1
|
Krivy J, Misuth S, Puchovska M, Sykorova S, Vavrincova-Yaghi D, Vavrinec P. O6-methylguanine-DNA methyltransferase inhibition leads to cellular senescence and vascular smooth muscle dysfunction. Biomed Pharmacother 2025; 187:118103. [PMID: 40300394 DOI: 10.1016/j.biopha.2025.118103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Inhibiting O6-methylguanine-DNA methyltransferase (MGMT) is crucial for overcoming chemoresistance to alkylating agents, though its use is limited by myelosuppression. Beyond bone marrow, other adverse effects were not studied. Given chemotherapy-induced senescence in healthy tissues, e.g., cardiovascular damage, we investigated the impact of the MGMT inhibitor O6-benzylguanine (BG) on aortic vascular smooth muscle cells (VSMCs) and aorta. Starting on day 3 of BG incubation, VSMCs exhibited altered morphology, reduced growth, increased SAβGal activity and elevated senescence markers p27 or γH2A.X. BG activated senescence-related pathways, including Erk1/2, p38α, Akt and mTORC1; induced BCl2, MnSOD and CDK1; and decreased αSMA and skp2 levels. These changes suggest BG-induced γH2A.X, p38 and Akt activation, resulting in G2/M cell cycle arrest via pCDK1. Functionally, BG impaired the vascular reactivity of aortic rings to phenylephrine, isoprenaline and sodium nitrite. In rats, systemic BG administration similarly reduced the response to sodium nitrite but left phenylephrine and isoprenaline responses unchanged. Our findings highlight BG's potential adverse effects on vascular smooth muscle, marked by senescence activation and reduced vascular reactivity. These results emphasise the need for caution in the clinical use of MGMT inhibitors. Furthermore, we present the model of senescence in primary VSMCs characterised by the expression of several senescence markers and G2/M checkpoint arrest.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/enzymology
- Cellular Senescence/drug effects
- Male
- Rats
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/metabolism
- Cells, Cultured
- Guanine/analogs & derivatives
- Guanine/pharmacology
- Guanine/toxicity
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/toxicity
- Aorta/drug effects
- Signal Transduction/drug effects
- Rats, Wistar
Collapse
Affiliation(s)
- Jakub Krivy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Svetozar Misuth
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Marina Puchovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Sona Sykorova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Diana Vavrincova-Yaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Zhang M, Liu W, Dai H, Jiang H, Zhao Q, Liu W, Rui H, Liu B. Heterogeneity of Renal Endothelial Cells, Interact with Neighboring Cells, and Endothelial Injury in Chronic Kidney Disease: Mechanisms and Therapeutic Implications. Int J Med Sci 2025; 22:2103-2118. [PMID: 40303495 PMCID: PMC12035827 DOI: 10.7150/ijms.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/04/2025] [Indexed: 05/02/2025] Open
Abstract
Chronic kidney disease (CKD) is closely associated with endothelial dysfunction, leading to symptoms such as albuminuria, edema, and coagulopathy. Recent advancements in single-cell sequencing have deepened our understanding of the heterogeneity of renal endothelial cells, which is significantly influenced by their microenvironment. Understanding the influence of neighboring cells on endothelial heterogeneity is essential for elucidating the mechanisms underlying vascular dysfunction and CKD progression. This review explores the latest research on renal endothelial cell heterogeneity and their interactions with neighboring cells. We further discuss the mechanisms of endothelial injury in CKD, including alterations to the endothelial glycocalyx, inflammation, oxidative stress, and dysfunction of the glomerular filtration barrier. Renal endothelial injury contributes to complications, including cardiovascular disease, diabetic nephropathy, and impaired vascular function. Therapeutic strategies encompass antihypertensive, hypoglycemic, and lipid-lowering treatments, supplemented by emerging approaches such as anti-inflammatory therapies, gene therapy, and lifestyle modifications. Through reviewing the relationship between endothelial injury and CKD progression, we emphasize potential strategies to enhance prognosis and mitigate disease progression.
Collapse
Affiliation(s)
- Meiyu Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100310, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Zhai Y, Zhang Y, Xu K, Wang T, Zhiqun Bian, Qu L, Wu F, Hu Z, Chang X, Li H, Zhang C, Li C, Shi C. Cordycepin ameliorates spaceflight-induced osteoporosis by preventing BMSCs oxidative stress and senescence via interacting with PI3K p110α and regulating PI3K/Akt/FOXO3 signalling. Free Radic Biol Med 2025; 228:108-125. [PMID: 39722302 DOI: 10.1016/j.freeradbiomed.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Spaceflight-induced osteoporosis (SFOP) is a detrimental healthcare consequence during spaceflight. Weightlessness and ionizing radiation were main environmental factors that contribute to SFOP, especially in the manned deep space voyages. However, currently there is scarce effective method to treat SFOP. This study aims at discovering the role and mechanism of cordycepin (COR) in treating SFOP. A combined ionizing radiation and tail suspension (IR/IS) model is constructed in mice to simulate SFOP. COR injection exhibits certain dose-dependent therapeutic effects including better imageological bone index and improved histological bone regeneration in treating SFOP, which is most prominent at a dose of 20 mg/kg. A combined radiation and microgravity (R/M) model is established to treat BMSCs in vitro. 10 μM COR alleviates oxidative stress and cellular senescence of BMSCs. Through high-throughput sequencing, molecular docking and microscale thermophoresis (MST), we reveal a novel mechanism that COR interacts with p110α subunit in PI3K isoform α (PI3Kα) and inhibits PI3K kinase activity, which then regulates the PI3K/Akt/FOXO3 signalling. To elevate the bioavailability of COR in the SFOP treatment, a BMSCs-targeted delivery system that uses exosomes (Exos) modified with BMSC-affinity peptide E7 (E7-Exos) is constructed and loaded with COR. E7-Exos loaded COR reduces the dosage of COR to 5 mg/kg while enhancing the therapeutic effect than using 20 mg/kg COR alone in treating SFOP. In conclusion, COR shows promise as a potential agent in SFOP therapy.
Collapse
Affiliation(s)
- Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Kexin Xu
- Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China; College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Tianling Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zhiqun Bian
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Langfan Qu
- Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Feng Wu
- Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Haiyin Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
4
|
Khasawneh AI, Al Shboul S, Himsawi N, Al Rousan A, Shahin NA, El-Sadoni M, Alhesa A, Abu Ghalioun A, Khawaldeh S, Shawish B, Mahfouz SA, Al-Shayeb M, Dawoud SA, Tlilan R, Nuseir M, Alotaibi MR, Abu Al Karsaneh O, Asali F, Mayordomo MY, Barham R, Khasawneh R, Saleh T. Resolution of oncogene-induced senescence markers in HPV-infected cervical cancer tissue. BMC Cancer 2025; 25:111. [PMID: 39838347 PMCID: PMC11752938 DOI: 10.1186/s12885-025-13499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Oncogene-Induced Senescence (OIS) is a form of senescence that occurs as a consequence of oncogenic overstimulation and possibly infection by oncogenic viruses. Whether senescence plays a role in the pathogenesis of cervical cancer (CC) is not well understood. Moreover, whether cervical epithelial cells that are part of the premalignant cervical intraepithelial neoplasia (CIN), exhibit markers of OIS in Human Papillomavirus (HPV)-infected tissue, has not been investigated. METHODS We utilized a set of patient-derived premalignant and malignant tissue samples to investigate the protein (Ki67 and Lamin B1) and gene (TP53, IL1A, CCL2, and MMP9) expression of several OIS-associated biomarkers using immunohistochemistry (IHC) and qRT-PCR, respectively. Furthermore, we characterized the HPV status of all tissue samples. RESULTS Most of the CC samples (34/37) were positive for HPV, mainly HPV-16 which was observed in 62.2% of the CC samples. Among CINs, HPV infection was found in 60.2% of the 32 samples with HPV-16 as the dominant genotype in 58.5% of the CINs. IHC analysis revealed a significant increase in the expression levels of both Ki67 and Lamin B1 proteins in CC tissue compared to CIN. On average, 93% of tumor cells were positive for Ki67 in comparison to only 25% of premalignant cells in CIN samples. Similarly, Lamin B1 expression was observed in 89% of tumor cells in malignant tissue on average, compared to 60% in CIN samples. Importantly, Lamin B1 expression was elevated in nonmalignant cervical tissue suggesting that its downregulation is more predominant in the premalignant state. Furthermore, RT-PCR revealed a significant decrease in the expression of TP53, IL1a, CCL2, and MMP9 markers in CC samples compared to CINs. Specifically, 84% of CC samples showed reduced TP53 expression, 90% showed reduced IL1a expression, 74% showed reduced CCL2 expression, and 76% showed reduced MMP9 expression when compared with their premalignant baseline. Infection of HPV was confirmed in 61% of the tumor tissues while only 25% of the CINs were positive for HPV. CONCLUSION This work shall provide an opportunity to further examine the role of OIS in the process of HPV-driven CC development.
Collapse
Affiliation(s)
- Ashraf I Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Amani Al Rousan
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammed El-Sadoni
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Ala' Abu Ghalioun
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Suzan Khawaldeh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Bayan Shawish
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Salem Abu Mahfouz
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mais Al-Shayeb
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Shatha Abo Dawoud
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Raghad Tlilan
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Mohammad Nuseir
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Fida Asali
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Raghda Barham
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Rame Khasawneh
- King Hussein Medical Center, Royal Medical Services, Amman, 11942, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13115, Jordan.
| |
Collapse
|
5
|
Sementino E, Hassan D, Bellacosa A, Testa JR. AKT and the Hallmarks of Cancer. Cancer Res 2024; 84:4126-4139. [PMID: 39437156 DOI: 10.1158/0008-5472.can-24-1846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development-cancer hallmarks-would evolve to 14 tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and PI3K activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor-intrinsic dysregulation of AKT can have numerous adverse cellular and pathologic ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Rivas V, González-Muñoz T, Albitre Á, Lafarga V, Delgado-Arévalo C, Mayor F, Penela P. GRK2-mediated AKT activation controls cell cycle progression and G2 checkpoint in a p53-dependent manner. Cell Death Discov 2024; 10:385. [PMID: 39198399 PMCID: PMC11358448 DOI: 10.1038/s41420-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Cell cycle checkpoints, activated by stressful events, halt the cell cycle progression, and prevent the transmission of damaged DNA. These checkpoints prompt cell repair but also trigger cell death if damage persists. Decision-making between these responses is multifactorial and context-dependent, with the tumor suppressor p53 playing a central role. In many tumor cells, p53 alterations lead to G1/S checkpoint loss and the weakening of the G2 checkpoint, rendering cell viability dependent on the strength of the latter through mechanisms not fully characterized. Cells with a strong pro-survival drive can evade cell death despite substantial DNA lesions. Deciphering the integration of survival pathways with p53-dependent and -independent mechanisms governing the G2/M transition is crucial for understanding G2 arrest functionality and predicting tumor cell response to chemotherapy. The serine/threonine kinase GRK2 emerges as a signaling node in cell cycle modulation. In cycling cells, but not in G2 checkpoint-arrested cells, GRK2 protein levels decline during G2/M transition through a process triggered by CDK2-dependent phosphorylation of GRK2 at the S670 residue and Mdm2 ubiquitination. We report now that this downmodulation in G2 prevents the unscheduled activation of the PI3K/AKT pathway, allowing cells to progress into mitosis. Conversely, higher GRK2 levels lead to tyrosine phosphorylation by the kinase c-Abl, promoting the direct association of GRK2 with the p85 regulatory subunit of PI3K and AKT activation in a GRK2 catalytic-independent manner. Hyperactivation of AKT is conditioned by p53's scaffolding function, triggering FOXO3a phosphorylation, impaired Cyclin B1 accumulation, and CDK1 activation, causing a G2/M transition delay. Upon G2 checkpoint activation, GRK2 potentiates early arrest independently of p53 through AKT activation. However, its ability to overcome the G2 checkpoint in viable conditions depends on p53. Our results suggest that integrating the GRK2/PI3K/AKT axis with non-canonical functions of p53 might confer a survival advantage to tumor cells.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Teresa González-Muñoz
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ángela Albitre
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Vanesa Lafarga
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Delgado-Arévalo
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
7
|
Sazdova I, Hadzi-Petrushev N, Keremidarska-Markova M, Stojchevski R, Sopi R, Shileiko S, Mitrokhin V, Gagov H, Avtanski D, Lubomirov LT, Mladenov M. SIRT-associated attenuation of cellular senescence in vascular wall. Mech Ageing Dev 2024; 220:111943. [PMID: 38762036 DOI: 10.1016/j.mad.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina 10 000, Kosovo
| | - Stanislav Shileiko
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Dimitar Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Lubomir T Lubomirov
- Vascular Biology Research Group (RenEVA), Research Institute, Medical University-Varna, Varna, Bulgaria; Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia.
| |
Collapse
|
8
|
Katsuumi G, Shimizu I, Suda M, Yoshida Y, Furihata T, Joki Y, Hsiao CL, Jiaqi L, Fujiki S, Abe M, Sugimoto M, Soga T, Minamino T. SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. NATURE AGING 2024; 4:926-938. [PMID: 38816549 PMCID: PMC11257941 DOI: 10.1038/s43587-024-00642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
It has been reported that accumulation of senescent cells in various tissues contributes to pathological aging and that elimination of senescent cells (senolysis) improves age-associated pathologies. Here, we demonstrate that inhibition of sodium-glucose co-transporter 2 (SGLT2) enhances clearance of senescent cells, thereby ameliorating age-associated phenotypic changes. In a mouse model of dietary obesity, short-term treatment with the SGLT2 inhibitor canagliflozin reduced the senescence load in visceral adipose tissue and improved adipose tissue inflammation and metabolic dysfunction, but normalization of plasma glucose by insulin treatment had no effect on senescent cells. Canagliflozin extended the lifespan of mice with premature aging even when treatment was started in middle age. Metabolomic analyses revealed that short-term treatment with canagliflozin upregulated 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, enhancing immune-mediated clearance of senescent cells by downregulating expression of programmed cell death-ligand 1. These findings suggest that inhibition of SGLT2 has an indirect senolytic effect by enhancing endogenous immunosurveillance of senescent cells.
Collapse
Affiliation(s)
- Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Joki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chieh-Lun Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Liang Jiaqi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinya Fujiki
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masataka Sugimoto
- Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
9
|
Mercurio L, Bailey J, Glick AB, Dellambra E, Scarponi C, Pallotta S, Albanesi C, Madonna S. RAS-activated PI3K/AKT signaling sustains cellular senescence via P53/P21 axis in experimental models of psoriasis. J Dermatol Sci 2024; 115:21-32. [PMID: 38926058 DOI: 10.1016/j.jdermsci.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin disease in which upper epidermal keratinocytes exhibit a senescent-like phenotype. In psoriatic skin, a variety of inflammatory cytokines can activate intracellular pathways including phosphatidylinositol 3-kinase (PI3K)/AKT signaling and RAS effectors. AKT and RAS participate to cellular senescence, but currently their role in senescence responses occurring in psoriasis have not yet been investigated. OBJECTIVE The role of AKT molecular axis and RAS activation was evaluated in the context of cellular senescence in psoriasis disease. METHODS RAS/AKT involvement in senescence was analyzed in psoriatic keratinocytes cultures subjected to multiple passages to promote senescence in vitro, as well as in skin lesions of patients affected by psoriasis. The impact of pharmacological inhibition of PI3K/AKT pathway on senescence and inflammation responses was tested in senescent psoriatic keratinocytes and in a psoriasiform dermatitis murine model induced by RAS overexpression in the upper epidermis of mice. RESULTS We found AKT hyperactivation associated to the upregulation of senescence markers, in senescent psoriatic keratinocyte cultures, as well as in skin lesions of psoriatic patients. AKT-induced senescence was sustained by constitutive RAS activation, and down-stream responses were mediated by P53/P21 axis. PI3K/AKT inhibition contrasted senescence processes induced by cytokines in psoriatic keratinocytes. Additionally, RAS-induced psoriasis-like dermatitis in mice was accompanied by AKT upregulation, increase of senescence marker expression and by skin inflammation. In this model, both senescence and inflammation were significantly reduced by selective AKT inhibition. CONCLUSION Therefore, targeting RAS-AKT pathway could be a promising novel strategy to counteract multiple psoriasis symptoms.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Jacob Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, NY, USA
| | - Adam Bleier Glick
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, PA, USA
| | - Elena Dellambra
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Sabatino Pallotta
- Integrated Center for Research in Psoriasis (CRI-PSO), Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy.
| | - Stefania Madonna
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| |
Collapse
|
10
|
Xu MY, Xia ZY, Sun JX, Liu CQ, An Y, Xu JZ, Zhang SH, Zhong XY, Zeng N, Ma SY, He HD, Wang SG, Xia QD. A new perspective on prostate cancer treatment: the interplay between cellular senescence and treatment resistance. Front Immunol 2024; 15:1395047. [PMID: 38694500 PMCID: PMC11061424 DOI: 10.3389/fimmu.2024.1395047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qi-Dong Xia
- *Correspondence: Shao-Gang Wang, ; Qi-Dong Xia,
| |
Collapse
|
11
|
de Boer RJ, van Lidth de Jeude JF, Heijmans J. ER stress and the unfolded protein response in gastrointestinal stem cells and carcinogenesis. Cancer Lett 2024; 587:216678. [PMID: 38360143 DOI: 10.1016/j.canlet.2024.216678] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Endoplasmic reticulum (ER) stress and the adaptive response that follows, termed the unfolded protein response (UPR), are crucial molecular mechanisms to maintain cellular integrity by safeguarding proper protein synthesis. Next to being important in protein homeostasis, the UPR is intricate in cell fate decisions such as proliferation, differentiation, and stemness. In the intestine, stem cells are critical in governing epithelial homeostasis and they are the cell of origin of gastrointestinal malignancies. In this review, we will discuss the role of ER stress and the UPR in the gastrointestinal tract, focusing on stem cells and carcinogenesis. Insights in mechanisms that connect ER stress and UPR with stemness and carcinogenesis may broaden our understanding in the development of cancer throughout the gastrointestinal tract and how we can exploit these mechanisms to target these malignancies.
Collapse
Affiliation(s)
- Ruben J de Boer
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jooske F van Lidth de Jeude
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Jarom Heijmans
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Department of General Internal Medicine and Department of Hematology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Khor YS, Wong PF. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. Biogerontology 2024; 25:23-51. [PMID: 37646881 DOI: 10.1007/s10522-023-10059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
Collapse
Affiliation(s)
- Yi-Sheng Khor
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Huang K, Liu X, Zhang Z, Wang T, Xu H, Li Q, Jia Y, Huang L, Kim P, Zhou X. AgeAnnoMO: a knowledgebase of multi-omics annotation for animal aging. Nucleic Acids Res 2024; 52:D822-D834. [PMID: 37850649 PMCID: PMC10767957 DOI: 10.1093/nar/gkad884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
Aging entails gradual functional decline influenced by interconnected factors. Multiple hallmarks proposed as common and conserved underlying denominators of aging on the molecular, cellular and systemic levels across multiple species. Thus, understanding the function of aging hallmarks and their relationships across species can facilitate the translation of anti-aging drug development from model organisms to humans. Here, we built AgeAnnoMO (https://relab.xidian.edu.cn/AgeAnnoMO/#/), a knowledgebase of multi-omics annotation for animal aging. AgeAnnoMO encompasses an extensive collection of 136 datasets from eight modalities, encompassing 8596 samples from 50 representative species, making it a comprehensive resource for aging and longevity research. AgeAnnoMO characterizes multiple aging regulators across species via multi-omics data, comprehensively annotating aging-related genes, proteins, metabolites, mitochondrial genes, microbiotas and age-specific TCR and BCR sequences tied to aging hallmarks for these species and tissues. AgeAnnoMO not only facilitates a deeper and more generalizable understanding of aging mechanisms, but also provides potential insights of the specificity across tissues and species in aging process, which is important to develop the effective anti-aging interventions for diverse populations. We anticipate that AgeAnnoMO will provide a valuable resource for comprehending and integrating the conserved driving hallmarks in aging biology and identifying the targetable biomarkers for aging research.
Collapse
Affiliation(s)
- Kexin Huang
- The Center of Gerontology and Geriatrics and West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xi Liu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Zhaocan Zhang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Haixia Xu
- The Center of Gerontology and Geriatrics and West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qingxuan Li
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Yuhao Jia
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
14
|
Tanke NT, Liu Z, Gore MT, Bougaran P, Linares MB, Marvin A, Sharma A, Oatley M, Yu T, Quigley K, Vest S, Cook JG, Bautch VL. Endothelial cell flow-mediated quiescence is temporally regulated and utilizes the cell cycle inhibitor p27. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.09.544403. [PMID: 37662222 PMCID: PMC10473767 DOI: 10.1101/2023.06.09.544403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. Methods Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time to cell cycle re-entry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA seq analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. Results Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous-flow exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. Conclusions Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence mis-regulation that leads to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary B Linares
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Arya Sharma
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah Vest
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
15
|
Song H, Zhu Y, Hu C, Liu Q, Jin Y, Tang P, Xia J, Xie D, Jiang S, Yao G, Liu Z, Hu Z. Selective Autophagy Receptor NBR1 Retards Nucleus Pulposus Cell Senescence by Directing the Clearance of SRBD1. Int J Biol Sci 2024; 20:701-717. [PMID: 38169523 PMCID: PMC10758090 DOI: 10.7150/ijbs.90186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent degenerative disorder that closely linked to aging. Numerous studies have indicated the crucial involvement of autophagy in the development of IDD. However, the non-selective nature of autophagy substrates poses great limitations on the application of autophagy-related medications. This study aims to enhance our comprehension of autophagy in the development of IDD and investigate a novel therapeutic approach from the perspective of selective autophagy receptor NBR1. Proteomics and immunoprecipitation and mass spectrometry analysis, combined with in vivo and in vitro experimental verification were performed. NBR1 is found to be reduced in IDD, and NBR1 retards cellular senescence and senescence-associated secretory phenotype (SASP) of nucleus pulposus cells (NPCs), primarily through its autophagy-dependent function. Mechanistically, NBR1 knockdown leads to the accumulation of S1 RNA-binding domain-containing protein 1 (SRBD1), which triggers cellular senescence via AKT1/p53 and RB/p16 pathways, and promotes SASP via NF-κβ pathway in NPCs. Our findings reveal the function and mechanism of selective autophagy receptor NBR1 in regulating NPCs senescence and degeneration. Targeting NBR1 to facilitate the clearance of detrimental substances holds the potential to provide novel insights for IDD treatment.
Collapse
Affiliation(s)
- Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Yutao Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Chuan Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Qianyu Liu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Jin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Pan Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Department of Orthopaedics, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Sicheng Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Geliang Yao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| |
Collapse
|
16
|
Xing C, Zeng Z, Shan Y, Guo W, Shah R, Wang L, Wang Y, Du H. A Network Pharmacology-based Study on the Anti-aging Properties of Traditional Chinese Medicine Sisheng Bulao Elixir. Comb Chem High Throughput Screen 2024; 27:1840-1849. [PMID: 38178682 DOI: 10.2174/0113862073276253231114063813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has a rich history of use in preventing senescence for millennia in China. Nonetheless, a systematic method to study the antiaging properties and the underlying molecular mechanism of TCM remains absent. OBJECTIVE The objective of this study is to decipher the anti-aging targets and mechanisms of Sisheng Bulao Elixir (SBE) using a systematic approach based on a novel aging database and network pharmacology. METHODS Bioactive compounds and target proteins in SBE were identified via the Traditional Chinese Medicine System Pharmacology (TCMSP) database. Aging-related proteins were uncovered through alignment with the Ageing Alta database. A compound-target (CT) protein network analysis highlighted key flavonoids targeting aging. Core aging-related proteins were extracted through protein-protein interaction (PPI) network analysis. Molecular docking validated binding activities between core compounds and aging-related proteins. The antioxidant activity of SBE was confirmed using an in vitro senescent cells model. RESULTS A total of 39 active compounds were extracted from a pool of 639 compounds in SBE. Through a matching process with the Aging Alta, 88 target proteins associated with the aging process were identified. Impressively, 80 out of these 88 proteins were found to be targeted by flavonoids. Subsequently, an analysis using CT methodology highlighted 11 top bioactive flavonoids. Notably, core aging-related proteins, including AKT1, MAPK3, TP53, VEGFA, IL6, and HSP90AA1, emerged through the PPI network analysis. Moreover, three flavonoids, namely quercetin, kaempferol, and luteolin, exhibited interactions with over 100 aging-related proteins. Molecular docking studies were conducted on these flavonoids with their shared three target proteins, namely AKT1, HSP90AA1, and IL6, to assess their binding activities. Finally, the antioxidant properties of SBE were validated using an in vitro model of senescent cells. CONCLUSION This study offers novel insights into SBE's anti-aging attributes, providing evidence of its molecular mechanisms. It enhances our understanding of traditional remedies in anti-aging research.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zehua Zeng
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yubang Shan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenhuan Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Roshan Shah
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Luna Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Kumar A, Thirumurugan K. Understanding cellular senescence: pathways involved, therapeutics and longevity aiding. Cell Cycle 2023; 22:2324-2345. [PMID: 38031713 PMCID: PMC10730163 DOI: 10.1080/15384101.2023.2287929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
A normal somatic cell undergoes cycles of finite cellular divisions. The presence of surveillance checkpoints arrests cell division in response to stress inducers: oxidative stress from excess free radicals, oncogene-induced abnormalities, genotoxic stress, and telomere attrition. When facing such stress when undergoing these damages, there is a brief pause in the cell cycle to enable repair mechanisms. Also, the nature of stress determines whether the cell goes for repair or permanent arrest. As the cells experience transient or permanent stress, they subsequently choose the quiescence or senescence stage, respectively. Quiescence is an essential stage that allows the arrested/damaged cells to go through appropriate repair mechanisms and then revert to the mainstream cell cycle. However, senescent cells are irreversible and accumulate with age, resulting in inflammation and various age-related disorders. In this review, we focus on senescence-associated pathways and therapeutics understanding cellular senescence as a cascade that leads to aging, while discussing the recent details on the molecular pathways involved in regulating senescence and the benefits of therapeutic strategies against accumulated senescent cells and their secretions.
Collapse
Affiliation(s)
- Ashish Kumar
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kavitha Thirumurugan
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
18
|
Kozlova NI, Morozevich GE, Gevorkian NM, Kurbatov LK, Berman AE. Implication of integrin α5β1 in senescence of SK-Mel-147 human melanoma cells. BIOMEDITSINSKAIA KHIMIIA 2023; 69:156-164. [PMID: 37384907 DOI: 10.18097/pbmc20236903156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Downregulation of α5β1 integrin in the SK-Mel-147 human melanoma culture model sharply inhibits the phenotypic manifestations of tumor progression: cell proliferation and clonal activity. This was accompanied by a 2-3-fold increase in the content of SA-β-Gal positive cells thus indicating an increase in the cellular senescence phenotype. These changes were accompanied by a significant increase in the activity of p53 and p21 tumor suppressors and components of the PI3K/Akt/mTOR/p70 signaling pathway. Pharmacological inhibition of mTORC1 reduced the content of SA-β-Gal positive cells in the population of α5β1-deficient SK-Mel-147 cells. A similar effect was observed with pharmacological and genetic inhibition of the activity of Akt1, one of the three Akt protein kinase isoenzymes; suppression of other Akt isozymes did not affect melanoma cell senescence. The results presented in this work and previously obtained indicate that α5β1 shares with other integrins of the β1 family the function of cell protection from senescence. This function is realized via regulation of the PI3K/Akt1/mTOR signaling pathway, in which Akt1 exhibits a non-canonical activity.
Collapse
Affiliation(s)
- N I Kozlova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Berman
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
19
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
20
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
21
|
Yasuda T, Baba H, Ishimoto T. Cellular senescence in the tumor microenvironment and context-specific cancer treatment strategies. FEBS J 2023; 290:1290-1302. [PMID: 34653317 DOI: 10.1111/febs.16231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Cellular senescence in cancer development is known to have tumor-suppressive and tumor-promoting roles. Recent studies have revealed numerous molecular mechanisms of senescence followed by senescence-associated secretory phenotype induction and showed the significance of senescence on both sides. Cellular senescence in stromal cells is one of the reasons for therapeutic resistance in advanced cancer; thus, it is an inevitable phenomenon to address while seeking an effective cancer treatment strategy. This review summarizes the molecular mechanisms regarding cellular senescence, focusing on the dual roles played by senescence, and offers some direction toward successful treatments targeting harmful senescent cells.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Japan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| |
Collapse
|
22
|
Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med 2023; 55:1-12. [PMID: 36599934 PMCID: PMC9898542 DOI: 10.1038/s12276-022-00906-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Senescence compromises the essential role that the endothelium plays in maintaining vascular homeostasis, so promoting endothelial dysfunction and the development of age-related vascular diseases. Their biological and clinical significance calls for strategies for identifying and therapeutically targeting senescent endothelial cells. While senescence and endothelial dysfunction have been studied extensively, distinguishing what is distinctly endothelial senescence remains a barrier to overcome for an effective approach to addressing it. Here, we review the mechanisms underlying endothelial senescence and the evidence for its clinical importance. Furthermore, we discuss the current state and the limitations in the approaches for the detection and therapeutic intervention of target cells, suggesting potential directions for future research.
Collapse
|
23
|
Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 2023; 20:38-51. [PMID: 35853997 PMCID: PMC10026597 DOI: 10.1038/s41569-022-00739-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Endothelial cells are located at the crucial interface between circulating blood and semi-solid tissues and have many important roles in maintaining systemic physiological function. The vascular endothelium is particularly susceptible to pathogenic stimuli that activate tumour suppressor pathways leading to cellular senescence. We now understand that senescent endothelial cells are highly active, secretory and pro-inflammatory, and have an aberrant morphological phenotype. Moreover, endothelial senescence has been identified as an important contributor to various cardiovascular and metabolic diseases. In this Review, we discuss the consequences of endothelial cell exposure to damaging stimuli (haemodynamic forces and circulating and endothelial-derived factors) and the cellular and molecular mechanisms that induce endothelial cell senescence. We also discuss how endothelial cell senescence causes arterial dysfunction and contributes to clinical cardiovascular diseases and metabolic disorders. Finally, we summarize the latest evidence on the effect of eliminating senescent endothelial cells (senolysis) and identify important remaining questions to be addressed in future studies.
Collapse
Affiliation(s)
- Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
- Veterans Affairs Medical Center-Salt Lake City, Geriatric Research Education and Clinical Center, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.
- Veterans Affairs Medical Center-Salt Lake City, Geriatric Research Education and Clinical Center, Salt Lake City, UT, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Saleh T, Khasawneh AI, Himsawi N, Abu-Raideh J, Ejeilat V, Elshazly AM, Gewirtz DA. Senolytic Therapy: A Potential Approach for the Elimination of Oncogene-Induced Senescent HPV-Positive Cells. Int J Mol Sci 2022; 23:15512. [PMID: 36555154 PMCID: PMC9778669 DOI: 10.3390/ijms232415512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Senescence represents a unique cellular stress response characterized by a stable growth arrest, macromolecular alterations, and wide spectrum changes in gene expression. Classically, senescence is the end-product of progressive telomeric attrition resulting from the repetitive division of somatic cells. In addition, senescent cells accumulate in premalignant lesions, in part, as a product of oncogene hyperactivation, reflecting one element of the tumor suppressive function of senescence. Oncogenic processes that induce senescence include overexpression/hyperactivation of H-Ras, B-Raf, and cyclin E as well as inactivation of PTEN. Oncogenic viruses, such as Human Papilloma Virus (HPV), have also been shown to induce senescence. High-risk strains of HPV drive the immortalization, and hence transformation, of cervical epithelial cells via several mechanisms, but primarily via deregulation of the cell cycle, and possibly, by facilitating escape from senescence. Despite the wide and successful utilization of HPV vaccines in reducing the incidence of cervical cancer, this measure is not effective in preventing cancer development in individuals already positive for HPV. Accordingly, in this commentary, we focus on the potential contribution of oncogene and HPV-induced senescence (OIS) in cervical cancer. We further consider the potential utility of senolytic agents for the elimination of HPV-harboring senescent cells as a strategy for reducing HPV-driven transformation and the risk of cervical cancer development.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Jumana Abu-Raideh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Vera Ejeilat
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
25
|
Sun Y, Yu X, Gao X, Zhang C, Sun H, Xu K, Wei D, Wang Q, Zhang H, Shi Y, Li L, He X. RNA sequencing profiles reveal dynamic signaling and glucose metabolic features during bone marrow mesenchymal stem cell senescence. Cell Biosci 2022; 12:62. [PMID: 35568915 PMCID: PMC9107734 DOI: 10.1186/s13578-022-00796-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Stem cell senescence is considered as a significant driver of organismal aging. As individuals age, the number of stem cells is declined, and the ability to proliferate and survive is also weakened. It has been reported that metabolism plays an important role in stem cell self-renewal, multilineage differentiation, senescence and fate determination, which has aroused widespread concerns. However, whether metabolism-related genes or signalling pathways are involved in physiological aging remain largely undetermined. Results In the current study, we showed 868 up-regulated and 2006 down-regulated differentially expressed genes (DEGs) in bone marrow mesenchymal stem cells (MSCs) from old rats in comparison with that from young rats by performing RNA sequence. And DEGs functions and pathways were further selected by function enrichment analysis. The results indicated that the high expression of DEGs might participate in cell differentiation, growth factor binding and etc., while the down-regulated DEGs were majorly enriched in metabolism process, such as the cellular metabolic process and mitochondria. Then, we screened and verified DEGs related to glucose metabolism and investigated the glycolysis levels. We identified that glucose uptake, lactate secretion, ATP production and relative extracellular acidification rates (ECAR) were all diminished in MSCs from old rats. More importantly, we conducted microRNA prediction on the key DEGs of glycolysis to elucidate the potential molecular mechanisms of glucose metabolism affecting MSC senescence. Conclusions Our study unravelled the profiles of DEGs in age-associated MSC senescence and their functions and pathways. We also clarified DEGs related to glucose metabolism and down-regulated glycolysis level in age-associated MSC senescence. This study will uncover the metabolic effects on regulating stem cell senescence, and provide novel therapeutic targets for ameliorating age-associated phenotypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00796-5.
Collapse
|
26
|
Palanivel V, Gupta V, Mirshahvaladi SSO, Sharma S, Gupta V, Chitranshi N, Mirzaei M, Graham SL, Basavarajappa D. Neuroprotective Effects of Neuropeptide Y on Human Neuroblastoma SH-SY5Y Cells in Glutamate Excitotoxicity and ER Stress Conditions. Cells 2022; 11:cells11223665. [PMID: 36429093 PMCID: PMC9688085 DOI: 10.3390/cells11223665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide Y (NPY), a sympathetic neurotransmitter, is involved in various physiological functions, and its dysregulation is implicated in several neurodegenerative diseases. Glutamate excitotoxicity, endoplasmic reticulum (ER) stress, and oxidative stress are the common mechanisms associated with numerous neurodegenerative illnesses. The present study aimed to elucidate the protective effects of NPY against glutamate toxicity and tunicamycin-induced ER stress in the human neuroblastoma SH-SY5Y cell line. We exposed the SH-SY5Y cells to glutamate and tunicamycin for two different time points and analyzed the protective effects of NPY at different concentrations. The protective effects of NPY treatments were assessed by cell viability assay, and the signalling pathway changes were evaluated by biochemical techniques such as Western blotting and immunofluorescence assays. Our results showed that treatment of SH-SY5Y cells with NPY significantly increased the viability of the cells in both glutamate toxicity and ER stress conditions. NPY treatments significantly attenuated the glutamate-induced pro-apoptotic activation of ERK1/2 and JNK/BAD pathways. The protective effects of NPY were further evident against tunicamycin-induced ER stress. NPY treatments significantly suppressed the ER stress activation by downregulating BiP, phospho-eIF2α, and CHOP expression. In addition, NPY alleviated the Akt/FoxO3a pathway in acute oxidative conditions caused by glutamate and tunicamycin in SH-SY5Y cells. Our results demonstrated that NPY is neuroprotective against glutamate-induced cell toxicity and tunicamycin-induced ER stress through anti-apoptotic actions.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Correspondence: (V.P.); (D.B.)
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Correspondence: (V.P.); (D.B.)
| |
Collapse
|
27
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
28
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
29
|
Yoshida Y, Shimizu I, Minamino T. Capillaries as a Therapeutic Target for Heart Failure. J Atheroscler Thromb 2022; 29:971-988. [PMID: 35370224 PMCID: PMC9252615 DOI: 10.5551/jat.rv17064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Prognosis of heart failure remains poor, and it is urgent to find new therapies for this critical condition. Oxygen and metabolites are delivered through capillaries; therefore, they have critical roles in the maintenance of cardiac function. With aging or age-related disorders, capillary density is reduced in the heart, and the mechanisms involved in these processes were reported to suppress capillarization in this organ. Studies with rodents showed capillary rarefaction has causal roles for promoting pathologies in failing hearts. Drugs used as first-line therapies for heart failure were also shown to enhance the capillary network in the heart. Recently, the approach with senolysis is attracting enthusiasm in aging research. Genetic or pharmacological approaches concluded that the specific depletion of senescent cells, senolysis, led to reverse aging phenotype. Reagents mediating senolysis are described to be senolytics, and these compounds were shown to ameliorate cardiac dysfunction together with enhancement of capillarization in heart failure models. Studies indicate maintenance of the capillary network as critical for inhibition of pathologies in heart failure.
Collapse
Affiliation(s)
- Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMEDCREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
30
|
Long-term consumption of green tea EGCG enhances murine healthspan by mitigating multiple aspects of cellular senescence in mitotic and post-mitotic tissues, gut dysbiosis, and immunosenescence. J Nutr Biochem 2022; 107:109068. [DOI: 10.1016/j.jnutbio.2022.109068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023]
|
31
|
Nojima I, Hosoda R, Toda Y, Saito Y, Ueda N, Horimoto K, Iwahara N, Horio Y, Kuno A. Downregulation of IGFBP5 contributes to replicative senescence via ERK2 activation in mouse embryonic fibroblasts. Aging (Albany NY) 2022; 14:2966-2988. [PMID: 35378512 PMCID: PMC9037271 DOI: 10.18632/aging.203999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) are secretory proteins that regulate IGF signaling. In this study, we investigated the role of IGFBP5 in replicative senescence in embryonic mouse fibroblasts (MEFs). During passages according to the 3T3 method, MEFs underwent senescence after the 5th passage (P5) based on cell growth arrest, an increase in the number of cells positive for senescence-associated β-galactosidase (SA-β-GAL) staining, and upregulation of p16 and p19. In P8 MEFs, IGFBP5 mRNA level was markedly reduced compared with that in P2 MEFs. Downregulation of IGFBP5 via siRNA in P2 MEFs increased the number of SA-β-GAL-positive cells, upregulated p16 and p19, and inhibited cell growth. Incubation of MEFs with IGFBP5 during serial passage increased the cumulative population doubling and decreased SA-β-GAL positivity compared with those in vehicle-treated cells. IGFBP5 knockdown in P2 MEFs increased phosphorylation levels of ERK1 and ERK2. Silencing of ERK2, but not that of ERK1, blocked the increase in the number of SA-β-GAL-positive cells in IGFBP5-knockdown cells. The reduction in the cell number and upregulation of p16 and p21 in IGFBP5-knockdown cells were attenuated by ERK2 knockdown. Our results suggest that downregulation of IGFBP5 during serial passage contributes to replicative senescence via ERK2 in MEFs.
Collapse
Affiliation(s)
- Iyori Nojima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Toda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiki Saito
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naohiro Ueda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kouhei Horimoto
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
32
|
MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants (Basel) 2022; 11:antiox11030480. [PMID: 35326131 PMCID: PMC8944605 DOI: 10.3390/antiox11030480] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Cell senescence is critical in diverse aspects of organism life. It is involved in tissue development and homeostasis, as well as in tumor suppression. Consequently, it is tightly integrated with basic physiological processes during life. On the other hand, senescence is gradually being considered as a major contributor of organismal aging and age-related diseases. Increased oxidative stress is one of the main risk factors for cellular damages, and thus a driver of senescence. In fact, there is an intimate link between cell senescence and response to different types of cellular stress. Oxidative stress occurs when the production of reactive oxygen species/reactive nitrogen species (ROS/RNS) is not adequately detoxified by the antioxidant defense systems. Non-coding RNAs are endogenous transcripts that govern gene regulatory networks, thus impacting both physiological and pathological events. Among these molecules, microRNAs, long non-coding RNAs, and more recently circular RNAs are considered crucial mediators of almost all cellular processes, including those implicated in oxidative stress responses. Here, we will describe recent data on the link between ROS/RNS-induced senescence and the current knowledge on the role of non-coding RNAs in the senescence program.
Collapse
|
33
|
Zhao Y, Liu YS. Longevity Factor FOXO3: A Key Regulator in Aging-Related Vascular Diseases. Front Cardiovasc Med 2022; 8:778674. [PMID: 35004893 PMCID: PMC8733402 DOI: 10.3389/fcvm.2021.778674] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Forkhead box O3 (FOXO3) has been proposed as a homeostasis regulator, capable of integrating multiple upstream signaling pathways that are sensitive to environmental changes and counteracting their adverse effects due to external changes, such as oxidative stress, metabolic stress and growth factor deprivation. FOXO3 polymorphisms are associated with extreme human longevity. Intriguingly, longevity-associated single nucleotide polymorphisms (SNPs) in human FOXO3 correlate with lower-than-average morbidity from cardiovascular diseases in long-lived people. Emerging evidence indicates that FOXO3 plays a critical role in vascular aging. FOXO3 inactivation is implicated in several aging-related vascular diseases. In experimental studies, FOXO3-engineered human ESC-derived vascular cells improve vascular homeostasis and delay vascular aging. The purpose of this review is to explore how FOXO3 regulates vascular aging and its crucial role in aging-related vascular diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
34
|
Kim J, Ahn D, Park CJ. Biophysical investigation of the dual binding surfaces of human transcription factors FOXO4 and p53. FEBS J 2021; 289:3163-3182. [PMID: 34954873 DOI: 10.1111/febs.16333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/21/2021] [Accepted: 12/23/2021] [Indexed: 01/20/2023]
Abstract
Cellular senescence is protective against external oncogenic stress, but its accumulation causes aging-related diseases. Forkhead box O4 (FOXO4) and p53 are human transcription factors known to promote senescence by interacting with each other and activating p21 transcription. Inhibition of the interaction is a strategy for inducing apoptosis of senescent cells, but the binding surfaces that mediate the FOXO4-p53 interaction remain elusive. Here, we investigated two binding sites involved in the interaction between FOXO4 and p53 by NMR spectroscopy. NMR chemical shift perturbation analysis showed that the binding between FOXO4's forkhead domain (FHD) and p53's transactivation domain (TAD), and between FOXO4's C-terminal transactivation domain (CR3) and p53's DNA-binding domain (DBD), mediate the FOXO4-p53 interaction. Isothermal titration calorimetry data showed that both interactions have micromolar Kd values, and FOXO4 FHD-p53 TAD interaction has a higher binding affinity. We also showed that the intramolecular CR3-binding surface of FOXO4 FHD interacts with p53 TAD2, and FOXO4 CR3 interacts with the DNA/p53 TAD-binding surface of p53 DBD, suggesting a network of potentially competitive and/or coordinated interactions. Based on these results, we propose that a network of intramolecular and intermolecular interactions contributes to the two transcription factors' proper localisation on the p21 promoter and consequently promotes p21 transcription and cell senescence. This work provides structural information at the molecular level that is key to understanding the interplay of two proteins responsible for cellular senescence.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| | - Dabin Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| |
Collapse
|
35
|
Saleh T, Carpenter VJ. Potential Use of Senolytics for Pharmacological Targeting of Precancerous Lesions. Mol Pharmacol 2021; 100:580-587. [PMID: 34544896 DOI: 10.1124/molpharm.121.000361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cell state that contributes to several homeostatic and pathologic processes. In addition to being induced in somatic cells in response to replicative exhaustion (replicative senescence) as part of organismal aging, senescence can also be triggered prematurely by oncogene hyperactivation or tumor suppressor dysfunction [oncogene-induced senescence (OIS)]. Consequently, senescent cells comprise a major component of precancerous lesions of skin, oral mucosa, nasopharynx, prostate, gut, and lung. Unfortunately, invasive (or minimally invasive) interventions are currently the only available approach employed to eradicate premalignant lesions that carry the potential for cancer progression. Senolytics are a newly emerging drug class capable of selectively eliminating senescent cells. Although senolytics have been successfully demonstrated to mitigate a myriad of aging-related pathologies and to cull senescent cancer cells, there is a paucity of evidence for the potential use of senolytics as a novel approach to eliminate oncogene-induced senescent cells. This Emerging Concepts commentary will 1) summarize evidence in established models of OIS including B-Raf-induced nevi, transgenic lung cancer, and pancreatic adenocarcinoma models, as well as evidence from clinical precancerous lesions; 2) suggest that OIS is targetable; and 3) propose the utilization of senolytic agents as a revolutionary means to interfere with the ability of senescent premalignant cells to progress to cancer in vitro and in vivo If proven to be effective, senolytics will represent an emerging tool to pharmacologically treat precancerous lesions. SIGNIFICANCE STATEMENT: The treatment of premalignant lesions is largely based on the utilization of invasive (or minimally invasive) measures. Oncogene-induced senescence (OIS) is one form of senescence that occurs in response to oncogene overexpression in somatic cells and is present in precancerous lesions. Although the contribution of OIS to disease progression is undetermined, recent evidence suggests that senescent cells are permissive for malignant transformation. Accordingly, the pharmacological targeting of oncogene-induced senescent cells could potentially provide a novel, less invasive, means for the treatment of premalignant disease.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan (T.S.); Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (V.J.C.)
| | - Valerie J Carpenter
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan (T.S.); Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (V.J.C.)
| |
Collapse
|
36
|
Proteotoxic Stress as an Exploitable Vulnerability in Cells with Hyperactive AKT. Int J Mol Sci 2021; 22:ijms222111376. [PMID: 34768807 PMCID: PMC8583472 DOI: 10.3390/ijms222111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Hyperactivity of serine-threonine kinase AKT is one of the most common molecular abnormalities in cancer, where it contributes to poor outcomes by facilitating the growth and survival of malignant cells. Despite its well-documented anti-apoptotic effects, hyperactivity of AKT is also known to be stressful to a cell. In an attempt to better elucidate this phenomenon, we observed the signs of proteotoxic stress in cells that harbor hyperactive AKT or have lost its principal negative regulator, PTEN. The activity of HSF1 was predictably elevated under these circumstances. However, such cells proved more sensitive to various regimens of heat shock, including the conditions that were well-tolerated by syngeneic cells without AKT hyperactivity. The sensitizing effect of hyperactive AKT was also seen in HSF1-deficient cells, suggesting that the phenomenon does not require the regulation of HSF1 by this kinase. Notably, the elevated activity of AKT was accompanied by increased levels of XBP1, a key component of cell defense against proteotoxic stress. Interestingly, the cells harboring hyperactive AKT were also more dependent on XBP1 for their growth. Our observations suggest that proteotoxic stress conferred by hyperactive AKT represents a targetable vulnerability, which can be exploited by either elevating the stress above the level tolerated by such cells or by eliminating the factors that enable such tolerance.
Collapse
|
37
|
Schmidt C, Schneble-Löhnert N, Lajqi T, Wetzker R, Müller JP, Bauer R. PI3Kγ Mediates Microglial Proliferation and Cell Viability via ROS. Cells 2021; 10:2534. [PMID: 34685514 PMCID: PMC8534080 DOI: 10.3390/cells10102534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Rapid microglial proliferation contributes to the complex responses of the innate immune system in the brain to various neuroinflammatory stimuli. Here, we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) and reactive oxygen species (ROS) for rapid proliferation of murine microglia induced by LPS and ATP. (2) Methods: PI3Kγ knockout mice (PI3Kγ KO), mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) and wild-type mice were assessed for microglial proliferation using an in vivo wound healing assay. Additionally, primary microglia derived from newborn wild-type, PI3Kγ KO and PI3Kγ KD mice were used to analyze PI3Kγ effects on proliferation and cell viability, senescence and cellular and mitochondrial ROS production; the consequences of ROS production for proliferation and cell viability after LPS or ATP stimulation were studied using genetic and pharmacologic approaches. (3) Results: Mice with a loss of lipid kinase activity showed impaired proliferation of microglia. The prerequisite of induced microglial proliferation and cell viability appeared to be PI3Kγ-mediated induction of ROS production. (4) Conclusions: The lipid kinase activity of PI3Kγ plays a crucial role for microglial proliferation and cell viability after acute inflammatory activation.
Collapse
Affiliation(s)
- Caroline Schmidt
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany; (C.S.); (N.S.-L.); (J.P.M.)
| | - Nadine Schneble-Löhnert
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany; (C.S.); (N.S.-L.); (J.P.M.)
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, 69120 Heidelberg, Germany;
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
| | - Jörg P. Müller
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany; (C.S.); (N.S.-L.); (J.P.M.)
| | - Reinhard Bauer
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany; (C.S.); (N.S.-L.); (J.P.M.)
| |
Collapse
|
38
|
Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence. Sci Rep 2021; 11:16505. [PMID: 34389744 PMCID: PMC8363632 DOI: 10.1038/s41598-021-95355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2021] [Indexed: 11/08/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. The two predominant histologic variants of RMS, embryonal and alveolar rhabdomyosarcoma (eRMS and aRMS, respectively), carry very different prognoses. While eRMS is associated with an intermediate prognosis, the 5-year survival rate of aRMS is less than 30%. The RMS subtypes are also different at the molecular level-eRMS frequently has multiple genetic alterations, including mutations in RAS and TP53, whereas aRMS often has chromosomal translocations resulting in PAX3-FOXO1 or PAX7-FOXO1 fusions, but otherwise has a "quiet" genome. Interestingly, mutations in RAS are rarely found in aRMS. In this study, we explored the role of oncogenic RAS in aRMS. We found that while ectopic oncogenic HRAS expression was tolerated in the human RAS-driven eRMS cell line RD, it was detrimental to cell growth and proliferation in the human aRMS cell line Rh28. Growth inhibition was mediated by oncogene-induced senescence and associated with increased RB pathway activity and expression of the cyclin-dependent kinase inhibitors p16 and p21. Unexpectedly, the human eRMS cell line RMS-YM, a RAS wild-type eRMS cell line, also exhibited growth inhibition in response to oncogenic HRAS in a manner similar to aRMS Rh28 cells. This work suggests that oncogenic RAS is expressed in a context-dependent manner in RMS and may provide insight into the differential origins and therapeutic opportunities for RMS subtypes.
Collapse
|
39
|
Cao L, Lee SG, Park SH, Kim HR. Sargahydroquinoic acid (SHQA) suppresses cellular senescence through Akt/mTOR signaling pathway. Exp Gerontol 2021; 151:111406. [PMID: 34022274 DOI: 10.1016/j.exger.2021.111406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023]
Abstract
AIM The effects of sargahydroquinoic acid (SHQA) on cellular senescence and the underlying mechanisms were investigated using human umbilical vascular endothelial cells (HUVECs). METHODS SHQA or DMSO was supplemented into the medium. Low dose of H2O2 was used to induce premature senescence. Replicative senescence was achieved by continuously culturing cells until they reached a plateau phase. Senescence biomarkers, including p53, p21, and p16 proteins, and SA-β-Gal activity were measured. RESULTS Pretreatment of SHQA significantly suppressed the oxidative stress-induced protein expression of p53, p21, and p16, as well as the activity of SA-β-Gal. Additionally, SHQA also delayed the replicative senescence as indicated by an increased population doubling number, reduced protein expression of p53, p21, and p16, as well as a decreased SA-β-Gal activity. SHQA inhibited the phosphorylation of Akt, mTOR, and downstream targets of mTOR, such as p-S6K, which was elevated by premature senescence and replicative senescence. In the absence of senescence stimuli, SHQA also inhibited the Akt/mTOR signaling pathway and promoted autophagy. CONCLUSIONS SHQA suppressed senescence induced by oxidative stress and replication through inhibiting the Akt/mTOR pathway. With the potential of acting as an Akt/mTOR inhibitor, SHQA might be useful for developing anti-ageing therapy.
Collapse
Affiliation(s)
- Lei Cao
- Institute of Marine Life Science, Pukyong National University, Daeyeon 3-dong, Nam-gu, Busan 608-737, South Korea.
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon 3-dong, Nam-gu, Busan 608-737, South Korea.
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Daeyeon 3-dong, Nam-gu, Busan 608-737, South Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Daeyeon 3-dong, Nam-gu, Busan 608-737, South Korea.
| |
Collapse
|
40
|
Mercurio L, Albanesi C, Madonna S. Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Front Med (Lausanne) 2021; 8:665647. [PMID: 33996865 PMCID: PMC8119789 DOI: 10.3389/fmed.2021.665647] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
PhosphoInositide-3 Kinase (PI3K) represents a family of different classes of kinases which control multiple biological processes in mammalian cells, such as cell growth, proliferation, and survival. Class IA PI3Ks, the main regulators of proliferative signals, consists of a catalytic subunit (α, β, δ) that binds p85 regulatory subunit and mediates activation of AKT and mammalian Target Of Rapamycin (mTOR) pathways and regulation of downstream effectors. Dysregulation of PI3K/AKT/mTOR pathway in skin contributes to several pathological conditions characterized by uncontrolled proliferation, including skin cancers, psoriasis, and atopic dermatitis (AD). Among cutaneous cancers, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) display PI3K/AKT/mTOR signaling hyperactivation, implicated in hyperproliferation, and tumorigenesis, as well as in resistance to apoptosis. Upregulation of mTOR signaling proteins has also been reported in psoriasis, in association with enhanced proliferation, defective keratinocyte differentiation, senescence-like growth arrest, and resistance to apoptosis, accounting for major parts of the overall disease phenotypes. On the contrary, PI3K/AKT/mTOR role in AD is less characterized, even though recent evidence demonstrates the relevant function for mTOR pathway in the regulation of epidermal barrier formation and stratification. In this review, we provide the most recent updates on the role and function of PI3K/AKT/mTOR molecular axis in the pathogenesis of different hyperproliferative skin disorders, and highlights on the current status of preclinical and clinical studies on PI3K-targeted therapies.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
41
|
Nomura S, Komuro I. Precision medicine for heart failure based on molecular mechanisms: The 2019 ISHR Research Achievement Award Lecture. J Mol Cell Cardiol 2021; 152:29-39. [PMID: 33275937 DOI: 10.1016/j.yjmcc.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Heart failure is a leading cause of death, and the number of patients with heart failure continues to increase worldwide. To realize precision medicine for heart failure, its underlying molecular mechanisms must be elucidated. In this review summarizing the "The Research Achievement Award Lecture" of the 2019 XXIII ISHR World Congress held in Beijing, China, we would like to introduce our approaches for investigating the molecular mechanisms of cardiac hypertrophy, development, and failure, as well as discuss future perspectives.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Japan.
| |
Collapse
|
42
|
Engler M, Fidan M, Nandi S, Cirstea IC. Senescence in RASopathies, a possible novel contributor to a complex pathophenoype. Mech Ageing Dev 2020; 194:111411. [PMID: 33309600 DOI: 10.1016/j.mad.2020.111411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Senescence is a biological process that induces a permanent cell cycle arrest and a specific gene expression program in response to various stressors. Following studies over the last few decades, the concept of senescence has evolved from an antiproliferative mechanism in cancer (oncogene-induced senescence) to a critical component of physiological processes associated with embryonic development, tissue regeneration, ageing and its associated diseases. In somatic cells, oncogenic mutations in RAS-MAPK pathway genes are associated with oncogene-induced senescence and cancer, while germline mutations in the same pathway are linked to a group of monogenic developmental disorders generally termed RASopathies. Here, we consider that in these disorders, senescence induction may result in opposing outcomes, a tumour protective effect and a possible contributor to a premature ageing phenotype identified in Costello syndrome, which belongs to the RASopathy group. In this review, we will highlight the role of senescence in organismal homeostasis and we will describe the current knowledge about senescence in RASopathies. Additionally, we provide a perspective on examples of experimentally characterised RASopathy mutations that, alone or in combination with various stressors, may also trigger an age-dependent chronic senescence, possibly contributing to the age-dependent worsening of RASopathy pathophenotype and the reduction of lifespan.
Collapse
Affiliation(s)
- Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
43
|
Xiang QY, Tian F, Du X, Xu J, Zhu LY, Guo LL, Wen T, Liu YS, Liu L. Postprandial triglyceride-rich lipoproteins-induced premature senescence of adipose-derived mesenchymal stem cells via the SIRT1/p53/Ac-p53/p21 axis through oxidative mechanism. Aging (Albany NY) 2020; 12:26080-26094. [PMID: 33316776 PMCID: PMC7803527 DOI: 10.18632/aging.202298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
The accumulation of senescent adipose-derived mesenchymal stem cells (AMSCs) in subcutaneous white adipose tissue (WAT) is the main cause for the deterioration of WAT and the subsequent age-related disorders in obesity. The number of AMSCs staining positively for senescence-associated-β-galactosidase (SA-β-Gal) increased significantly after incubation with postprandial triglyceride-rich lipoproteins (TRL), accompanied by an impaired cell proliferation capacity and increased expression of inflammatory factors. Besides, the expression of anti-aging protein, silent mating-type information regulation 2 homolog 1 (SIRT1), was downregulated significantly, while those of acetylated p53 (Ac-p53), total p53, and p21 proteins were upregulated significantly during postprandial TRL-induced premature senescence of AMSCs. Furthermore, the production of intracellular reactive oxygen species (ROS) in the TRL group increased significantly, while pretreatment with the ROS scavenger N-acetyl-L-cysteine effectively attenuated the premature senescence of AMSCs by decreasing ROS production and upregulating SIRT1 level. Thus, postprandial TRL induced premature senescence of AMSCs through the SIRT1/p53/Ac-p53/p21 axis, partly through increased oxidative stress.
Collapse
Affiliation(s)
- Qun-Yan Xiang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Feng Tian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Department of Geriatric Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| | - Li-Yuan Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| | - Li-Ling Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| | - Tie Wen
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| |
Collapse
|
44
|
Zhang X, Peng Y, Yuan Y, Gao Y, Hu F, Wang J, Zhu X, Feng X, Cheng Y, Wei Y, Fan X, Xie Y, Lv Y, Ashktorab H, Smoot D, Li S, Meltzer SJ, Hou G, Jin Z. Histone methyltransferase SET8 is regulated by miR-192/215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells. Cell Death Dis 2020; 11:937. [PMID: 33127874 PMCID: PMC7599338 DOI: 10.1038/s41419-020-03130-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
Gastric cancer (GC) is the most common cancer throughout the world. Despite advances of the treatments, detailed oncogenic mechanisms are largely unknown. In our previous study, we investigated microRNA (miR) expression profiles in human GC using miR microarrays. We found miR-192/215 were upregulated in GC tissues. Then gene microarray was implemented to discover the targets of miR-192/215. We compared the expression profile of BGC823 cells transfected with miR-192/215 inhibitors, and HFE145 cells transfected with miR-192/-215 mimics, respectively. SET8 was identified as a proposed target based on the expression change of more than twofold. SET8 belongs to the SET domain-containing methyltransferase family and specifically catalyzes monomethylation of H4K20me. It is involved in diverse functions in tumorigenesis and metastasis. Therefore, we focused on the contributions of miR-192/215/SET8 axis to the development of GC. In this study, we observe that functionally, SET8 regulated by miR-192/215 is involved in GC-related biological activities. SET8 is also found to trigger oncogene-induced senescence (OIS) in GC in vivo and in vitro, which is dependent on the DDR (DNA damage response) and p53. Our findings reveal that SET8 functions as a negative regulator of metastasis via the OIS-signaling pathway. Taken together, we investigated the functional significance, molecular mechanisms, and clinical impact of miR-192/215/SET8/p53 in GC.
Collapse
Affiliation(s)
- Xiaojing Zhang
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yin Peng
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yuan Yuan
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yuli Gao
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Fan Hu
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Jian Wang
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaohui Zhu
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xianling Feng
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yulan Cheng
- grid.21107.350000 0001 2171 9311Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mmel Comprehensive Cancer Center, Baltimore, MD 21287 USA
| | - Yanjie Wei
- grid.458489.c0000 0001 0483 7922Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Xinmin Fan
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yaohong Xie
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yansi Lv
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Hassan Ashktorab
- grid.257127.40000 0001 0547 4545Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC 20060 USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208 USA
| | - Song Li
- grid.454883.6Shenzhen Science & Technology Development Exchange Center, Shenzhen Science and Technology Building, Shenzhen, Guangdong 518055 People’s Republic of China
| | - Stephen J. Meltzer
- grid.21107.350000 0001 2171 9311Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mmel Comprehensive Cancer Center, Baltimore, MD 21287 USA
| | - Gangqiang Hou
- Department of Medical Image Center, Kangning Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China.
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
45
|
N6-(2-hydroxyethyl)-Adenosine Induces Apoptosis via ER Stress and Autophagy of Gastric Carcinoma Cells In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21165815. [PMID: 32823628 PMCID: PMC7461581 DOI: 10.3390/ijms21165815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/03/2023] Open
Abstract
Gastric cancer is the most common malignant tumor of the digestive tract and is great challenge in clinical treatment. N6-(2-Hydroxyethyl)-adenosine (HEA), widely present in various fungi, is a natural adenosine derivative with many biological and pharmacological activities. Here, we assessed the antineoplastic effect of HEA on gastric carcinoma. HEA exerted cytotoxic effects against gastric carcinoma cells (SGC-7901 and AGS) in a dose and time-dependent manner. Additionally, we found that HEA induced reactive oxygen species production and mitochondrial membrane potential depolarization. Moreover, it could trigger caspase-dependent apoptosis, promoting intracellular Ca2+-related endoplasmic reticulum (ER) stress and autophagy. On the other hand, HEA could significantly inhibit the growth of transplanted tumors in nude mice and induce apoptosis of tumor tissues cells in vivo. In conclusion, HEA induced apoptosis of gastric carcinoma cells in vitro and in vivo, demonstrating that HEA is a potential chemotherapeutic agent for gastric carcinoma.
Collapse
|
46
|
Expression and functional analysis of the Akt gene from Daphnia pulex. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110462. [PMID: 32540280 DOI: 10.1016/j.cbpb.2020.110462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/26/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022]
Abstract
Daphnia pulex is a nutrient-rich freshwater crustacean with two different reproduction methods. Akt is a serine/threonine protein kinase that plays an important role in cell growth, survival, and lifespan regulation. To explore the function of Akt in the growth and aging process of Daphnia pulex, we cloned the cDNA sequence of the open reading frame (ORF) of the akt gene based on the bioinformatic analysis of the transcriptome data of D. pulex, and analyzed the structural features of the Akt protein. Gene silencing was performed using RNA interference (RNAi), and the expression of the Akt gene and protein before and after interference were analyzed using qPCR and western blotting. The results showed that the expression of akt in D. pulex at different ages showed a "W" pattern, being significantly higher at 20 days than at 10 days and 15 days (P < .05). The expression trend of Akt protein and mRNA were similar, with lower expression at a younger age (1-5 day), after which expression gradually increased from 10 days age, and showed no significant change after 25 days, which might be caused by a lag of protein translation. RNAi reduced the expression of the Akt gene and protein by at least 76%, and the survival rate and reproductive capacity of D. pulex were significantly lower in the RNAi group compared with those in the control group. This study provides a better understanding of the function of the akt gene in D. pulex.
Collapse
|
47
|
El Maï M, Marzullo M, de Castro IP, Ferreira MG. Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish. eLife 2020; 9:54935. [PMID: 32427102 PMCID: PMC7237213 DOI: 10.7554/elife.54935] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive telomere shortening during lifespan is associated with restriction of cell proliferation, genome instability and aging. Apoptosis and senescence are the two major outcomes upon irreversible cellular damage. Here, we show a transition of these two cell fates during aging of telomerase deficient zebrafish. In young telomerase mutants, proliferative tissues exhibit DNA damage and p53-dependent apoptosis, but no senescence. However, these tissues in older animals display loss of cellularity and senescence becomes predominant. Tissue alterations are accompanied by a pro-proliferative stimulus mediated by AKT signaling. Upon AKT activation, FoxO transcription factors are phosphorylated and translocated out of the nucleus. This results in reduced SOD2 expression causing an increase of ROS and mitochondrial dysfunction. These alterations induce p15/16 growth arrest and senescence. We propose that, upon telomere shortening, early apoptosis leads to cell depletion and insufficient compensatory proliferation. Following tissue damage, the mTOR/AKT is activated causing mitochondrial dysfunction and p15/16-dependent senescence.
Collapse
Affiliation(s)
- Mounir El Maï
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, Nice, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, Nice, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
48
|
Zhu H, Blake S, Kusuma FK, Pearson RB, Kang J, Chan KT. Oncogene-induced senescence: From biology to therapy. Mech Ageing Dev 2020; 187:111229. [PMID: 32171687 DOI: 10.1016/j.mad.2020.111229] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Oncogene-induced senescence (OIS) is a powerful intrinsic tumor-suppressive mechanism, arresting cell cycle progression upon oncogene-activating genomic alterations. The discovery and characterization of the senescence-associated secretome unveiled a rich additional complexity to the senescence phenotype, including extrinsic impacts on the microenvironment and engagement of the immune response. Emerging evidence suggests that senescence phenotypes vary depending on the oncogenic stimulus. Therefore, understanding the mechanisms underlying OIS and how they are subverted in cancer will provide invaluable opportunities to identify alternative strategies for treating oncogene-driven cancers. In this review, we primarily discuss the key mechanisms governing OIS driven by the RAS/MAPK and PI3K/AKT pathways and how understanding the biology of senescent cells has uncovered new therapeutic possibilities to target cancer.
Collapse
Affiliation(s)
- Haoran Zhu
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Shaun Blake
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Frances K Kusuma
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Richard B Pearson
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3168, Australia.
| | - Jian Kang
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Keefe T Chan
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
49
|
Clement M, Luo L. Organismal Aging and Oxidants beyond Macromolecules Damage. Proteomics 2020; 20:e1800400. [DOI: 10.1002/pmic.201800400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Marie‐Veronique Clement
- Department of BiochemistryYong Loo Lin School of MedicineNational University of Singapore Singapore 117596 Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering Singapore 117456 Singapore
| | - Le Luo
- Department of BiochemistryYong Loo Lin School of MedicineNational University of Singapore Singapore 117596 Singapore
| |
Collapse
|
50
|
Tempo-spatial alternative polyadenylation analysis reveals that 3' UTR lengthening of Mdm2 regulates p53 expression and cellular senescence in aged rat testis. Biochem Biophys Res Commun 2020; 523:1046-1052. [PMID: 31973811 DOI: 10.1016/j.bbrc.2020.01.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/11/2020] [Indexed: 12/21/2022]
Abstract
Although tissue aging is accompanied with cellular senescence, it is much complicated than senescence given both types and number of cells change with age. Alternative polyadenylation (APA) had shown tissue specificity and APA-mediated 3' untranslated region (3' UTR) lengthening could regulate senescence-associated phenotypes. However, whether tissue aging shows similar trends remains unknown. Here, we performed a comprehensive analysis on RNA-seq datasets derived from multiple cells and rat tissues of young and old age. Although APA-mediated 3' UTR lengthening in various senescent cells reinforced the previous discovery, tissue aging showed much more complexity in APA. Interestingly, testis was the only tissue displaying dramatic 3' UTR lengthening and decreased expression trend of corresponding genes in aged rat. Genes with longer 3' UTR in aged testis were enriched in senescence-associated pathways, among which, Mdm2, encoding an E3 ligase of p53, favored distal poly(A) site resulting in lengthened 3' UTR and decreased expression. Longer 3' UTR of Mdm2 generated less protein, and decreased Mdm2 expression led to senescence-associated phenotypes along with increased p53 and p21 protein abundance, which could all be reversed by Mdm2 overexpression. Our work revealed complicated APA changes during tissue aging and discovered APA-mediated 3' UTR lengthening of Mdm2 is a hidden layer in regulating the well-known senescence-related p53-p21 signal axis during testis aging, and also has potential implications regarding declined male fertility along aging.
Collapse
|