1
|
Wang W, Zhou Q. Reply to: The effects of ENDOG on lipid metabolism may be tissue-dependent and may not require its translocation from mitochondria. Nat Commun 2024; 15:7122. [PMID: 39168974 PMCID: PMC11339254 DOI: 10.1038/s41467-024-51448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Wenjun Wang
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
2
|
Llovera M, Gouveia L, Zorzano A, Sanchis D. The effects of ENDOG on lipid metabolism may be tissue-dependent and may not require its translocation from mitochondria. Nat Commun 2024; 15:7121. [PMID: 39169002 PMCID: PMC11339265 DOI: 10.1038/s41467-024-51447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Marta Llovera
- Cell Signaling & Apoptosis Group, Universitat de Lleida/IRBLleida, Biomedicine-I Av. Rovira Roure 80, Lleida, 25198, Spain
| | - Leonor Gouveia
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Sanchis
- Cell Signaling & Apoptosis Group, Universitat de Lleida/IRBLleida, Biomedicine-I Av. Rovira Roure 80, Lleida, 25198, Spain.
| |
Collapse
|
3
|
Xie X, Li J, Zhang X, Mo S, Li A, Sun TY, Xie FY, Luo SM, Wang G, Ou XH, Sun QY, Zhou Q. Endonuclease G is dispensable for sperm mitochondrial DNA elimination during spermatogenesis in mice. Biol Open 2024; 13:bio061730. [PMID: 39373150 PMCID: PMC11554256 DOI: 10.1242/bio.061730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Maternal inheritance of mitochondrial DNA (mtDNA) is a widespread phenomenon in eukaryotes. Our earlier research indicated that sperm mtDNA is removed prior to fertilization in mice, and Endonuclease G (ENDOG) orchestrates the degradation of sperm mitochondria in Caenorhabditis elegans. However, the mechanisms underlying sperm mtDNA disposal in mammals remain poorly understood. To investigate the potential role of ENDOG in sperm mtDNA elimination, we created Endog knockout (Endog-/-) mice. Our findings revealed that Endog-/- mice maintained normal spermatogenesis and fertility. Most strikingly, we detected no substantial discrepancy in sperm mtDNA copy number between Endog-/- and control mice. Furthermore, we noted that sperm mtDNA copy numbers were unchanged in both less motile and motile sperm isolated by Percoll gradient centrifugation from Endog-/- and control mice. Taken together, our results indicate that ENDOG is not essential for spermatogenesis or the elimination of sperm mtDNA in mice.
Collapse
Affiliation(s)
- Xuefeng Xie
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Jianshuang Li
- Department of Orthopaedics, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510220, Guangdong, China
- The College of Life Science and Technology,Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xue Zhang
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Shaomei Mo
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Ang Li
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Tian-Yi Sun
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Feng-Yun Xie
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Shi-Ming Luo
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Guang Wang
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiang-Hong Ou
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Qing-Yuan Sun
- Guangdong Second Provincial General Hospital,Postdoctoral Research Station of Basic Medicine, School of Medicine,Jinan University, Guangzhou, 510317, Guangdong, China
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Qinghua Zhou
- Department of Orthopaedics, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510220, Guangdong, China
- The College of Life Science and Technology,Jinan University, Guangzhou, 510632, Guangdong, China
| |
Collapse
|
4
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
5
|
Czarny P, Ziółkowska S, Kołodziej Ł, Watała C, Wigner-Jeziorska P, Bliźniewska-Kowalska K, Wachowska K, Gałecka M, Synowiec E, Gałecki P, Bijak M, Szemraj J, Śliwiński T. Single-Nucleotide Polymorphisms in Genes Maintaining the Stability of Mitochondrial DNA Affect the Occurrence, Onset, Severity and Treatment of Major Depressive Disorder. Int J Mol Sci 2023; 24:14752. [PMID: 37834200 PMCID: PMC10573273 DOI: 10.3390/ijms241914752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
One of the key features of major depressive disorder (MDD, depression) is increased oxidative stress manifested by elevated levels of mtROS, a hallmark of mitochondrial dysfunction, which can arise from mitochondrial DNA (mtDNA) damage. Thus, the current study explores possibility that the single-nucleotide polymorphisms (SNPs) of genes encoding the three enzymes that are thought to be implicated in the replication, repair or degradation of mtDNA, i.e., POLG, ENDOG and EXOG, have an impact on the occurrence, onset, severity and treatment of MDD. Five SNPs were selected: EXOG c.-188T > G (rs9838614), EXOG c.*627G > A (rs1065800), POLG c.-1370T > A (rs1054875), ENDOG c.-394T > C (rs2977998) and ENDOG c.-220C > T (rs2997922), while genotyping was performed on 538 DNA samples (277 cases and 261 controls) using TaqMan probes. All SNPs of EXOG and ENDOG modulated the risk of depression, but the strongest effect was observed for rs1065800, while rs9838614 and rs2977998 indicate that they might influence the severity of symptoms, and, to a lesser extent, treatment effectiveness. Although the SNP located in POLG did not affect occurrence of the disease, the result suggests that it may influence the onset and treatment outcome. These findings further support the hypothesis that mtDNA damage and impairment in its metabolism play a crucial role not only in the development, but also in the treatment of depression.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Łukasz Kołodziej
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| | - Cezary Watała
- Department of Haemostatic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Paulina Wigner-Jeziorska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | | | - Katarzyna Wachowska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland; (K.B.-K.); (K.W.); (P.G.)
| | - Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland; (K.B.-K.); (K.W.); (P.G.)
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| |
Collapse
|
6
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
7
|
Mitochondrial Apoptotic Signaling Involvement in Remodeling During Myogenesis and Skeletal Muscle Atrophy. Semin Cell Dev Biol 2023; 143:66-74. [PMID: 35241367 DOI: 10.1016/j.semcdb.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/11/2023]
Abstract
Mitochondria play a major role in apoptotic signaling. In addition to its role in eliminating dysfunctional cells, mitochondrial apoptotic signaling is implicated as a key component of myogenic differentiation and skeletal muscle atrophy. For example, the activation of cysteine-aspartic proteases (caspases; CASP's) can aid in the initial remodeling stages of myogenic differentiation by cleaving protein kinases, transcription factors, and cytoskeletal proteins. Precise regulation of these signals is needed to prevent excessive cell disassemble and subsequent cell death. During skeletal muscle atrophy, the activation of CASP's and mitochondrial derived nucleases participate in myonuclear fragmentation, a potential loss of myonuclei, and cleavage of contractile structures within skeletal muscle. The B cell leukemia/lymphoma 2 (BCL2) family of proteins play a significant role in regulating myogenesis and skeletal muscle atrophy by governing the initiating steps of mitochondrial apoptotic signaling. This review discusses the role of mitochondrial apoptotic signaling in skeletal muscle remodeling during myogenic differentiation and skeletal muscle pathological states, including aging, disuse, and muscular dystrophy.
Collapse
|
8
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
9
|
Zou B, Shao L, Liu Y, Sun Y, Li X, Dai R. Muscle fiber characteristics and apoptotic factor differences in beef Longissimus lumborum and Psoas major during early postmortem. Meat Sci 2023; 198:109092. [PMID: 36603399 DOI: 10.1016/j.meatsci.2022.109092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/22/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
This study was conducted to study muscle fiber characteristics and apoptotic factor differences within 24 h postmortem of bovine longissimus lumborum (LL) and psoas major (PM). Compared to LL, PM had a higher proportion of type I fibers and lower proportion of type II fibers. PM also had higher ROS levels. For bcl-2 family proteins, anti-apoptotic BCL-2 level was lower and pro-apoptotic BAX level was higher in PM. For caspases, at 1 h postmortem, gene and protein expression level of caspase-3 and caspase-9 was higher in PM than that of LL. The levels of DNA damage apoptotic factors ABL1, AIF and ENDOG was higher in PM than in LL. The results suggested that apoptotic gene and protein expression were different in muscles with different fiber type composition. These findings provided insights into muscle fiber and apoptotic factor differences during early postmortem in bovine PM and LL.
Collapse
Affiliation(s)
- Bo Zou
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Lele Shao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yana Liu
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yingying Sun
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
10
|
Rex DAB, Keshava Prasad TS, Kandasamy RK. Revisiting Regulated Cell Death Responses in Viral Infections. Int J Mol Sci 2022; 23:ijms23137023. [PMID: 35806033 PMCID: PMC9266763 DOI: 10.3390/ijms23137023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
The fate of a viral infection in the host begins with various types of cellular responses, such as abortive, productive, latent, and destructive infections. Apoptosis, necroptosis, and pyroptosis are the three major types of regulated cell death mechanisms that play critical roles in viral infection response. Cell shrinkage, nuclear condensation, bleb formation, and retained membrane integrity are all signs of osmotic imbalance-driven cytoplasmic swelling and early membrane damage in necroptosis and pyroptosis. Caspase-driven apoptotic cell demise is considered in many circumstances as an anti-inflammatory, and some pathogens hijack the cell death signaling routes to initiate a targeted attack against the host. In this review, the selected mechanisms by which viruses interfere with cell death were discussed in-depth and were illustrated by compiling the general principles and cellular signaling mechanisms of virus–host-specific molecule interactions.
Collapse
Affiliation(s)
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Correspondence: (T.S.K.P.); (R.K.K.)
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O Box 505055, United Arab Emirates
- Correspondence: (T.S.K.P.); (R.K.K.)
| |
Collapse
|
11
|
Fahmi T, Wang X, Zhdanov DD, Islam I, Apostolov EO, Savenka AV, Basnakian AG. DNase I Induces Other Endonucleases in Kidney Tubular Epithelial Cells by Its DNA-Degrading Activity. Int J Mol Sci 2020; 21:ijms21228665. [PMID: 33212932 PMCID: PMC7698339 DOI: 10.3390/ijms21228665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/03/2023] Open
Abstract
Endonuclease-mediated DNA fragmentation is both an immediate cause and a result of apoptosis and of all other types of irreversible cell death after injury. It is produced by nine enzymes including DNase I, DNase 2, their homologs, caspase-activated DNase (CAD) and endonuclease G (EndoG). The endonucleases act simultaneously during cell death; however, regulatory links between these enzymes have not been established. We hypothesized that DNase I, the most abundant of endonucleases, may regulate other endonucleases. To test this hypothesis, rat kidney tubular epithelial NRK-52E cells were transfected with the DNase I gene or its inactive mutant in a pECFP expression vector, while control cells were transfected with the empty vector. mRNA expression of all nine endonucleases was studied using real-time RT-PCR; DNA strand breaks in endonuclease genes were determined by PCR and protein expression of the enzymes was measured by Western blotting and quantitative immunocytochemistry. Our data showed that DNase I, but not its inactive mutant, induces all other endonucleases at varying time periods after transfection, causes DNA breaks in endonuclease genes, and elevates protein expression of several endonucleases. This is the first evidence that endonucleases seem to be induced by the DNA-degrading activity of DNase I.
Collapse
Affiliation(s)
- Tariq Fahmi
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Xiaoying Wang
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Dmitry D. Zhdanov
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Intisar Islam
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Eugene O. Apostolov
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Alena V. Savenka
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Alexei G. Basnakian
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
- Central Arkansas Veterans Healthcare System, 4300 West 7th Street, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-352-2870
| |
Collapse
|
12
|
Blasco N, Beà A, Barés G, Girón C, Navaridas R, Irazoki A, López-Lluch G, Zorzano A, Dolcet X, Llovera M, Sanchis D. Involvement of the mitochondrial nuclease EndoG in the regulation of cell proliferation through the control of reactive oxygen species. Redox Biol 2020; 37:101736. [PMID: 33032073 PMCID: PMC7552104 DOI: 10.1016/j.redox.2020.101736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The apoptotic nuclease EndoG is involved in mitochondrial DNA replication. Previous results suggested that, in addition to regulate cardiomyocyte hypertrophy, EndoG could be involved in cell proliferation. Here, by using in vivo and cell culture models, we investigated the role of EndoG in cell proliferation. Genetic deletion of Endog both in vivo and in cultured cells or Endog silencing in vitro induced a defect in rodent and human cell proliferation with a tendency of cells to accumulate in the G1 phase of cell cycle and increased reactive oxygen species (ROS) production. The defect in cell proliferation occurred with a decrease in the activity of the AKT/PKB-GSK-3β-Cyclin D axis and was reversed by addition of ROS scavengers. EndoG deficiency did not affect the expression of ROS detoxifying enzymes, nor the expression of the electron transport chain complexes and oxygen consumption rate. Addition of the micropeptide Humanin to EndoG-deficient cells restored AKT phosphorylation and proliferation without lowering ROS levels. Thus, our results show that EndoG is important for cell proliferation through the control of ROS and that Humanin can restore cell division in EndoG-deficient cells and counteracts the effects of ROS on AKT phosphorylation. Reduced expression of the mitochondrial nuclease EndoG induces ROS production. EndoG deficiency hampers cell proliferation through ROS-dependent signaling. Increased ROS in EndoG-deficient cells limits the Akt/Gsk3/cyclin axis activity. Humanin sustains proliferation despite high ROS levels induced by Endog deficiency. Romo-1 deficiency reduces cell proliferation independently of EndoG and ROS.
Collapse
Affiliation(s)
- Natividad Blasco
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Aida Beà
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Gisel Barés
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Cristina Girón
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, CIBERONC, Spain
| | - Andrea Irazoki
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST) & CIBERDEM & Departament de Bioquímica I Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Guillermo López-Lluch
- Andalusian Center of Developmental Biology, Pablo de Olavide University, Sevilla, 41013, CIBERER, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST) & CIBERDEM & Departament de Bioquímica I Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, CIBERONC, Spain
| | - Marta Llovera
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain
| | - Daniel Sanchis
- Cell Signaling & Apoptosis Group. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLleida, Lleida, 25198, Spain.
| |
Collapse
|
13
|
Bhattacharjee S, Mishra AK. The tale of caspase homologues and their evolutionary outlook: deciphering programmed cell death in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4639-4657. [PMID: 32369588 PMCID: PMC7475262 DOI: 10.1093/jxb/eraa213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD), a genetically orchestrated mechanism of cellular demise, is paradoxically required to support life. As in lower eukaryotes and bacteria, PCD in cyanobacteria is poorly appreciated, despite recent biochemical and molecular evidence that supports its existence. Cyanobacterial PCD is an altruistic reaction to stressful conditions that significantly enhances genetic diversity and inclusive fitness of the population. Recent bioinformatic analysis has revealed an abundance of death-related proteases, i.e. orthocaspases (OCAs) and their mutated variants, in cyanobacteria, with the larger genomes of morphologically complex strains harbouring most of them. Sequence analysis has depicted crucial accessory domains along with the proteolytic p20-like sub-domain in OCAs, predicting their functional versatility. However, the cascades involved in sensing death signals, their transduction, and the downstream expression and activation of OCAs remain to be elucidated. Here, we provide a comprehensive description of the attempts to identify mechanisms of PCD and the existence and importance of OCAs based on in silico approaches. We also review the evolutionary and ecological significance of PCD in cyanobacteria. In the future, the analysis of cyanobacterial PCD will identify novel proteins that have varied functional roles in signalling cascades and also help in understanding the incipient mechanism of PCD morphotype(s) from where eukaryotic PCD might have originated.
Collapse
Affiliation(s)
- Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Gao J, Chau S, Meneghini MD. Viral attenuation by Endonuclease G during yeast gametogenesis: insights into ancestral roles of programmed cell death? MICROBIAL CELL 2019; 7:32-35. [PMID: 32025511 PMCID: PMC6993124 DOI: 10.15698/mic2020.02.705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Viruses and other genetic parasites are present in virtually all forms of life. This chronic condition has led to diverse host cell adaptations such as CRISPR and RNAi, whose functions attenuate these parasites. It is hypothesized that programmed cell death (PCD) is an additional adaptation whose origins reside in viral defense. A core event of apoptotic PCD is the regulated release of mitochondrial inter-membrane space proteins into the cytosol, following which these apoptogenic proteins bring about the demise of the cell. The most well studied example of this is found in animals, where the release of mitochondrial cytochrome C nucleates the formation of the apoptosome, which then activates caspase mediated cell death. The release of mitochondrial proteins contributes to PCD in diverse organisms lacking the apoptosome, indicating that regulated mitochondrial release predates the evolution of canonical apoptosis. Using the budding yeast Saccharomyces cerevisiae, we recently confirmed an early study showing that Nuc1, a homolog of the mitochondrial apoptotic driver protein Endonuclease G, attenuates cytosolic double stranded RNA (dsRNA) viruses, which are endemic to yeast and many other organisms. Viral attenuation by Nuc1 occurs most prominently during meiosis and in association with its developmentally programmed relocation from the mitochondria to the cytosol. Intriguingly, meiotic viral attenuation by Nuc1 occurs within the context of meiotic PCD of the superfluous mother cell that we have also discovered. These findings are discussed here.
Collapse
Affiliation(s)
- Jie Gao
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sabrina Chau
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marc D Meneghini
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Abstract
The programmed release of apoptogenic proteins from mitochondria is a core event of apoptosis, although ancestral roles of this phenomenon are not known. In mammals, one such apoptogenic protein is Endonuclease G (EndoG), a conserved mitochondrial nuclease that fragments the DNA of dying cells. In this work, we show that budding yeast executes meiotically programmed mitochondrial release of an EndoG homolog, Nuc1, during sporulation. In contrast to EndoG's ostensible pro-death function during apoptosis, Nuc1 mitochondrial release is pro-survival, attenuating the cytosolic L-A and Killer double-stranded RNA mycoviruses and protecting meiotic progeny from the catastrophic consequences of their derepression. The protective viral attenuation role of this pathway illuminates a primordial role for mitochondrial release of EndoG, and perhaps of apoptosis itself.
Collapse
|
16
|
Wiehe RS, Gole B, Chatre L, Walther P, Calzia E, Ricchetti M, Wiesmüller L. Endonuclease G promotes mitochondrial genome cleavage and replication. Oncotarget 2018; 9:18309-18326. [PMID: 29719607 PMCID: PMC5915074 DOI: 10.18632/oncotarget.24822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
Endonuclease G (EndoG) is a nuclear-encoded endonuclease, mostly localised in mitochondria. In the nucleus EndoG participates in site-specific cleavage during replication stress and genome-wide DNA degradation during apoptosis. However, the impact of EndoG on mitochondrial DNA (mtDNA) metabolism is poorly understood. Here, we investigated whether EndoG is involved in the regulation of mtDNA replication and removal of aberrant copies. We applied the single-cell mitochondrial Transcription and Replication Imaging Protocol (mTRIP) and PCR-based strategies on human cells after knockdown/knockout and re-expression of EndoG. Our analysis revealed that EndoG stimulates both mtDNA replication initiation and mtDNA depletion, the two events being interlinked and dependent on EndoG's nuclease activity. Stimulation of mtDNA replication by EndoG was independent of 7S DNA processing at the replication origin. Importantly, both mtDNA-directed activities of EndoG were promoted by oxidative stress. Inhibition of base excision repair (BER) that repairs oxidative stress-induced DNA damage unveiled a pronounced effect of EndoG on mtDNA removal, reminiscent of recently discovered links between EndoG and BER in the nucleus. Altogether with the downstream effects on mitochondrial transcription, protein expression, redox status and morphology, this study demonstrates that removal of damaged mtDNA by EndoG and compensatory replication play a critical role in mitochondria homeostasis.
Collapse
Affiliation(s)
| | - Boris Gole
- Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075, Germany
- Present address: Centre for Human Molecular Genetics and Pharmacogenomics, Medical Faculty, University of Maribor, Maribor, SI-2000, Slovenia
| | - Laurent Chatre
- Department of Developmental and Stem Cell Biology, Institute Pasteur, Stem Cells and Development, 75724 Cedex 15, Paris, France
- Team Stability of Nuclear and Mitochondrial DNA, Unit of Stem Cells and Development, CNRS UMR 3738, 75724 Cedex 15, Paris, France
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany
| | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University Hospital, Ulm, 89081, Germany
| | - Miria Ricchetti
- Department of Developmental and Stem Cell Biology, Institute Pasteur, Stem Cells and Development, 75724 Cedex 15, Paris, France
- Team Stability of Nuclear and Mitochondrial DNA, Unit of Stem Cells and Development, CNRS UMR 3738, 75724 Cedex 15, Paris, France
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075, Germany
| |
Collapse
|
17
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, et alGalluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Show More Authors] [Citation(s) in RCA: 4344] [Impact Index Per Article: 620.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
18
|
Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, Chen R, Wang JE, Kam TI, Jeong JS, Xie Z, Neifert S, Qian J, Andrabi SA, Blackshaw S, Zhu H, Song H, Ming GL, Dawson VL, Dawson TM. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 2017; 354:354/6308/aad6872. [PMID: 27846469 PMCID: PMC5134926 DOI: 10.1126/science.aad6872] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/22/2016] [Indexed: 12/26/2022]
Abstract
Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1-dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1-dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation.
Collapse
Affiliation(s)
- Yingfei Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ran An
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology of Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - George K Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Kalyani Nambiar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen M Eacker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - BongWoo Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Bao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maged M Harraz
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Calvin Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer E Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jun Seop Jeong
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhi Xie
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaida A Andrabi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
AKT2 Blocks Nucleus Translocation of Apoptosis-Inducing Factor (AIF) and Endonuclease G (EndoG) While Promoting Caspase Activation during Cardiac Ischemia. Int J Mol Sci 2017; 18:ijms18030565. [PMID: 28272306 PMCID: PMC5372581 DOI: 10.3390/ijms18030565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 02/04/2023] Open
Abstract
The AKT (protein kinase B, PKB) family has been shown to participate in diverse cellular processes, including apoptosis. Previous studies demonstrated that protein kinase B2 (AKT2−/−) mice heart was sensitized to apoptosis in response to ischemic injury. However, little is known about the mechanism and apoptotic signaling pathway. Here, we show that AKT2 inhibition does not affect the development of cardiomyocytes but increases cell death during cardiomyocyte ischemia. Caspase-dependent apoptosis of both the extrinsic and intrinsic pathway was inactivated in cardiomyocytes with AKT2 inhibition during ischemia, while significant mitochondrial disruption was observed as well as intracytosolic translocation of cytochrome C (Cyto C) together with apoptosis-inducing factor (AIF) and endonuclease G (EndoG), both of which are proven to conduct DNA degradation in a range of cell death stimuli. Therefore, mitochondria-dependent cell death was investigated and the results suggested that AIF and EndoG nucleus translocation causes cardiomyocyte DNA degradation during ischemia when AKT2 is blocked. These data are the first to show a previous unrecognized function and mechanism of AKT2 in regulating cardiomyocyte survival during ischemia by inducing a unique mitochondrial-dependent DNA degradation pathway when it is inhibited.
Collapse
|
20
|
Prokhorova EA, Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN. Role of the nucleus in apoptosis: signaling and execution. Cell Mol Life Sci 2015; 72:4593-612. [PMID: 26346492 PMCID: PMC11113907 DOI: 10.1007/s00018-015-2031-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/06/2015] [Accepted: 08/27/2015] [Indexed: 02/06/2023]
Abstract
Since their establishment in the early 1970s, the nuclear changes upon apoptosis induction, such as the condensation of chromatin, disassembly of nuclear scaffold proteins and degradation of DNA, were, and still are, considered as the essential steps and hallmarks of apoptosis. These are the characteristics of the execution phase of apoptotic cell death. In addition, accumulating data clearly show that some nuclear events can lead to the induction of apoptosis. In particular, if DNA lesions resulting from deregulation during the cell cycle or DNA damage induced by chemotherapeutic drugs or viral infection cannot be efficiently eliminated, apoptotic mechanisms, which enable cellular transformation to be avoided, are activated in the nucleus. The functional heterogeneity of the nuclear organization allows the tight regulation of these signaling events that involve the movement of various nuclear proteins to other intracellular compartments (and vice versa) to initiate and govern apoptosis. Here, we discuss how these events are coordinated to execute apoptotic cell death.
Collapse
Affiliation(s)
- Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
21
|
Robertson AB, Robertson J, Fusser M, Klungland A. Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination. Nucleic Acids Res 2014; 42:13280-93. [PMID: 25355512 PMCID: PMC4245937 DOI: 10.1093/nar/gku1032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
5-hydroxymethylcytosine (5hmC) has been suggested to be involved in various nucleic acid transactions and cellular processes, including transcriptional regulation, demethylation of 5-methylcytosine and stem cell pluripotency. We have identified an activity that preferentially catalyzes the cleavage of double-stranded 5hmC-modified DNA. Using biochemical methods we purified this activity from mouse liver extracts and demonstrate that the enzyme responsible for the cleavage of 5hmC-modified DNA is Endonuclease G (EndoG). We show that recombinant EndoG preferentially recognizes and cleaves a core sequence when one specific cytosine within that core sequence is hydroxymethylated. Additionally, we provide in vivo evidence that EndoG catalyzes the formation of double-stranded DNA breaks and that this cleavage is dependent upon the core sequence, EndoG and 5hmC. Finally, we demonstrate that the 5hmC modification can promote conservative recombination in an EndoG-dependent manner.
Collapse
Affiliation(s)
- Adam B Robertson
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Julia Robertson
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Markus Fusser
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway Institute of Basic Medical Sciences, University of Oslo, PO Box 1018 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
22
|
Seo TW, Lee JS, Yoo SJ. Cellular inhibitor of apoptosis protein 1 ubiquitinates endonuclease G but does not affect endonuclease G-mediated cell death. Biochem Biophys Res Commun 2014; 451:644-9. [PMID: 25139236 DOI: 10.1016/j.bbrc.2014.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/09/2014] [Indexed: 11/30/2022]
Abstract
Inhibitors of Apoptosis Proteins (IAPs) are evolutionarily well conserved and have been recognized as the key negative regulators of apoptosis. Recently, the role of IAPs as E3 ligases through the Ring domain was revealed. Using proteomic analysis to explore potential target proteins of DIAP1, we identified Drosophila Endonuclease G (dEndoG), which is known as an effector of caspase-independent cell death. In this study, we demonstrate that human EndoG interacts with IAPs, including human cellular Inhibitor of Apoptosis Protein 1 (cIAP1). EndoG was ubiquitinated by IAPs in vitro and in human cell lines. Interestingly, cIAP1 was capable of ubiquitinating EndoG in the presence of wild-type and mutant Ubiquitin, in which all lysines except K63 were mutated to arginine. cIAP1 expression did not change the half-life of EndoG and cIAP1 depletion did not alter its levels. Expression of dEndoG 54310, in which the mitochondrial localization sequence was deleted, led to cell death that could not be suppressed by DIAP1 in S2 cells. Moreover, EndoG-mediated cell death induced by oxidative stress in HeLa cells was not affected by cIAP1. Therefore, these results indicate that IAPs interact and ubiquitinate EndoG via K63-mediated isopeptide linkages without affecting EndoG levels and EndoG-mediated cell death, suggesting that EndoG ubiquitination by IAPs may serve as a regulatory signal independent of proteasomal degradation.
Collapse
Affiliation(s)
- Tae Woong Seo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji Sun Lee
- Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Soon Ji Yoo
- Department of Biology, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea; Department of Nanopharmaceutical Life Sciences, Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
23
|
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 2014; 171:2000-16. [PMID: 24684389 PMCID: PMC3976618 DOI: 10.1111/bph.12416] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
Abstract
Cells die by a variety of mechanisms. Terminally differentiated cells such as neurones die in a variety of disorders, in part, via parthanatos, a process dependent on the activity of poly (ADP-ribose)-polymerase (PARP). Parthanatos does not require the mediation of caspases for its execution, but is clearly mechanistically dependent on the nuclear translocation of the mitochondrial-associated apoptosis-inducing factor (AIF). The nuclear translocation of this otherwise beneficial mitochondrial protein, occasioned by poly (ADP-ribose) (PAR) produced through PARP overactivation, causes large-scale DNA fragmentation and chromatin condensation, leading to cell death. This review describes the multistep course of parthanatos and its dependence on PAR signalling and nuclear AIF translocation. The review also discusses potential targets in the parthanatos cascade as promising avenues for the development of novel, disease-modifying, therapeutic agents.
Collapse
Affiliation(s)
- Amos A Fatokun
- Institute of Cell Signalling, School of Biomedical Sciences, University of NottinghamNottingham, UK
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
24
|
Aleksandrushkina NI, Vanyushin BF. Endonucleases and apoptosis in animals. BIOCHEMISTRY (MOSCOW) 2013; 77:1436-51. [PMID: 23379520 DOI: 10.1134/s0006297912130032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endonucleases are the main instruments of obligatory DNA degradation in apoptosis. Many endonucleases have marked processive action; initially they split DNA in chromatin into very large domains, and then they perform in it internucleosomal fragmentation of DNA followed by its hydrolysis to small fragments (oligonucleotides). During apoptosis, DNA of chromatin is attacked by many nucleases that are different in activity, specificity, and order of action. The activity of every endonuclease is regulated in the cell through its own regulatory mechanism (metal ions and other effectors, possibly also S-adenosylmethionine). Apoptosis is impossible without endonucleases as far as it leads to accumulation of unnecessary (defective) DNA, disorders in cell differentiation, embryogenesis, the organism's development, and is accompanied by various severe diseases. The interpretation of the structure and functions of endonucleases and of the nature and action of their modulating effectors is important not only for elucidation of mechanisms of apoptosis, but also for regulation and control of programmed cell death, cell differentiation, and development of organisms.
Collapse
Affiliation(s)
- N I Aleksandrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
25
|
CHIP has a protective role against oxidative stress-induced cell death through specific regulation of endonuclease G. Cell Death Dis 2013; 4:e666. [PMID: 23764847 PMCID: PMC3698548 DOI: 10.1038/cddis.2013.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oxidative stress is implicated in carcinogenesis, aging, and neurodegenerative diseases. The E3 ligase C terminus of Hsc-70 interacting protein (CHIP) has a protective role against various stresses by targeting damaged proteins for proteasomal degradation, and thus maintains protein quality control. However, the detailed mechanism by which CHIP protects cells from oxidative stress has not been demonstrated. Here, we show that depletion of CHIP led to elevated Endonuclease G (EndoG) levels and enhanced cell death upon oxidative stress. In contrast, CHIP overexpression reduced EndoG levels, and resulted in reduced or no oxidative stress-induced cell death in cancer cells and primary rat cortical neurons. Under normal conditions Hsp70 mediated the interaction between EndoG and CHIP, downregulating EndoG levels in a Hsp70/proteasome-dependent manner. However, under oxidative stress Hsp70 no longer interacted with EndoG, and the stabilized EndoG translocated to the nucleus and degraded chromosomal DNA. Our data suggest that regulation of the level of EndoG by CHIP in normal conditions may determine the sensitivity to cell death upon oxidative stress. Indeed, injection of H2O2 into the rat brain markedly increased cell death in aged mice compared with young mice, which correlated with elevated levels of EndoG and concurrent downregulation of CHIP in aged mice. Taken together, our findings demonstrate a novel protective mechanism of CHIP against oxidative stress through regulation of EndoG, and provide an opportunity to modulate oxidative stress-induced cell death in cancer and aging.
Collapse
|
26
|
Gannavaram S, Debrabant A. Programmed cell death in Leishmania: biochemical evidence and role in parasite infectivity. Front Cell Infect Microbiol 2012; 2:95. [PMID: 22919685 PMCID: PMC3417670 DOI: 10.3389/fcimb.2012.00095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/21/2012] [Indexed: 11/13/2022] Open
Abstract
Demonstration of features of a programmed cell death (PCD) pathway in protozoan parasites initiated a great deal of interest and debate in the field of molecular parasitology. Several of the markers typical of mammalian apoptosis have been shown in Leishmania which suggested the existence of an apoptosis like death in these organisms. However, studies to elucidate the downstream events associated with phosphotidyl serine exposure, loss of mitochondrial membrane potential, cytochrome c release, and caspase-like activities in cells undergoing such cell death remain an ongoing challenge. Recent advances in genome sequencing, chemical biology should help to solve some of these challenges. Leishmania genetic mutants that lack putative regulators/effectors of PCD pathway should not only help to demonstrate the mechanisms of PCD but also provide tools to better understand the putative role for this pathway in population control and in the establishment of a successful infection of the host.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
27
|
DeLuca SZ, O'Farrell PH. Barriers to male transmission of mitochondrial DNA in sperm development. Dev Cell 2012; 22:660-8. [PMID: 22421049 DOI: 10.1016/j.devcel.2011.12.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/09/2011] [Accepted: 12/25/2011] [Indexed: 11/19/2022]
Abstract
Across the eukaryotic phylogeny, offspring usually inherit their mitochondrial genome from only one of two parents: in animals, the female. Although mechanisms that eliminate paternally derived mitochondria from the zygote have been sought, the developmental stage at which paternal transmission of mitochondrial DNA is restricted is unknown in most animals. Here, we show that the mitochondria of mature Drosophila sperm lack DNA, and we uncover two processes that eliminate mitochondrial DNA during spermatogenesis. Visualization of mitochondrial DNA nucleoids revealed their abrupt disappearance from developing spermatids in a process requiring the mitochondrial nuclease, Endonuclease G. In Endonuclease G mutants, persisting nucleoids are swept out of spermatids by a cellular remodeling process that trims and shapes spermatid tails. Our results show that mitochondrial DNA is eliminated during spermatogenesis, thereby removing the capacity of sperm to transmit the mitochondrial genome to the next generation.
Collapse
Affiliation(s)
- Steven Z DeLuca
- Department of Biochemistry, UCSF, San Francisco, CA 94110, USA
| | | |
Collapse
|
28
|
Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep 2012; 13:322-30. [PMID: 22402666 DOI: 10.1038/embor.2012.19] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/23/2012] [Indexed: 01/24/2023] Open
Abstract
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.
Collapse
|
29
|
Lin JLJ, Nakagawa A, Lin CL, Hsiao YY, Yang WZ, Wang YT, Doudeva LG, Skeen-Gaar RR, Xue D, Yuan HS. Structural insights into apoptotic DNA degradation by CED-3 protease suppressor-6 (CPS-6) from Caenorhabditis elegans. J Biol Chem 2012; 287:7110-20. [PMID: 22223640 PMCID: PMC3293555 DOI: 10.1074/jbc.m111.316075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/30/2011] [Indexed: 11/06/2022] Open
Abstract
Endonuclease G (EndoG) is a mitochondrial protein that traverses to the nucleus and participates in chromosomal DNA degradation during apoptosis in yeast, worms, flies, and mammals. However, it remains unclear how EndoG binds and digests DNA. Here we show that the Caenorhabditis elegans CPS-6, a homolog of EndoG, is a homodimeric Mg(2+)-dependent nuclease, binding preferentially to G-tract DNA in the optimum low salt buffer at pH 7. The crystal structure of CPS-6 was determined at 1.8 Å resolution, revealing a mixed αβ topology with the two ββα-metal finger nuclease motifs located distantly at the two sides of the dimeric enzyme. A structural model of the CPS-6-DNA complex suggested a positively charged DNA-binding groove near the Mg(2+)-bound active site. Mutations of four aromatic and basic residues: Phe(122), Arg(146), Arg(156), and Phe(166), in the protein-DNA interface significantly reduced the DNA binding and cleavage activity of CPS-6, confirming that these residues are critical for CPS-6-DNA interactions. In vivo transformation rescue experiments further showed that the reduced DNase activity of CPS-6 mutants was positively correlated with its diminished cell killing activity in C. elegans. Taken together, these biochemical, structural, mutagenesis, and in vivo data reveal a molecular basis of how CPS-6 binds and hydrolyzes DNA to promote cell death.
Collapse
Affiliation(s)
- Jason L. J. Lin
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Akihisa Nakagawa
- the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Chia Liang Lin
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- the Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, and
| | - Yu-Yuan Hsiao
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Zen Yang
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ting Wang
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lyudmila G. Doudeva
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Riley Robert Skeen-Gaar
- the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Ding Xue
- the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Hanna S. Yuan
- From the Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- the Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
30
|
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19:107-20. [PMID: 21760595 PMCID: PMC3252826 DOI: 10.1038/cdd.2011.96] [Citation(s) in RCA: 1866] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/13/2011] [Indexed: 02/07/2023] Open
Abstract
In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - I Vitale
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - J M Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - E S Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - E H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - M V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - T M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - V L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - W S El-Deiry
- Cancer Institute Penn State, Hershey Medical Center, Philadelphia, PA 17033, USA
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt 60528, Germany
| | - E Gottlieb
- The Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - D R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - O Kepp
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Institut Gustave Roussy, 94805 Villejuif, France
- Université Paris Sud-XI, 94805 Villejuif, France
| | - R A Knight
- Institute of Child Health, University College London, London WC1N 3JH, UK
| | - S Kumar
- Centre for Cancer Biology, SA Pathology, Adelaide, South Australia 5000, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - S A Lipton
- Sanford-Burnham Medical Research Institute, San Diego, CA 92037, USA
- Salk Institute for Biological Studies, , La Jolla, CA 92037, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
- Univerisity of California, San Diego, La Jolla, CA 92093, USA
| | - X Lu
- Ludwig Institute for Cancer Research, Oxford OX3 7DQ, UK
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - W Malorni
- Department of Therapeutic Research and Medicines Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto San Raffaele Sulmona, 67039 Sulmona, Italy
| | - P Mehlen
- Apoptosis, Cancer and Development, CRCL, 69008 Lyon, France
- INSERM, U1052, 69008 Lyon, France
- CNRS, UMR5286, 69008 Lyon, France
- Centre Léon Bérard, 69008 Lyon, France
| | - G Nuñez
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M E Peter
- Northwestern University Feinberg School of Medicine, Chicago, IL 60637, USA
| | - M Piacentini
- Laboratory of Cell Biology, National Institute for Infectious Diseases IRCCS ‘L Spallanzani', 00149 Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata', 00133 Rome, Italy
| | - D C Rubinsztein
- Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Y Shi
- Shanghai Institutes for Biological Sciences, 200031 Shanghai, China
| | - H-U Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - P Vandenabeele
- Department for Molecular Biology, Gent University, 9052 Gent, Belgium
- Department for Molecular Biomedical Research, VIB, 9052 Gent, Belgium
| | - E White
- The Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - J Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - B Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - G Melino
- Biochemical Laboratory IDI-IRCCS, Department of Experimental Medicine, University of Rome ‘Tor Vergata', 00133 Rome, Italy
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - G Kroemer
- INSERM U848, ‘Apoptosis, Cancer and Immunity', 94805 Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, 75005 Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75908 Paris, France
- Université Paris Descartes, Paris 5, 75270 Paris, France
| |
Collapse
|
31
|
Sykora P, Wilson DM, Bohr VA. Repair of persistent strand breaks in the mitochondrial genome. Mech Ageing Dev 2011; 133:169-75. [PMID: 22138376 DOI: 10.1016/j.mad.2011.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/03/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
Abstract
Oxidative DNA damage has been attributed to increased cancer incidence and premature aging phenotypes. Reactive oxygen species (ROS) are unavoidable byproducts of oxidative phosphorylation and are the major contributors of endogenous oxidative damage. To prevent the negative effects of ROS, cells have developed DNA repair mechanisms designed to specifically combat endogenous DNA modifications. The base excision repair (BER) pathway is primarily responsible for the repair of small non-helix distorting lesions and DNA single strand breaks. This repair pathway is found in all organisms, and in mammalian cells, consists of three related sub-pathways: short patch (SP-BER), long patch (LP-BER) and single strand break repair (SSBR). While much is known about nuclear BER, comparatively little is known about this pathway in the mitochondria, particularly the LP-BER and SSBR sub-pathways. There are a number of proteins that have recently been found to be involved in mitochondrial BER, including Cockayne syndrome proteins A and B (CSA and CSB), aprataxin (APTX), tryosyl-DNA phosphodiesterase 1 (TDP1), flap endonuclease 1 (FEN-1) and exonuclease G (EXOG). These significant advances in mitochondrial DNA repair may open new avenues in the management and treatment of a number of neurological disorders associated with mitochondrial dysfunction, and will be reviewed in further detail herein.
Collapse
Affiliation(s)
- Peter Sykora
- NIH Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
32
|
McDermott-Roe C, Ye J, Ahmed R, Sun XM, Serafín A, Ware J, Bottolo L, Muckett P, Cañas X, Zhang J, Rowe GC, Buchan R, Lu H, Braithwaite A, Mancini M, Hauton D, Martí R, García-Arumí E, Hubner N, Jacob H, Serikawa T, Zidek V, Papousek F, Kolar F, Cardona M, Ruiz-Meana M, García-Dorado D, Comella JX, Felkin LE, Barton PJR, Arany Z, Pravenec M, Petretto E, Sanchis D, Cook SA. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 2011; 478:114-8. [PMID: 21979051 PMCID: PMC3189541 DOI: 10.1038/nature10490] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 08/17/2011] [Indexed: 12/31/2022]
Abstract
Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.
Collapse
Affiliation(s)
- Chris McDermott-Roe
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
[Quantitative analysis of the change in neuronal numerical density of the human nucleus dentatus within development]. VOJNOSANIT PREGL 2011; 68:471-5. [PMID: 21818912 DOI: 10.2298/vsp1106471g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIM The role of the dentate nucleus is to coordinate input information coming from the lower olivary complex and various parts of the brainstem of the spinal marrow with the output information from the cerebellar cortex. To better understand functions and relations of the dentate nucleus it is highly important to study its development process. The aim of this study was to determine a possible mathematical model of decrease in neuronal numerical density of the human nucleus dentatus at different stages of development. METHODS This study included 25 fetal brains of different age (12.5-31 weeks of gestational age and one brain of a 6-day-old newborn). The brains were fixed in 10% formalin-alcohol solution and embedded in paraffin. Sections were cut at a thickness of 6, 15, and 30 microm and stained with cresyl violet. Each fifth section was analyzed using a light microscope, and numerical density of dentate nucleus neurons was established using the M42 Weibel's grid system. RESULTS The obtained results revealed a constant decrease in numerical density value. The changes of numerical densities at different stages of development correspond with Boltzmann function principles. The first, almost perpendicular part of Boltzmann function corresponds with the development of the dorsomedial lamina and the appearance of ventrolateral lamina primordium. The second, more or less horizontal part of Boltzmann function corresponds with the development of both laminae. CONCLUSION. The obtained results indicate that Boltzmann function can be considered a mathematical model of change in neuronal numerical density of dentate nucleus at different stage of development.
Collapse
|
34
|
Abstract
Apoptosis-inducing factor (AIF) is a flavin adenine dinucleotide-containing, NADH-dependent oxidoreductase residing in the mitochondrial intermembrane space whose specific enzymatic activity remains unknown. Upon an apoptotic insult, AIF undergoes proteolysis and translocates to the nucleus, where it triggers chromatin condensation and large-scale DNA degradation in a caspase-independent manner. Besides playing a key role in execution of caspase-independent cell death, AIF has emerged as a protein critical for cell survival. Analysis of in vivo phenotypes associated with AIF deficiency and defects, and identification of its mitochondrial, cytoplasmic, and nuclear partners revealed the complexity and multilevel regulation of AIF-mediated signal transduction and suggested an important role of AIF in the maintenance of mitochondrial morphology and energy metabolism. The redox activity of AIF is essential for optimal oxidative phosphorylation. Additionally, the protein is proposed to regulate the respiratory chain indirectly, through assembly and/or stabilization of complexes I and III. This review discusses accumulated data with respect to the AIF structure and outlines evidence that supports the prevalent mechanistic view on the apoptogenic actions of the flavoprotein, as well as the emerging concept of AIF as a redox sensor capable of linking NAD(H)-dependent metabolic pathways to apoptosis.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California-Irvine, CA 92697-3900, USA.
| |
Collapse
|
35
|
Zhang J, Ye J, Altafaj A, Cardona M, Bahi N, Llovera M, Cañas X, Cook SA, Comella JX, Sanchis D. EndoG links Bnip3-induced mitochondrial damage and caspase-independent DNA fragmentation in ischemic cardiomyocytes. PLoS One 2011; 6:e17998. [PMID: 21437288 PMCID: PMC3060094 DOI: 10.1371/journal.pone.0017998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-xL. These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells.
Collapse
Affiliation(s)
- Jisheng Zhang
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | - Junmei Ye
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | | | - Maria Cardona
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | - Núria Bahi
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | - Marta Llovera
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
| | | | - Stuart A. Cook
- Medical Research Council Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Joan X. Comella
- Ciberned, Institut de Neurociències, Hospital Vall d'Hebró, UAB, Barcelona, Spain
| | - Daniel Sanchis
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Universitat de Lleida, Lleida, Spain
- * E-mail:
| |
Collapse
|
36
|
Abstract
In various mammalian developmental processes such as programmed cell death, erythropoiesis, and lens-cell differentiation, chromosomal DNA is degraded into nucleotides by a set of specific nucleases. If this process does not proceed smoothly, the undigested DNA causes various problems. For example, when chromosomal DNA is not degraded in the lens cells, cataracts form. In other cases, undigested DNA in macrophages activates the innate immune system, like a DNA virus, and causes strong inflammation, resulting in anemia, arthritis, and lymphopenia. Here, we discuss when, where, and how DNA is degraded to maintain mammalian homeostasis.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Japan
| | | |
Collapse
|
37
|
Zan H, Zhang J, Al-Qahtani A, Pone EJ, White CA, Lee D, Yel L, Mai T, Casali P. Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions. Mol Immunol 2010; 48:610-22. [PMID: 21111482 DOI: 10.1016/j.molimm.2010.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 10/07/2010] [Accepted: 10/26/2010] [Indexed: 01/02/2023]
Abstract
Immunoglobulin (Ig) class switch DNA recombination (CSR) is the crucial mechanism diversifying the biological effector functions of antibodies. Generation of double-strand DNA breaks (DSBs), particularly staggered DSBs, in switch (S) regions of the upstream and downstream CH genes involved in the specific recombination process is an absolute requirement for CSR. Staggered DSBs would be generated through deamination of dCs on opposite DNA strands by activation-induced cytidine deaminase (AID), subsequent dU deglycosylation by uracil DNA glycosylase (Ung) and abasic site nicking by apurinic/apyrimidic endonuclease. However, consistent with the findings that significant amounts of DSBs can be detected in the IgH locus in the absence of AID or Ung, we have shown in human and mouse B cells that AID generates staggered DSBs not only by cleaving intact double-strand DNA, but also by processing blunt DSB ends generated in an AID-independent fashion. How these AID-independent DSBs are generated is still unclear. It is possible that S region DNA may undergo AID-independent cleavage by structure-specific nucleases, such as endonuclease G (EndoG). EndoG is an abundant nuclease in eukaryotic cells. It cleaves single and double-strand DNA, primarily at dG/dC residues, the preferential sites of DSBs in S region DNA. We show here that EndoG can localize to the nucleus of B cells undergoing CSR and binds to S region DNA, as shown by specific chromatin immunoprecipitation assays. Using knockout EndoG(-/-) mice and EndoG(-/-) B cells, we found that EndoG deficiency resulted in a two-fold reduction in CSR in vivo and in vitro, as demonstrated by reduced cell surface IgG1, IgG2a, IgG3 and IgA, reduced secreted IgG1, reduced circle Iγ1-Cμ, Iγ3-Cμ, Iɛ-Cμ, Iα-Cμ transcripts, post-recombination Iμ-Cγ1, Iμ-Cγ3, Iμ-Cɛ and Iμ-Cα transcripts. In addition to reduced CSR, EndoG(-/-) mice showed a significantly altered spectrum of mutations in IgH J(H)-iEμ DNA. Impaired CSR in EndoG(-/-) B cells did not stem from altered B cell proliferation or apoptosis. Rather, it was associated with significantly reduced frequency of DSBs. Thus, our findings determine a role for EndoG in the generation of S region DSBs and CSR.
Collapse
Affiliation(s)
- Hong Zan
- Institute for Immunology, 3028 Hewitt Hall, University of California, Irvine, CA 92697-4120, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
O'Keefe DD, Edgar BA, Saucedo LJ. EndoGI modulates Notch signaling and axon guidance in Drosophila. Mech Dev 2010; 128:59-70. [PMID: 21055464 DOI: 10.1016/j.mod.2010.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
Abstract
Signaling through the Notch receptor has dramatically different effects depending on cell type and developmental timing. While a myriad of biological systems affected by Notch have been described, the molecular mechanisms by which a generic Notch signal is translated into a cell-type-specific output are less clear. Canonically, the Notch intracellular domain (NICD) translocates into the nucleus upon ligand binding to transcriptionally regulate target genes. In order to generate specificity, therefore, additional factors must exist that modulate NICD activity. Here we describe a novel regulator of the Notch pathway, Endonuclease GI (EndoGI). EndoGI localizes to the nucleus of most cells and activates Notch signaling when overexpressed. In the absence of endoGI, mutant animals are viable, but uncoordinated as motor neurons fail to innervate their appropriate muscle targets. Our data is therefore consistent with EndoGI functioning as a positive regulator of the Notch signaling pathway, playing a critical role during axon guidance of motor neurons.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Av., N. Seattle, WA 98109, USA
| | | | | |
Collapse
|
39
|
Zhou Y, Feng X, Koh DW. Enhanced DNA accessibility and increased DNA damage induced by the absence of poly(ADP-ribose) hydrolysis. Biochemistry 2010; 49:7360-6. [PMID: 20687516 DOI: 10.1021/bi100979j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Poly(ADP-ribose) (PAR) is a therapeutic target primarily identified through inhibiting its synthesis by PAR polymerase-1 (PARP-1). However, inhibiting its hydrolysis by PAR glycohydrolase (PARG) has therapeutic potential in cancer. Unknown is the effect of elevated PAR levels on cellular processes and if this effect can enhance the therapeutic value of PARG. Here, we demonstrate in PARG null embryonic trophoblast stem (TS) cells that the absence of PAR hydrolysis led to PAR-modified histones H1, H2A, and H2B. To determine if this led to the differential vulnerability of DNA to modification, TS cells were treated with DNA-modifying agents. The results demonstrate increased DNA laddering by micrococcal nuclease and an increased amount of DNA intercalation by acridine orange in PARG null-TS cells. This increased access to PARG null-TS cell DNA was further verified by the detection of increased DNA damage following treatment with UV radiation and a minimal dose of the DNA-alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Further, this DNA damage was predominantly unrepaired 12 h after treatment in PARG null-TS cells. Finally, TS cells were treated with DNA-modifying chemotherapeutic agents. The results demonstrate up to 4-fold increases in cell death in PARG null-TS cells after treatment with epirubicin or sub-IC(50) doses of cisplatin and cyclophosphamide. Taken together, we provide compelling evidence that increased DNA access induced by the absence of PARG enhances the efficacy of DNA-modifying agents. Thus, this study demonstrates that greater DNA accessibility, increased DNA damage, and increased cell death all contribute to the PARG null cell phenotype in response to genotoxic stress.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
40
|
Diener T, Neuhaus M, Koziel R, Micutkova L, Jansen-Dürr P. Role of endonuclease G in senescence-associated cell death of human endothelial cells. Exp Gerontol 2010; 45:638-44. [DOI: 10.1016/j.exger.2010.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/22/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
|
41
|
Abstract
Apoptosis is a tightly regulated, cell deletion process that plays an important role in various cardiovascular diseases, such as myocardial infarction, reperfusion injury, and heart failure. Since cardiomyocyte loss is the most important determinant of patient morbidity and mortality, fully understanding the regulatory mechanisms of apoptotic signaling is crucial. In fact, the inhibition of cardiac apoptosis holds promise as an effective therapeutic strategy for cardiovascular diseases. Caspase, a critical enzyme in the induction and execution of apoptosis, has been the main potential target for achieving anti-apoptotic therapy. Studies suggest, however, that a caspase-independent pathway may also play an important role in cardiac apoptosis, although the mechanism and potential significance of caspase-independent apoptosis in the heart remain poorly understood. Herein we discuss the role of apoptosis in various cardiovascular diseases, provide an update on current knowledge about the molecular mechanisms that govern apoptosis, and discuss the clinical implications of anti-apoptotic therapies.
Collapse
Affiliation(s)
- Nam-Ho Kim
- Division of Cardiology, Department of Internal Medicine, Wonkwang University Medical School, Iksan, Korea
| | | |
Collapse
|
42
|
Liu P, Demple B. DNA repair in mammalian mitochondria: Much more than we thought? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:417-426. [PMID: 20544882 DOI: 10.1002/em.20576] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining. In addition, elimination of mutagenic 8-oxodeoxyguanosine triphosphate (8-oxodGTP) helps prevent cell death due to the accumulation of this oxidation product in mtDNA. Although it was suspected for many years that irreparably damaged mtDNA might be targeted for degradation, only recently was clear evidence provided for this hypothesis. Therefore, multiple DNA repair pathways and controlled degradation of mtDNA function together to maintain the integrity of mitochondrial genome.
Collapse
Affiliation(s)
- Pingfang Liu
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
43
|
Dey R, Meneses C, Salotra P, Kamhawi S, Nakhasi HL, Duncan R. Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Mol Microbiol 2010; 77:399-414. [DOI: 10.1111/j.1365-2958.2010.07214.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Pradelli LA, Bénéteau M, Ricci JE. Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 2010; 67:1589-97. [PMID: 20151314 PMCID: PMC11115767 DOI: 10.1007/s00018-010-0285-y] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 12/12/2022]
Abstract
Mitochondria control whether a cell lives or dies. The role mitochondria play in deciding the fate of a cell was first identified in the mid-1990s, because mitochondria-enriched fractions were found to be necessary for activation of death proteases, the caspases, in a cell-free model of apoptotic cell death. Mitochondrial involvement in apoptosis was subsequently shown to be regulated by Bcl-2, a protein that was known to contribute to cancer in specific circumstances. The important role of mitochondria in promoting caspase activation has therefore been a major focus of apoptosis research; however, it is also clear that mitochondria contribute to cell death by caspase-independent mechanisms. In this review, we will highlight recent findings and discuss the mechanism underlying the mitochondrial control of apoptosis and caspase-independent cell death.
Collapse
Affiliation(s)
- Ludivine A. Pradelli
- Inserm, U895, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 3 AVENIR, 06204 Nice Cedex 3, France
- Université de Nice-Sophia-Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Marie Bénéteau
- Inserm, U895, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 3 AVENIR, 06204 Nice Cedex 3, France
- Université de Nice-Sophia-Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Jean-Ehrland Ricci
- Inserm, U895, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 3 AVENIR, 06204 Nice Cedex 3, France
- Université de Nice-Sophia-Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
- Centre Hospitalier Universitaire de Nice, Département d’Anesthésie Réanimation, 06202 Nice Cedex 3, France
| |
Collapse
|
45
|
Xu Z, Zhang J, David KK, Yang ZJ, Li X, Dawson TM, Dawson VL, Koehler RC. Endonuclease G does not play an obligatory role in poly(ADP-ribose) polymerase-dependent cell death after transient focal cerebral ischemia. Am J Physiol Regul Integr Comp Physiol 2010; 299:R215-21. [PMID: 20427721 DOI: 10.1152/ajpregu.00747.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of poly(ADP-ribose) polymerase (PARP) and subsequent translocation of apoptosis-inducing factor contribute to caspase-independent neuronal injury from N-methyl-d-aspartate, oxygen-glucose deprivation, and ischemic stroke. Some studies have implicated endonuclease G in the DNA fragmentation associated with caspase-independent cell death. Here, we compared wild-type and endonuclease G null mice to investigate whether endonuclease G plays a role in the PARP-dependent injury that results from transient focal cerebral ischemia. Latex casts did not reveal differences in the cerebral arterial distribution territory or posterior communicating arterial diameter, and the decrease in laser-Doppler flux during middle cerebral artery occlusion was similar in wild-type and endonuclease G null mice. After 90 min of occlusion and 1 day of reperfusion, similar degrees of nuclear translocation of apoptosis-inducing factor and DNA degradation were evident in male wild-type and null mice. At 3 days of reperfusion, infarct volume and neurological deficit scores were not different between male wild-type and endonuclease G null mice or between female wild-type and endonuclease G null mice. These data demonstrate that endonuclease G is not required for the pathogenesis of transient focal ischemia in either male or female mice. Treatment with a PARP inhibitor decreased infarct volume and deficit scores equivalently in male wild-type and endonuclease G null mice, indicating that the injury in endonuclease G null mice remains dependent on PARP. Thus endonuclease G is not obligatory for executing PARP-dependent injury during ischemic stroke.
Collapse
Affiliation(s)
- Zhenfeng Xu
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Loll B, Gebhardt M, Wahle E, Meinhart A. Crystal structure of the EndoG/EndoGI complex: mechanism of EndoG inhibition. Nucleic Acids Res 2010; 37:7312-20. [PMID: 19783821 PMCID: PMC2790893 DOI: 10.1093/nar/gkp770] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
EndoG is a ubiquitous nuclease that is translocated into the nucleus during apoptosis to participate in DNA degradation. The enzyme cleaves double- and single-stranded DNA and RNA. Related nucleases are found in eukaryotes and prokaryotes, which have evolved sophisticated mechanisms for genome protection against self-antagonizing nuclease activity. Common mechanisms of inhibition are secretion, sequestration into a separate cellular compartment or by binding to protein inhibitors. Although EndoG is silenced by compartmentalization into the mitochondrial intermembrane space, a nucleus-localized protein inhibitor protects cellular polynucleotides from degradation by stray EndoG under non-apoptotic conditions in Drosophila. Here, we report the first three-dimensional structure of EndoG in complex with its inhibitor EndoGI. Although the mechanism of inhibition is reminiscent of bacterial protein inhibitors, EndoGI has evolved independently from a generic protein-protein interaction module. EndoGI is a two-domain protein that binds the active sites of two monomers of EndoG, with EndoG being sandwiched between EndoGI. Since the amino acid sequences of eukaryotic EndoG homologues are highly conserved, this model is valid for eukaryotic dimeric EndoG in general. The structure indicates that the two active sites of EndoG occupy the most remote spatial position possible at the molecular surface and a concerted substrate processing is unlikely.
Collapse
Affiliation(s)
- Bernhard Loll
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
|
48
|
Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta Mol Basis Dis 2010; 1802:167-85. [DOI: 10.1016/j.bbadis.2009.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 12/16/2022]
|
49
|
Abstract
Mitochondria play key roles in activating apoptosis in mammalian cells. Bcl-2 family members regulate the release of proteins from the space between the mitochondrial inner and outer membrane that, once in the cytosol, activate caspase proteases that dismantle cells and signal efficient phagocytosis of cell corpses. Here we review the extensive literature on proteins released from the intermembrane space and consider genetic evidence for and against their roles in apoptosis activation. We also compare and contrast apoptosis pathways in Caenorhabditis elegans, Drosophila melanogaster, and mammals that indicate major mysteries remaining to be solved.
Collapse
Affiliation(s)
- Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
50
|
He B, Lu N, Zhou Z. Cellular and nuclear degradation during apoptosis. Curr Opin Cell Biol 2009; 21:900-12. [PMID: 19781927 PMCID: PMC2787732 DOI: 10.1016/j.ceb.2009.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/27/2009] [Accepted: 08/28/2009] [Indexed: 11/27/2022]
Abstract
Apoptosis ensures quick death and quiet clearance of unwanted or damaged cells, without inducing much, if any, immunological responses from the organism. In metazoan organisms, apoptotic cells are swiftly engulfed by other cells. The degradation of cellular content is initiated in apoptotic cells and completed within engulfing cells. In apoptotic cells, caspase-mediated proteolysis cleaves protein substrates into fragments; nuclear DNA is partially degraded into nucleosomal units; and autophagy potentially contributes to apoptotic cell removal. In engulfing cells, specific signaling pathways promote the sequential fusion of intracellular vesicles with phagosomes and lead to the complete degradation of apoptotic cells in an acidic environment. Phagocytic receptors that initiate the engulfment of apoptotic cells play an additional and crucial role in initiating phagosome maturation through activating these signaling pathways. Here we highlight recent discoveries made in invertebrate models and mammalian systems, focusing on the molecular mechanisms that regulate the efficient degradation of apoptotic cells.
Collapse
Affiliation(s)
- Bin He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nan Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|