1
|
Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2025; 62:6715-6747. [PMID: 39115673 DOI: 10.1007/s12035-024-04412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
Abstract
Neuroinflammation is a pivotal factor in the progression of both age-related and acute neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and stroke. Mitochondria, essential for neuronal health due to their roles in energy production, calcium buffering, and oxidative stress regulation, become increasingly susceptible to dysfunction under conditions of metabolic stress, aging, or injury. Impaired mitophagy in aged or injured neurons leads to the accumulation of dysfunctional mitochondria, which release mitochondrial-derived damage-associated molecular patterns (mtDAMPs). These mtDAMPs act as immune checkpoints, activating pattern recognition receptors (PRRs) and triggering innate immune signaling pathways. This activation initiates inflammatory responses in neurons and brain-resident immune cells, releasing cytokines and chemokines that damage adjacent healthy neurons and recruit peripheral immune cells, further amplifying neuroinflammation and neurodegeneration. Long-term mitochondrial dysfunction perpetuates a chronic inflammatory state, exacerbating neuronal injury and contributing additional immunogenic components to the extracellular environment. Emerging evidence highlights the critical role of mtDAMPs in initiating and sustaining neuroinflammation, with circulating levels of these molecules potentially serving as biomarkers for disease progression. This review explores the mechanisms of mtDAMP release due to mitochondrial dysfunction, their interaction with PRRs, and the subsequent activation of inflammatory pathways. We also discuss the role of mtDAMP-triggered innate immune responses in exacerbating both acute and chronic neuroinflammation and neurodegeneration. Targeting dysfunctional mitochondria and mtDAMPs with pharmacological agents presents a promising strategy for mitigating the initiation and progression of neuropathological conditions.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - SAS Nagar, SAS Nagar, Punjab, India.
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Direksunthorn T, T Ahmed A, Pluetrattanabha N, Uthirapathy S, Ballal S, Singh A, Al-Hetty HRAK, Devi A, Sharma GC, Yumashev A. Ferroptosis in immune chaos: Unraveling its impact on disease and therapeutic potential. J Physiol Biochem 2025:10.1007/s13105-025-01078-7. [PMID: 40237936 DOI: 10.1007/s13105-025-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Since its introduction in 2012, ferroptosis has garnered significant attention from researchers over the past decade. Unlike autophagy and apoptosis, ferroptosis is an atypical iron-dependent programmed cell death that falls under necrosis. It is regulated by various cellular metabolic and signaling processes, which encompass amino acid, lipid, iron, and mitochondrial metabolism. The initiation of ferroptosis occurs through iron-dependent phospholipid peroxidation. Notably, ferroptosis exhibits a dual effect and is associated with various diseases. A significant challenge lies in managing autoimmune disorders with unknown origins that stem from the reactivation of the immune system. Two contributing factors to autoimmunity are the aberrant stimulation of cell death and the inadequate clearance of dead cells, which can expose or release intracellular components that activate the immune response. Ferroptosis is distinct from other forms of cell death, such as apoptosis, necroptosis, autophagy, and pyroptosis, due to its unique morphological, biochemical, and genetic characteristics and specific relationship with cellular iron levels. Recent studies indicate that immune cells can both induce and undergo ferroptosis. To better understand how ferroptosis influences immune responses and its imbalance in disease, a molecular understanding of the relationship between ferroptosis and immunity is essential. Consequently, further research is needed to develop immunotherapeutics that target ferroptosis. This review primarily focuses on the role of ferroptosis in immune-related disorders.
Collapse
Affiliation(s)
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Espinoza N, Papadopoulos V. Role of Mitochondrial Dysfunction in Neuropathy. Int J Mol Sci 2025; 26:3195. [PMID: 40243998 PMCID: PMC11989173 DOI: 10.3390/ijms26073195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Diabetes mellitus is characterized by a state of hyperglycemia, which can lead to severe complications if left untreated or poorly managed. Diabetic peripheral neuropathy (DPN) is one common complication. This condition is characterized by damage to the nerves that supply the legs and feet as well as problems with blood vessels, the heart, or urinary tract. To alleviate pain for patients, clinicians resort to long-term treatment regimens of nerve pain medications, which are usually either anticonvulsants or antidepressants. However, little is understood about the underlying mechanisms of DPN. Many pathogenic pathways have been proposed, one of which is mitochondrial dysfunction. Mitochondrial dysfunction includes a range of possible deficiencies given the number of functions controlled by or located in mitochondria, including their core function of bioenergetics. This review focuses on mitochondrial bioenergetics, including respiration/ATP synthesis and reactive oxygen species (ROS) production, as well as calcium homeostasis and apoptosis, and their potential as targets for the effective treatment of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Coughlin CA, Chahar D, Lekakis M, Youssfi AA, Li L, Roberts E, Gallego NC, Volmar CH, Landgren O, Brothers S, Griswold AJ, Amador C, Bilbao D, Maura F, Schatz JH. Bruton's tyrosine kinase inhibition re-sensitizes multidrug-resistant DLBCL tumors driven by BCL10 gain-of-function mutants to venetoclax. Blood Cancer J 2025; 15:9. [PMID: 39894894 PMCID: PMC11788437 DOI: 10.1038/s41408-025-01214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Disparate pathogenic mechanisms complicate precision-medicine efforts to treat diffuse large B-cell lymphoma (DLBCL), the most common lymphoma diagnosis. Though potentially curable with frontline combination chemoimmunotherapy, DLBCL carries persistently poor prognosis for those with relapsed or refractory (rel/ref) disease, despite recent advances in immunotherapy. Here, we build on recent findings implicating gain-of-function mutations in the BCL10 signaling protein as drivers of resistance to Bruton's tyrosine kinase (BTK) inhibitors. We show mutant BCL10-driven DLBCL is resistant to multiple additional drug classes, demonstrating urgency to derive mechanistically rooted strategies to overcome undruggable BCL10 mutants that stabilize BTK-independent signaling filaments upstream of NF-kB activation. BCL10 mutants promote a cytokine-reinforced positive feedback loop of lymphomagenesis driving not just NF-kB but multiple additional pathways converging on diffuse activation of oncogenic transcription factors. Up-regulation of anti-apoptotic genes increases mitochondrial membrane potential, underlying multidrug resistance. Increased expression of BCL2, BCL2L1 (BCL-XL), and BCL2A1 (BFL1) drives resistance to venetoclax, but expression can be overcome by the potent non-covalent BTK inhibitor pirtobrutinib. Venetoclax plus pirtobrutinib synergized in overcoming resistance and potently killed BCL10-mutant lymphomas in vitro and in vivo. BTK therefore retains key roles protecting DLBCL from apoptosis even when downstream activation of the BCL10 signaling complex activates NF-kB independently.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mice
- Animals
- B-Cell CLL-Lymphoma 10 Protein/genetics
- B-Cell CLL-Lymphoma 10 Protein/metabolism
- Gain of Function Mutation
- Cell Line, Tumor
Collapse
Affiliation(s)
- Caroline A Coughlin
- University of Miami Miller School of Medicine Medical Scientist Training Program, Miami, Fl, USA
| | - Dhanvantri Chahar
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Fl, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Marianna Lekakis
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Fl, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Abdessamad A Youssfi
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Fl, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | | - Evan Roberts
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | | - Claude-Henry Volmar
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Ola Landgren
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Division of Myeloma, Department of Medicine, University of Miami School of Medicine, Miami, Fl, USA
| | - Shaun Brothers
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Catalina Amador
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francesco Maura
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Division of Myeloma, Department of Medicine, University of Miami School of Medicine, Miami, Fl, USA
| | - Jonathan H Schatz
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Fl, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| |
Collapse
|
5
|
Pierce M, Huang Y, Lin A, Franco Nitta C, Kuksin D, Lin B, Chan LLY. A Multiplex Assay to Simultaneously Monitor Apoptosis and Necrosis Using the Cellaca® PLX Image Cytometer. J Fluoresc 2025; 35:1111-1123. [PMID: 38294633 DOI: 10.1007/s10895-024-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Apoptosis is the programmed cell death pathway that is critical for maintaining homeostasis, in which cancer cells can evade to ensure survival. For pharmaceutical drug discovery, it is important to characterize and compare different cancer therapeutics (i.e., small molecules, antibody drugs, cell therapies) that can initiate the process of apoptosis, enabling the identification of potential therapeutic candidates. In this work, we developed and demonstrated a multiplex detection method for monitoring apoptosis and necrosis with Annexin V, Caspase-3, and Propidium Iodide (PI) using the Cellaca® PLX Image Cytometer (Revvity Health Sciences, Inc., Lawrence, MA). First, apoptosis was induced in Jurkat and K562 cell lines with staurosporine over the course of 24 h, where apoptosis and necrosis were assessed at 0, 1, 1.5, 2, 4, 20, and 24 h timepoints. Samples were stained with Hoechst 33342 (total dye), Annexin V-APC (early-stage apoptosis), Caspase-3 488 (late-stage apoptosis), and PI (necrosis) at each timepoint and evaluated using image cytometry. Results showed that apoptotic factors and cascades were successfully detected along the pathway from early- to late-stage apoptosis, and ultimately necrosis. A clear trend was observed analyzing apoptotic and necrotic populations during the first 1.5 h, showing differences of up to ~15% in single Annexin V+ and Caspase-3+ populations in treated Jurkat cells, however, a significant increase in double positive apoptotic/necrotic cells for Annexin V+PI+ and Capase-3+PI+ was not observed until 20 h. Upon further analysis between apoptotic populations only, Annexin V+ only populations were higher than Caspase-3+ only populations by up to ~20% between 0 and 1.5 h. Conversely, K562 cells did not exhibit a notable change in apoptotic and necrotic populations due to low sensitivity to staurosporine. The proposed image cytometric detection method may provide an effective and efficient tool for rapid and reliable simultaneous detection of early- late-stage apoptosis, and necrosis. Therefore, allowing researchers to better characterize and screen potential cancer therapeutic drug candidates for their treatment efficacy in a higher throughput manner.
Collapse
Affiliation(s)
- Mackenzie Pierce
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Yongyang Huang
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Allen Lin
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Carolina Franco Nitta
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Dmitry Kuksin
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Bo Lin
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA.
| |
Collapse
|
6
|
Chen Z, Wang S, Shu T, Xia S, He Y, Yang Y. Progress in Research on Regulated Cell Death in Cerebral Ischaemic Injury After Cardiac Arrest. J Cell Mol Med 2025; 29:e70404. [PMID: 39936900 PMCID: PMC11816164 DOI: 10.1111/jcmm.70404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Ischaemic damage to the brain is the main cause of brain injury after cardiac arrest. The current treatment focuses on early reperfusion, but reperfusion tends to cause reperfusion injury, which is a significant problem. Cell death is an irreversible and normal end to cell life, playing key roles in maintaining the homeostasis and development of multicellular organisms. To date, cell death can be classified into two categories: accidental cell death (ACD) and regulated cell death (RCD). Cell death plays an indispensable role in cerebral ischaemia injury. An increasing number of scholars are exploring the mechanisms and sites of cell death during targeted inhibition of cerebral ischaemia to treat cerebral ischaemia injury. In addition to the established cell death pathways, namely, the apoptosis, pyroptosis and necroptosis pathways, ferroptosis and cuproptosis pathways have been discovered. This article reviews the cell death pathways involved in ischaemic brain injury, discusses the roles played by these death modalities, and suggests therapeutic directions for future targeting of cell death sites.
Collapse
Affiliation(s)
- Zumin Chen
- Huzhou Central HospitalFifth School of Clinical Medicine of Zhejiang Chinese Medical UniversityHuzhouChina
| | - Shuangwei Wang
- Guangdong Engineering Technology Research Center of Emergency and Life Support Medical EquipmentAmbulanc (Shenzhen) Tech. Co., Ltd.ShenzhenChina
| | - Tian Shu
- Huzhou Central HospitalFifth School of Clinical Medicine of Zhejiang Chinese Medical UniversityHuzhouChina
| | - Senlin Xia
- Huzhou Central HospitalFifth School of Clinical Medicine of Zhejiang Chinese Medical UniversityHuzhouChina
| | - Yanmei He
- Huzhou Central HospitalAffiliated Central Hospital of Huzhou UniversityHuzhouChina
| | - Yanhan Yang
- Huzhou Central HospitalFifth School of Clinical Medicine of Zhejiang Chinese Medical UniversityHuzhouChina
| |
Collapse
|
7
|
Zhu L, Liu Y, Wang K, Wang N. Regulated cell death in acute myocardial infarction: Molecular mechanisms and therapeutic implications. Ageing Res Rev 2025; 104:102629. [PMID: 39644925 DOI: 10.1016/j.arr.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Acute myocardial infarction (AMI), primarily caused by coronary atherosclerosis, initiates a series of events that culminate in the obstruction of coronary arteries, resulting in severe myocardial ischemia and hypoxia. The subsequent myocardial ischemia/reperfusion (I/R) injury further aggravates cardiac damage, leading to a decline in heart function and the risk of life-threatening complications. The complex interplay of multiple regulated cell death (RCD) pathways plays a pivotal role in the pathogenesis of AMI. Each RCD pathway is orchestrated by a symphony of molecular regulatory mechanisms, highlighting the dynamic changes and critical roles of key effector molecules. Strategic disruption or inhibition of these molecular targets offers a tantalizing prospect for mitigating or even averting the onset of RCD, thereby limiting the extensive loss of cardiomyocytes and the progression of detrimental myocardial fibrosis. This review systematically summarizes the mechanisms underlying various forms of RCD, provides an in-depth exploration of the pathogenesis of AMI through the lens of RCD, and highlights a range of promising therapeutic targets that hold the potential to revolutionize the management of AMI.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yiyang Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Zhang Y, Yi S, Luan M. Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment. Front Oncol 2025; 15:1519119. [PMID: 39949740 PMCID: PMC11821507 DOI: 10.3389/fonc.2025.1519119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Cell death mechanisms are broadly classified into accidental cell death (ACD) and regulated cell death (RCD). ACD such as necrosis, is an uncontrolled, accidental process, while RCD is tightly regulated by specific signaling pathways and molecular mechanisms. Tumor cells are characterized by their ability to evade cell death and sustain uncontrolled proliferation. The failure of programmed cell death is a key contributor to tumor initiation, progression, and resistance to cancer therapies. Traditionally, research has focused primarily on apoptosis as the dominant form of RCD in cancer. However, emerging evidence highlights the importance of other non-apoptotic forms of RCD, such as pyroptosis, ferroptosis, necroptosis, and parthanatos, in tumorigenesis and treatment response. These pathways are gaining attention for their potential roles in overcoming therapy resistance. In this review, we will discuss the recent advances in the study of non-apoptotic cell death pathways in malignant tumors and explore their therapeutic implications, offering insights into new targets for cancer treatment strategies.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Shiqi Yi
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Mingyuan Luan
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Romero AH, Delgado F. 4-Aminoquinoline as a privileged scaffold for the design of leishmanicidal agents: structure-property relationships and key biological targets. Front Chem 2025; 12:1527946. [PMID: 39981131 PMCID: PMC11841433 DOI: 10.3389/fchem.2024.1527946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/26/2024] [Indexed: 02/22/2025] Open
Abstract
Leishmaniasis is one of the most important neglected tropical diseases, with more than two million new cases annually. It is endemic in several regions worldwide, representing a public health problem for more than 88 countries, in particular in the tropical and subtropical regions of developing countries. At the moment, there are neither approved vaccines nor effective drugs for the treatment of human leishmaniasis for any of its three typical clinical manifestations, and, importantly, the drugs of clinical use have several side effects, require complex administration regimens, present high cost, and are ineffective in many populations due to pathogen resistance. Moreover, beyond the pharmacological exigencies, there are other challenges concerning its parasitic nature, such as its great genetic plasticity and adaptability, enabling it to activate a battery of genes to develop resistance quickly. All these aspects demand the identification and development of new, safe, and effective chemical systems, which must not only be focused on medicinal chemistry and pharmacological aspects but also consider key aspects relative to parasite survival. In this sense, the quinolines and, in particular, 4-aminoquinoline, represent a privileged scaffold for the design of potential leishmanicidal candidates due not only to their versatility to generate highly active and selective compounds but also to their correlation with well-defined biological targets. These facts make it possible to generate safe leishmanicidal agents targeted at key aspects of parasite survival. The current review summarizes the most current examples of leishmanicidal agents based on 4-aminoquinolines focusing the analysis on two essential aspects: (i) structure-property relationship to identify the key pharmacophores and (ii) mode of action focused on key targets in parasite survival (e.g., depolarization of potential mitochondrial, accumulation into macrophage lysosome, and immunostimulation of host cells). With that information, we seek to give useful guidelines for interested researchers to face the drug discovery and development process for selective and potent leishmanicidal agents based on 4-aminoquinolines.
Collapse
Affiliation(s)
- Angel H. Romero
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
10
|
Zhu C, Whitcomb LA, Chicco AJ, Gravely ME, Alcocer HM, Alambarrio DA, Gonzalez JM, Smith CL, Nair MN, Loh HY, Engle TE, Niraula A, Zhai C. Effects of Nicotinamide Riboside Supplementation on Postmortem Mitochondrial Functionality and Apoptotic Activation. Metabolites 2025; 15:31. [PMID: 39852374 PMCID: PMC11766954 DOI: 10.3390/metabo15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Early postmortem mitochondrial function and apoptotic activation affect meat quality development. Nicotinamide riboside (NR) supplementation to pigs prior to harvest can improve pork color stability, but its mechanism remains unclear. This study aimed to evaluate the impact of NR supplementation on early postmortem mitochondrial functionality and apoptosis. METHODS Sixteen pigs (N = 16) were individually fed a control or NR-supplemented diet (30 mg·kg body weight-1·d-1) for 10 days prior to harvest. Longissimus dorsi muscle samples were collected at 45 min and 24 h postmortem and analyzed for mitochondrial functionality using high-resolution respirometry and apoptotic protein abundance (apoptosis regulator Bcl-2-associated X (BAX), apoptotic inducing factor (AIF), and caspase 3 (CASP3)) via immunoblotting. RESULTS NR-supplemented muscle exhibited lower proton leak-associated respiration at 45 min postmortem (p < 0.05), followed by a slower accumulation of mitochondrial outer membrane permeabilization (MOMP; p < 0.05) and a slower loss of mitochondrial integral function (p < 0.05) from 45 min to 24 h postmortem. NR supplementation decreased BAX abundance at 45 min postmortem but increased mature AIF abundance (62 kDa) at 24 h postmortem (p < 0.05). The abundance of CASP3 fragments (~29 kDa) decreased from 45 min to 24 h postmortem, independent of treatment (p < 0.05). CONCLUSIONS NR supplementation demonstrated the potential to protect mitochondrial integral function and alleviate apoptotic activation in early postmortem porcine skeletal muscle, which might contribute to a higher meat color stability in NR-supplemented pork during retail display.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA; (C.Z.); (A.N.)
| | - Luke A. Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.A.W.); (A.J.C.)
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.A.W.); (A.J.C.)
| | - Morgan E. Gravely
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (M.E.G.); (H.M.A.); (D.A.A.); (J.M.G.)
| | - Hanna M. Alcocer
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (M.E.G.); (H.M.A.); (D.A.A.); (J.M.G.)
| | - Daniela A. Alambarrio
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (M.E.G.); (H.M.A.); (D.A.A.); (J.M.G.)
| | - John M. Gonzalez
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (M.E.G.); (H.M.A.); (D.A.A.); (J.M.G.)
| | - Colton L. Smith
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.L.S.); (M.N.N.); (H.Y.L.); (T.E.E.)
| | - Mahesh N. Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.L.S.); (M.N.N.); (H.Y.L.); (T.E.E.)
| | - Huey Yi Loh
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.L.S.); (M.N.N.); (H.Y.L.); (T.E.E.)
| | - Terry E. Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.L.S.); (M.N.N.); (H.Y.L.); (T.E.E.)
| | - Arya Niraula
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA; (C.Z.); (A.N.)
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA; (C.Z.); (A.N.)
| |
Collapse
|
11
|
Willis BS, Mongeon K, Dry H, Neveras IL, Bryan N, Pandya M, Roderick-Richardson J, Xu W, Yang L, Rosen A, Reimer C, Tuskova L, Klener P, Mettetal JT, Lenz G, Barry ST. Potent combination benefit of the AKT inhibitor capivasertib and the BCL-2 inhibitor venetoclax in diffuse large B cell lymphoma. Leukemia 2024; 38:2663-2674. [PMID: 39284898 PMCID: PMC11588655 DOI: 10.1038/s41375-024-02401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/28/2024] [Indexed: 11/27/2024]
Abstract
The therapeutic potential of targeting PI3K/AKT/PTEN signalling in B-cell malignancies remains attractive. Whilst PI3K-α/δ inhibitors demonstrate clinical benefit in certain B-cell lymphomas, PI3K signalling inhibitors have been inadequate in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) in part, due to treatment related toxicities. Clinically, AKT inhibitors exhibit a differentiated tolerability profile offering an alternative approach for treating patients with B-cell malignancies. To explore how AKT inhibition complements other potential therapeutics in the treatment of DLBCL patients, an in vitro combination screen was conducted across a panel of DLCBL cell lines. The AKT inhibitor, capivasertib, in combination with the BCL-2 inhibitor, venetoclax, produced notable therapeutic benefit in preclinical models of DLBCL. Capivasertib and venetoclax rapidly induced caspase and PARP cleavage in GCB-DLBCL PTEN wildtype cell lines and those harbouring PTEN mutations or reduced PTEN protein, driving prolonged tumour growth inhibition in DLBCL cell line and patient derived xenograft lymphoma models. The addition of the rituximab further deepened the durability of capivasertib and venetoclax responses in a RCHOP refractory DLBCL in vivo models. These findings provide preclinical evidence for the rational treatment combination of AKT and BCL-2 inhibitors using capivasertib and venetoclax respectively alongside anti-CD20 antibody supplementation for treatment of patients with DLBCL.
Collapse
Affiliation(s)
| | - Kevin Mongeon
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | - Hannah Dry
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | - Nadezda Bryan
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | | | - Wendan Xu
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Li Yang
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Alan Rosen
- Bioscience, Early Oncology, AstraZeneca, Boston, USA
| | | | - Liliana Tuskova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
12
|
Olszewski M, Maciejewska N, Kallingal A, Chylewska A, Dąbrowska AM, Biedulska M, Makowski M, Padrón JM, Baginski M. Palindromic carbazole derivatives: unveiling their antiproliferative effect via topoisomerase II catalytic inhibition and apoptosis induction. J Enzyme Inhib Med Chem 2024; 39:2302920. [PMID: 38221785 PMCID: PMC10791108 DOI: 10.1080/14756366.2024.2302920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024] Open
Abstract
Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIβ isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.
Collapse
Affiliation(s)
- Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra M. Dąbrowska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Małgorzata Biedulska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, La Laguna, Spain
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
13
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S, Islam S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024; 13:1838. [PMID: 39594587 PMCID: PMC11592877 DOI: 10.3390/cells13221838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cell survival and death are intricately governed by apoptosis, a meticulously controlled programmed cell death. Apoptosis is vital in facilitating embryonic development and maintaining tissue homeostasis and immunological functioning. It is a complex interplay of intrinsic and extrinsic signaling pathways that ultimately converges on executing the apoptotic program. The extrinsic pathway is initiated by the binding of death ligands such as TNF-α and Fas to their respective receptors on the cell surface. In contrast, the intrinsic pathway leads to increased permeability of the outer mitochondrial membrane and the release of apoptogenic factors like cytochrome c, which is regulated by the Bcl-2 family of proteins. Once activated, these pathways lead to a cascade of biochemical events, including caspase activation, DNA fragmentation, and the dismantling of cellular components. Dysregulation of apoptosis is implicated in various disorders, such as cancer, autoimmune diseases, neurodegenerative disorders, and cardiovascular diseases. This article focuses on elucidating the molecular mechanisms underlying apoptosis regulation, to develop targeted therapeutic strategies. Modulating apoptotic pathways holds immense potential in cancer treatment, where promoting apoptosis in malignant cells could lead to tumor regression. This article demonstrates the therapeutic potential of targeting apoptosis, providing options for treating cancer and neurological illnesses. The safety and effectiveness of apoptosis-targeting drugs are being assessed in ongoing preclinical and clinical trials (phase I-III), opening the door for more effective therapeutic approaches and better patient outcomes.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Irfan Qadir Tantry
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, India;
| | - Waleem Ahmad
- Department of Medicine, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Sidra Islam
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Feghaly C, Challita R, Hadir HB, Mobayed T, Bitar TA, Harbi M, Ghorayeb H, El-Hassan R, Bodgi L. Bladder Cancer Treatments in the Age of Personalized Medicine: A Comprehensive Review of Potential Radiosensitivity Biomarkers. Biomark Insights 2024; 19:11772719241297168. [PMID: 39512649 PMCID: PMC11542137 DOI: 10.1177/11772719241297168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Bladder cancer is one of the most frequently diagnosed cancers in men. While cystectomy remains the primary treatment, advances in radiotherapy and chemotherapy have highlighted the value of bladder-preserving strategies, which can also enhance patients' quality of life. Despise these advances, around 20% of patients may still require salvage cystectomy due to tumor radioresistance. This underscores the need to develop radiosensitivity predictive assays. Radiotherapy acts by inducing DNA damage, primarily through DNA double-strand breaks, which can significantly affect treatment outcomes if left unrepaired. In addition to activating DNA repair pathways, the response to radiation also involves the tumor microenvironment, cell death pathways, immune responses and different types of cell death and proliferation receptors. In recent years, personalized medicine, which tailors treatments to individual patients, has gained increasing attention in cancer care. The development of chemo- and radiosensitivity predictive assays has become a key focus of cancer research. Despite the potential impact of such assays on bladder cancer treatment, there is still no reliable test that can help clinicians and informs patients in choosing the best treatment. This review aims to highlight studies that attempted to characterize bladder cancer radiosensitivity and to discuss the potential biomarkers that could be used to develop bladder cancer radiosensitivity predictive assays.
Collapse
Affiliation(s)
- Charbel Feghaly
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rafka Challita
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hanine Bou Hadir
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tala Mobayed
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tarek Al Bitar
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammad Harbi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hala Ghorayeb
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rana El-Hassan
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Larry Bodgi
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon-Bérard, Inserm, Lyon, France
| |
Collapse
|
15
|
Chun C, Byun JM, Cha M, Lee H, Choi B, Kim H, Hong S, Lee Y, Park H, Koh Y, Yoon TY. Profiling protein-protein interactions to predict the efficacy of B-cell-lymphoma-2-homology-3 mimetics for acute myeloid leukaemia. Nat Biomed Eng 2024; 8:1379-1395. [PMID: 39025942 PMCID: PMC11584402 DOI: 10.1038/s41551-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
B-cell-lymphoma-2 (BCL2) homology-3 (BH3) mimetics are inhibitors of protein-protein interactions (PPIs) that saturate anti-apoptotic proteins in the BCL2 family to induce apoptosis in cancer cells. Despite the success of the BH3-mimetic ABT-199 for the treatment of haematological malignancies, only a fraction of patients respond to the drug and most patients eventually develop resistance to it. Here we show that the efficacy of ABT-199 can be predicted by profiling the rewired status of the PPI network of the BCL2 family via single-molecule pull-down and co-immunoprecipitation to quantify more than 20 types of PPI from a total of only 1.2 × 106 cells per sample. By comparing the obtained multidimensional data with BH3-mimetic efficacies determined ex vivo, we constructed a model for predicting the efficacy of ABT-199 that designates two complexes of the BCL2 protein family as the primary mediators of drug effectiveness and resistance, and applied it to prospectively assist therapeutic decision-making for patients with acute myeloid leukaemia. The characterization of PPI complexes in clinical specimens opens up opportunities for individualized protein-complex-targeting therapies.
Collapse
Affiliation(s)
- Changju Chun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Minkwon Cha
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hongwon Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Byungsan Choi
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hyunwoo Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Saem Hong
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Yunseo Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hayoung Park
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea.
| |
Collapse
|
16
|
Lin Z, Cai Z, Li L, Wei Y, Ling Q. c-Jun N-terminal kinase 1/P53 signaling mediates intrinsic apoptosis of largemouth bass (Micropterus salmoides) hepatocytes under heat stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174664. [PMID: 38997017 DOI: 10.1016/j.scitotenv.2024.174664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
The increasing frequency of high-temperature extremes threatens largemouth bass Micropterus salmoides, a significant fish for freshwater ecosystems and aquaculture. Our previous studies at the transcript level suggested that heat stress induces hepatic apoptosis in largemouth bass. In the current study, we sought to validate these findings and further investigate the role of the c-Jun N-terminal kinase (JNK)/P53 signaling in hepatic apoptosis under heat stress. First, heat treatments were conducted in vivo and in vitro under different temperatures: 28 °C, 32 °C, and 37 °C. In primary hepatocytes subjected to heat treatment, cell viability was evaluated via the Cell Counting Kit-8, while mitochondrial membrane potential and nuclear morphology were assessed through JC-1 and Hoechst 33258 staining, respectively. We observed reductions in both cell viability and mitochondrial membrane potential (ΔΨm), along with alterations in nuclear morphology, in primary hepatocytes exposed to heat stress at temperatures of 32 °C and 37 °C. Quantitative real-time PCR revealed significant alterations in the expression profiles of intrinsic apoptosis-related genes within liver tissues under heat stress. Immunohistochemistry analysis revealed that JNK1 signaling increased as the temperature increased, JNK2 expression increased only at 37 °C, and JNK3 expression did not change with temperature. We speculate that JNK1 and JNK2 have pro- and anti-apoptotic effects, respectively. Western blot analysis conducted on cultured hepatocytes further validated these findings. JNK inhibition reduced hepatocyte apoptosis, improved nuclear morphology, and maintained ΔΨm even after 37 °C treatment. These results not only confirm that heat stress led to intrinsic apoptosis of hepatocytes but also indicated that JNK1 could mediate P53 expression and activate caspase-dependent intrinsic apoptosis in largemouth bass hepatocytes under such conditions. This study illuminates the physiological responses of largemouth bass to acute heat stress, offering valuable insights into the potential impacts of climate change on freshwater fishes and the sustainability of aquaculture.
Collapse
Affiliation(s)
- Zijie Lin
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Zhiying Cai
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Lingling Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Yekai Wei
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China
| | - Qufei Ling
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 215000, China.
| |
Collapse
|
17
|
Qian J, Zhao L, Xu L, Zhao J, Tang Y, Yu M, Lin J, Ding L, Cui Q. Cell Death: Mechanisms and Potential Targets in Breast Cancer Therapy. Int J Mol Sci 2024; 25:9703. [PMID: 39273650 PMCID: PMC11395276 DOI: 10.3390/ijms25179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) has become the most life-threatening cancer to women worldwide, with multiple subtypes, poor prognosis, and rising mortality. The molecular heterogeneity of BC limits the efficacy and represents challenges for existing therapies, mainly due to the unpredictable clinical response, the reason for which probably lies in the interactions and alterations of diverse cell death pathways. However, most studies and drugs have focused on a single type of cell death, while the therapeutic opportunities related to other cell death pathways are often neglected. Therefore, it is critical to identify the predominant type of cell death, the transition to different cell death patterns during treatment, and the underlying regulatory mechanisms in BC. In this review, we summarize the characteristics of various forms of cell death, including PANoptosis (pyroptosis, apoptosis, necroptosis), autophagy, ferroptosis, and cuproptosis, and discuss their triggers and signaling cascades in BC, which may provide a reference for future pathogenesis research and allow for the development of novel targeted therapeutics in BC.
Collapse
Affiliation(s)
- Jiangying Qian
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Linna Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ling Xu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jin Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongxu Tang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
18
|
Huang IJ, Baek GT, Siu C, Shadman M. Pharmacological management of chronic lymphocytic leukemia: current and emerging therapies. Expert Opin Pharmacother 2024; 25:1759-1783. [PMID: 39211945 DOI: 10.1080/14656566.2024.2398603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL), characterized by its monoclonal lymphoproliferative nature, is an indolent but incurable malignancy. The treatment landscape of CLL/SLL has drastically transformed in the last decade since the introduction of targeted therapy and immune-effector T-cell therapy. The paradigm shift from chemoimmunotherapy to targeted and cellular therapies was largely driven by improved efficacy and safety. With the success of targeted therapies, novel agents and combinations are rapidly emerging on the horizon. AREAS COVERED In this review, we will summarize clinical evidence supporting current and emerging therapies with emphasis on investigational therapies and novel combinations of commercial agents. Clinical trials were identified via clinicaltrials.gov, and a PubMed literature search was last performed in June 2024. EXPERT OPINION With the availability of more effective and better-tolerated treatments for CLL/SLL, the role of early intervention should be further investigated due to its potential to alter disease course, delay progression, and improve overall survival rates. With many highly effective agents and combinations expected to become commercially available, attention to safety profiles and careful selection of patients for each treatment will be critical, with consideration of comorbidities, logistical issues, and financial burden of treatment.
Collapse
Affiliation(s)
- Ivan J Huang
- Department of Pharmacy, UW Medicine/Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Grace T Baek
- Department of Pharmacy, UW Medicine/Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chloe Siu
- Department of Pharmacy, UW Medicine/Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mazyar Shadman
- Department of Medicine, Division of Hematology and Medical Oncology Division, University of Washington School of Medicine, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
19
|
Wang LY, Liu XJ, Li QQ, Zhu Y, Ren HL, Song JN, Zeng J, Mei J, Tian HX, Rong DC, Zhang SH. The romantic history of signaling pathway discovery in cell death: an updated review. Mol Cell Biochem 2024; 479:2255-2272. [PMID: 37851176 DOI: 10.1007/s11010-023-04873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Cell death is a fundamental physiological process in all living organisms. Processes such as embryonic development, organ formation, tissue growth, organismal immunity, and drug response are accompanied by cell death. In recent years with the development of electron microscopy as well as biological techniques, especially the discovery of novel death modes such as ferroptosis, cuprotosis, alkaliptosis, oxeiptosis, and disulfidptosis, researchers have been promoted to have a deeper understanding of cell death modes. In this systematic review, we examined the current understanding of modes of cell death, including the recently discovered novel death modes. Our analysis highlights the common and unique pathways of these death modes, as well as their impact on surrounding cells and the organism as a whole. Our aim was to provide a comprehensive overview of the current state of research on cell death, with a focus on identifying gaps in our knowledge and opportunities for future investigation. We also presented a new insight for macroscopic intracellular survival patterns, namely that intracellular molecular homeostasis is central to the balance of different cell death modes, and this viewpoint can be well justified by the signaling crosstalk of different death modes. These concepts can facilitate the future research about cell death in clinical diagnosis, drug development, and therapeutic modalities.
Collapse
Affiliation(s)
- Lei-Yun Wang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Xing-Jian Liu
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Qiu-Qi Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Ying Zhu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Hui-Li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China
| | - Jia-Nan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Hui-Xiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Ding-Chao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, People's Republic of China.
| | - Shao-Hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China.
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
20
|
Wu Q, Du J, Bae EJ, Choi Y. Pyroptosis in Skeleton Diseases: A Potential Therapeutic Target Based on Inflammatory Cell Death. Int J Mol Sci 2024; 25:9068. [PMID: 39201755 PMCID: PMC11354934 DOI: 10.3390/ijms25169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Skeletal disorders, including fractures, osteoporosis, osteoarthritis, rheumatoid arthritis, and spinal degenerative conditions, along with associated spinal cord injuries, significantly impair daily life and impose a substantial burden. Many of these conditions are notably linked to inflammation, with some classified as inflammatory diseases. Pyroptosis, a newly recognized form of inflammatory cell death, is primarily triggered by inflammasomes and executed by caspases, leading to inflammation and cell death through gasdermin proteins. Emerging research underscores the pivotal role of pyroptosis in skeletal disorders. This review explores the pyroptosis signaling pathways and their involvement in skeletal diseases, the modulation of pyroptosis by other signals in these conditions, and the current evidence supporting the therapeutic potential of targeting pyroptosis in treating skeletal disorders, aiming to offer novel insights for their management.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Jiacheng Du
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
21
|
Wang X, Yang Y, Zhao S, Wu D, Li L, Zhao Z. Chitosan-based biomaterial delivery strategies for hepatocellular carcinoma. Front Pharmacol 2024; 15:1446030. [PMID: 39161903 PMCID: PMC11330802 DOI: 10.3389/fphar.2024.1446030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Hepatocellular carcinoma accounts for 80% of primary liver cancers, is the most common primary liver malignancy. Hepatocellular carcinoma is the third leading cause of tumor-related deaths worldwide, with a 5-year survival rate of approximately 18%. Chemotherapy, although commonly used for hepatocellular carcinoma treatment, is limited by systemic toxicity and drug resistance. Improving targeted delivery of chemotherapy drugs to tumor cells without causing systemic side effects is a current research focus. Chitosan, a biopolymer derived from chitin, possesses good biocompatibility and biodegradability, making it suitable for drug delivery. Enhanced chitosan formulations retain the anti-tumor properties while improving stability. Chitosan-based biomaterials promote hepatocellular carcinoma apoptosis, exhibit antioxidant and anti-inflammatory effects, inhibit tumor angiogenesis, and improve extracellular matrix remodeling for enhanced anti-tumor therapy. Methods We summarized published experimental papers by querying them. Results and Conclusions This review discusses the physicochemical properties of chitosan, its application in hepatocellular carcinoma treatment, and the challenges faced by chitosan-based biomaterials.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Di Wu
- First Digestive Endoscopy Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Le Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Liu R, Hong W, Hou D, Huang H, Duan C. Decoding Organelle Interactions: Unveiling Molecular Mechanisms and Disease Therapies. Adv Biol (Weinh) 2024; 8:e2300288. [PMID: 38717793 DOI: 10.1002/adbi.202300288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/05/2024] [Indexed: 07/13/2024]
Abstract
Organelles, substructures in the cytoplasm with specific morphological structures and functions, interact with each other via membrane fusion, membrane transport, and protein interactions, collectively termed organelle interaction. Organelle interaction is a complex biological process involving the interaction and regulation of several organelles, including the interaction between mitochondria-endoplasmic reticulum, endoplasmic reticulum-Golgi, mitochondria-lysosomes, and endoplasmic reticulum-peroxisomes. This interaction enables intracellular substance transport, metabolism, and signal transmission, and is closely related to the occurrence, development, and treatment of many diseases, such as cancer, neurodegenerative diseases, and metabolic diseases. Herein, the mechanisms and regulation of organelle interactions are reviewed, which are critical for understanding basic principles of cell biology and disease development mechanisms. The findings will help to facilitate the development of novel strategies for disease prevention, diagnosis, and treatment opportunities.
Collapse
Affiliation(s)
- Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
23
|
Bae H, Jang Y, Karki R, Han JH. Implications of inflammatory cell death-PANoptosis in health and disease. Arch Pharm Res 2024; 47:617-631. [PMID: 38987410 DOI: 10.1007/s12272-024-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Regulated cell death (RCD) pathways, such as pyroptosis, apoptosis, and necroptosis, are essential for maintaining the body's balance, defending against pathogens, and eliminating abnormal cells that could lead to diseases like cancer. Although these pathways operate through distinct mechanisms, recent genetic and pharmacological studies have shown that they can interact and influence each other. The concept of "PANoptosis" has emerged, highlighting the interplay between pyroptosis, apoptosis, and necroptosis, especially during cellular responses to infections. This article provides a concise overview of PANoptosis and its molecular mechanisms, exploring its implications in various diseases. The review focuses on the extensive interactions among different RCD pathways, emphasizing the role of PANoptosis in infections, cytokine storms, inflammatory diseases, and cancer. Understanding PANoptosis is crucial for developing novel treatments for conditions involving infections, sterile inflammations, and cancer.
Collapse
Affiliation(s)
- Hyun Bae
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea
| | - Yeonseo Jang
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea.
- Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal.
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, Republic of Korea.
| |
Collapse
|
24
|
Cauwelier C, de Ridder I, Bultynck G. Recent advances in canonical versus non-canonical Ca 2+-signaling-related anti-apoptotic Bcl-2 functions and prospects for cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119713. [PMID: 38521468 DOI: 10.1016/j.bbamcr.2024.119713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cell fate is tightly controlled by a continuous balance between cell survival and cell death inducing mechanisms. B-cell lymphoma 2 (Bcl-2)-family members, composed of effectors and regulators, not only control apoptosis at the level of the mitochondria but also by impacting the intracellular Ca2+ homeostasis and dynamics. On the one hand, anti-apoptotic protein Bcl-2, prevents mitochondrial outer membrane permeabilization (MOMP) by scaffolding and neutralizing proapoptotic Bcl-2-family members via its hydrophobic cleft (region composed of BH-domain 1-3). On the other hand, Bcl-2 suppress pro-apoptotic Ca2+ signals by binding and inhibiting IP3 receptors via its BH4 domain, which is structurally exiled from the hydrophobic cleft by a flexible loop region (FLR). As such, Bcl-2 prevents excessive Ca2+ transfer from ER to mitochondria. Whereas regulation of both pathways requires different functional regions of Bcl-2, both seem to be connected in cancers that overexpress Bcl-2 in a life-promoting dependent manner. Here we discuss the anti-apoptotic canonical and non-canonical role, via calcium signaling, of Bcl-2 in health and cancer and evolving from this the proposed anti-cancer therapies with their shortcomings. We also argue how some cancers, with the major focus on diffuse large B-cell lymphoma (DLBCL) are difficult to treat, although theoretically prime marked for Bcl-2-targeting therapeutics. Further work is needed to understand the non-canonical functions of Bcl-2 also at organelles beyond the mitochondria, the interaction partners outside the Bcl-2 family as well as their ability to target or exploit these functions as therapeutic strategies in diseases.
Collapse
Affiliation(s)
- Claire Cauwelier
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ian de Ridder
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
25
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
26
|
Lu YC, Chiang CY, Hsu YW, Chen CJ, Chen WY, Tseng CC, Deng LH, Chen SP, Kuan YH. Cyclizine induces cytotoxicity and apoptosis in macrophages through the extrinsic and intrinsic apoptotic pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:2970-2979. [PMID: 38314619 DOI: 10.1002/tox.24168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Cyclizine, an over-the-counter and prescription antihistamine, finds widespread application in the prevention and treatment of motion sickness, encompassing symptoms such as nausea, vomiting, dizziness, along with its effectiveness in managing vertigo. However, the overuse or misuse of cyclizine may lead to hallucinations, confusion, tachycardia, and hypertension. The molecular mechanisms underlying cyclizine-induced cytotoxicity and apoptosis remain unclear. During the 24 h incubation duration, RAW264.7 macrophages were exposed to different concentrations of cyclizine. Cytotoxicity was assessed through the lactate dehydrogenase assay. Flow cytometry employing annexin V-fluorescein isothiocyanate and propidium iodide was utilized to evaluate apoptosis and necrosis. Caspase activity and mitochondrial dysfunction were evaluated through a fluorogenic substrate assay and JC-1 dye, respectively. Flow cytometry employing fluorogenic antibodies was utilized to evaluate the release of cytochrome c and expression of death receptor, including tumor necrosis factor-α receptor and Fas receptor. Western blotting was utilized to evaluate the expression of the Bcl2 and Bad apoptotic regulatory proteins. The findings unveiled from the present study demonstrated that cyclizine exerted a concentration-dependent effect on RAW264.7 macrophages, leading to the induction of cytotoxicity, apoptosis, and necrosis. This compound further activated the intrinsic apoptotic pathway by inducing mitochondrial dysfunction, Bcl2/Bad exchange expression, cytochrome c liberation, and activation of caspases contained caspase 3, 8, and 9. Moreover, the activation of the extrinsic apoptotic pathway was observed as cyclizine induced the upregulation of death receptors and increased caspase activities. Based on our investigations, it can be inferred that cyclizine prompts cytotoxicity and apoptosis in RAW264.7 macrophages in a concentration-dependent manner by triggering both the intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Yin-Che Lu
- Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
- Division of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chen-Yu Chiang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Wei Hsu
- Department of Pharmacy, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Chi Tseng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Dermatology, Shiso Municipal Hospital, Yamasakicho Shikazawa, Hyogo, Japan
| | - Lie-Hua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
- Department of Dermatology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
28
|
Boccellato C, Rehm M. TRAIL-induced apoptosis and proteasomal activity - Mechanisms, signalling and interplay. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119688. [PMID: 38368955 DOI: 10.1016/j.bbamcr.2024.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Programmed cell death, in particular apoptosis, is essential during development and tissue homeostasis, and also is the primary strategy to induce cancer cell death by cytotoxic therapies. Precision therapeutics targeting TRAIL death receptors are being evaluated as novel anti-cancer agents, while in parallel highly specific proteasome inhibitors have gained approval as drugs. TRAIL-dependent signalling and proteasomal control of cellular proteostasis are intricate processes, and their interplay can be exploited to enhance therapeutic killing of cancer cells in combination therapies. This review provides detailed insights into the complex signalling of TRAIL-induced pathways and the activities of the proteasome. It explores their core mechanisms of action, pharmaceutical druggability, and describes how their interplay can be strategically leveraged to enhance cell death responses in cancer cells. Offering this comprehensive and timely overview will allow to navigate the complexity of the processes governing cell death mechanisms in TRAIL- and proteasome inhibitor-based treatment conditions.
Collapse
Affiliation(s)
- Chiara Boccellato
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany.
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart 70569, Germany.
| |
Collapse
|
29
|
Chatzikalil E, Roka K, Diamantopoulos PT, Rigatou E, Avgerinou G, Kattamis A, Solomou EE. Venetoclax Combination Treatment of Acute Myeloid Leukemia in Adolescents and Young Adult Patients. J Clin Med 2024; 13:2046. [PMID: 38610812 PMCID: PMC11012941 DOI: 10.3390/jcm13072046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past two decades, the prognosis in adolescents and young adults (AYAs) diagnosed with acute myeloid leukemia (AML) has significantly improved. The standard intensive cytotoxic treatment approach for AYAs with AML, consisting of induction chemotherapy with anthracycline/cytarabine combination followed by consolidation chemotherapy or stem cell transplantation, has lately been shifting toward novel targeted therapies, mostly in the fields of clinical trials. One of the most recent advances in treating AML is the combination of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax with hypomethylating agents, which has been studied in elderly populations and was approved by the Food and Drug Administration (FDA) for patients over 75 years of age or patients excluded from intensive chemotherapy induction schemas due to comorbidities. Regarding the AYA population, venetoclax combination therapy could be a therapeutic option for patients with refractory/relapsed (R/R) AML, although data from real-world studies are currently limited. Venetoclax is frequently used by AYAs diagnosed with advanced hematologic malignancies, mainly acute lymphoblastic leukemia and myelodysplastic syndromes, as a salvage therapeutic option with considerable efficacy and safety. Herein, we aim to summarize the evidence obtained from clinical trials and observational studies on venetoclax use in AYAs with AML. Based on the available evidence, venetoclax is a safe and effective therapeutic option for R/R AML AYA patients. However, further research in larger cohorts is needed to confirm these data, establishing the benefits of a venetoclax-based regimen for this special population.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Efthymia Rigatou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
30
|
Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:223-247. [PMID: 38782500 DOI: 10.1016/bs.ircmb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
31
|
Killarney ST, Tait SWG, Green DR, Wood KC. Sublethal engagement of apoptotic pathways in residual cancer. Trends Cell Biol 2024; 34:225-238. [PMID: 37573235 PMCID: PMC10858294 DOI: 10.1016/j.tcb.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Cytotoxic chemo-, radio-, and targeted therapies frequently elicit apoptotic cancer cell death. Mitochondrial outer membrane permeabilization (MOMP) is a critical, regulated step in this apoptotic pathway. The residual cancer cells that survive treatment serve as the seeds of eventual relapse and are often functionally characterized by their transient tolerance of multiple therapeutic treatments. New studies suggest that, in these cells, a sublethal degree of MOMP, reflective of incomplete apoptotic commitment, is widely observed. Here, we review recent evidence that this sublethal MOMP drives the aggressive features of residual cancer cells while templating a host of unique vulnerabilities, highlighting how failed apoptosis may counterintuitively enable new therapeutic strategies to target residual disease (RD).
Collapse
Affiliation(s)
- Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Platinum(IV) Prodrugs Incorporating an Indole-Based Derivative, 5-Benzyloxyindole-3-Acetic Acid in the Axial Position Exhibit Prominent Anticancer Activity. Int J Mol Sci 2024; 25:2181. [PMID: 38396859 PMCID: PMC10888562 DOI: 10.3390/ijms25042181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Kinetically inert platinum(IV) complexes are a chemical strategy to overcome the impediments of standard platinum(II) antineoplastic drugs like cisplatin, oxaliplatin and carboplatin. In this study, we reported the syntheses and structural characterisation of three platinum(IV) complexes that incorporate 5-benzyloxyindole-3-acetic acid, a bioactive ligand that integrates an indole pharmacophore. The purity and chemical structures of the resultant complexes, P-5B3A, 5-5B3A and 56-5B3A were confirmed via spectroscopic means. The complexes were evaluated for anticancer activity against multiple human cell lines. All complexes proved to be considerably more active than cisplatin, oxaliplatin and carboplatin in most cell lines tested. Remarkably, 56-5B3A demonstrated the greatest anticancer activity, displaying GI50 values between 1.2 and 150 nM. Enhanced production of reactive oxygen species paired with the decline in mitochondrial activity as well as inhibition of histone deacetylase were also demonstrated by the complexes in HT29 colon cells.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
- Ingham Institute, Sydney, NSW 2170, Australia;
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Jennette A. Sakoff
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Kieran F. Scott
- Ingham Institute, Sydney, NSW 2170, Australia;
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| |
Collapse
|
33
|
Le-Trung N, Kanaori K, Waku T, Dang TTP, Kamei K. Acetylmelodorinol isolated from Sphaerocoryne affinis seeds inhibits cell proliferation and activates apoptosis on HeLa cells. BMC Complement Med Ther 2024; 24:59. [PMID: 38281034 PMCID: PMC10821558 DOI: 10.1186/s12906-024-04357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Cervical cancer is a major global health concern with a high prevalence in low- and middle-income countries. Natural products, particularly plant-derived compounds, have shown immense potential for developing anticancer drugs. In this study, we aimed to investigate the anticancer properties of the pericarp and seeds of Sphaerocoryne affinis fruit on human cervical carcinoma cells (HeLa) and isolate the bioactive compound from the active fraction. METHODS We prepared solvent fractions from the ethanol extracts of the pericarp and the seed portion by partitioning and assessing their cytotoxicity on HeLa cells. Subsequently, we collected acetylmelodorinol (AM), an anticancer compound, from the ethyl acetate fraction of seeds and determined its structure using nuclear magnetic resonance. We employed cytotoxicity assay, western blotting, Annexin V apoptosis assay, measurement of intracellular reactive oxygen species (ROS) levels, 4',6-diamidino-2-phenylindole (DAPI) staining, and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, to evaluate the anticancer properties of AM on HeLa. RESULTS The solvent fractions from the seed displayed considerably higher cytotoxic activity against HeLa cells than those of the pericarp. We isolated and identified acetylmelodorinol as an anticancer compound from the ethyl acetate fraction from S. affinis seed extract. Treatment with acetylmelodorinol inhibited HeLa cell proliferation with an IC50 value of 2.62 ± 0.57 µg/mL. Furthermore, this study demonstrated that acetylmelodorinol treatment disrupted cell cycle progression by reducing the expression of cyclin E, CDK1/2, and AKT/mTOR pathways, increasing the intracellular ROS levels, reducing BCL-2/BCL-XL expression, causing DNA fragmentation and nuclear shrinkage, and triggering apoptosis through caspase 3 and 9 activation in a dose-and time-dependent manner. CONCLUSION In contrast to previous reports, this study focuses on the inhibitory effects of AM on the AKT/mTOR pathway, leading to a reduction in cell proliferation in cervical cancer cells. Our findings highlight the promising potential of acetylmelodorinol as an effective treatment for cervical cancer. Additionally, this study establishes a foundation for investigating the molecular mechanisms underlying AM's properties, fostering further exploration into plant-based cancer therapies.
Collapse
Affiliation(s)
- Nghia Le-Trung
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Kenji Kanaori
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Tomonori Waku
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Thao Thi Phuong Dang
- Laboratory of Molecular Biotechnology, Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| |
Collapse
|
34
|
Kulyar MFEA, Mo Q, Yao W, Li Y, Nawaz S, Loon KS, Ahmed AE, Alsaegh AA, Al Syaad KM, Akhtar M, Bhutta ZA, Li J, Qi D. Modulation of apoptosis and Inflammasome activation in chondrocytes: co-regulatory role of Chlorogenic acid. Cell Commun Signal 2024; 22:2. [PMID: 38169388 PMCID: PMC10759508 DOI: 10.1186/s12964-023-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The B-cell lymphoma 2 (Bcl-2) protein regulates programmed cell death throughout the disease conditions by upholding apoptotic pathways. However, the mechanism by which it's expressed in chondrocytes still needs to be studied in chondrocyte-related disorders. Additionally, exploring the potential therapeutic role of Chlorogenic acid (CGA) in confluence with Bcl-2 modulation is of significant interest. METHODS In vivo and in vitro studies were performed according to our previous methodologies. The chondrocytes were cultured in specific growth media under standard conditions after expression verification of different microRNAs through high-throughput sequencing and verification of Bcl-2 involvement in tibial growth plates. The effect of Bcl-2 expression was investigated by transfecting chondrocytes with miR-460a, siRNA, and their negative controls alone or in combination with CGA. The RNA was extracted and subjected to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot analysis and immunofluorescence assays were performed to visualize the intracellular localization of Bcl-2 and associated proteins related to apoptotic and inflammasome pathways. Moreover, apoptosis through flow cytometry was also performed to understand the modulation of concerning pathways. RESULTS The suppression of Bcl-2 induced higher apoptosis and mitochondrial dysfunction, leading to IL-1β maturation and affecting the inflammasome during chondrocyte proliferation. Conversely, overexpression attenuated the activation, as evidenced by reduced caspase activity and IL-1β maturation. In parallel, CGA successfully reduced siRNA-induced apoptosis by decreasing Cytochrome C (Cyto C) release from the mitochondria to the cytoplasm, which in turn decreased Caspase-3 and Caspase-7 cleavage with Bcl-2-associated X protein (Bax). Furthermore, siBcl-2 transfection and CGA therapy increased chondrocyte proliferation and survival. The CGA also showed a promising approach to maintaining chondrocyte viability by inhibiting siRNA-induced apoptosis. CONCLUSIONS Targeting Bcl-2-mediated regulation might be a possible treatment for chondrocyte-related conditions. Moreover, these results add knowledge of the complicated processes underlying chondrocyte function and the pathophysiology of related diseases, highlighting the significance of target specific therapies. Video Abstract.
Collapse
Affiliation(s)
- Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, 92521, USA
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Aiman A Alsaegh
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zeeshan Ahmad Bhutta
- Laboratory of Veterinary Immunology and Biochemistry, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Crabtree A, Neikirk K, Marshall AG, Vang L, Whiteside AJ, Williams Q, Altamura CT, Owens TC, Stephens D, Shao B, Koh A, Killion M, Lopez EG, Lam J, Rodriguez B, Mungai M, Stanley J, Dean ED, Koh HJ, Gaddy JA, Scudese E, Sweetwyne MT, Davis J, Zaganjor E, Murray SA, Katti P, Damo SM, Vue Z, Hinton A. Defining Mitochondrial Cristae Morphology Changes Induced by Aging in Brown Adipose Tissue. Adv Biol (Weinh) 2024; 8:e2300186. [PMID: 37607124 PMCID: PMC10869235 DOI: 10.1002/adbi.202300186] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.
Collapse
Affiliation(s)
- Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron J Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Trinity Celeste Owens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ben Rodriguez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jade Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jennifer A Gaddy
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, 22290-240, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Rio de Janeiro, 22290-240, Brazil
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburg, PA, 15261, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
36
|
Xie Y, Zhao G, Lei X, Cui N, Wang H. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol 2023; 14:1297408. [PMID: 38164133 PMCID: PMC10757967 DOI: 10.3389/fimmu.2023.1297408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Li J, Han X, Sun M, Li W, Yang G, Chen H, Guo B, Li J, Li X, Wang H. Caspase-9 inhibition triggers Hsp90-based chemotherapy-mediated tumor intrinsic innate sensing and enhances antitumor immunity. J Immunother Cancer 2023; 11:e007625. [PMID: 38056894 PMCID: PMC10711858 DOI: 10.1136/jitc-2023-007625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Antineoplastic chemotherapies are dramatically efficient when they provoke immunogenic cell death (ICD), thus inducing an antitumor immune response and even tumor elimination. However, activated caspases, the hallmark of most cancer chemotherapeutic agents, render apoptosis immunologically silent. Whether they are dispensable for chemotherapy-induced cell death and the apoptotic clearance of cells in vivo is still elusive. METHODS A rational cell-based anticancer drug library screening was performed to explore the immunogenic apoptosis pathway and therapeutic targets under apoptotic caspase inhibition. Based on this screening, the potential of caspase inhibition in enhancing chemotherapy-induced antitumor immunity and the mechanism of actions was investigated by various cells and mouse models. RESULTS Heat shock protein 90 (Hsp90) inhibition activates caspases in tumor cells to produce abundant genomic and mitochondrial DNA fragments and results in cell apoptosis. Meanwhile, it hijacks Caspase-9 signaling to suppress intrinsic DNA sensing. Pharmacological blockade or genetic deletion of Caspase-9 causes tumor cells to secrete interferon (IFN)-β via tumor intrinsic mitochondrial DNA/the second messenger cyclic GMP-AMP (cGAS) /stimulator of interferon genes (STING) pathway without impairing Hsp90 inhibition-induced cell death. Importantly, both Caspase-9 and Hsp90 inhibition triggers an ICD, leading to the release of numerous damage-associated molecular patterns such as high-mobility group box protein 1, ATP and type I IFNs in vitro and remarkable antitumor effects in vivo. Moreover, the combination treatment also induces adaptive resistance by upregulating programmed death-ligand 1 (PD-L1). Additional PD-L1 blockade can further overcome this acquired immune resistance and achieve complete tumor regression. CONCLUSIONS Blockade of Caspase-9 signaling selectively provokes Hsp90-based chemotherapy-mediated tumor innate sensing, leading to CD8+ T cell-dependent tumor control. Our findings implicate that pharmacological modulation of caspase pathway increases the tumor-intrinsic innate sensing and immunogenicity of chemotherapy-induced apoptosis, and synergizes with immunotherapy to overcome adaptive resistance.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Han
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mayu Sun
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weida Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanghuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiyi Chen
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao Guo
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingquan Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Chou P, Lu Y, Sheu M. Phellinus merrillii extracts induce apoptosis of vascular smooth muscle cells via intrinsic and extrinsic pathways. Food Sci Nutr 2023; 11:7900-7909. [PMID: 38107129 PMCID: PMC10724586 DOI: 10.1002/fsn3.3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 12/19/2023] Open
Abstract
Restenosis frequently occurs after balloon angioplasty. Percutaneous coronary intervention (PCI)-induced artery damage is a significant part of triggering restenosis of the vascular smooth muscles (VSMC). This study aimed to study how ethanol extract of Phellinus merrillii (EPM) affected balloon injury-induced overgrowth of VSMC, indicating neointima formation. Firstly, our results demonstrated that EPM notably decreased VSMC viability. A fragmentation assay and Annexin V/Propidium Iodide apoptosis assay showed that higher doses of EPM significantly induced the apoptosis of VSMC after 24 h of exposure. Total protein extracted from VSMC treated with EPM in various time and concentration periods was then conducted in Western blotting analysis. Our data demonstrated that EPM substantially elevated the p53, p21, Fas, Bax, p-p38, and active caspase-3 protein expressions. The results indicated that EPM induces VSMC apoptosis via intrinsic and extrinsic pathways. Also, our results demonstrated that EPM effectively attenuated the balloon injury-induced neointima formation. In conclusion, the information offers a mechanism of EPM in inducing the VSMC apoptosis, thus as a potential interference for restenosis.
Collapse
Affiliation(s)
- Pei‐Yu Chou
- Department of NursingNational Chi Nan UniversityNantouTaiwan
| | - Ya‐Ting Lu
- Department of Hematology & OncologyTainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation)Tainan CityTaiwan
| | - Ming‐Jyh Sheu
- Department of PharmacyChina Medical University, Beigang HospitalYunlin CountyTaiwan
- School of PharmacyChina Medical UniversityTaichung CityTaiwan
| |
Collapse
|
39
|
Hekmatshoar Y, Ozkan T, Alp M, Gurkan-Alp AS, Sunguroglu A. Some 2-[4-(1H-benzimidazol-1-yl) phenyl]-1H-benzimidazole derivatives overcome imatinib resistance by induction of apoptosis and reduction of P-glycoprotein activity. Chem Biol Drug Des 2023; 102:1521-1533. [PMID: 37722976 DOI: 10.1111/cbdd.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
Imatinib (IMA) is a tyrosine kinase inhibitor (TKI) introduced for the chronic myeloid leukemia (CML) therapy. Emergence of IMA resistance leads to the relapse and failure in CML therapy. Benzimidazole is a heterocyclic organic compound which is widely investigated for the development of anticancer drugs. In this study, we aimed to explore the anticancer effects of some 2-[4-(1H-benzimidazol-1-yl) phenyl]-1H-benzimidazole derivatives on K562S (IMA-sensitive) and K562R (IMA-resistant) cells. To analyze the cytotoxic and apoptotic effects of the compounds, K562S, K562R, and L929 cells were exposed to increasing concentrations of the derivatives. Cytotoxic effects of compounds on cell viability were analyzed with MTT assay. Apoptosis induction, caspase3/7 activity were investigated with flow cytometry and BAX, BIM, and BAD genes expression levels were analyzed with qRT-PCR. Rhodamine123 (Rho-123) staining assays were carried out to evaluate the effect of compounds on P-glycoprotein (P-gp) activity. The hit compounds were screened using molecular docking, and the binding preference of each compounds to BCR-ABL protein was evaluated. Our results indicated that compounds triggered cytotoxicity, caspase3/7 activation in K562S and K562R cells. Rho-123 staining showed that compounds inhibited P-gp activity in K562R cells. Overall, our results reveal some benzimidazole derivatives as potential anticancer agents to overcome IMA resistance in CML.
Collapse
Affiliation(s)
- Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mehmet Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - A Selen Gurkan-Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
40
|
Ramya Devi KT, Jaganathan MK, Ganesh MR, Dharshene K. Chitosan-encapsulated naringenin promotes ROS mediated through the activation of executioner caspase-3. Med Oncol 2023; 41:3. [PMID: 38017323 DOI: 10.1007/s12032-023-02227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
We previously reported that chitosan nanoparticle-encapsulated Naringenin (CS-NPs/NAR) could scavenge free radicals at lower doses and be cytotoxic to cancer cells. The current study continues to focus on the mechanism behind CS-NPs/NAR-induced breast cancer cell (MDA-MB-231) death. MDA-MB-231 cells were treated with higher concentrations (100, 200, and 200 µg) of Chitosan nanoparticles (CS-NPs), naringenin (NAR), and chitosan-encapsulated naringenin (CS-NPs/NAR). The cell viability, proliferation, and oxidative stress parameters, such as nitric oxide [NO], xanthine oxidase (XOD), and xanthine dehydrogenase (XDH) levels, were analyzed. ROS levels were determined through DCFDA analysis. MTT-based cell cytotoxicity and BrdU cell proliferation analysis depicted the cytotoxicity effects (37% and 29% for 24 and 48 h) and exhibited a reduction in the proliferation of MDA-MB-231 by CS-NPs/NAR. A significant increase in NO content, XOD, a decrease in XDH, and an increase in ROS levels were observed upon treatment with CS-NPs/NAR. Fluorescent images suggested the increase in the ROS level upon treatment with CS-NPs/NAR in cancer cells, and the results suggested that it could induce apoptosis. Further, to confirm this, the activity of caspase-3 was analyzed through western blotting, and the result suggested that the higher concentration of CS-NPs/NAR has increased the activation of procaspase3 when compared to free NAR. Hence, the current investigation concludes that high doses of CS-NPs/NAR induce and increase oxidative stress and so increased activation of procaspase3 may lead to cancer cell apoptosis and reduction in cell proliferation.
Collapse
Affiliation(s)
- K T Ramya Devi
- Faculty of Engineering and Technology, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| | - M K Jaganathan
- Faculty of Engineering and Technology, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M R Ganesh
- Department of Chemistry, College of Enginering and Technology, SRM institute of Science and Technology, Interdisciplinary Institute of Indian System of Medicine, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Karthick Dharshene
- Faculty of Engineering and Technology, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
41
|
Yang J, Yang M, Wang Y, Sun J, Liu Y, Zhang L, Guo B. STING in tumors: a focus on non-innate immune pathways. Front Cell Dev Biol 2023; 11:1278461. [PMID: 37965570 PMCID: PMC10642211 DOI: 10.3389/fcell.2023.1278461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) and downstream stimulator of interferon genes (STING) are involved in mediating innate immunity by promoting the release of interferon and other inflammatory factors. Mitochondrial DNA (mtDNA) with a double-stranded structure has greater efficiency and sensitivity in being detected by DNA sensors and thus has an important role in the activation of the cGAS-STING pathway. Many previous findings suggest that the cGAS-STING pathway-mediated innate immune regulation is the most important aspect affecting tumor survival, not only in its anti-tumor role but also in shaping the immunosuppressive tumor microenvironment (TME) through a variety of pathways. However, recent studies have shown that STING regulation of non-immune pathways is equally profound and also involved in tumor cell progression. In this paper, we will focus on the non-innate immune system pathways, in which the cGAS-STING pathway also plays an important role in cancer.
Collapse
Affiliation(s)
- Jiaying Yang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingtong Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
42
|
Xu W, Gao W, Guo Y, Xue F, Di L, Fang S, Fan L, He Y, Zhou Y, Xie X, Pang X. Targeting mitophagy for depression amelioration: a novel therapeutic strategy. Front Neurosci 2023; 17:1235241. [PMID: 37869512 PMCID: PMC10587558 DOI: 10.3389/fnins.2023.1235241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Major depressive disorder is a global psychiatric condition characterized by persistent low mood and anhedonia, which seriously jeopardizes the physical and mental well-being of affected individuals. While various hypotheses have been proposed to explicate the etiology of depression, the precise pathogenesis and effective treatment of this disorder remain elusive. Mitochondria, as the primary organelles responsible for cellular energy production, possess the ability to meet the essential energy demands of the brain. Research indicated that the accumulation of damaged mitochondria is associated with the onset of depression. Mitophagy, a type of cellular autophagy, specifically targets and removes excess or damaged mitochondria. Emerging evidence demonstrated that mitophagy dysfunction was involved in the progression of depression, and several pharmacological interventions that stimulating mitophagy exerted excellent antidepressant actions. We provided an overview of updated advancements on the regulatory mechanism of mitophagy and the mitophagy abnormality in depressed patients and animals, as well as in cell models of depression. Meanwhile, various therapeutic strategies to restore mitophagy for depression alleviation were also discussed in this review.
Collapse
Affiliation(s)
- Wangjun Xu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Weiping Gao
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yukun Guo
- School of Pharmacy, Henan University, Kaifeng, China
| | - Feng Xue
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lulu Di
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shaojie Fang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Pharmacy, Henan University, Kaifeng, China
| | - Yangyang He
- School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| | - Xinmei Xie
- School of Pharmacy, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
43
|
Das P, Ghosh S, Ashashainy V, Nayak B. Augmentation of anti-proliferative efficacy of quercetin encapsulated chitosan nanoparticles by induction of cell death via mitochondrial membrane permeabilization in oral cancer. Int J Biol Macromol 2023; 250:126151. [PMID: 37544568 DOI: 10.1016/j.ijbiomac.2023.126151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Quercetin (QCT), an antioxidant plant flavonoid, is known to impart prominent anti-cancer properties. However, its clinical application as a potential drug is hindered owing to its hydrophobicity, extensive metabolism, low absorption, and rapid elimination. The drawbacks of these phytochemical-based therapies can be addressed using nanotechnology-based drug delivery systems. In this study, we sought to develop chitosan nanoparticles (CSNPs) as the drug vehicle for encasing quercetin (QCT-CSNPs) and further investigate its anti-tumor potential against human oral cancer cell line Cal33. Our findings indicate that the average particle diameter of the formulated chitosan nanoparticles was around 100 nm, and they had a spherical structure, as per the TEM and FESEM images. The efficient entrapment of quercetin inside the CSNPs matrix is confirmed by XRD, UV-Vis spectrophotometry, FTIR, and DSC analysis. The in vitro cell cytotoxicity study against Cal33 oral cancer cells revealed that QCT-CSNPs exhibited superior toxicity compared to free QCT post-24-hour treatment. The improved anti-cancer efficacy of QCT-CSNPs was further confirmed by enhanced cellular apoptosis, colony formation inhibition, migration inhibition, and chromatin condensation. Moreover, the mitochondrial dysfunction and enhanced ROS (Reactive oxygen species) production indicated mitochondrial-mediated cell death in QCT-CSNPs treated Cal33 cells. In conclusion, our data suggest that quercetin-encapsulated chitosan nanoparticles may serve as a potential drug candidate against oral cancer.
Collapse
Affiliation(s)
- Puja Das
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sayantan Ghosh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Vadlamuri Ashashainy
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
44
|
Abukwaik R, Vera-Siguenza E, Tennant DA, Spill F. Interplay of p53 and XIAP protein dynamics orchestrates cell fate in response to chemotherapy. J Theor Biol 2023; 572:111562. [PMID: 37348784 DOI: 10.1016/j.jtbi.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Chemotherapeutic drugs are used to treat almost all types of cancer, but the intended response, i.e., elimination, is often incomplete, with a subset of cancer cells resisting treatment. Two critical factors play a role in chemoresistance: the p53 tumour suppressor gene and the X-linked inhibitor of apoptosis (XIAP). These proteins have been shown to act synergistically to elicit cellular responses upon DNA damage induced by chemotherapy, yet, the mechanism is poorly understood. This study introduces a mathematical model characterising the apoptosis pathway activation by p53 before and after mitochondrial outer membrane permeabilisation upon treatment with the chemotherapy Doxorubicin (Dox). "In-silico" simulations show that the p53 dynamics change dose-dependently. Under medium to high doses of Dox, p53 concentration ultimately stabilises to a high level regardless of XIAP concentrations. However, caspase-3 activation may be triggered or not depending on the XIAP induction rate, ultimately determining whether the cell will perish or resist. Consequently, the model predicts that failure to activate apoptosis in some cancer cells expressing wild-type p53 might be due to heterogeneity between cells in upregulating the XIAP protein, rather than due to the p53 protein concentration. Our model suggests that the interplay of the p53 dynamics and the XIAP induction rate is critical to determine the cancer cells' therapeutic response.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia; School of Mathematics, University of Birmingham, B15 2TS, United Kingdom.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, B15 2TS, United Kingdom; Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Fabian Spill
- School of Mathematics, University of Birmingham, B15 2TS, United Kingdom.
| |
Collapse
|
45
|
Crabtree A, Neikirk K, Marshall AG, Vang L, Whiteside AJ, Williams Q, Altamura CT, Owens TC, Stephens D, Shao B, Koh A, Killion M, Lopez EG, Lam J, Rodriguez B, Mungai M, Stanley J, Dean ED, Koh HJ, Gaddy JA, Scudese E, Sweetwyne M, Davis J, Zaganjor E, Murray SA, Katti P, Damo SM, Vue Z, Hinton A. Defining Mitochondrial Cristae Morphology Changes Induced by Aging in Brown Adipose Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540609. [PMID: 37577723 PMCID: PMC10418056 DOI: 10.1101/2023.05.12.540609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, we hypothesized that significant morphological changes in BAT mitochondria and cristae would be present with aging. We developed a quantitative three-dimensional (3D) electron microscopy approach to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, we investigated the 3D morphology of mitochondrial cristae in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, we found increases in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging. Abstract Figure
Collapse
Affiliation(s)
- Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron J Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Trinity Celeste Owens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ben Rodriguez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jade Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jennifer A Gaddy
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Mariya Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, Pharmacology, Meharry Medical College, Nashville, TN 37208 USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh; Pittsburg h, PA, 15261 USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
46
|
Şenkardeş S, Atlıhan İ, Çayır E, Mega Tiber P, Orun O, Nigiz Ş, Özkul C, Gündüz MG, Küçükgüzel ŞG. Synthesis and Evaluation of Novel Metacetamol Derivatives with Hydrazone Moiety as Anticancer and Antimicrobial Agents. Chem Biodivers 2023; 20:e202300766. [PMID: 37417710 DOI: 10.1002/cbdv.202300766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
By exploiting the wide biological potential of the hydrazone scaffold, a series of hydrazone derivatives were synthesized, starting from N-(3-hydroxyphenyl)acetamide (metacetamol). The structures of the compounds were determined using IR, 1 H and 13 C-NMR, and mass spectroscopic methods. The obtained molecules (3 a-j) were evaluated for their anticancer potential against MDA-MB-231 and MCF-7 breast cancer cell lines. According to the CCK-8 assay, all tested compounds showed moderate to potent anticancer activity. Among them, N-(3-(2-(2-(4-nitrobenzylidene)hydrazinyl)-2-oxoethoxy)phenyl)acetamide (3 e) was found to be the most effective derivative with an IC50 value of 9.89 μM against MDA-MB-231 cell lines. This compound was further tested for its potential effects on the apoptotic pathway. Molecular docking studies was also carried out for 3 e in the colchicine binding pocket of tubulin. Additionally, compound 3 e also demonstrated effective antifungal activity, particularly against Candida krusei (MIC=8 μg/ml), indicating that nitro group at the 4th position of the phenyl ring was the most preferable substituent for both cytotoxic and antimicrobial activity. Our preliminary findings suggest that compound 3 e could be exploited as a leading structure for further anticancer and antifungal drug development.
Collapse
Affiliation(s)
- Sevil Şenkardeş
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Maltepe, Başıbüyük, 34854, Istanbul, Turkey
| | - İrem Atlıhan
- Marmara University, Institute of Health Sciences, Department of Biophysics, 34865, Istanbul, Turkey
| | - Elif Çayır
- Marmara University, Faculty of Pharmacy, 34854, Istanbul, Turkey
| | - Pınar Mega Tiber
- Marmara University, Faculty of Medicine, Department of Biophysics, 34854, Istanbul, Turkey
| | - Oya Orun
- Marmara University, Faculty of Medicine, Department of Biophysics, 34854, Istanbul, Turkey
| | - Şeyma Nigiz
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Sıhhiye, 06100, Ankara, Turkey
| | - Ceren Özkul
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Sıhhiye, 06100, Ankara, Turkey
| | - Miyase Gözde Gündüz
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Sıhhiye, 06100, Ankara, Turkey
| | - Ş Güniz Küçükgüzel
- Fenerbahçe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ataşehir, 34758, Istanbul, Turkey
| |
Collapse
|
47
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1320. [PMID: 37512131 PMCID: PMC10384171 DOI: 10.3390/medicina59071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Physical exercise is an important therapeutic modality for treating and managing diabetes. High-intensity interval training (HIIT) is considered one of the best non-drug strategies for preventing and treating type 2 diabetes mellitus (T2DM) by improving mitochondrial biogenesis and function. This study aimed to determine the effects of 12 weeks of HIIT training on the expression of tumor suppressor protein-p53, mitochondrial cytochrome c oxidase (COX), and oxidative stress in patients with T2DM. Methods: A total of thirty male sedentary patients aged (45-60 years) were diagnosed with established T2DM for more than five years. Twenty healthy volunteers, age- and sex-matched, were included in this study. Both patients and control subjects participated in the HIIT program for 12 weeks. Glycemic control variables including p53 (U/mL), COX (ng/mL), total antioxidant capacity (TAC, nmole/µL), 8-hydroxy-2'-deoxyguanosine (8-OHdG, ng/mL), as well as genomic and mitochondrial DNA content were measured in both the serum and muscle tissues of control and patient groups following exercise training. Results: There were significant improvements in fasting glucose levels. HbA1c (%), HOMA-IR (mUmmol/L2), fasting insulin (µU/mL), and C-peptide (ng/mL) were reported in T2DM and healthy controls. A significant decrease was also observed in p53 protein levels. COX, 8-OhdG, and an increase in the level of TAC were reported in T2DM following 12 weeks of HIIT exercise. Before and after exercise, p53; COX, mt-DNA content, TAC, and 8-OhdG showed an association with diabetic control parameters such as fasting glucose (FG), glycated hemoglobin (HbA1C, %), C-peptide, fasting insulin (FI), and homeostatic model assessment for insulin resistance (HOMA-IR) in patients with T2DM. These findings support the positive impact of HIIT exercise in improving regulation of mitochondrial biogenesis and subsequent control of diabetes through anti-apoptotic and anti-oxidative pathways. Conclusions: A 12-week HIIT program significantly improves diabetes by reducing insulin resistance; regulating mitochondrial biogenesis; and decreasing oxidative stress capacity among patients and healthy controls. Also; p53 protein expression; COX; 8-OhdG; and TAC and mt-DNA content were shown to be associated with T2DM before and after exercise training.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (S.A.G.); (A.H.A.)
| |
Collapse
|
48
|
Adamo FM, Silva Barcelos EC, De Falco F, Dorillo E, Rompietti C, Sorcini D, Stella A, Del Papa B, Baldoni S, Esposito A, Geraci C, Arcaleni R, Pennetta C, Ragonese F, Moretti L, Mameli M, Di Ianni M, Rosati E, Fioretti B, Sportoletti P. Therapeutic Targeting Potential of Novel Silver Nanoparticles Coated with Anti-CD20 Antibody against Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:3618. [PMID: 37509279 PMCID: PMC10377400 DOI: 10.3390/cancers15143618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is an incurable disorder associated with alterations in several pathways essential for survival and proliferation. Despite the advances made in CLL therapy with the new target agents, in some cases, relapses and resistance could occur, making the discovery of new alternatives to manage CLL refractoriness necessary. To provide new therapeutic strategies for CLL, we investigated the anti-leukemic activity of silver nanoparticles (AgNPs), whose impact on CLL cells has been poorly explored. METHODS We studied the action mechanisms of AgNPs in vitro through flow cytometry and molecular analyses. To improve the bioavailability of AgNPs, we generated AgNPs coated with the anti-CD20 antibody Rituximab (AgNPs@Rituximab) and carried out imaging-based approaches and in vivo experiments to evaluate specificity, drug uptake, and efficacy. RESULTS AgNPs reduced the viability of primary CLL cells and the HG-3 cell line by inducing an intrinsic apoptotic pathway characterized by Bax/Bcl-2 imbalance, caspase activation, and PARP degradation. Early apoptotic events triggered by AgNPs included enhanced Ca2+ influx and ROS overproduction. AgNPs synergistically potentiated the cytotoxicity of Venetoclax, Ibrutinib, and Bepridil. In vitro, the AgNPs@Rituximab conjugates were rapidly internalized within CLL cells and strongly prolonged the survival of CLL xenograft models compared to each unconjugated single agent. CONCLUSIONS AgNPs showed strong anti-leukemic activity in CLL, with the potential for clinical translation in combination with agents used in CLL. The increased specificity of AgNPs@Rituximab toward CLL cells could be relevant for overcoming in vivo AgNPs' non-specific distribution and increasing their efficacy.
Collapse
Affiliation(s)
- Francesco Maria Adamo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Estevao Carlos Silva Barcelos
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo, Vitória 29043-900, Brazil
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Erica Dorillo
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Chiara Rompietti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Daniele Sorcini
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Arianna Stella
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Beatrice Del Papa
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Stefano Baldoni
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Esposito
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Clelia Geraci
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Roberta Arcaleni
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Chiara Pennetta
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy
| | - Lorenzo Moretti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Mariagrazia Mameli
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, Biosciences and Medical Embryology Section, University of Perugia, 06129 Perugia, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncology Research (CREO), University of Perugia, Santa Maria della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
49
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
50
|
Knoblauch S, Desai SH, Dombroski JA, Sarna NS, Hope JM, King MR. Chemical Activation and Mechanical Sensitization of Piezo1 Enhance TRAIL-Mediated Apoptosis in Glioblastoma Cells. ACS OMEGA 2023; 8:16975-16986. [PMID: 37214705 PMCID: PMC10193566 DOI: 10.1021/acsomega.3c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive type of primary brain tumor, has a mean survival of less than 15 months after standard treatment. Treatment with the current standard of care, temozolomide (TMZ), may be ineffective if damaged tumor cells undergo DNA repair or acquire mutations that inactivate transcription factor p53. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in multiple tumor types, while evading healthy cells, through a transcription-independent mechanism. GBM is particularly resistant to TRAIL, but studies have found that the mechanoreceptor Piezo1 can be activated under static conditions via Yoda1 agonist to induce TRAIL sensitization in other cancer cell lines. This study examines the effects and the mechanism of chemical and mechanical activation of Piezo1, via Yoda1 and fluid shear stress (FSS) stimulation, on TRAIL-mediated apoptosis in GBM cells. Here, we demonstrate that Yoda1 + TRAIL and FSS + TRAIL combination therapies significantly increase apoptosis in two GBM cell lines relative to controls. Further, cells known to be resistant to TMZ were found to have higher levels of Piezo1 expression and were more susceptible to TRAIL sensitization by Piezo1 activation. The combinatory Yoda1 + TRAIL treatment significantly decreased cell viability in TMZ-resistant GBM cells when compared to treatment with both low and high doses of TMZ. The results of this study suggest the potential of a highly specific and minimally invasive approach to overcome TMZ resistance in GBM by sensitizing cancer cells to TRAIL treatment via chemical or mechanical activation of Piezo1.
Collapse
Affiliation(s)
- Samantha
V. Knoblauch
- Department
of Neuroscience, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Shanay H. Desai
- Department
of Neuroscience, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Jenna A. Dombroski
- Department
of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Nicole S. Sarna
- Department
of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Jacob M. Hope
- Department
of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| | - Michael R. King
- Department
of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, Tennessee 37235, United States
| |
Collapse
|