munich , Germany
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital , Bern , Switzerland
| | - Jean-Ehrland Ricci
- INSERM, U1065, Université de Nice-Sophia-Antipolis, Centre Méditerranéen de Médecine Moléculaire (C3M), Équipe "Contrôle Métabolique des Morts Cellulaires" , Nice , France
| | - Chiara Riganti
- Department of Oncology, University of Turin , Turin , Italy
| | - Erminia Romano
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Nicole Rufo
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Insitute , Herston, QLD , Australia ; School of Medicine, University of Queensland , Herston, QLD , Australia
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, Children's Clinic, Jena University Hospital , Jena , Germany
| | - Radek Spisek
- SOTIO , Prague , Czech Republic ; Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University , Prague , Czech Republic
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Institut du Cancer de Montréal, Faculté de Pharmacie, Université de Montréal , Montreal, QC , Canada
| | - Erika Vacchelli
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers , Paris , France ; U1138, INSERM , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Université Pierre et Marie Curie , Paris , France ; Gustave Roussy Comprehensive Cancer Institute , Villejuif , France
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, VIB , Ghent , Belgium ; Department of Biomedical Molecular Biology, Ghent University , Ghent , Belgium
| | - Lien Vandenberk
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven - University of Leuven , Leuven , Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Stefaan Van Gool
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven - University of Leuven , Leuven , Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences, Tuscia University , Viterbo , Italy
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute , Villejuif , France ; University of Paris Sud , Le Kremlin-Bicêtre , France ; U1015, INSERM , Villejuif , France ; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507 , Villejuif , France
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Department of Cellular Molecular Medicine, KU Leuven - University of Leuven , Leuven , Belgium
| |
Collapse
|
43
|
Mitochondrial ROS Induces Cardiac Inflammation via a Pathway through mtDNA Damage in a Pneumonia-Related Sepsis Model. PLoS One 2015; 10:e0139416. [PMID: 26448624 PMCID: PMC4598156 DOI: 10.1371/journal.pone.0139416] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022] Open
Abstract
We have previously shown that mitochondria-targeted vitamin E (Mito-Vit-E), a mtROS specific antioxidant, improves cardiac performance and attenuates inflammation in a pneumonia-related sepsis model. In this study, we applied the same approaches to decipher the signaling pathway(s) of mtROS-dependent cardiac inflammation after sepsis. Sepsis was induced in Sprague Dawley rats by intratracheal injection of S. pneumoniae. Mito-Vit-E, vitamin E or vehicle was administered 30 minutes later. In myocardium 24 hours post-inoculation, Mito-Vit-E, but not vitamin E, significantly protected mtDNA integrity and decreased mtDNA damage. Mito-Vit-E alleviated sepsis-induced reduction in mitochondria-localized DNA repair enzymes including DNA polymerase γ, AP endonuclease, 8-oxoguanine glycosylase, and uracil-DNA glycosylase. Mito-Vit-E dramatically improved metabolism and membrane integrity in mitochondria, suppressed leakage of mtDNA into the cytoplasm, inhibited up-regulation of Toll-like receptor 9 (TLR9) pathway factors MYD88 and RAGE, and limited RAGE interaction with its ligand TFAM in septic hearts. Mito-Vit-E also deactivated NF-κB and caspase 1, reduced expression of the essential inflammasome component ASC, and decreased inflammatory cytokine IL–1β. In vitro, both Mito-Vit-E and TLR9 inhibitor OND-I suppressed LPS-induced up-regulation in MYD88, RAGE, ASC, active caspase 1, and IL–1β in cardiomyocytes. Since free mtDNA escaped from damaged mitochondria function as a type of DAMPs to stimulate inflammation through TLR9, these data together suggest that sepsis-induced cardiac inflammation is mediated, at least partially, through mtDNA-TLR9-RAGE. At last, Mito-Vit-E reduced the circulation of myocardial injury marker troponin-I, diminished apoptosis and amended morphology in septic hearts, suggesting that mitochondria-targeted antioxidants are a potential cardioprotective approach for sepsis.
Collapse
|
44
|
Fujita Y, Fujiwara K, Zenitani S, Yamashita T. Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival. PLoS One 2015; 10:e0139616. [PMID: 26426123 PMCID: PMC4591271 DOI: 10.1371/journal.pone.0139616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of γ-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Kei Fujiwara
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Shigetake Zenitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
45
|
Altered Traffic of Cardiolipin during Apoptosis: Exposure on the Cell Surface as a Trigger for "Antiphospholipid Antibodies". J Immunol Res 2015; 2015:847985. [PMID: 26491702 PMCID: PMC4603604 DOI: 10.1155/2015/847985] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/06/2015] [Indexed: 02/07/2023] Open
Abstract
Apoptosis has been reported to induce changes in the remodelling of membrane lipids; after death receptor engagement, specific changes of lipid composition occur not only at the plasma membrane, but also in intracellular membranes. This paper focuses on one important aspect of apoptotic changes in cellular lipids, namely, the redistribution of the mitochondria-specific phospholipid, cardiolipin (CL). CL predominantly resides in the inner mitochondrial membrane, even if the rapid remodelling of its acyl chains and the subsequent degradation occur in other membrane organelles. After death receptor stimulation, CL appears to concentrate into mitochondrial “raft-like” microdomains at contact sites between inner and outer mitochondrial membranes, leading to local oligomerization of proapoptotic proteins, including Bid. Clustering of Bid in CL-enriched contacts sites is interconnected with pathways of CL remodelling that intersect membrane traffic routes dependent upon actin. In addition, CL association with cytoskeleton protein vimentin was observed. Such novel association also indicated that CL molecules may be expressed at the cell surface following apoptotic stimuli. This observation adds a novel implication of biomedical relevance. The association of CL with vimentin at the cell surface may represent a “new” target antigen in the context of the apoptotic origin of anti-vimentin/CL autoantibodies in Antiphospholipid Syndrome.
Collapse
|
46
|
Balasubramanian K, Maeda A, Lee JS, Mohammadyani D, Dar HH, Jiang JF, St Croix CM, Watkins S, Tyurin VA, Tyurina YY, Klöditz K, Polimova A, Kapralova VI, Xiong Z, Ray P, Klein-Seetharaman J, Mallampalli RK, Bayir H, Fadeel B, Kagan VE. Dichotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phagocytosis and attenuation of innate immunity. Sci Signal 2015; 8:ra95. [PMID: 26396268 PMCID: PMC4760701 DOI: 10.1126/scisignal.aaa6179] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among the distinct molecular signatures present in the mitochondrion is the tetra-acylated anionic phospholipid cardiolipin, a lipid also present in primordial, single-cell bacterial ancestors of mitochondria and multiple bacterial species today. Cardiolipin is normally localized to the inner mitochondrial membrane; however, when cardiolipin becomes externalized to the surface of dysregulated mitochondria, it promotes inflammasome activation and stimulates the elimination of damaged or nonfunctional mitochondria by mitophagy. Given the immunogenicity of mitochondrial and bacterial membranes that are released during sterile and pathogen-induced trauma, we hypothesized that cardiolipins might function as "eat me" signals for professional phagocytes. In experiments with macrophage cell lines and primary macrophages, we found that membranes with mitochondrial or bacterial cardiolipins on their surface were engulfed through phagocytosis, which depended on the scavenger receptor CD36. Distinct from this process, the copresentation of cardiolipin with the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide dampened TLR4-stimulated production of cytokines. These data suggest that externalized, extracellular cardiolipins play a dual role in host-host and host-pathogen interactions by promoting phagocytosis and attenuating inflammatory immune responses.
Collapse
Affiliation(s)
- Krishnakumar Balasubramanian
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Akihiro Maeda
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Janet S Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dariush Mohammadyani
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Haider Hussain Dar
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jian Fei Jiang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Katharina Klöditz
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Anastassia Polimova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valentyna I Kapralova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Zeyu Xiong
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Rama K Mallampalli
- Department of Internal Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA. Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15215, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA. Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden.
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
47
|
Li XX, Tsoi B, Li YF, Kurihara H, He RR. Cardiolipin and its different properties in mitophagy and apoptosis. J Histochem Cytochem 2015; 63:301-11. [PMID: 25673287 DOI: 10.1369/0022155415574818] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiolipin (CL) is a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane (IMM) in eukaryotic cells. Two chiral carbons and four fatty acyl chains in CL result in a flexible body allowing interactions with respiratory chain complexes and mitochondrial substrate carriers. Due to its high content of unsaturated fatty acids, CL is particularly prone to reactive oxygen species (ROS)-induced oxidative attacks. Under mild mitochondrial damage, CL is redistributed to the outer mitochondrial membrane (OMM) and serves as a recognition signal for dysfunctional mitochondria, which are rapidly sequestered by autophagosomes. However, peroxidation of CL is far greater in response to severe stress than under normal or mild-damage conditions. The accumulation of oxidized CL on the OMM results in recruitment of Bax and formation of the mitochondrial permeability transition pore (MPTP), which releases Cytochrome c (Cyt c) from mitochondria. Over the past decade, the significance of CL in the function of mitochondrial bioenergy has been explored. Moreover, approaches to analyzing CL have become more effective and accurate. In this review, we discuss the unique structural features of CL as well as the current understanding of CL-based molecular mechanisms of mitophagy and apoptosis.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| | - Bun Tsoi
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| | - Yi-Fang Li
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| | - Hiroshi Kurihara
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| | - Rong-Rong He
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| |
Collapse
|
48
|
Yamamoto K, Miyazaki K, Higashi S. Pericellular proteolysis by matrix metalloproteinase-7 is differentially modulated by cholesterol sulfate, sulfatide, and cardiolipin. FEBS J 2014; 281:3346-56. [PMID: 24903600 DOI: 10.1111/febs.12865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinase (MMP)-7 binds to cell surface cholesterol sulfate (CS) and acts as a membrane-associated protease. We have previously found that CS modulates the substrate preference of MMP-7, thereby regulating its pericellular proteolytic action. MMP-7 potentially associates with the cell surface via sulfatide (SM4) and cardiolipin (CL) when they are overexpressed on the cell surface. Here, we investigated the molecular interaction between these acidic lipids and MMP-7 or its substrates, and their effects on the activity of MMP-7. Studies using MMP-7 variants with low CS-binding ability suggested that these lipids interact with a similar site on MMP-7. The hydroxamate-based MMP inhibitor TAPI-1 markedly reduced the affinity of MMP-7 for CS and CL, whereas that for SM4 was not affected by TAPI-1. These three acidic lipids also had different effects on the hydrolytic activity of MMP-7 towards a small peptide substrate: SM4, CL and CS reduced the activity to 80%, 92%, and 20%, respectively. Nevertheless, SM4 and CS similarly accelerated the MMP-7-catalyzed degradation of fibronectin and laminin-332, whereas CL did not. The increased proteolysis of substrate was observed only when both substrate and enzyme had affinity for the lipid, suggesting that the lipids probably bring the reactants into closer proximity. Furthermore, MMP-7 bound to cell surface SM4 or CS cleaved specific cell surface proteins and released similar fragments, whereas the cleavage was not stimulated by cell surface CL-bound MMP-7. This study provides a novel mechanism by which acidic lipids differentially regulate pericellular proteolysis by MMP-7 through allosteric alteration of the substrate-binding site and their inherent affinities for MMP-7 substrates.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Graduate School of Nanobioscience, Yokohama City University, Japan; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, UK
| | | | | |
Collapse
|
49
|
Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci U S A 2014; 111:10450-5. [PMID: 24994904 DOI: 10.1073/pnas.1409778111] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Overexpression of the v-myc avian myelocytomatosis viral oncogene homolog (MYC) oncogene is one of the most commonly implicated causes of human tumorigenesis. MYC is known to regulate many aspects of cellular biology including glucose and glutamine metabolism. Little is known about the relationship between MYC and the appearance and disappearance of specific lipid species. We use desorption electrospray ionization mass spectrometry imaging (DESI-MSI), statistical analysis, and conditional transgenic animal models and cell samples to investigate changes in lipid profiles in MYC-induced lymphoma. We have detected a lipid signature distinct from that observed in normal tissue and in rat sarcoma-induced lymphoma cells. We found 104 distinct molecular ions that have an altered abundance in MYC lymphoma compared with normal control tissue by statistical analysis with a false discovery rate of less than 5%. Of these, 86 molecular ions were specifically identified as complex phospholipids. To evaluate whether the lipid signature could also be observed in human tissue, we examined 15 human lymphoma samples with varying expression levels of MYC oncoprotein. Distinct lipid profiles in lymphomas with high and low MYC expression were observed, including many of the lipid species identified as significant for MYC-induced animal lymphoma tissue. Our results suggest a relationship between the appearance of specific lipid species and the overexpression of MYC in lymphomas.
Collapse
|
50
|
Ortona E, Maselli A, Delunardo F, Colasanti T, Giovannetti A, Pierdominici M. Relationship between redox status and cell fate in immunity and autoimmunity. Antioxid Redox Signal 2014; 21:103-22. [PMID: 24359147 DOI: 10.1089/ars.2013.5752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The signaling function of redox molecules is essential for an efficient and proper execution of a large number of cellular processes, contributing to the maintenance of cell homeostasis. Excessive oxidative stress is considered as playing an important role in the pathogenesis of autoimmune diseases by enhancing inflammation and breaking down the immunological tolerance through protein structural modifications that induce the appearance of neo/cryptic epitopes. RECENT ADVANCES There is a complex reciprocal relationship between oxidative stress and both apoptosis and autophagy, which is essential to determine cell fate. This is especially relevant in the context of autoimmune disorders in which apoptosis and autophagy play a crucial pathogenic role. CRITICAL ISSUES In this review, we describe the latest developments with regard to the involvement of redox molecules in the initiation and progression of autoimmune disorders, focusing on their role in cell fate regulation. We also discuss new therapeutic approaches that target oxidative stress in the treatment of these disorders. The administration of antioxidants is scarcely studied in autoimmunity, and future analyses are needed to assess its beneficial effects in preventing or ameliorating these diseases. FUTURE DIRECTIONS Deciphering the intricate relationships between oxidative stress and both apoptosis and autophagy in the context of autoimmunity could be critical in elucidating key pathogenic mechanisms and could lead to novel interventions for the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Elena Ortona
- 1 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | |
Collapse
|