1
|
Sagara Y, Nakamura H, Sagara Y, Shitsuta E, Uchimaru K, Yamano Y, Watanabe T, Miura K, Matsuzaki K. Plasma vitamin D levels are correlated with the pathogenesis of human T-cell leukemia virus type 1-associated diseases. J Med Virol 2024; 96:e29898. [PMID: 39221490 DOI: 10.1002/jmv.29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The active form of vitamin D (VD) exerts hormonal effects by regulating the expression of genes involved in T-cell activity, cell differentiation, and proliferation. Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of life-threatening diseases, adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy (HAM). Among ATL patients, hypercalcemia is one of the most serious complications due to bone resorption. In this study, wild-type mice administered UV-irradiated HTLV-1-infected cells showed up to 47% decrease of plasma VD level compared with untreated mice. To clarify the effect of HTLV-1 on plasma VD level, 315 samples registered in nationwide cohort study on ATL onset were measured. The VD level in HAM (14.98 ± 8.5 ng/mL) was significantly lower than those in asymptomatic carriers and ATL (p < 0.05). Upon comparing the VD levels in ATL stratified by disease subtypes, acute ATL showed a lower level (15.81 ± 12.0 ng/mL) than chronic and smoldering types (p < 0.05). In the longitudinal observation, VD levels were significantly higher in untreated spontaneous remission cases than in ATL progression cases, in which the VD levels decreased approximately 40% after onset. In cases of relapse after transplantation, the plasma VD level dropped to 38.7% of the pre-relapse level, while in cases of complete remission, the VD level increased with improvement of the performance status. Taken together, these results suggest that plasma VD level is a potential indicator for the onset and relapse of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Yasuko Sagara
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Hitomi Nakamura
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Yasuhiro Sagara
- Faculty of Education, Nakamura-Gakuen University, Fukuoka, Japan
| | - Etsuko Shitsuta
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiki Watanabe
- Department of Hematology & Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Matsuzaki
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| |
Collapse
|
2
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Luo N, Mei Z, Zhang Q, Tang H, Wan R, Deng A, Zou X, Lv C. TMX family genes and their association with prognosis, immune infiltration, and chemotherapy in human pan-cancer. Aging (Albany NY) 2023; 15:15064-15083. [PMID: 38147024 PMCID: PMC10781458 DOI: 10.18632/aging.205332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/10/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The thioredoxin (TMX) system, an important redox system, plays crucial roles in several immune-related diseases. However, there is limited research on the correlation of TMX family gene expression with human pan-cancer prognosis, tumor microenvironment (TME), and immunotherapy. METHODS Based on the integration of several bioinformatics analysis methods, we explored the expression levels and prognostic value of TMX family members in pan-cancer and analyzed their association between TME, immune infiltration, stemness scores, and drug sensitivity. Using KEGG enrichment analysis, we explored the potential signaling pathways of their regulation. Additionally, we conducted a transwell assay to verify the relationship between TMX family gene expression and epithelial-mesenchymal transition (EMT) in liver cancer. RESULTS Expression of the TMX family genes was shown to have an obvious intratumoral heterogeneity. In some cancers, TMX family members expression was also been found to correlate with poor prognosis of patients. Furthermore, TMX family genes may serve important roles in TME. The expression of TMX family genes was found to have a strong correlation with the stromal scores, immune scores, DNAss and RNAss in pan-cancer. Specifically, the expression levels of TMX family genes have been found to be associated with immune subtypes of renal clear cell carcinoma and liver hepatocellular carcinoma. High TMX2 expression promote EMT in liver cancer. CONCLUSIONS The findings of this study may elucidate the biological roles of TMX family genes as potential targets for pan-cancer and also offer valuable insights for further investigating how these genes function in the development and spreading of cancer.
Collapse
Affiliation(s)
- Na Luo
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qiqi Zhang
- Degree Office, The Graduate School of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hong Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Anni Deng
- Department of Pediatrics, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaopan Zou
- Breast and Thyroid Surgery, Renmin Hospital, Jilin University, Changchun 130024, Jilin, China
| | - Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
4
|
Luo Y, Chatre L, Melhem S, Al-Dahmani ZM, Homer NZM, Miedema A, Deelman LE, Groves MR, Feelisch M, Morton NM, Dolga A, van Goor H. Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain. Redox Biol 2023; 68:102965. [PMID: 38000344 PMCID: PMC10701433 DOI: 10.1016/j.redox.2023.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1) was discovered as an enzyme that detoxifies cyanide by conversion to thiocyanate (rhodanide) using thiosulfate as substrate; this rhodanese activity was subsequently identified to be almost exclusively located in mitochondria. More recently, the emphasis regarding its function has shifted to hydrogen sulfide metabolism, antioxidant defense, and mitochondrial function in the context of protective biological processes against oxidative distress. While TST has been described to play an important role in liver and colon, its function in the brain remains obscure. In the present study, we therefore sought to address its potential involvement in maintaining cerebral redox balance in a murine model of global TST deficiency (Tst-/- mice), primarily focusing on characterizing the biochemical phenotype of TST loss in relation to neuronal activity and sensitivity to oxidative stress under basal conditions. Here, we show that TST deficiency is associated with a perturbation of the reactive species interactome in the brain cortex secondary to altered ROS and RSS (specifically, polysulfide) generation as well as mitochondrial OXPHOS remodeling. These changes were accompanied by aberrant Nrf2-Keap1 expression and thiol-dependent antioxidant function. Upon challenging mice with the redox-active herbicide paraquat (25 mg/kg i.p. for 24 h), Tst-/- mice displayed a lower antioxidant capacity compared to wildtype controls (C57BL/6J mice). These results provide a first glimpse into the molecular and metabolic changes of TST deficiency in the brain and suggest that pathophysiological conditions associated with aberrant TST expression and/or activity renders neurons more susceptible to oxidative stress-related malfunction.
Collapse
Affiliation(s)
- Yang Luo
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands; University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Laurent Chatre
- Université de Caen Normandie, CNRS, Normandie University, ISTCT UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Shaden Melhem
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Zayana M Al-Dahmani
- University of Groningen, Department of Pharmacy, Drug Design, Groningen, the Netherlands
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburghh, United Kingdom
| | - Anneke Miedema
- University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Leo E Deelman
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Matthew R Groves
- University of Groningen, Department of Pharmacy, Drug Design, Groningen, the Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Amalia Dolga
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
| | - Harry van Goor
- University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands.
| |
Collapse
|
5
|
Lin M, Bao C, Chen L, Geng S, Wang H, Xiao Z, Gong T, Ji C, Cheng B. Tremella fuciformis polysaccharides alleviates UV-provoked skin cell damage via regulation of thioredoxin interacting protein and thioredoxin reductase 2. Photochem Photobiol Sci 2023; 22:2285-2296. [PMID: 37458972 DOI: 10.1007/s43630-023-00450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/11/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Skin is exposed to a wide range of environmental risk factors including ultraviolet (UV) and all kinds of pollutants. Excessive UV exposure contributes to many disorders, such as photoaging, skin inflammation, and carcinogenesis. Previous studies have shown that Tremella fuciformis polysaccharides (TFPS) have protective effects on oxidative stress in cells, but the specific protective mechanism has not been clarified. METHODS To determine the effects of TFPS on UV-irritated human skin, we conducted a variety of studies, including Cell Counting Kit-8 (CCK-8), trypan blue, Western blot, apoptosis assays, reactive oxygen species (ROS) detection in primary skin keratinocytes, and chronic UV-irradiated mouse model. RESULTS We first determined that TFPS protects human skin keratinocytes against UV radiation-induced apoptosis and ROS production. Moreover, TFPS regulates thioredoxin interacting protein (TXNIP) and thioredoxin reductase 2 (TXNRD2) levels in primary skin keratinocytes for photoprotection. Last, we found that topical TFPS treatment could alleviate the UV-induced skin damage in chronic UV-irradiated mouse model. CONCLUSION Collectively, our work indicates the beneficial role of TFPS in UV-induced skin cell damage and provides a novel therapeutic reagent to prevent or alleviate the progress of photoaging and other UV-provoked skin diseases.
Collapse
Affiliation(s)
- Mengting Lin
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Chengbei Bao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Lihong Chen
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Shiling Geng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Haiqing Wang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Zhixun Xiao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Ting Gong
- Central Laboratory, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China.
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
| | - Bo Cheng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China.
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
6
|
Choi EH, Park SJ. TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target. Exp Mol Med 2023; 55:1348-1356. [PMID: 37394581 PMCID: PMC10393958 DOI: 10.1038/s12276-023-01019-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 07/04/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP), which is also known as thioredoxin-binding protein 2 (TBP2), directly interacts with the major antioxidant protein thioredoxin (TRX) and inhibits its antioxidant function and expression. However, recent studies have demonstrated that TXNIP is a multifunctional protein with functions beyond increasing intracellular oxidative stress. TXNIP activates endoplasmic reticulum (ER) stress-mediated nucleotide-binding oligomerization domain (NOD)-like receptor protein-3 (NLRP3) inflammasome complex formation, triggers mitochondrial stress-induced apoptosis, and stimulates inflammatory cell death (pyroptosis). These newly discovered functions of TXNIP highlight its role in disease development, especially in response to several cellular stress factors. In this review, we provide an overview of the multiple functions of TXNIP in pathological conditions and summarize its involvement in various diseases, such as diabetes, chronic kidney disease, and neurodegenerative diseases. We also discuss the potential of TXNIP as a therapeutic target and TXNIP inhibitors as novel therapeutic drugs for treating these diseases.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Sun-Ji Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea.
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Glutathione reductase system changes in HTLV-1 infected patients. Virusdisease 2022; 33:32-38. [PMID: 35493755 PMCID: PMC9005565 DOI: 10.1007/s13337-022-00758-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/28/2022] [Indexed: 10/18/2022] Open
Abstract
During chronic HTLV-1 infections oxidative stress occurs and contributes in viral pathogenesis. Glutaredoxin (Grx) system is one of the most effective antioxidant components. The system maintains the cellular redox and scavenges reactive oxygen species through the function of glutathione reductase (GR) enzyme, NADPH and reduced glutathione (GSH). This study was performed to investigate potential changes in GR gene expression and activity as well as GSH level, and their association with the viral load in HTLV-1 infection. Forty HTLV-1 seropositive patients divided into two groups: asymptomatic carriers (N = 20) and HAM/TSP (N = 20) with the same number of age and sex-matched healthy controls were recruited in this study. GR cellular gene expression and viral load in PBMCs were determined using Real-time PCR Technique. Enzyme activity and GSH level in sera were measured by commercial kits based on manufacturer's provided protocols. GR gene expression and GR enzyme activity, as well as GSH level, were significantly lower in HTLV-1 patients. A negative correlation between viral load and GR gene expression/enzyme activity was observed in HAM/TSP group. Similarly, a negative relationship between viral load and GSH levels was observed in both carrier and HAM/TSP groups. We also found that in profound complicated condition of HTLV-1 infection, HAM/TSP, Grx system components activity was significantly decreased compared to the controls. Such observation was not the case in clinically healthy HTLV-1 carriers. These findings may shed a light on the conditions contributing in pathogenesis of the complications and exacerbation of the disease in the HAM/TSP cases. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-022-00758-y.
Collapse
|
8
|
Thioredoxin reductase as a pharmacological target. Pharmacol Res 2021; 174:105854. [PMID: 34455077 DOI: 10.1016/j.phrs.2021.105854] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Thioredoxin reductases (TrxRs) belong to the pyridine nucleotide disulfide oxidoreductase family enzymes that reduce thioredoxin (Trx). The couple TrxR and Trx is one of the major antioxidant systems that control the redox homeostasis in cells. The thioredoxin system, comprised of TrxR, Trx and NADPH, exerts its activities via a disulfide-dithiol exchange reaction. Inhibition of TrxR is an important clinical goal in all conditions in which the redox state is perturbed. The present review focuses on the most critical aspects of the cellular functions of TrxRs and their inhibition mechanisms by metal ions or chemicals, through direct targeting of TrxRs or their substrates or protein interactors. To update the involvement of overactivation/dysfunction of TrxRs in various pathological conditions, human diseases associated with TrxRs genes were critically summarized by publicly available genome-wide association study (GWAS) catalogs and literature. The pieces of evidence presented here justify why TrxR is recognized as one of the most critical clinical targets and the growing current interest in developing molecules capable of interfering with the functions of TrxR enzymes.
Collapse
|
9
|
Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020289. [PMID: 33671960 PMCID: PMC7919053 DOI: 10.3390/antiox10020289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and polycarbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestradiol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.
Collapse
|
10
|
Large yellow croaker peroxiredoxin IV protect cells against oxidative damage and apoptosis. Mol Immunol 2020; 127:150-156. [PMID: 32971402 DOI: 10.1016/j.molimm.2020.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/23/2022]
Abstract
Oxidative stress and inflammation lead to cell damage and are implicated in many disease states. High concentrations of hydrogen peroxide (H2O2) may mediate cells apoptosis by increasing intracellular reactive oxygen species (ROS) levels. In this study, we established a LYCK-PrxIV cell line (large yellow croaker head kidney cell line stably expressing peroxiredoxin IV). The level of nitric oxide (NO), superoxide anion and hydrogen peroxide (H2O2) in this LYCK-PrxIV cells were significantly lower than those in control cells of LYCK-pcDNA3.1 (LYCK cell line stably transfected by pcDNA3.1 vector). Additionally, when exposed to H2O2, cell apoptosis was significantly alleviated in LYCK-PrxIV than in control cells. Meanwhile, the ROS level and ATP content were maintained more stable in LYCK-PrxIV than in LYCK-pcDNA3.1. The over-expression of LcPrxIV in LYCK-PrxIV cells induced a declined mRNA expression of LcCXC, LcCC, LcIL-8 and LcTNF-α2, as well as an increase of LcIL-10 mRNA expression, when compared to LYCK-pcDNA3.1. On the other hand, the expression of chemokine LcCXC, LcCC and LcTNF-a2 increased in LYCK-pcDNA3.1 after H2O2 stimulation, while that of LcIL-8 and LcIL-10 decreased. The regualtion of gene expression in LYCK-PrxIV cells was almost the same as that in LYCK-pcDNA3.1, but the change fold was much more moderate. These results suggest that LcPrxIV may be an indispensable ROS scavenger protecting LYCK cells against oxidative damage as well as the subsequent apoptosis and inflammatory response, which provides a clue that LcPrxIV may be an assist in fish immune response.
Collapse
|
11
|
Ren X, Sun L, Wei L, Liu J, Zhu J, Yu Q, Kong H, Kong L. Liraglutide Up-regulation Thioredoxin Attenuated Müller Cells Apoptosis in High Glucose by Regulating Oxidative Stress and Endoplasmic Reticulum Stress. Curr Eye Res 2020; 45:1283-1291. [PMID: 32180468 DOI: 10.1080/02713683.2020.1737137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: Diabetic retinopathy (DR) has become one of the most important complications of diabetes which is the leading cause of vision impairment and blindness all over the world. Increasing evidence shows that reactive gliosis are basic pathological features of early DR. The study was aimed to explore the protective effect and mechanism of Liraglutide (LIRA) which has similar properties to Glucagon-like peptide-1 (GLP-1) on Müller cell damage induced by diabetes. Materials and methods: In vitro, the Müller cell was cultured in high glucose (HG) to establish the model of diabetic retinopathy. The apoptosis was detected using flow cytometry. Western blot and immunofluorescence were used to detect the expression of related proteins. DCFH-DA probe was used to detect the ROS generation. Results: The data showed that the apoptosis and the expression of GFAP were increased significantly with HG treatment. However, the apoptosis percentage and the expression of GFAP were decreased after LIRA treatment. Moreover, the expression of p-Erk/Nrf2/Trx-signaling pathway proteins was also up-regulated and the generation of ROS was decreased after LIRA treatment which was inhibited after treatment with U0126 (Erk inhibitor). Besides, endoplasmic reticulum stress (ER stress) related proteins were up-regulated after Trx down-regulation by transfection with sh-RNA. Conclusions: LIRA could protect Müller cells from HG-induced damage via activating p-Erk pathway through increasing Trx expression which attenuated oxidative stress and ER stress. Trx could play a key role in the process.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Lingmin Sun
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China.,Department of Anatomy, Jiangsu College of Nursing , Huai'an, Jiangsu Province, China
| | - Limin Wei
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Junli Liu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Jiaxu Zhu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Quanquan Yu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Hui Kong
- Department of Otorhinolaryngology, The Second Hospital of Dalian Medical University , Dalian, Liaoning Province, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| |
Collapse
|
12
|
Fan X, He F, Ding M, Geng C, Chen L, Zou S, Liang Y, Yu J, Dong H. Thioredoxin Reductase Is Involved in Development and Pathogenicity in Fusarium graminearum. Front Microbiol 2019; 10:393. [PMID: 30899249 PMCID: PMC6416177 DOI: 10.3389/fmicb.2019.00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/14/2019] [Indexed: 01/03/2023] Open
Abstract
Fusarium graminearum is one of the causal agents of Fusarium head blight and produces the trichothecene mycotoxin, deoxynivalenol (DON). Thioredoxin reductases (TRRs) play critical roles in the recycling of oxidized thioredoxin. However, their functions are not well known in plant pathogenic fungi. In this study, we characterized a TRR orthologue FgTRR in F. graminearum. The FgTRR-GFP fusion protein localized to the cytoplasm. FgTRR gene deletion demonstrated that FgTRR is involved in hyphal growth, conidiation, sexual reproduction, DON production, and virulence. The ΔTRR mutants also exhibited a defect in pigmentation, the expression level of aurofusarin biosynthesis-related genes was significantly decreased in the FgTRR mutant. Furthermore, the ΔTRR mutants were more sensitive to oxidative stress and aggravated apoptosis-like cell death compared with the wild type strain. Taken together, these results indicate that FgTRR is important in development and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuancun Liang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | | | | |
Collapse
|
13
|
Detienne G, De Haes W, Mergan L, Edwards SL, Temmerman L, Van Bael S. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev 2018; 44:33-48. [PMID: 29580920 DOI: 10.1016/j.arr.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Antioxidants were long predicted to have lifespan-promoting effects, but in general this prediction has not been well supported. While some antioxidants do seem to have a clear effect on longevity, this may not be primarily as a result of their role in the removal of reactive oxygen species, but rather mediated by other mechanisms such as the modulation of intracellular signaling. In this review we discuss peroxiredoxins, a class of proteinaceous antioxidants with redox signaling and chaperone functions, and their involvement in regulating longevity and stress resistance. Peroxiredoxins have a clear role in the regulation of lifespan and survival of many model organisms, including the mouse, Caenorhabditis elegans and Drosophila melanogaster. Recent research on peroxiredoxins - in these models and beyond - has revealed surprising new insights regarding the interplay between peroxiredoxins and longevity signaling, which will be discussed here in detail. As redox signaling is emerging as a potentially important player in the regulation of longevity and aging, increased knowledge of these fascinating antioxidants and their mode(s) of action is paramount.
Collapse
Affiliation(s)
- Giel Detienne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lucas Mergan
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Samantha L Edwards
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Sven Van Bael
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Zaghloul HAH, Hice R, Arensburger P, Federici BA. Transcriptome Analysis of the Spodoptera frugiperda Ascovirus In Vivo Provides Insights into How Its Apoptosis Inhibitors and Caspase Promote Increased Synthesis of Viral Vesicles and Virion Progeny. J Virol 2017; 91:e00874-17. [PMID: 28956762 PMCID: PMC5686725 DOI: 10.1128/jvi.00874-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
Ascoviruses are double-stranded DNA (dsDNA) viruses that attack caterpillars and differ from all other viruses by inducing nuclear lysis followed by cleavage of host cells into numerous anucleate vesicles in which virus replication continues as these grow in the blood. Ascoviruses are also unusual in that most encode a caspase or caspase-like proteins. A robust cell line to study the novel molecular biology of ascovirus replication in vitro is lacking. Therefore, we used strand-specific transcriptome sequencing (RNA-Seq) to study transcription in vivo in third instars of Spodoptera frugiperda infected with the type species, Spodoptera frugiperda ascovirus1a (SfAV-1a), sampling transcripts at different time points after infection. We targeted transcription of two types of SfAV-1a genes; first, 44 core genes that occur in several ascovirus species, and second, 26 genes predicted in silico to have metabolic functions likely involved in synthesizing viral vesicle membranes. Gene cluster analysis showed differences in temporal expression of SfAV-1a genes, enabling their assignment to three temporal classes: early, late, and very late. Inhibitors of apoptosis (IAP-like proteins; ORF016, ORF025, and ORF074) were expressed early, whereas its caspase (ORF073) was expressed very late, which correlated with apoptotic events leading to viral vesicle formation. Expression analysis revealed that a Diedel gene homolog (ORF121), the only known "virokine," was highly expressed, implying that this ascovirus protein helps evade innate host immunity. Lastly, single-nucleotide resolution of RNA-Seq data revealed 15 bicistronic and tricistronic messages along the genome, an unusual occurrence for large dsDNA viruses.IMPORTANCE Unlike all other DNA viruses, ascoviruses code for an executioner caspase, apparently involved in a novel cytopathology in which viral replication induces nuclear lysis followed by cell cleavage, yielding numerous large anucleate viral vesicles that continue to produce virions. Our transcriptome analysis of genome expression in vivo by the Spodoptera frugiperda ascovirus shows that inhibitors of apoptosis are expressed first, enabling viral replication to proceed, after which the SfAV-1a caspase is synthesized, leading to viral vesicle synthesis and subsequent extensive production of progeny virions. Moreover, we detected numerous bicistronic and tricistronic mRNA messages in the ascovirus transcriptome, implying that ascoviruses use other noncanonical translational mechanisms, such as internal ribosome entry sites (IRESs). These results provide the first insights into the molecular biology of a unique coordinated gene expression pattern in which cell architecture is markedly modified, more than in any other known eukaryotic virus, to promote viral reproduction and transmission.
Collapse
Affiliation(s)
- Heba A H Zaghloul
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Robert Hice
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Peter Arensburger
- California State Polytechnic University, Pomona, Department of Biological Sciences, Pomona, California, USA
| | - Brian A Federici
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
15
|
Cheng X, Peuckert C, Wölfl S. Essential role of mitochondrial Stat3 in p38 MAPK mediated apoptosis under oxidative stress. Sci Rep 2017; 7:15388. [PMID: 29133922 PMCID: PMC5684365 DOI: 10.1038/s41598-017-15342-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
Stat3 is an oncogene, frequently associated with malignant transformation. A body of evidence implicates that phospho-Stat3Y705 contributes to its nucleic translocation, while phospho-Stat3S727 leads to the accumulation in mitochondria. Both are of importance for tumor cell proliferation. In comparison to well-characterized signaling pathways interplaying with Stat3Y705, little is known about Stat3S727. In this work, we studied the influence of Stat3 deficiency on the viability of cells exposed to H2O2 or hypoxia using siRNA and CRISPR/Cas9 genome-editing. We found dysregulation of mitochondrial activity, which was associated with excessive ROS formation and reduced mitochondrial membrane potential, and observed a synergistic effect for oxidative stress-mediated apoptosis in Stat3-KD cells or cells carrying Stat3Y705F, but not Stat3S727D, suggesting the importance of functional mitochondrial Stat3 in this context. We also found that ROS-mediated activation of ASK1/p38MAPK was involved and adding antioxidants, p38MAPK inhibitor, or genetic repression of ASK1 could easily rescue the cellular damage. Our finding reveals a new role of mitochondrial Stat3 in preventing ASK1/p38MAPK-mediated apoptosis, wich further support the notion that selective inhibition mitochondrial Stat3 could provide a primsing target for chemotherapy.
Collapse
Affiliation(s)
- Xinlai Cheng
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - Christiane Peuckert
- Department of Organismal Biology, Uppsala University, Uppsala, S-75236, Sweden
| | - Stefan Wölfl
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Thioredoxin-1 protects against androgen receptor-induced redox vulnerability in castration-resistant prostate cancer. Nat Commun 2017; 8:1204. [PMID: 29089489 PMCID: PMC5663934 DOI: 10.1038/s41467-017-01269-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/04/2017] [Indexed: 01/18/2023] Open
Abstract
Androgen deprivation (AD) therapy failure leads to terminal and incurable castration-resistant prostate cancer (CRPC). We show that the redox-protective protein thioredoxin-1 (TRX1) increases with prostate cancer progression and in androgen-deprived CRPC cells, suggesting that CRPC possesses an enhanced dependency on TRX1. TRX1 inhibition via shRNA or a phase I-approved inhibitor, PX-12 (untested in prostate cancer), impedes the growth of CRPC cells to a greater extent than their androgen-dependent counterparts. TRX1 inhibition elevates reactive oxygen species (ROS), p53 levels and cell death in androgen-deprived CRPC cells. Unexpectedly, TRX1 inhibition also elevates androgen receptor (AR) levels under AD, and AR depletion mitigates both TRX1 inhibition-mediated ROS production and cell death, suggesting that AD-resistant AR expression in CRPC induces redox vulnerability. In vivo TRX1 inhibition via shRNA or PX-12 reverses the castration-resistant phenotype of CRPC cells, significantly inhibiting tumor formation under systemic AD. Thus, TRX1 is an actionable CRPC therapeutic target through its protection against AR-induced redox stress.
Collapse
|
17
|
Huang MQ, Cheng XX, Chen SL, Zheng M, Chen SY. Analysis of differentially expressed proteins in Muscovy duck embryo fibroblasts infected with virulent and attenuated Muscovy duck reovirus by two-dimensional polyacrylamide gel electrophoresis. J Vet Med Sci 2017; 79:2063-2069. [PMID: 29046506 PMCID: PMC5745192 DOI: 10.1292/jvms.17-0421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Muscovy duck reovirus (MDRV) belongs to the Orthoreovirus genus of the Reoviridae family,
which is a significant poultry pathogen leading to high morbidity and mortality in
ducklings. However, the pathogenesis of the virus is not well understood. In the present
study, two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) combined with
LC-MS-MS was used to identify differentially expressed proteins between Muscovy duck
embryo fibroblasts (MDEF) infected with virulent (MV9710 strain) and attenuated (CA
strain) MDRV and non-infected MDEFs. A total of 115 abundant protein spots were
identified. Of these, 59 of differentially expressed proteins were detected, with
functions in metabolism and utilization of carbohydrates and nucleotides, anti-stress, and
regulation of immune and cellular process. GO analysis of the identified proteins showed
that they belonged to the classes molecular function (141 proteins), cellular component
(62 proteins), and biological process (146 proteins). The results were validated by
qRT-PCR, which suggests that the analysis method of 2D PAGE combined with LC-MS-MS used in
this study is reliable. This study lays a foundation for further investigation of the
biology of MDRV infection in MDEF.
Collapse
Affiliation(s)
- Mei-Qing Huang
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiao-Xia Cheng
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shi-Long Chen
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Min Zheng
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shao-Ying Chen
- Animal Husbandry and Veterinary Medicine Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| |
Collapse
|
18
|
Yodoi J, Matsuo Y, Tian H, Masutani H, Inamoto T. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care. Nutrients 2017; 9:nu9101081. [PMID: 28961169 PMCID: PMC5691698 DOI: 10.3390/nu9101081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Human thioredoxin (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-, which is induced by biological stress due to oxidative damage, metabolic dysfunction, chemicals, infection/inflammation, irradiation, or hypoxia/ischemia-reperfusion. Our research has demonstrated that exogenous TRX is effective in a wide variety of inflammatory diseases, including viral pneumonia, acute lung injury, gastric injury, and dermatitis, as well as in the prevention and amelioration of food allergies. Preclinical and clinical studies using recombinant TRX (rhTRX) are now underway. We have also identified substances that induce the expression of TRX in the body, in vegetables and other plant ingredients. Skincare products are being developed that take advantage of the anti-inflammatory and anti-allergic action of TRX. Furthermore, we are currently engaged in the highly efficient production of pure rhTRX in several plants, such as lettuce, grain and rice.
Collapse
Affiliation(s)
- Junji Yodoi
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Hai Tian
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Department of Anatomy, Basic Medicine Science, Medical College, Shaoxing University, No 900 Cengnan Avenue, Shaoxing 312000, China.
| | - Hiroshi Masutani
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| | - Takashi Inamoto
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| |
Collapse
|
19
|
Oka SI, Hirata T, Suzuki W, Naito D, Chen Y, Chin A, Yaginuma H, Saito T, Nagarajan N, Zhai P, Bhat S, Schesing K, Shao D, Hirabayashi Y, Yodoi J, Sciarretta S, Sadoshima J. Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes. J Biol Chem 2017; 292:18988-19000. [PMID: 28939765 DOI: 10.1074/jbc.m117.807735] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Thioredoxin 1 (Trx1) is a 12-kDa oxidoreductase that catalyzes thiol-disulfide exchange reactions to reduce proteins with disulfide bonds. As such, Trx1 helps protect the heart against stresses, such as ischemia and pressure overload. Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, metabolism, and survival. We have shown previously that mTOR activity is increased in response to myocardial ischemia-reperfusion injury. However, whether Trx1 interacts with mTOR to preserve heart function remains unknown. Using a substrate-trapping mutant of Trx1 (Trx1C35S), we show here that mTOR is a direct interacting partner of Trx1 in the heart. In response to H2O2 treatment in cardiomyocytes, mTOR exhibited a high molecular weight shift in non-reducing SDS-PAGE in a 2-mercaptoethanol-sensitive manner, suggesting that mTOR is oxidized and forms disulfide bonds with itself or other proteins. The mTOR oxidation was accompanied by reduced phosphorylation of endogenous substrates, such as S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1) in cardiomyocytes. Immune complex kinase assays disclosed that H2O2 treatment diminished mTOR kinase activity, indicating that mTOR is inhibited by oxidation. Of note, Trx1 overexpression attenuated both H2O2-mediated mTOR oxidation and inhibition, whereas Trx1 knockdown increased mTOR oxidation and inhibition. Moreover, Trx1 normalized H2O2-induced down-regulation of metabolic genes and stimulation of cell death, and an mTOR inhibitor abolished Trx1-mediated rescue of gene expression. H2O2-induced oxidation and inhibition of mTOR were attenuated when Cys-1483 of mTOR was mutated to phenylalanine. These results suggest that Trx1 protects cardiomyocytes against stress by reducing mTOR at Cys-1483, thereby preserving the activity of mTOR and inhibiting cell death.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Tsuyoshi Hirata
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Wataru Suzuki
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Daichi Naito
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Yanbin Chen
- the Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215000, China
| | - Adave Chin
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Hiroaki Yaginuma
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Toshiro Saito
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Narayani Nagarajan
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Santosh Bhat
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Kevin Schesing
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Dan Shao
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Yoko Hirabayashi
- the Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Junji Yodoi
- the Department of Biological Responses, Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8397, Japan, and
| | - Sebastiano Sciarretta
- the Department of Medical-Surgical Science and Biotechnologies, University of Rome, Latina 04100, Italy
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101,
| |
Collapse
|
20
|
Fan Y, Makar M, Wang MX, Ai HW. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor. Nat Chem Biol 2017; 13:1045-1052. [PMID: 28671680 PMCID: PMC5605834 DOI: 10.1038/nchembio.2417] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.
Collapse
Affiliation(s)
- Yichong Fan
- The Environmental Toxicology Graduate Program, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Merna Makar
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Michael X. Wang
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Hui-wang Ai
- The Environmental Toxicology Graduate Program, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| |
Collapse
|
21
|
Park SC, Kim YM, Lee JK, Kim NH, Kim EJ, Heo H, Lee MY, Lee JR, Jang MK. Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system. J Control Release 2017; 256:46-55. [DOI: 10.1016/j.jconrel.2017.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/29/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|
22
|
Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury. Mol Neurobiol 2017; 55:1773-1785. [PMID: 28224478 DOI: 10.1007/s12035-017-0456-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
As an essential component of cellular defense against a variety of endogenous and exogenous stresses, nuclear factor erythroid 2-related factor 2 (Nrf2) has received increased attention in the past decades. Multiple studies indicate that Nrf2 acts not only as an important protective factor in injury models but also as a downstream target of therapeutic agents. Activation of Nrf2 has increasingly been linked to many human diseases, especially in central nervous system (CNS) injury such as traumatic brain injury (TBI). Several researches have deciphered that activation of Nrf2 exerts antioxidative stress, antiapoptosis, and antiinflammation influence in TBI via different molecules and pathways including heme oxygenase-1 (HO-1), NADPH:quinine oxidoreductase-1 (NQO-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Hence, Nrf2 shows great promise as a molecular target in TBI. In the present article, we provide an updated review of the current state of our knowledge about relationship between Nrf2 and TBI, highlighting the specific roles of Nrf2 in TBI.
Collapse
|
23
|
Manghera M, Magnusson A, Douville RN. The sense behind retroviral anti-sense transcription. Virol J 2017; 14:9. [PMID: 28088235 PMCID: PMC5237517 DOI: 10.1186/s12985-016-0667-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022] Open
Abstract
Retroviruses are known to rely extensively on the expression of viral proteins from the sense proviral genomic strand. Yet, the production of regulatory retroviral proteins from antisense-encoded viral genes is gaining research attention, due to their clinical significance. This report will discuss what is known about antisense transcription in Retroviridae, and provide new information about antisense transcriptional regulation through a comparison of Human Immunodeficiency Virus (HIV), Human T-cell Lymphotrophic Virus (HTLV-1) and endogenous retrovirus-K (ERVK) long terminal repeats (LTRs). We will attempt to demonstrate that the potential for antisense transcription is more widespread within retroviruses than has been previously appreciated, with this feature being the rule, rather than the exception.
Collapse
Affiliation(s)
- Mamneet Manghera
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Alycia Magnusson
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Renée N Douville
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada. .,Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
24
|
Shi M, Zhao S, Wang ZH, Stanley D, Chen XX. Cotesia vestalis parasitization suppresses expression of a Plutella xylostella thioredoxin. INSECT MOLECULAR BIOLOGY 2016; 25:679-688. [PMID: 27376399 DOI: 10.1111/imb.12252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thioredoxins (Trxs) are a family of small, highly conserved and ubiquitous proteins involved in protecting organisms against toxic reactive oxygen species. In this study, a typical thioredoxin gene, PxTrx, was isolated from Plutella xylostella. The full-length cDNA sequence is composed of 959 bp containing a 321 bp open reading frame that encodes a predicted protein of 106 amino acids, a predicted molecular weight of 11.7 kDa and an isoelectric point of 5.03. PxTrx was mainly expressed in larval Malpighian tubules and the fat body. An enriched recombinant PxTrx had insulin disulphide reductase activity and stimulated Human Embryonic Kidney 293 (HEK293) cell proliferation. It also protected supercoiled DNA and living HEK293 cells from H2 O2 -induced damage. Parasitization by Cotesia vestalis and injections of 0.05 and 0.01 equivalents of C. vestalis Bracovirus (CvBv), the symbiotic virus carried by the parasitoid, led to down-regulation of PxTrx expression in host fat body. Taken together, our results indicate that PxTrx contributes to the maintenance of P. xylostella cellular haemostasis. Host fat body expression of PxTrx is strongly attenuated by parasitization and by injections of CvBv.
Collapse
Affiliation(s)
- M Shi
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - S Zhao
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Z-H Wang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - D Stanley
- Biological Control of Insects Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Columbia, MO, USA
| | - X-X Chen
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Kamal AM, El-Hefny NH, Hegab HM, El-Mesallamy HO. Expression of thioredoxin-1 (TXN) and its relation with oxidative DNA damage and treatment outcome in adult AML and ALL: A comparative study. ACTA ACUST UNITED AC 2016; 21:567-575. [PMID: 27158980 DOI: 10.1080/10245332.2016.1173341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Thioredoxin-1 (TXN) is a key element in the elimination of reactive oxygen species as well as activation of tumor suppressor genes and DNA repair enzymes. Several studies showed that TXN was over expressed in solid tumors and this was correlated to poorer prognosis. However, TXN expression has been insufficiently studied, particularly in newly diagnosed adult acute leukemia. METHODS This study was designed to evaluate the gene expression of TXN in acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) adult patients and to investigate its association with oxidative DNA damage. The expression of TXN was analyzed using quantitative reverse transcriptase-polymerase chain reaction while oxidative DNA damage was evaluated by measuring serum 8-hydroxy-2-deoxyguanosine (8-OHdG) by enzyme-linked immunosorbent assay and strand breaks by the comet assay. RESULTS We found that TXN was under expressed in both AML and ALL groups (P < 0.001 for both) as compared to the control group. Also TXN expression level was negatively correlated with serum 8-OHdG and tail moment in both AML (P = 0.042 and 0.047, respectively) and ALL (P < 0.001 and P = 0.02, respectively) while it showed no correlation with treatment outcome in either groups. DISCUSSION This study suggests that TXN expression is hindered in adult acute leukemia which augments oxidative DNA damage and hence mutagenesis. CONCLUSION This study provides a new insight into the pathogenesis of acute leukemia and suggests TXN as a new screening test for the risk for acute leukemia.
Collapse
Affiliation(s)
- Amany M Kamal
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Nadia H El-Hefny
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Hany M Hegab
- b Department of Clinical Hematology, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - Hala O El-Mesallamy
- a Department of Biochemistry, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
26
|
Wang M, Zhu K, Zhang L, Li L, Zhao J. Thioredoxin 1 protects astrocytes from oxidative stress by maintaining peroxiredoxin activity. Mol Med Rep 2016; 13:2864-70. [PMID: 26846911 PMCID: PMC4768962 DOI: 10.3892/mmr.2016.4855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 12/18/2015] [Indexed: 01/05/2023] Open
Abstract
Previous studies have demonstrated that thioredoxin 1 (Trx1) exerts neuroprotective effects against cerebral ischemia/reperfusion injury caused by oxidative stress. While Trx1 is known to maintain the anti-oxidant activity of 2-Cys peroxiredoxins (Prdxs), the underlying mechanisms of its protective effects have remained to be elucidated, which was the aim of the present study. For this, an in vitro ischemic model of hypoxemia lasting for 4 h, followed by 24 h of reperfusion was used. Primary astrocytes from neonatal rats were pre-treated with small interfering RNA targeting Trx1 prior to oxygen glucose deprivation/reperfusion (OGD/R). MTS and lactate dehydrogenase assays were performed to evaluate cell viability. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were employed to assess the mRNA and protein expression levels of Prdx1-4 and Prdx-SO3. Furthermore, a dual luciferase reporter assay was used to assess the interaction between activator protein-1 (AP-1) and Trx1. The present study demonstrated that OGD/R decreased the cell viability and increased cellular damage, which was more marked following Trx1 knockdown. The expression of Prdx1-4 and Prdx-SO3 protein was higher in the cells subjected to OGD/R. Knockdown of Trx1 markedly decreased the levels of Prdx1-4 but increased Prdx-SO3 mRNA and protein levels. The results of the present study also suggested that AP-1 directly activated the expression of Trx1. The present study demonstrated that Trx1 exerts its neuroprotective effects by preventing oxidative stress in astrocytes via maintaining Prdx expression.
Collapse
Affiliation(s)
- Mengfei Wang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kunting Zhu
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lingyu Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
27
|
Overexpression of yeast thioredoxin TRX2 reduces p53-mediated cell death in yeast. Appl Microbiol Biotechnol 2015; 99:8619-28. [DOI: 10.1007/s00253-015-6886-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/22/2015] [Accepted: 07/25/2015] [Indexed: 01/08/2023]
|
28
|
Cheng X, Holenya P, Can S, Alborzinia H, Rubbiani R, Ott I, Wölfl S. A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells. Mol Cancer 2014; 13:221. [PMID: 25253202 PMCID: PMC4190468 DOI: 10.1186/1476-4598-13-221] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/04/2014] [Indexed: 12/27/2022] Open
Abstract
Background Cancer cells in the advanced stage show aberrant antioxidant capacity to detoxify excessive ROS resulting in the compensation for intrinsic oxidative stress and therapeutic resistance. PDAC is one of the most lethal cancers and often associated with a high accumulation of ROS. Recent studies identified gold(I) NHC complexes as potent TrxR inhibitors suppressing cell growth in a wide spectrum of human malignant cell lines at the low micromolar concentration. However, the mechanism of action is not completely elucidated yet. Methods To understand the biological function of gold(I) NHC complexes in PDAC, we used a recently published gold(I) NHC complex, MC3, and evaluated its anti-proliferative effect in four PDAC cell lines, determined by MTT and SRB assays. In further detailed analysis, we analyzed cellular ROS levels using the ROS indicator DHE and mitochondrial membrane potential indicated by the dye JC-1 in Panc1. We also analyzed cell cycle arrest and apoptosis by FACS. To elucidate the role of specific cell signaling pathways in MC3-induced cell death, co-incubation with ROS scavengers, a p38-MAPK inhibitor and siRNA mediated depletion of ASK1 were performed, and results were analyzed by immunoblotting, ELISA-microarrays, qRT-PCR and immunoprecipitation. Results Our data demonstrate that MC3 efficiently suppressed cell growth, and induced cell cycle arrest and apoptosis in pancreatic cancer cells, in particular in the gemcitabine-resistant cancer cells Panc1 and ASPC1. Treatment with MC3 resulted in a substantial alteration of the cellular redox homeostasis leading to increased ROS levels and a decrease in the mitochondrial membrane potential. ROS scavengers suppressed ROS formation and rescued cells from damage. On the molecular level, MC3 blocked the interaction of Trx with ASK1 and subsequently activated p38-associated signaling. Furthermore, inhibition of this pathway by using ASK1 siRNA or a p38 inhibitor clearly attenuated the effect of MC3 on cell proliferation in Panc1 and ASPC1. Conclusions Our results confirm that MC3 is a TrxR inhibitor and show MC3 induced apoptosis in gemcitabine-resistant PDACs. MC3 mediated cell death could be blocked by using anti-oxidants, ASK1 siRNA or p38 inhibitor suggesting that the Trx-ASK1-p38 signal cascade played an important role in gold(I) NHC complexes-mediated cellular damage. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-221) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefan Wölfl
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater 2014; 10:1806-16. [PMID: 24486910 DOI: 10.1016/j.actbio.2014.01.028] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/15/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Decades of research have been undertaken towards the goal of tissue engineering using xenogeneic scaffolds. The primary advantages associated with use of xenogeneic tissue-derived scaffolds for in vitro development of replacement tissues and organs stem from the inherent extracellular matrix (ECM) composition and architecture. Native ECM possesses appropriate mechanical properties for physiological function of the biomaterial and signals for cell binding, growth and differentiation. Additionally, xenogeneic tissue is readily available. However, translation of xenogeneic scaffold-derived engineered tissues or organs into clinical therapies requires xenoantigenicity of the material to be adequately addressed prior to implantation. Failure to achieve this goal will result in a graft-specific host immune rejection response, jeopardizing in vivo survival of the resultant scaffold, tissue or organ. This review explores (i) the appropriateness of scaffold acellularity as an outcome measure for assessing reduction of the immunological barriers to the use of xenogeneic scaffolds for tissue engineering applications and (ii) the need for tissue engineers to strive for antigen removal during xenogeneic scaffold generation.
Collapse
Affiliation(s)
- Maelene L Wong
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
30
|
Abbas W, Khan KA, Kumar A, Tripathy MK, Dichamp I, Keita M, Mahlknecht U, Rohr O, Herbein G. Blockade of BFA-mediated apoptosis in macrophages by the HIV-1 Nef protein. Cell Death Dis 2014; 5:e1080. [PMID: 24556695 PMCID: PMC3944234 DOI: 10.1038/cddis.2014.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 12/14/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022]
Abstract
HIV-1 Nef protein has key roles at almost all stages of the viral life cycle. We assessed the role of Nef and of the translation elongation factor eEF1A in primary human macrophages. Nuclear retention experiments and inhibition of the exportin-t (Exp-t) pathway suggested that cytoplasmic relocalization of eEF1A, mediated by Exp-t occurs in Nef-treated monocyte-derived macrophages (MDMs). We observed the presence of tRNA in the Nef/eEF1A complexes. Nucleocytoplasmic relocalization of the Nef/eEF1A complexes prevented stress-induced apoptosis of MDMs treated with brefeldin A. Blockade of stress-induced apoptosis of MDMs treated with HIV-1 Nef resulted from enhanced nucleocytoplasmic transport of eEF1A with decreased release of mitochondrial cytochrome c, and from increased tRNA binding to cytochrome c, ultimately leading to an inhibition of caspase activation. Our results indicate that HIV-1 Nef, through the nucleocytoplasmic relocalization of eEF1A and tRNAs, enhances resistance to stress-induced apoptosis in primary human macrophages.
Collapse
Affiliation(s)
- W Abbas
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - K A Khan
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - A Kumar
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - M K Tripathy
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - I Dichamp
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - M Keita
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| | - U Mahlknecht
- University of Heidelberg Medical Center, St. Lukas Klinik Solingen, Solingen D-42697, Germany
| | - O Rohr
- Institut de Parasitologie et Pathologie Tropicale, EA 4438, Strasbourg University, 3 rue Koeberlé, Strasbourg 67000, France
| | - G Herbein
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comte, EA 4266, SFR FED 4234, CHRU Besancon, Besançon F-25030, France
| |
Collapse
|
31
|
Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 2014; 4:514. [PMID: 24409188 PMCID: PMC3885921 DOI: 10.3389/fimmu.2013.00514] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022] Open
Abstract
During the past few decades, it has been widely recognized that Reduction-Oxidation (redox) responses occurring at the intra- and extra-cellular levels are one of most important biological phenomena and dysregulated redox responses are involved in the initiation and progression of multiple diseases. Thioredoxin1 (Trx1) and Thioredoxin2 (Trx2), mainly located in the cytoplasm and mitochondria, respectively, are ubiquitously expressed in variety of cells and control cellular reactive oxygen species by reducing the disulfides into thiol groups. Thioredoxin interacting protein (Txnip/thioredoxin binding protein-2/vitamin D3 upregulated protein) directly binds to Trx1 and Trx2 (Trx) and inhibit the reducing activity of Trx through their disulfide exchange. Recent studies have revealed that Trx1 and Txnip are involved in some critical redox-dependent signal pathways including NLRP-3 inflammasome activation in a redox-dependent manner. Therefore, Trx/Txnip, a redox-sensitive signaling complex is a regulator of cellular redox status and has emerged as a key component in the link between redox regulation and the pathogenesis of diseases. Here, we review the novel functional concept of the redox-related protein complex, named “Redoxisome,” consisting of Trx/Txnip, as a critical regulator for intra- and extra-cellular redox signaling, involved in the pathogenesis of various diseases such as cancer, autoimmune disease, and diabetes.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | - So Masaki
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | | | - Zhe Chen
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | - Hai Tian
- Advanced Chemical Technology Center in Kyoto (ACT Kyoto), JBPA Research Institute , Kyoto , Japan ; Redox Bio Science Inc. , Kyoto , Japan
| | - Junji Yodoi
- Institute for Virus Research, Kyoto University , Kyoto , Japan ; Advanced Chemical Technology Center in Kyoto (ACT Kyoto), JBPA Research Institute , Kyoto , Japan ; Redox Bio Science Inc. , Kyoto , Japan
| |
Collapse
|
32
|
Jia JJ, Zeng XS, Zhou XS, Li Y, Bai J. The induction of thioredoxin-1 by epinephrine withdraws stress via interaction with β-arrestin-1. Cell Cycle 2014; 13:3121-3131. [PMID: 25486571 PMCID: PMC4614835 DOI: 10.4161/15384101.2014.949214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
Stress regulates a panel of important physiological functions and disease states. Epinephrine is produced under stresses threaten to homeostasis. Thioredoxin-1(Trx-1) is a redox regulating protein which is induced to resist stresses and related with various diseases. Thus, it is important to examine whether Trx-1 is induced by epinephrine and to understand the underlying molecular mechanisms that Trx-1 modulates epinephrine stress. Here, we show that the expression of Trx-1 was induced by epinephrine via β-adrenergic receptor/Cyclic AMP/protein kinase A (PKA) signaling pathway in PC12 cells. The down-regulation of Trx-1 by siRNA aggravated accumulation of γ-H2AX and further decreased expression of p53 by epinephrine. Accordingly, Trx-1 overexpression alleviated accumulation of γ-H2AX and restored the expressions of p53 and C/EBP homologous protein (CHOP) in the cortex, hippocampus and thymus of mice. Moreover, Trx-1 overexpression reduced the malondialdehyde concentration by epinephrine. We further explored the mechanism on p53 and γ-H2AX regulated by Trx-1. We found that overexpression of Trx-1 suppressed β-arrestin-1 expression through interaction with β-arrestin-1. Consequently, the downregulation of β-arrestin-1 suppressed the cell viability and the expressions of γ-H2AX and cyclin D1, and increased p53 expression. Taken together, our data suggest that Trx-1/β-arrestin-1 interaction may represent a novel endogenous mechanism on protecting against stress.
Collapse
Key Words
- ASK1, Apoptosis signal-regulating kinase 1
- Abbreviations:
- CHOP
- CHOP, C/EBP homologous protein
- DNA damage
- GPCR, G protein-coupled receptors
- MAPK, Mitogen-activated protein kinase
- MDA, Malondialdehyde
- MDM2, Murine double minute 2
- PKA, Protein Kinase A
- TBP-2, Thioredoxin binding protein-2
- Thioredoxin-1
- Trx-1, Thioredoxin-1
- Txnip, thioredoxin interacting protein
- chronic epinephrine stress
- p53
- β-arrestin-1
- γ-H2AX, Phosphorylation of histone H2AX
Collapse
Affiliation(s)
- Jin-Jing Jia
- College of Life Science and Technology; Kunming University of Science and Technology; Kunming, China
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| | - Xian-Si Zeng
- College of Life Science and Technology; Kunming University of Science and Technology; Kunming, China
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| | - Xiao-Shuang Zhou
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| | - Ye Li
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| | - Jie Bai
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| |
Collapse
|
33
|
Jia JJ, Zeng XS, Zhou XS, Li Y, Bai J. The induction of thioredoxin-1 by epinephrine withdraws stress via interaction with β-arrestin-1. Cell Cycle 2014; 13:3121-3131. [PMID: 25486571 DOI: 10.4161/15384101.2014.949214if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Stress regulates a panel of important physiological functions and disease states. Epinephrine is produced under stresses threaten to homeostasis. Thioredoxin-1(Trx-1) is a redox regulating protein which is induced to resist stresses and related with various diseases. Thus, it is important to examine whether Trx-1 is induced by epinephrine and to understand the underlying molecular mechanisms that Trx-1 modulates epinephrine stress. Here, we show that the expression of Trx-1 was induced by epinephrine via β-adrenergic receptor/Cyclic AMP/protein kinase A (PKA) signaling pathway in PC12 cells. The down-regulation of Trx-1 by siRNA aggravated accumulation of γ-H2AX and further decreased expression of p53 by epinephrine. Accordingly, Trx-1 overexpression alleviated accumulation of γ-H2AX and restored the expressions of p53 and C/EBP homologous protein (CHOP) in the cortex, hippocampus and thymus of mice. Moreover, Trx-1 overexpression reduced the malondialdehyde concentration by epinephrine. We further explored the mechanism on p53 and γ-H2AX regulated by Trx-1. We found that overexpression of Trx-1 suppressed β-arrestin-1 expression through interaction with β-arrestin-1. Consequently, the downregulation of β-arrestin-1 suppressed the cell viability and the expressions of γ-H2AX and cyclin D1, and increased p53 expression. Taken together, our data suggest that Trx-1/β-arrestin-1 interaction may represent a novel endogenous mechanism on protecting against stress.
Collapse
Key Words
- ASK1, Apoptosis signal-regulating kinase 1
- Abbreviations:
- CHOP
- CHOP, C/EBP homologous protein
- DNA damage
- GPCR, G protein-coupled receptors
- MAPK, Mitogen-activated protein kinase
- MDA, Malondialdehyde
- MDM2, Murine double minute 2
- PKA, Protein Kinase A
- TBP-2, Thioredoxin binding protein-2
- Thioredoxin-1
- Trx-1, Thioredoxin-1
- Txnip, thioredoxin interacting protein
- chronic epinephrine stress
- p53
- β-arrestin-1
- γ-H2AX, Phosphorylation of histone H2AX
Collapse
Affiliation(s)
- Jin-Jing Jia
- a College of Life Science and Technology ; Kunming University of Science and Technology ; Kunming , China
| | | | | | | | | |
Collapse
|
34
|
Abstract
The thioredoxin (Trx) system, which is composed of NADPH, thioredoxin reductase (TrxR), and thioredoxin, is a key antioxidant system in defense against oxidative stress through its disulfide reductase activity regulating protein dithiol/disulfide balance. The Trx system provides the electrons to thiol-dependent peroxidases (peroxiredoxins) to remove reactive oxygen and nitrogen species with a fast reaction rate. Trx antioxidant functions are also shown by involvement in DNA and protein repair by reducing ribonucleotide reductase, methionine sulfoxide reductases, and regulating the activity of many redox-sensitive transcription factors. Moreover, Trx systems play critical roles in the immune response, virus infection, and cell death via interaction with thioredoxin-interacting protein. In mammalian cells, the cytosolic and mitochondrial Trx systems, in which TrxRs are high molecular weight selenoenzymes, together with the glutathione-glutaredoxin (Grx) system (NADPH, glutathione reductase, GSH, and Grx) control the cellular redox environment. Recently mammalian thioredoxin and glutathione systems have been found to be able to provide the electrons crossly and to serve as a backup system for each other. In contrast, bacteria TrxRs are low molecular weight enzymes with a structure and reaction mechanism distinct from mammalian TrxR. Many bacterial species possess specific thiol-dependent antioxidant systems, and the significance of the Trx system in the defense against oxidative stress is different. Particularly, the absence of a GSH-Grx system in some pathogenic bacteria such as Helicobacter pylori, Mycobacterium tuberculosis, and Staphylococcus aureus makes the bacterial Trx system essential for survival under oxidative stress. This provides an opportunity to kill these bacteria by targeting the TrxR-Trx system.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
35
|
Ishida YI, Yamasaki M, Yukizaki C, Nishiyama K, Tsubouchi H, Okayama A, Kataoka H. Carnosol, rosemary ingredient, induces apoptosis in adult T-cell leukemia/lymphoma cells via glutathione depletion: proteomic approach using fluorescent two-dimensional differential gel electrophoresis. Hum Cell 2013; 27:68-77. [PMID: 24323765 DOI: 10.1007/s13577-013-0083-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/07/2013] [Indexed: 01/11/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a fatal malignancy caused by infection with human T-lymphotropic virus type-1 and there is no accepted curative therapy for ATL. We searched for biological active substances for the prevention and treatment of ATL from several species of herbs. The ATL cell growth-inhibitory activity and apoptosis assay showed that carnosol, which is an ingredient contained in rosemary (Rosmarinus officinalis), induced apoptosis in ATL cells. Next, to investigate the apoptosis-inducing mechanism of carnosol, we applied proteomic analysis using fluorescent two-dimensional differential gel electrophoresis and mass spectrometry. The proteomic analysis showed that the expression of reductases, enzymes in glycolytic pathway, and enzymes in pentose phosphate pathway was increased in carnosol-treated cells, compared with untreated cells. These results suggested that carnosol affected the redox status in the cells. Further, the quantitative analysis of glutathione, which plays the central role for the maintenance of intracellular redox status, indicated that carnosol caused the decrease of glutathione in the cells. Further, N-acetyl-L-cystein, which is precursor of glutathione, canceled the efficiency of carnosol. From these results, it was suggested that the apoptosis-inducing activity of carnosol in ATL cells was caused by the depletion of glutathione.
Collapse
Affiliation(s)
- Yo-ichi Ishida
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan,
| | | | | | | | | | | | | |
Collapse
|
36
|
Gogna R, Madan E, Khan M, Pati U, Kuppusamy P. p53's choice of myocardial death or survival: Oxygen protects infarct myocardium by recruiting p53 on NOS3 promoter through regulation of p53-Lys(118) acetylation. EMBO Mol Med 2013; 5:1662-83. [PMID: 24096875 PMCID: PMC3840484 DOI: 10.1002/emmm.201202055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction, an irreversible cardiac tissue damage, involves progressive loss of cardiomyocytes due to p53-mediated apoptosis. Oxygenation is known to promote cardiac survival through activation of NOS3 gene. We hypothesized a dual role for p53, which, depending on oxygenation, can elicit apoptotic death signals or NOS3-mediated survival signals in the infarct heart. p53 exhibited a differential DNA-binding, namely, BAX-p53RE in the infarct heart or NOS3-p53RE in the oxygenated heart, which was regulated by oxygen-induced, post-translational modification of p53. In the infarct heart, p53 was heavily acetylated at Lys118 residue, which was exclusively reversed in the oxygenated heart, apparently regulated by oxygen-dependent expression of TIP60. The inhibition of Lys118 acetylation promoted the generation of NOS3-promoting prosurvival form of p53. Thus, oxygenation switches p53-DNA interaction by regulating p53 core-domain acetylation, promoting a prosurvival transcription activity of p53. Understanding this novel oxygen-p53 survival pathway will open new avenues in cardioprotection molecular therapy.
Collapse
Affiliation(s)
- Rajan Gogna
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
37
|
Hanauske-Abel HM, Saxena D, Palumbo PE, Hanauske AR, Luchessi AD, Cambiaghi TD, Hoque M, Spino M, Gandolfi DD, Heller DS, Singh S, Park MH, Cracchiolo BM, Tricta F, Connelly J, Popowicz AM, Cone RA, Holland B, Pe’ery T, Mathews MB. Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS One 2013; 8:e74414. [PMID: 24086341 PMCID: PMC3781084 DOI: 10.1371/journal.pone.0074414] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.
Collapse
Affiliation(s)
- Hartmut M. Hanauske-Abel
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Clinic St. George, Hamburg, Germany
| | - Augusto D. Luchessi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tavane D. Cambiaghi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mainul Hoque
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | - Debra S. Heller
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sukhwinder Singh
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute for Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | | | | | - Anthony M. Popowicz
- Department of Information Technology, Rockefeller University, New York, New York, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bart Holland
- Department of Preventive Medicine & Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tsafi Pe’ery
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
38
|
Chen B, Wang W, Shen T, Qi R. Thioredoxin1 downregulates oxidized low-density lipoprotein-induced adhesion molecule expression via Smad3 protein. PLoS One 2013; 8:e76226. [PMID: 24086714 PMCID: PMC3781077 DOI: 10.1371/journal.pone.0076226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/22/2013] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammation disease that is initiated by endothelial cell injury. Oxidized low-density lipoprotein (ox-LDL) is directly associated with chronic vascular inflammation. To understand whether thioredoxin1 (Trx1) participates in an antiinflammatory defense mechanism in atherosclerosis, we investigated the effect of Trx1 on the expression of two adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), in human umbilical vein endothelial cells (HUVECs). Thioredoxin1 and dominant-negative mutant thioredoxin1 (TD) were transiently overexpressed using adenovirus vector gene transfer. Our data showed that Trx1 overexpression suppressed ox-LDL-induced adhesion molecule expression in HUVECs. The overexpression of Trx1 promoted ox-LDL-induced Smad3 phosphorylation and nuclear translocation. A co-immunoprecipitation assay indicated that Smad3 continued to interact with Trx1 with or without ox-LDL stimulation. These results suggest that Trx1 inherently suppresses VCAM-1 and ICAM-1 expression in vascular endothelia and may prevent the initiation of atherosclerosis by attenuating adhesion molecule expression. The enhancement of Smad3 phosphorylation and nuclear expression appears to be primarily responsible for the Trx1-induced downregulation of adhesion molecules.
Collapse
Affiliation(s)
- Beidong Chen
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Wendong Wang
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Tao Shen
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Ruomei Qi
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Sieracki NA, Gantner BN, Mao M, Horner JH, Ye RD, Malik AB, Newcomb ME, Bonini MG. Bioluminescent detection of peroxynitrite with a boronic acid-caged luciferin. Free Radic Biol Med 2013; 61:40-50. [PMID: 23474271 PMCID: PMC3795912 DOI: 10.1016/j.freeradbiomed.2013.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/13/2013] [Accepted: 02/20/2013] [Indexed: 02/07/2023]
Abstract
Peroxynitrite, a highly reactive biological oxidant, is formed under pathophysiologic conditions from the diffusion-limited reaction of nitric oxide and superoxide radical anion. Peroxynitrite has been implicated as the mediator of nitric oxide toxicity in many diseases and as an important signaling disrupting molecule (L. Liaudet et al., Front. Biosci.14, 4809-4814, 2009) [1]. Biosensors effective at capturing peroxynitrite in a specific and fast enough manner for detection, along with readouts compatible with in vivo studies, are lacking. Here we report that the boronic acid-based bioluminescent system PCL-1 (peroxy-caged luciferin-1), previously reported as a chemoselective sensor for hydrogen peroxide (G.C. Van de Bittner et al., Proc. Natl. Acad. Sci. USA107, 21316-21321, 2010) [2], reacts with peroxynitrite stoichiometrically with a rate constant of 9.8±0.3×10(5)M(-1)s(-1) and a bioluminescence detection limit of 16nM, compared to values of 1.2±0.3M(-1)s(-1) and 231nM for hydrogen peroxide. Further, we demonstrate bioluminescent detection of peroxynitrite in the presence of physiological competitors: carbon dioxide, glutathione, albumin, and catalase. We also demonstrate the utility of this method to assess peroxynitrite formation in mammalian cells by measuring peroxynitrite generated under normal culture conditions after stimulation of macrophages with bacterial endotoxin lipopolysaccharide. Thus, the PCL-1 method for measuring peroxynitrite generation shows superior selectivity over other oxidants under in vivo conditions.
Collapse
Affiliation(s)
- Nathan A Sieracki
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Benjamin N Gantner
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mao Mao
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Section of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - John H Horner
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Richard D Ye
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Martin E Newcomb
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Marcelo G Bonini
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Section of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Shiizaki S, Naguro I, Ichijo H. Activation mechanisms of ASK1 in response to various stresses and its significance in intracellular signaling. Adv Biol Regul 2013; 53:135-44. [PMID: 23031789 DOI: 10.1016/j.jbior.2012.09.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 05/25/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase kinase family. ASK1 activates c-jun N-terminal kinase (JNK) and p38 in response to various stimuli such as oxidative stress, endoplasmic reticulum stress, infection and calcium influx. Under these stress conditions, ASK1 plays important roles in intracellular signaling pathways and biological functions. Diverse proteins are known to interact with ASK1 and regulate the activity of ASK1. However, activation mechanisms of ASK1 and ASK1-binding proteins which regulate the activity of ASK1 have not been completely understood. In this review, we focus on the recent findings on ASK1 and update the regulatory mechanisms of ASK1 activity.
Collapse
Affiliation(s)
- Shigeru Shiizaki
- Laboratory of Cell signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
41
|
Stantchev TS, Paciga M, Lankford CR, Schwartzkopff F, Broder CC, Clouse KA. Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection. Retrovirology 2012. [PMID: 23206338 PMCID: PMC3526565 DOI: 10.1186/1742-4690-9-97] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The role of disulfide bond remodeling in HIV-1 infection is well described, but the process still remains incompletely characterized. At present, the data have been predominantly obtained using established cell lines and/or CXCR4-tropic laboratory-adapted virus strains. There is also ambiguity about which disulfide isomerases/reductases play a major role in HIV-1 entry, as protein disulfide isomerase (PDI) and/or thioredoxin (Trx) have emerged as the two enzymes most often implicated in this process. RESULTS We have extended our previous findings and those of others by focusing on CCR5-using HIV-1 strains and their natural targets--primary human macrophages and CD4+ T lymphocytes. We found that the nonspecific thiol/disulfide exchange inhibitor, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), significantly reduced HIV-1 entry and infection in cell lines, human monocyte-derived macrophages (MDM), and also phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC). Subsequent studies were performed using specific anti-PDI or Trx monoclonal antibodies (mAb) in HIV-1 envelope pseudotyped and wild type (wt) virus infection systems. Although human donor-to-donor variability was observed as expected, Trx appeared to play a greater role than PDI in HIV-1 infection of MDM. In contrast, PDI, but not Trx, was predominantly involved in HIV-1 entry and infection of the CD4+/CCR5+ T cell line, PM-1, and PHA-stimulated primary human T lymphocytes. Intriguingly, both PDI and Trx were present on the surface of MDM, PM-1 and PHA-stimulated CD4+ T cells. However, considerably lower levels of Trx were detected on freshly isolated CD4+ lymphocytes, compared to PHA-stimulated cells. CONCLUSIONS Our findings clearly demonstrate the role of thiol/disulfide exchange in HIV-1 entry in primary T lymphocytes and MDM. They also establish a cell-type specificity regarding the involvement of particular disulfide isomerases/reductases in this process and may provide an explanation for differences among previously published studies. More importantly, from an in vivo perspective, the preferential utilization of PDI may be relevant to the HIV-1 entry and establishment of virus reservoirs in resting CD4+ cells, while the elevated levels of Trx reported in the chronic stages of HIV-1 infection may facilitate the virus entry in macrophages and help to sustain high viremia during the decline of T lymphocytes.
Collapse
Affiliation(s)
- Tzanko S Stantchev
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, U.S. Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Pyridine nucleotides (PNs), such as NAD(H) and NADP(H), mediate electron transfer in many catabolic and anabolic processes. In general, NAD(+) and NADP(+) receive electrons to become NADH and NADPH by coupling with catabolic processes. These electrons are utilized for biologically essential reactions such as ATP production, anabolism and cellular oxidation-reduction (redox) regulation. Thus, in addition to ATP, NADH and NADPH could be defined as high-energy intermediates and "molecular units of currency" in energy transfer. We discuss the significance of PNs as energy/electron transporters and signal transducers, in regulating cell death and/or survival processes. In the first part of this review, we describe the role of NADH and NADPH as electron donors for NADPH oxidases (Noxs), glutathione (GSH), and thioredoxin (Trx) systems in cellular redox regulation. Noxs produce superoxide/hydrogen peroxide yielding oxidative environment, whereas GSH and Trx systems protect against oxidative stress. We then describe the role of NAD(+) and NADH as signal transducers through NAD(+)-dependent enzymes such as PARP-1 and Sirt1. PARP-1 is activated by damaged DNA in order to repair the DNA, which attenuates energy production through NAD(+) consumption; Sirt1 is activated by an increased NAD(+)/NADH ratio to facilitate signal transduction for metabolic adaption as well as stress responses. We conclude that PNs serve as an important interface for distinct cellular responses, including stress response, energy metabolism, and cell survival/death.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- Cardiovascular Research Institute, UMDNJ-Newark, 185 S Orange Ave, MSB G609, Newark, NJ 07103, USA
| | | | | |
Collapse
|
43
|
Song C, Cui Z, Liu Y, Wang S, Li Q. First report of two thioredoxin homologues in crustaceans: molecular characterization, genomic organization and expression pattern in swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2012; 32:855-861. [PMID: 22365991 DOI: 10.1016/j.fsi.2012.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
Previously, we had reported two homologues of the thioredoxin (Trx) super-family (PtTrx1 and PtTrx2) identified from eyestalk and haemocytes cDNA library of swimming crab Portunus trituberculatus, respectively. It was the first report of two thioredoxin homologues from the same crustacean species. Here, we focused on the molecular characterization, genomic organization and expression pattern of PtTrx1 and PtTrx2. The full-length cDNA sequences of PtTrx1 and PtTrx2 were 739 and 1300 bp, encoding 105 and 133 amino acids, respectively. They both had a conserved CGPC active site and highly similar tertiary structures, which containing four β-sheets and four α-helixes. Specifically, PtTrx2 was encoded by a nuclear gene and its cellular localization was targeted to mitochondria by an N-terminal mitochondrial pre-sequence. Sequence analysis revealed PtTrx1 and PtTrx2 were encoded by different genomic locus. As the first analyzed genomic structure of PtTrxs in crustaceans, two introns with microsatellites were found in the open reading frame region of these genes. Quantitative real-time PCR analysis revealed the mRNA expression of PtTrx1 transcripts were mainly detected in gill, while, PtTrx2 in eyestalk and gill. The temporal expression levels of PtTrxs transcripts in haemocytes showed different expression patterns after challenge with Vibrio alginolyticus, Micrococcus luteus and Pichia pastoris. These results together indicate that PtTrxs should be involved in the responses to pathogen challenge of P. trituberculatus.
Collapse
Affiliation(s)
- Chengwen Song
- EMBL, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | |
Collapse
|
44
|
Abbas W, Khan KA, Tripathy MK, Dichamp I, Keita M, Rohr O, Herbein G. Inhibition of ER stress-mediated apoptosis in macrophages by nuclear-cytoplasmic relocalization of eEF1A by the HIV-1 Nef protein. Cell Death Dis 2012; 3:e292. [PMID: 22476100 PMCID: PMC3358010 DOI: 10.1038/cddis.2012.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
HIV-1 Nef protein has key roles at almost all stages of the viral life cycle. We assessed the role of the Nef/eEF1A (eukaryotic translation elongation factor 1-alpha) complex in nucleocytoplasmic shuttling in primary human macrophages. Nuclear retention experiments and inhibition of the exportin-t (Exp-t) pathway suggested that cytoplasmic relocalization of eEF1A, mediated by Exp-t, occurs in Nef-treated monocyte-derived macrophages (MDMs). We observed the presence of tRNA in the Nef/eEF1A complexes. Nucleocytoplasmic relocalization of the Nef/eEF1A complexes prevented stress-induced apoptosis of MDMs treated with brefeldin-A. Blockade of stress-induced apoptosis of MDMs treated with HIV-1 Nef resulted from enhanced nucleocytoplasmic transport of eEF1A with decreased release of mitochondrial cytochrome c, and from increased tRNA binding to cytochrome c, ultimately leading to an inhibition of caspase activation. Our results indicate that HIV-1 Nef, through the nucleocytoplasmic relocalization of eEF1A and tRNAs, enhances resistance to stress-induced apoptosis in primary human macrophages.
Collapse
Affiliation(s)
- W Abbas
- Department of Virology, University of Franche-Comte, EA 4266, INSERM IFR 133, CHU Besancon, Besançon F-25030, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Hatic H, Kane MJ, Saykally JN, Citron BA. Modulation of transcription factor Nrf2 in an in vitro model of traumatic brain injury. J Neurotrauma 2012; 29:1188-96. [PMID: 22201269 DOI: 10.1089/neu.2011.1806] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) afflicts approximately 1.4 million people in the United States and TBIs have been labeled a major cause of death and disability on a global scale. Regulatory responses in a variety of neuronal loss conditions have supported the protective involvement of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor. Nrf2 regulates antioxidant enzyme genes, and an increase in Nrf2 expression may counteract oxidative damage that results from TBI. Elevated Nrf2 may ultimately act through the upregulation of downstream target genes such as thioredoxin (Trx) and heat-shock protein-70 (HSP70) and this may reduce neuronal loss. We performed multiple mild biaxial stretch injuries to neuroblastoma cells in culture, and examined the effects of the Nrf2 activator, tert-butylhydroquinone (tBHQ). We also compared the stretch injury to oxidative insult. We confirmed that Trx and HSP70 were upregulated by treatment with tBHQ. We observed that tBHQ protected neurons from either insult, and that this was evident by different measures of cell viability and a decrease in annexin V binding. Neuronal health after insult was improved approximately 50% by tBHQ, indicating that neurons exposed to TBI in vitro can be protected.
Collapse
Affiliation(s)
- Haris Hatic
- Laboratory of Molecular Biology, Research and Development 151, Bay Pines VA Healthcare System, Bay Pines, Florida 33744-4125, USA
| | | | | | | |
Collapse
|
46
|
Tamai T, Uto H, Takami Y, Oda K, Saishoji A, Hashiguchi M, Kumagai K, Kure T, Mawatari S, Moriuchi A, Oketani M, Ido A, Tsubouchi H. Serum manganese superoxide dismutase and thioredoxin are potential prognostic markers for hepatitis C virus-related hepatocellular carcinoma. World J Gastroenterol 2011; 17:4890-8. [PMID: 22171130 PMCID: PMC3235632 DOI: 10.3748/wjg.v17.i44.4890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/17/2011] [Accepted: 10/14/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the clinical significance of oxidative stress markers in patients with hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC).
METHODS: Sixty-four consecutive patients who were admitted to Kagoshima University Medical and Dental Hospital were enrolled in this retrospective study. All patients had chronic liver disease (CLD) due to infection with HCV. Thirty patients with HCV-related HCC, 34 with HCV-related CLD without HCC (non-HCC), and 20 healthy volunteers (HVs) were enrolled. Possible associations between serum manganese superoxide dismutase (MnSOD) and thioredoxin (TRX) levels and clinical parameters or patient prognosis were analyzed over a mean follow-up period of 31.7 mo.
RESULTS: The serum MnSOD levels were significantly higher in patients with HCV-related HCC than in patients without HCC (P = 0.03) or HVs (P < 0.001). Similarly, serum TRX levels were also significantly higher in patients with HCV-related HCC than in patients without HCC (P = 0.04) or HVs (P < 0.01). However, serum levels of MnSOD and TRX were not correlated in patients with HCC. Among patients with HCC, the overall survival rate (OSR) was lower in patients with MnSOD levels ≥ 110 ng/mL than in patients with levels < 110 ng/mL (P = 0.01), and the OSR tended to be lower in patients with TRX levels < 80 ng/mL (P = 0.05). In addition, patient prognosis with HCC was poorest with serum MnSOD levels ≥ 110 ng/mL and serum TRX levels < 80 ng/mL. Furthermore, a multivariate analysis using a Cox proportional hazard model and serum levels of five factors (MnSOD, prothrombin time, serum albumin, serum α-fetoprotein (AFP), and serum des-γ-carboxy prothrombin) revealed that MnSOD levels ≥ 110 ng/mL (risk ratio: 4.12, 95% confidential interval: 1.22-13.88, P = 0.02) and AFP levels ≥ 40 ng/mL (risk ratio: 6.75; 95% confidential interval: 1.70-26.85, P < 0.01) were independent risk factors associated with a poor patient prognosis.
CONCLUSION: Serum MnSOD and TRX levels are potential clinical biomarkers that predict patient prognosis in HCV-related HCC.
Collapse
|
47
|
Carinhas N, Robitaille AM, Moes S, Carrondo MJT, Jenoe P, Oliveira R, Alves PM. Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection. PLoS One 2011; 6:e26444. [PMID: 22039490 PMCID: PMC3196586 DOI: 10.1371/journal.pone.0026444] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/27/2011] [Indexed: 01/24/2023] Open
Abstract
Baculovirus infection of Spodoptera frugiperda cells is a system of choice to produce a range of recombinant proteins, vaccines and, potentially, gene therapy vectors. While baculovirus genomes are well characterized, the genome of S. frugiperda is not sequenced and the virus-host molecular interplay is sparsely known. Herein, we describe the application of stable isotope labeling by amino acids in cell culture (SILAC) to obtain the first comparative proteome quantitation of S. frugiperda cells during growth and early baculovirus infection. The proteome coverage was maximized by compiling a search database with protein annotations from insect species. Of interest were differentially proteins related to energy metabolism, endoplasmic reticulum and oxidative stress, yet not investigated in the scope of baculovirus infection. Further, the reduced expression of key viral-encoded proteins early in the infection cycle is suggested to be related with decreased viral replication at high cell density culture. These findings have implications for virological research and improvement of baculovirus-based bioprocesses.
Collapse
Affiliation(s)
- Nuno Carinhas
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Aaron Mark Robitaille
- Department of Biochemistry, Biozentrum of the University of Basel, Basel, Switzerland
| | - Suzette Moes
- Department of Biochemistry, Biozentrum of the University of Basel, Basel, Switzerland
| | - Manuel José Teixeira Carrondo
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paul Jenoe
- Department of Biochemistry, Biozentrum of the University of Basel, Basel, Switzerland
| | - Rui Oliveira
- REQUIMTE, Systems Biology and Engineering Group (SBE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Marques Alves
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
48
|
Kippner LE, Finn NA, Shukla S, Kemp ML. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase. BMC SYSTEMS BIOLOGY 2011; 5:164. [PMID: 21995976 PMCID: PMC3199260 DOI: 10.1186/1752-0509-5-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cellular clearance of reactive oxygen species is dependent on a network of tightly coupled redox enzymes; this network rapidly adapts to oxidative conditions such as aging, viral entry, or inflammation. Current widespread use of shRNA as a means to perturb specific redox couples may be misinterpreted if the targeted effects are not monitored in the context of potential global remodeling of the redox enzyme network. RESULTS Stable cell lines containing shRNA targets for glutaredoxin 1, thioredoxin 1, or glucose-6-phosphate dehydrogenase were generated in order to examine the changes in expression associated with altering cytosolic redox couples. A qRT PCR array revealed systemic off-target effects of altered antioxidant capacity and reactive oxygen species formation. Empty lentiviral particles generated numerous enzyme expression changes in comparison to uninfected cells, indicating an alteration in antioxidant capacity irrespective of a shRNA target. Of the three redox couples perturbed, glutaredoxin 1, attenuation produced the most numerous off-target effects with 10/28 genes assayed showing statistically significant changes. A multivariate analysis extracted strong co-variance between glutaredoxin 1 and peroxiredoxin 2 which was subsequently experimentally verified. Computational modeling of the peroxide clearance dynamics associated with the remodeling of the redox network indicated that the compromised antioxidant capacity compared across the knockdown cell lines was unequally affected by the changes in expression of off-target proteins. CONCLUSIONS Our results suggest that targeted reduction of redox enzyme expression leads to widespread changes in off-target protein expression, changes that are well-insulated between sub-cellular compartments, but compensatory in both the production of and protection against intracellular reactive oxygen species. Our observations suggest that the use of lentivirus can in itself have off-target effects on dynamic responses to oxidative stress due to the changes in species concentrations.
Collapse
Affiliation(s)
- Linda E Kippner
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
49
|
Thioredoxins 1 and 2 protect retinal ganglion cells from pharmacologically induced oxidative stress, optic nerve transection and ocular hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 664:355-63. [PMID: 20238036 DOI: 10.1007/978-1-4419-1399-9_41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Oxidative damage has been implicated in retinal ganglion cell (RGC) death after optic nerve transection (ONT) and during glaucomatous neuropathy. Here, we analyzed the expression and cell protective role of thioredoxins (TRX), key regulators of the cellular redox state, in RGCs damaged by pharmacologically induced oxidative stress, ONT and elevated intraocular pressure (IOP). The endogenous level of thioredoxin-1 (TRX1) and thioredoxin-2 (TRX2) in RGCs after axotomy and in RGC-5 cells after glutamate/buthionine sulfoximine (BSO) treatment showed upregulation of TRX2, whereas no significant change was observed in TRX1 expression. The increased level TRX-interacting protein (TXNIP) in the retinas was observed 2 and 5 weeks after IOP elevation. TRX1 level was decreased at 2 weeks and more prominently at 5 weeks after IOP increase. No change in TRX2 levels in response to IOP change was observed. Overexpression of TRX1 and TRX2 in RGC-5 treated with glutamate/BSO increased the cell survival by 2- and 3-fold 24 and 48 h after treatment, respectively. Overexpression of these proteins in the retina increased the survival of RGCs by 35 and 135% 7 and 14 days after ONT, respectively. In hypertensive eyes, RGC loss was approximately 27% 5 weeks after IOP elevation compared to control. TRX1 and TRX2 overexpression preserved approximately 45 and 37% of RGCs, respectively, that were destined to die due to IOP increase.
Collapse
|
50
|
Wong ML, Leach JK, Athanasiou KA, Griffiths LG. The role of protein solubilization in antigen removal from xenogeneic tissue for heart valve tissue engineering. Biomaterials 2011; 32:8129-38. [PMID: 21810537 DOI: 10.1016/j.biomaterials.2011.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022]
Abstract
Decellularization techniques have been developed in an attempt to reduce the antigenicity of xenogeneic biomaterials, a critical barrier in their use as tissue engineering scaffolds. However, numerous studies have demonstrated inadequate removal and subsequent persistence of antigens in the biomaterial following decellularization, resulting in an immune response upon implantation. Thus, methods to enhance antigen removal (AR) are critical for the use of xenogeneic biomaterials in tissue engineering and regenerative medicine. In the present study, AR methods incorporating protein solubilization principles were investigated for their ability to reduce antigenicity of bovine pericardium (BP) for heart valve tissue engineering. Bovine pericardium following AR (BP-AR) was assessed for residual antigenicity, tensile properties, and extracellular matrix composition. Increasing protein solubility during AR significantly decreased the residual antigenicity of BP-AR-by an additional 80% compared to hypotonic solution or 60% compared to 0.1% (w/v) SDS decellularization methods. Moreover, solubilizing agents have a dominant effect on reducing the level of residual antigenicity of BP-AR beyond that achieved by AR additives alone. Tested AR methods did not compromise the tensile properties of BP-AR compared to native BP. Furthermore, residual cell nuclei did not correlate to residual antigenicity, demonstrating that residual nuclei counts may not be an appropriate indicator of successful AR. In conclusion, AR strategies promoting protein solubilization significantly reduced residual antigens compared to decellularization methods without compromising biomaterial functional properties. This study demonstrates the importance of solubilizing protein antigens for their removal in the generation of xenogeneic scaffolds.
Collapse
Affiliation(s)
- Maelene L Wong
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|