1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Birkholz N, Kamata K, Feussner M, Wilkinson ME, Cuba Samaniego C, Migur A, Kimanius D, Ceelen M, Went SC, Usher B, Blower TR, Brown CM, Beisel CL, Weinberg Z, Fagerlund RD, Jackson SA, Fineran PC. Phage anti-CRISPR control by an RNA- and DNA-binding helix-turn-helix protein. Nature 2024; 631:670-677. [PMID: 38987591 DOI: 10.1038/s41586-024-07644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.
Collapse
MESH Headings
- Bacteriophages/chemistry
- Bacteriophages/genetics
- Bacteriophages/metabolism
- Bacteriophages/ultrastructure
- Binding Sites
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems
- Cryoelectron Microscopy
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/ultrastructure
- Gene Expression Regulation, Viral
- Genes, Viral
- Helix-Turn-Helix Motifs
- Models, Molecular
- Nucleic Acid Conformation
- Pectobacterium carotovorum/virology
- Protein Biosynthesis/genetics
- Protein Domains
- Ribosomes/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/ultrastructure
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA, Viral/ultrastructure
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/ultrastructure
- Substrate Specificity
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viral Proteins/ultrastructure
Collapse
Affiliation(s)
- Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kotaro Kamata
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Maximilian Feussner
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Max E Wilkinson
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Angela Migur
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | | | - Marijn Ceelen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Sam C Went
- Department of Biosciences, Durham University, Durham, UK
| | - Ben Usher
- Department of Biosciences, Durham University, Durham, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Sumitha MK, Kalimuthu M, Aarthy M, Paramasivan R, Kumar A, Gupta B. In silico identification, characterization, and expression analysis of RNA recognition motif (RRM) containing RNA-binding proteins in Aedes aegypti. Parasitol Res 2023; 122:2847-2857. [PMID: 37735272 DOI: 10.1007/s00436-023-07969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
RNA-binding proteins (RBPs) are the proteins that bind RNAs and regulate their functioning. RBPs in mosquitoes are gaining attention due to their ability to bind flaviviruses and regulate their replication and transmission. Despite their relevance, RBPs in mosquitoes are not explored much. In this study, we screened the whole genome of Aedes aegypti, the primary vector of several pathogenic viruses, and identified the proteins containing RNA recognition motif (RRM), the most abundant protein domain in eukaryotes. Using several in silico strategies, a total of 135 RRM-containing RBPs were identified in Ae. aegypti. The proteins were characterized based on their available annotations and the sequence similarity with Drosophila melanogaster. Ae. aegypti RRM-containing RBPs included serine/arginine-rich (SR) proteins, polyadenylate-binding proteins (PABP), heteronuclear ribonucleoproteins (hnRNP), small nuclear ribonucleoproteins (snRNP), splicing factors, eukaryotic initiation factors, transformers, and nucleolysins. Phylogenetic analysis revealed that the proteins and the domain organization are conserved among Ae. aegypti, Bombyx mori, and Drosophila melanogaster. However, the gene length and the intron-exon organization varied across the insect species. Expression analysis of the genes encoding RBPs using publicly available RNA sequencing data for different developmental time points of the mosquito life cycle starting from the ovary and eggs up to the adults revealed stage-specific expression with several genes preferentially expressed in early embryonic stages and blood-fed female ovaries. This is the first database for the Ae. aegypti RBPs that can serve as the reference base for future investigations. Stage-specific genes can be further explored to determine their role in mosquito growth and development with a focus on developing novel mosquito control strategies.
Collapse
Affiliation(s)
- Melveettil Kishor Sumitha
- ICMR-Vector Control Research Centre (VCRC), Field Station, 4, Sarojini Street Chinna Chokkikulam, Madurai, 625002, India
| | - Mariapillai Kalimuthu
- ICMR-Vector Control Research Centre (VCRC), Field Station, 4, Sarojini Street Chinna Chokkikulam, Madurai, 625002, India
| | - Murali Aarthy
- ICMR-Vector Control Research Centre (VCRC), Field Station, 4, Sarojini Street Chinna Chokkikulam, Madurai, 625002, India
| | - Rajaiah Paramasivan
- ICMR-Vector Control Research Centre (VCRC), Field Station, 4, Sarojini Street Chinna Chokkikulam, Madurai, 625002, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre (VCRC), Puducherry, India
| | - Bhavna Gupta
- ICMR-Vector Control Research Centre (VCRC), Field Station, 4, Sarojini Street Chinna Chokkikulam, Madurai, 625002, India.
| |
Collapse
|
4
|
Wang Y, He Y, Wang Y, Yang Y, Singh M, Eichhorn CD, Cheng X, Jiang YX, Zhou ZH, Feigon J. Structure of LARP7 Protein p65-telomerase RNA Complex in Telomerase Revealed by Cryo-EM and NMR. J Mol Biol 2023; 435:168044. [PMID: 37330293 PMCID: PMC10988774 DOI: 10.1016/j.jmb.2023.168044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
La-related protein 7 (LARP7) are a family of RNA chaperones that protect the 3'-end of RNA and are components of specific ribonucleoprotein complexes (RNP). In Tetrahymena thermophila telomerase, LARP7 protein p65 together with telomerase reverse transcriptase (TERT) and telomerase RNA (TER) form the core RNP. p65 has four known domains-N-terminal domain (NTD), La motif (LaM), RNA recognition motif 1 (RRM1), and C-terminal xRRM2. To date, only the xRRM2 and LaM and their interactions with TER have been structurally characterized. Conformational dynamics leading to low resolution in cryo-EM density maps have limited our understanding of how full-length p65 specifically recognizes and remodels TER for telomerase assembly. Here, we combined focused classification of Tetrahymena telomerase cryo-EM maps with NMR spectroscopy to determine the structure of p65-TER. Three previously unknown helices are identified, one in the otherwise intrinsically disordered NTD that binds the La module, one that extends RRM1, and another preceding xRRM2, that stabilize p65-TER interactions. The extended La module (αN, LaM and RRM1) interacts with the four 3' terminal U nucleotides, while LaM and αN additionally interact with TER pseudoknot, and LaM with stem 1 and 5' end. Our results reveal the extensive p65-TER interactions that promote TER 3'-end protection, TER folding, and core RNP assembly and stabilization. The structure of full-length p65 with TER also sheds light on the biological roles of genuine La and LARP7 proteins as RNA chaperones and core RNP components.
Collapse
Affiliation(s)
- Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Yao He
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yanjiao Wang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Mahavir Singh
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Xinyi Cheng
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Yi Xiao Jiang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
5
|
Altered tRNA processing is linked to a distinct and unusual La protein in Tetrahymena thermophila. Nat Commun 2022; 13:7332. [PMID: 36443289 PMCID: PMC9705548 DOI: 10.1038/s41467-022-34796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Nascent pre-tRNAs are transcribed by RNA polymerase III and immediately bound by La proteins on the UUU-3'OH sequence, using a tandem arrangement of the La motif and an adjacent RNA recognition motif-1 (RRM1), resulting in protection from 3'-exonucleases and promotion of pre-tRNA folding. The Tetrahymena thermophila protein Mlp1 has been previously classified as a genuine La protein, despite the predicted absence of the RRM1. We find that Mlp1 functions as a La protein through binding of pre-tRNAs, and affects pre-tRNA processing in Tetrahymena thermophila and when expressed in fission yeast. However, unlike in other examined eukaryotes, depletion of Mlp1 results in 3'-trailer stabilization. The 3'-trailers in Tetrahymena thermophila are uniquely short relative to other examined eukaryotes, and 5'-leaders have evolved to disfavour pre-tRNA leader/trailer pairing. Our data indicate that this variant Mlp1 architecture is linked to an altered, novel mechanism of tRNA processing in Tetrahymena thermophila.
Collapse
|
6
|
Identification and molecular evolution of the La and LARP genes in 16 plant species: A focus on the Gossypium hirsutum. Int J Biol Macromol 2022; 224:1101-1117. [DOI: 10.1016/j.ijbiomac.2022.10.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
7
|
Kozlov G, Mattijssen S, Jiang J, Nyandwi S, Sprules T, Iben J, Coon S, Gaidamakov S, Noronha AM, Wilds C, Maraia R, Gehring K. Structural basis of 3'-end poly(A) RNA recognition by LARP1. Nucleic Acids Res 2022; 50:9534-9547. [PMID: 35979957 PMCID: PMC9458460 DOI: 10.1093/nar/gkac696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
La-related proteins (LARPs) comprise a family of RNA-binding proteins involved in a wide range of posttranscriptional regulatory activities. LARPs share a unique tandem of two RNA-binding domains, La motif (LaM) and RNA recognition motif (RRM), together referred to as a La-module, but vary in member-specific regions. Prior structural studies of La-modules reveal they are pliable platforms for RNA recognition in diverse contexts. Here, we characterize the La-module of LARP1, which plays an important role in regulating synthesis of ribosomal proteins in response to mTOR signaling and mRNA stabilization. LARP1 has been well characterized functionally but no structural information exists for its La-module. We show that unlike other LARPs, the La-module in LARP1 does not contain an RRM domain. The LaM alone is sufficient for binding poly(A) RNA with submicromolar affinity and specificity. Multiple high-resolution crystal structures of the LARP1 LaM domain in complex with poly(A) show that it is highly specific for the RNA 3'-end, and identify LaM residues Q333, Y336 and F348 as the most critical for binding. Use of a quantitative mRNA stabilization assay and poly(A) tail-sequencing demonstrate functional relevance of LARP1 RNA binding in cells and provide novel insight into its poly(A) 3' protection activity.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Samuel Nyandwi
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Tara Sprules
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada,Quebec/Eastern Canada NMR Centre, McGill University, Montréal, Canada
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Steven L Coon
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Anne M Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
8
|
Guo H, Cui Y, Huang L, Ge L, Xu X, Xue D, Tang M, Zheng J, Yi Y, Chen L. The RNA binding protein OsLa influences grain and anther development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1397-1414. [PMID: 35322500 DOI: 10.1111/tpj.15746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
La proteins are found widely in eukaryotes and play a variety of vital roles. AtLa1 has been identified as an La protein that is necessary for embryogenesis in Arabidopsis; however, the existence and biological functions of La proteins in rice (Oryza sativa L.) remain unclear. In this study, we identified and characterized two La proteins in rice that are homologous to AtLa1 and named them OsLa1 and OsLa2. Both the OsLa1 and OsLa2 genes encode RNA-binding proteins with an La domain and two RNA-binding domains. Mutant OsLa1 reduced grain length and pollen fertility, whereas OsLa1 overexpression caused the opposite phenotypes. Further experiments indicated that OsLa1 modulates grain size by influencing cell expansion. Interestingly, mutant OsLa2 resulted in thin grains with decreased weight and a low seed-setting rate. We also found that OsLa1 interacted with OsLa2 and that both OsLa1 and OsLa2 interacted with OseIF6.1, a eukaryotic translation initiation factor involved in ribosome biogenesis. In addition, OsLa1 was able to bind to OseIF6.1 mRNA to modulate its expression. Complete OseIF6.1 knockout caused lethality and OseIF6.1/oseif6.1 heterozygous plants displayed low fertility and low seed setting. Together, our results enrich our knowledge of the role of La proteins in rice growth and development, as well as the relationship between La and eIF6 in rice.
Collapse
Affiliation(s)
- Hongming Guo
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linjuan Huang
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Li Ge
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaorong Xu
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Danyang Xue
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Tang
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Jingsheng Zheng
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Shan F, Zhang N. Resonance assignments of La protein RRM domain from Trypanosoma brucei. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:41-44. [PMID: 33089372 DOI: 10.1007/s12104-020-09980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The autoantigen La protein is a conserved component of eukaryotic ribonucleoprotein complexes that binds the 3' poly(U) sequences of nascent RNA polymerase III transcripts to assist folding and maturation. This specific recognition is mediated by the N-terminal domain (NTD) of La, which comprises a La motif and an RNA recognition motif (RRM). Here, we report near complete 1H, 13C and 15N backbone and sidechain assignments for the RRM domain of La protein from Trypanosoma brucei.
Collapse
Affiliation(s)
- Fangzhen Shan
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
- Hefei National Laboratory for Physical Science At Microscale and School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Nannan Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
10
|
Bayfield MA, Vinayak J, Kerkhofs K, Mansouri-Noori F. La proteins couple use of sequence-specific and non-specific binding modes to engage RNA substrates. RNA Biol 2021; 18:168-177. [PMID: 30777481 PMCID: PMC7928037 DOI: 10.1080/15476286.2019.1582955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
La shuttles between the nucleus and cytoplasm where it binds nascent RNA polymerase III (pol III) transcripts and mRNAs, respectively. La protects the 3' end of pol III transcribed RNA precursors, such as pre-tRNAs, through the use of a well-characterized UUU-3'OH binding mode. La proteins are also RNA chaperones, and La-dependent RNA chaperone activity is hypothesized to promote pre-tRNA maturation and translation at cellular and viral internal ribosome entry sites via binding sites distinct from those used for UUU-3'OH recognition. Since the publication of La-UUU-3'OH co-crystal structures, biochemical and genetic experiments have expanded our understanding of how La proteins use UUU-3'OH-independent binding modes to make sequence-independent contacts that can increase affinity for ligands and promote RNA remodeling. Other recent work has also expanded our understanding of how La binds mRNAs through contacts to the poly(A) tail. In this review, we focus on advances in the study of La protein-RNA complex surfaces beyond the description of the La-UUU-3'OH binding mode. We highlight recent advances in the functions of expected canonical nucleic acid interaction surfaces, a heightened appreciation of disordered C-terminal regions, and the nature of sequence-independent RNA determinants in La-RNA target binding. We further discuss how these RNA binding modes may have relevance to the function of the La-related proteins.
Collapse
Affiliation(s)
- Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jyotsna Vinayak
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Kyra Kerkhofs
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
11
|
Al-Ashtal HA, Rubottom CM, Leeper TC, Berman AJ. The LARP1 La-Module recognizes both ends of TOP mRNAs. RNA Biol 2021; 18:248-258. [PMID: 31601159 PMCID: PMC7927982 DOI: 10.1080/15476286.2019.1669404] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
La-Related Protein 1 (LARP1) is an RNA-binding protein that regulates the stability and translation of mRNAs encoding the translation machinery, including ribosomal proteins and translation factors. These mRNAs are characterized by a 5'-terminal oligopyrimidine (TOP) motif that coordinates their temporal and stoichiometric expression. While LARP1 represses TOP mRNA translation via the C-terminal DM15 region, the role of the N-terminal La-Module in the recognition and translational regulation of TOP mRNAs remains elusive. Herein we show that the LARP1 La-Module also binds TOP motifs, although in a cap-independent manner. We also demonstrate that it recognizes poly(A) RNA. Further, our data reveal that the LARP1 La-Module can simultaneously engage TOP motifs and poly(A) RNA. These results evoke an intriguing molecular mechanism whereby LARP1 could regulate translation and stabilization of TOP transcripts.
Collapse
Affiliation(s)
- Hiba A. Al-Ashtal
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Courtney M. Rubottom
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas C. Leeper
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Andrea J. Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Kaliatsi EG, Argyriou AI, Bouras G, Apostolidi M, Konstantinidou P, Shaukat AN, Spyroulias GA, Stathopoulos C. Functional and Structural Aspects of La Protein Overexpression in Lung Cancer. J Mol Biol 2020; 432:166712. [PMID: 33197462 DOI: 10.1016/j.jmb.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
La is an abundant phosphoprotein that protects polymerase III transcripts from 3'-5' exonucleolytic degradation and facilitates their folding. Consisting of the evolutionary conserved La motif (LAM) and two consecutive RNA Recognition Motifs (RRMs), La was also found to bind additional RNA transcripts or RNA domains like internal ribosome entry site (IRES), through sequence-independent binding modes which are poorly understood. Although it has been reported overexpressed in certain cancer types and depletion of its expression sensitizes cancer cells to certain chemotherapeutic agents, its role in cancer remains essentially uncharacterized. Herein, we study the effects of La overexpression in A549 lung adenocarcinoma cells, which leads to increased cell proliferation and motility. Expression profiling of several transcription and translation factors indicated that La overexpression leads to downregulation of global translation through hypophosphorylation of 4E-BPs and upregulation of IRES-mediated translation. Moreover, analysis of La localization after nutrition deprivation of the transfected cells showed a normal distribution in the nucleus and nucleoli. Although the RNA binding capacity of La has been primarily linked to the synergy between the conserved LAM and RRM1 domains which act as a module, we show that recombinant stand-alone LAM can specifically bind a pre-tRNA ligand, based on binding experiments combined with NMR analysis. We propose that LAM RNA binding properties could support the expanding and diverse RNA ligand repertoire of La, thus promoting its modulatory role, both under normal and pathogenic conditions like cancer.
Collapse
Affiliation(s)
- Eleni G Kaliatsi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Georgios Bouras
- Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Maria Apostolidi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | | | |
Collapse
|
13
|
Abstract
RNA-binding proteins are important regulators of RNA metabolism and are of critical importance in all steps of the gene expression cascade. The role of aberrantly expressed RBPs in human disease is an exciting research field and the potential application of RBPs as a therapeutic target or a diagnostic marker represents a fast-growing area of research.Aberrant overexpression of the human RNA-binding protein La has been found in various cancer entities including lung, cervical, head and neck, and chronic myelogenous leukaemia. Cancer-associated La protein supports tumour-promoting processes such as proliferation, mobility, invasiveness and tumour growth. Moreover, the La protein maintains the survival of cancer cells by supporting an anti-apoptotic state that may cause resistance to chemotherapeutic therapy.The human La protein represents a multifunctional post-translationally modified RNA-binding protein with RNA chaperone activity that promotes processing of non-coding precursor RNAs but also stimulates the translation of selective messenger RNAs encoding tumour-promoting and anti-apoptotic factors. In our model, La facilitates the expression of those factors and helps cancer cells to cope with cellular stress. In contrast to oncogenes, able to initiate tumorigenesis, we postulate that the aberrantly elevated expression of the human La protein contributes to the non-oncogenic addiction of cancer cells. In this review, we summarize the current understanding about the implications of the RNA-binding protein La in cancer progression and therapeutic resistance. The concept of exploiting the RBP La as a cancer drug target will be discussed.
Collapse
Affiliation(s)
- Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Brothers WR, Hebert S, Kleinman CL, Fabian MR. A non-canonical role for the EDC4 decapping factor in regulating MARF1-mediated mRNA decay. eLife 2020; 9:e54995. [PMID: 32510323 PMCID: PMC7279887 DOI: 10.7554/elife.54995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
EDC4 is a core component of processing (P)-bodies that binds the DCP2 decapping enzyme and stimulates mRNA decay. EDC4 also interacts with mammalian MARF1, a recently identified endoribonuclease that promotes oogenesis and contains a number of RNA binding domains, including two RRMs and multiple LOTUS domains. How EDC4 regulates MARF1 action and the identity of MARF1 target mRNAs is not known. Our transcriptome-wide analysis identifies bona fide MARF1 target mRNAs and indicates that MARF1 predominantly binds their 3' UTRs via its LOTUS domains to promote their decay. We also show that a MARF1 RRM plays an essential role in enhancing its endonuclease activity. Importantly, we establish that EDC4 impairs MARF1 activity by preventing its LOTUS domains from binding target mRNAs. Thus, EDC4 not only serves as an enhancer of mRNA turnover that binds DCP2, but also as a repressor that binds MARF1 to prevent the decay of MARF1 target mRNAs.
Collapse
Affiliation(s)
- William R Brothers
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
| | - Steven Hebert
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
| | - Claudia L Kleinman
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
- Department of Human Genetics, McGill UniversityMontrealCanada
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
- Department of Biochemistry, McGill UniversityMontrealCanada
- Department of Oncology, McGill UniversityMontrealCanada
| |
Collapse
|
15
|
Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1. Biomolecules 2020; 10:biom10060872. [PMID: 32517187 PMCID: PMC7356810 DOI: 10.3390/biom10060872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains.
Collapse
|
16
|
Dock-Bregeon AC, Lewis KA, Conte MR. The La-related proteins: structures and interactions of a versatile superfamily of RNA-binding proteins. RNA Biol 2019; 18:178-193. [PMID: 31752575 DOI: 10.1080/15476286.2019.1695712] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The La-related proteins (LaRPs) are an ancient superfamily of RNA-binding proteins orchestrating the major fates of RNA, from processing and maturation to regulation of mRNA translation. LaRPs are instrumental in modulating complex assemblies where the RNA is bound, folded, processed, escorted and presented to the functional effectors often through recruitment of protein partners. This intricate web of protein-RNA and protein-protein interactions is enabled by the modular nature of the LaRPs, comprising several structured domains connected by flexible linkers, and other sequences lacking recognizable folded motifs. Recent structures, together with biochemical and biophysical studies, have provided insights into how each LaRP family has evolved unique mechanisms of RNA recognition, not only through the conserved RNA-binding unit, the La-module, but also mediated by other family-specific motifs. Furthermore, in a series of unexpected twists and turns, they have revealed that the dynamic and conformational interplay of multi-structured domains and disordered regions operate in unison to achieve RNA substrate discrimination. This review proposes a perspective of our current knowledge of the structure-function relationship of the LaRP superfamily.
Collapse
Affiliation(s)
| | - Karen A Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
17
|
Cruz-Gallardo I, Martino L, Kelly G, Atkinson R, Trotta R, De Tito S, Coleman P, Ahdash Z, Gu Y, Bui TTT, Conte MR. LARP4A recognizes polyA RNA via a novel binding mechanism mediated by disordered regions and involving the PAM2w motif, revealing interplay between PABP, LARP4A and mRNA. Nucleic Acids Res 2019; 47:4272-4291. [PMID: 30820564 PMCID: PMC6486636 DOI: 10.1093/nar/gkz144] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/22/2022] Open
Abstract
LARP4A belongs to the ancient RNA-binding protein superfamily of La-related proteins (LARPs). In humans, it acts mainly by stabilizing mRNAs, enhancing translation and controlling polyA lengths of heterologous mRNAs. These activities are known to implicate its association with mRNA, protein partners and translating ribosomes, albeit molecular details are missing. Here, we characterize the direct interaction between LARP4A, oligoA RNA and the MLLE domain of the PolyA-binding protein (PABP). Our study shows that LARP4A-oligoA association entails novel RNA recognition features involving the N-terminal region of the protein that exists in a semi-disordered state and lacks any recognizable RNA-binding motif. Against expectations, we show that the La module, the conserved RNA-binding unit across LARPs, is not the principal determinant for oligoA interaction, only contributing to binding to a limited degree. Furthermore, the variant PABP-interacting motif 2 (PAM2w) featured in the N-terminal region of LARP4A was found to be important for both RNA and PABP recognition, revealing a new role for this protein-protein binding motif. Our analysis demonstrates the mutual exclusive nature of the PAM2w-mediated interactions, thereby unveiling a tantalizing interplay between LARP4A, polyA and PABP.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Luigi Martino
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Geoff Kelly
- MRC Biomedical NMR Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - R Andrew Atkinson
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King’s College London, London SE1 1UL, UK
| | - Roberta Trotta
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Stefano De Tito
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Pierre Coleman
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Zainab Ahdash
- Department of Chemistry, King’s College London, London SE1 1DB, UK
| | - Yifei Gu
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Tam T T Bui
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King’s College London, London SE1 1UL, UK
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King’s College London, London SE1 1UL, UK
| |
Collapse
|
18
|
Shan F, Mei S, Zhang J, Zhang X, Xu C, Liao S, Tu X. A telomerase subunit homolog La protein from
Trypanosoma brucei
plays an essential role in ribosomal biogenesis. FEBS J 2019; 286:3129-3147. [DOI: 10.1111/febs.14853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Fangzhen Shan
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Song Mei
- Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | | | - Chao Xu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Science at Microscale School of Life Science University of Science and Technology of China Hefei China
| |
Collapse
|
19
|
Eichhorn CD, Yang Y, Repeta L, Feigon J. Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 2018; 115:E6457-E6466. [PMID: 29946027 PMCID: PMC6048529 DOI: 10.1073/pnas.1806276115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The La and the La-related protein (LARP) superfamily is a diverse class of RNA binding proteins involved in RNA processing, folding, and function. Larp7 binds to the abundant long noncoding 7SK RNA and is required for 7SK ribonucleoprotein (RNP) assembly and function. The 7SK RNP sequesters a pool of the positive transcription elongation factor b (P-TEFb) in an inactive state; on release, P-TEFb phosphorylates RNA Polymerase II to stimulate transcription elongation. Despite its essential role in transcription, limited structural information is available for the 7SK RNP, particularly for protein-RNA interactions. Larp7 contains an N-terminal La module that binds UUU-3'OH and a C-terminal atypical RNA recognition motif (xRRM) required for specific binding to 7SK and P-TEFb assembly. Deletion of the xRRM is linked to gastric cancer in humans. We report the 2.2-Å X-ray crystal structure of the human La-related protein group 7 (hLarp7) xRRM bound to the 7SK stem-loop 4, revealing a unique binding interface. Contributions of observed interactions to binding affinity were investigated by mutagenesis and isothermal titration calorimetry. NMR 13C spin relaxation data and comparison of free xRRM, RNA, and xRRM-RNA structures show that the xRRM is preordered to bind a flexible loop 4. Combining structures of the hLarp7 La module and the xRRM-7SK complex presented here, we propose a structural model for Larp7 binding to the 7SK 3' end and mechanism for 7SK RNP assembly. This work provides insight into how this domain contributes to 7SK recognition and assembly of the core 7SK RNP.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Yuan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Lucas Repeta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|
20
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
21
|
Collopy LC, Ware TL, Goncalves T, Í Kongsstovu S, Yang Q, Amelina H, Pinder C, Alenazi A, Moiseeva V, Pearson SR, Armstrong CA, Tomita K. LARP7 family proteins have conserved function in telomerase assembly. Nat Commun 2018; 9:557. [PMID: 29422501 PMCID: PMC5805788 DOI: 10.1038/s41467-017-02296-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/20/2017] [Indexed: 11/15/2022] Open
Abstract
Understanding the intricacies of telomerase regulation is crucial due to the potential health benefits of modifying its activity. Telomerase is composed of an RNA component and reverse transcriptase. However, additional factors required during biogenesis vary between species. Here we have identified fission yeast Lar7 as a member of the conserved LARP7 family, which includes the Tetrahymena telomerase-binding protein p65 and human LARP7. We show that Lar7 has conserved RNA-recognition motifs, which bind telomerase RNA to protect it from exosomal degradation. In addition, Lar7 is required to stabilise the association of telomerase RNA with the protective complex LSm2–8, and telomerase reverse transcriptase. Lar7 remains a component of the mature telomerase complex and is required for telomerase localisation to the telomere. Collectively, we demonstrate that Lar7 is a crucial player in fission yeast telomerase biogenesis, similarly to p65 in Tetrahymena, and highlight the LARP7 family as a conserved factor in telomere maintenance. The telomerase holoenzyme is minimally composed of the reverse transcriptase and the RNA template. Here the authors identify Lar7 as a member of the full complex that helps to stabilise it and protect telomerase RNA from degradation.
Collapse
Affiliation(s)
- Laura C Collopy
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Tracy L Ware
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Department of Biology, Salem State University, Salem, MA, 01970, USA
| | - Tomas Goncalves
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Division of Biosciences, Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Sunnvør Í Kongsstovu
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,MSc Human Molecular Genetics, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Qian Yang
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Hanna Amelina
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Corinne Pinder
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,Division of Biosciences, Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | - Ala Alenazi
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.,MSc Human Molecular Genetics, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Vera Moiseeva
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Siân R Pearson
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
22
|
Zhao L, He X, Grevelding CG, Ye Q, Li Y, Gasser RB, Dissous C, Mughal MN, Zhou YQ, Zhao JL, Hu M. The RIO protein kinase-encoding gene Sj-riok-2 is involved in key reproductive processes in Schistosoma japonicum. Parasit Vectors 2017; 10:604. [PMID: 29233188 PMCID: PMC5727939 DOI: 10.1186/s13071-017-2524-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 11/24/2022] Open
Abstract
Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is caused by parasitic trematodes of the genus Schistosoma. The pathogenesis of schistosomiasis is caused by eggs whose production is the consequence of the pairing of schistosomes and the subsequent sexual maturation of the female. Previous studies have demonstrated that protein kinases are involved in processes leading to the male-induced differentiation of the female gonads, ovary and vitellarium. Right open reading frame protein kinase 2 (RIOK-2) is a member of the atypical kinase family and shown in other organisms to be responsible for ribosomal RNA biogenesis and cell-cycle progression, as well as involves in nematode development. However, nothing is known about its functions in any trematode including schistosome. Methods We isolated and characterized the riok-2 gene from S. japonicum, and detected the transcriptional profiles of Sj-riok-2 by using real-time PCR and in situ hybridization. RNAi-mediated knockdown of Sj-riok-2 was performed, mitotic activities were detected by EdU incorporation assay and morphological changes on organs were observed by confocal laser scanning microscope (CLSM). Results In silico analyses of the amino acid sequence of Sj-RIOK-2 revealed typical features of this class of kinases including a winged helix (wHTH) domain and a RIO kinase domain. Sj-riok-2 is transcribed in different developmental stages of S. japonicum, with a higher abundance in adult females and eggs. Localization studies showed that Sj-riok-2 was mainly transcribed in female reproductive organs. Experiments with adult schistosomes in vitro demonstrated that the transcriptional level of Sj-riok-2 was affected by pairing. Knocking down Sj-riok-2 by RNAi reduced cell proliferation in the vitellarium and caused the increased amount of mature oocytes in ovary and an accumulation of eggs within the uterus. Conclusions Sj-riok-2 is involved in the reproductive development and maturation of female S. japonicum. Our findings provide first evidence for a pairing-dependent role of Sj-riok-2 in the reproductive development and maturation of female S. japonicum. Thus this study contributes to the understanding of molecular processes controlling reproduction in schistosomes. Electronic supplementary material The online version of this article (10.1186/s13071-017-2524-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ying Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, Australia
| | - Colette Dissous
- CIIL - Center for Infection and Immunity of Lille Inserm, University Lille, Lille, France
| | - Mudassar N Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yan-Qin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
23
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
24
|
Mattijssen S, Arimbasseri AG, Iben JR, Gaidamakov S, Lee J, Hafner M, Maraia RJ. LARP4 mRNA codon-tRNA match contributes to LARP4 activity for ribosomal protein mRNA poly(A) tail length protection. eLife 2017; 6:e28889. [PMID: 28895529 PMCID: PMC5626478 DOI: 10.7554/elife.28889] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA function is controlled by the 3' poly(A) tail (PAT) and poly(A)-binding protein (PABP). La-related protein-4 (LARP4) binds poly(A) and PABP. LARP4 mRNA contains a translation-dependent, coding region determinant (CRD) of instability that limits its expression. Although the CRD comprises <10% of LARP4 codons, the mRNA levels vary >20 fold with synonymous CRD substitutions that accommodate tRNA dynamics. Separately, overexpression of the most limiting tRNA increases LARP4 levels and reveals its functional activity, net lengthening of the PATs of heterologous mRNAs with concomitant stabilization, including ribosomal protein (RP) mRNAs. Genetic deletion of cellular LARP4 decreases PAT length and RPmRNA stability. This LARP4 activity requires its PABP-interaction domain and the RNA-binding module which we show is sensitive to poly(A) 3'-termini, consistent with protection from deadenylation. The results indicate that LARP4 is a posttranscriptional regulator of ribosomal protein production in mammalian cells and suggest that this activity can be controlled by tRNA levels.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | | | - James R Iben
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Sergei Gaidamakov
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Joowon Lee
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUnited States
| | - Richard J Maraia
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
- Commissioned CorpsUS Public Health ServiceBethesdaUnited Staes
| |
Collapse
|
25
|
Structural and developmental expression of Ss-riok-2, an RIO protein kinase encoding gene of Strongyloides stercoralis. Sci Rep 2017; 7:8693. [PMID: 28821723 PMCID: PMC5562798 DOI: 10.1038/s41598-017-07991-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 01/29/2023] Open
Abstract
RIO kinases are essential atypical protein kinases in diverse prokaryotic and eukaryotic organisms, playing significant roles in yeast and humans. However, little is known about their functions in parasitic nematodes. In the present study, we have isolated and characterized the full-length cDNA, gDNA and a putative promoter of a RIOK-2 protein kinase (Ss-RIOK-2) encoding gene (Ss-riok-2) from Strongyloides stercoralis, a medically important parasitic nematode (Order Rhabditida). A three-dimensional structure (3D) model of Ss-RIOK-2 was generated using the Chaetomium thermophilum RIOK-2 protein kinase (Ct-RIOK-2) crystal structure 4GYG as a template. A docking study revealed some critical sites for ATP binding and metal binding. The putative promoter of Ss-riok-2 contains a number of conserved elements. RNAseq analysis revealed the highest levels of the Ss-riok-2 transcript in free-living females and parasitic females. To identify anatomical patterns of Ss-riok-2 expression in S. stercoralis, we observed expression patterns of a transgene construct encoding green fluorescent protein under the Ss-riok-2 promoter in post free-living S. stercoralis. Expression driven by this promoter predominated in intestinal cells. This study demonstrates significant advancement in molecular and cellular biological study of S. stercoralis and of parasitic nematodes generally, and provides a foundation for further functional genomic studies.
Collapse
|
26
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
27
|
Oh KI, Smith-Dupont KB, Markiewicz BN, Gai F. Kinetics of peptide folding in lipid membranes. Biopolymers 2016; 104:281-90. [PMID: 25808575 DOI: 10.1002/bip.22640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022]
Abstract
Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn B Smith-Dupont
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Stavraka C, Blagden S. The La-Related Proteins, a Family with Connections to Cancer. Biomolecules 2015; 5:2701-22. [PMID: 26501340 PMCID: PMC4693254 DOI: 10.3390/biom5042701] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
The evolutionarily-conserved La-related protein (LARP) family currently comprises Genuine La, LARP1, LARP1b, LARP4, LARP4b, LARP6 and LARP7. Emerging evidence suggests each LARP has a distinct role in transcription and/or mRNA translation that is attributable to subtle sequence variations within their La modules and specific C-terminal domains. As emerging research uncovers the function of each LARP, it is evident that La, LARP1, LARP6, LARP7 and possibly LARP4a and 4b are dysregulated in cancer. Of these, LARP1 is the first to be demonstrated to drive oncogenesis. Here, we review the role of each LARP and the evidence linking it to malignancy. We discuss a future strategy of targeting members of this protein family as cancer therapy.
Collapse
Affiliation(s)
- Chara Stavraka
- Ovarian Cancer Research Centre, Institute for Reproductive and Developmental Biology, Imperial College, Du Cane Road, London W12 0HS, UK.
| | - Sarah Blagden
- Ovarian Cancer Research Centre, Institute for Reproductive and Developmental Biology, Imperial College, Du Cane Road, London W12 0HS, UK.
- Department of Oncology, University of Oxford, Churchill Hospital, Old Road, Oxford OX3 7LE, UK.
| |
Collapse
|
29
|
Lahr RM, Mack SM, Héroux A, Blagden SP, Bousquet-Antonelli C, Deragon JM, Berman AJ. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence. Nucleic Acids Res 2015; 43:8077-88. [PMID: 26206669 PMCID: PMC4652764 DOI: 10.1093/nar/gkv748] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 12/20/2022] Open
Abstract
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.
Collapse
Affiliation(s)
- Roni M Lahr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Seshat M Mack
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Photon Sciences Directorate, Bldg 745 L107 Brookhaven National Laboratory Upton, NY 11973, USA
| | - Sarah P Blagden
- Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Cécile Bousquet-Antonelli
- CNRS-UMR5096 LGDP, 66860 Perpignan, France Université de Perpignan-UMR5096 LGDP, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS-UMR5096 LGDP, 66860 Perpignan, France Université de Perpignan-UMR5096 LGDP, 66860 Perpignan, France
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
30
|
Küspert M, Murakawa Y, Schäffler K, Vanselow JT, Wolf E, Juranek S, Schlosser A, Landthaler M, Fischer U. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation. RNA (NEW YORK, N.Y.) 2015; 21:1294-305. [PMID: 26001795 PMCID: PMC4478348 DOI: 10.1261/rna.051441.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/02/2015] [Indexed: 05/23/2023]
Abstract
mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability.
Collapse
Affiliation(s)
- Maritta Küspert
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | - Katrin Schäffler
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jens T Vanselow
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany
| | - Elmar Wolf
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Stefan Juranek
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany
| | | | - Utz Fischer
- Biozentrum Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, D-97080 Würzburg, Germany Department of Radiation Medicine and Applied Sciences, University of California at San Diego, San Diego, California 92037, USA
| |
Collapse
|
31
|
Deragon JM, Bousquet-Antonelli C. The role of LARP1 in translation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:399-417. [PMID: 25892282 DOI: 10.1002/wrna.1282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
The LARP1 proteins form an evolutionarily homogeneous subgroup of the eukaryotic superfamily of La-Motif (LAM) containing factors. Members of the LARP1 family are found in most protists, fungi, plants, and animals. We review here evidence suggesting that LARP1 are key versatile messenger RNA (mRNA)-binding proteins involved in regulating important biological processes such as gametogenesis, embryogenesis, sex determination, and cell division in animals, as well as acclimation to stress in yeasts and plants. LARP1 proteins perform all these essential tasks likely by binding to key mRNAs and regulating their stability and/or translation. In human, the impact of LARP1 over cell division and proliferation is potentially under the control of the TORC1 complex. We review data suggesting that LARP1 is a direct target of this master signaling hub. TOR-dependent LARP1 phosphorylation could specifically enhance the translation of TOP mRNAs providing a way to promote translation, growth, and proliferation. Consequently, LARP1 is found to be significantly upregulated in many malignant cell types. In plants, LARP1 was found to act as a cofactor of the heat-induced mRNA degradation process, an essential acclimation strategy leading to the degradation of more than 4500 mRNAs coding for growth and development housekeeping functions. In Saccharomyces cerevisiae, the LARP1 proteins (Slf1p and Sro9p) are important, among other things, for copper resistance and oxidative stress survival. LARP1 proteins are therefore emerging as critical ancient mRNA-binding factors that evolved common as well as specific targets and regulatory functions in all eukaryotic lineages.
Collapse
Affiliation(s)
- Jean-Marc Deragon
- CNRS, LGDP-UMR5096, Perpignan, France.,University of Perpignan, LGDP-UMR5096, Perpignan, France
| | | |
Collapse
|
32
|
Uchikawa E, Natchiar KS, Han X, Proux F, Roblin P, Zhang E, Durand A, Klaholz BP, Dock-Bregeon AC. Structural insight into the mechanism of stabilization of the 7SK small nuclear RNA by LARP7. Nucleic Acids Res 2015; 43:3373-88. [PMID: 25753663 PMCID: PMC4381077 DOI: 10.1093/nar/gkv173] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
The non-coding RNA 7SK is the scaffold for a small nuclear ribonucleoprotein (7SKsnRNP) which regulates the function of the positive transcription elongation factor P-TEFb in the control of RNA polymerase II elongation in metazoans. The La-related protein LARP7 is a component of the 7SKsnRNP required for stability and function of the RNA. To address the function of LARP7 we determined the crystal structure of its La module, which binds a stretch of uridines at the 3′-end of 7SK. The structure shows that the penultimate uridine is tethered by the two domains, the La-motif and the RNA-recognition motif (RRM1), and reveals that the RRM1 is significantly smaller and more exposed than in the La protein. Sequence analysis suggests that this impacts interaction with 7SK. Binding assays, footprinting and small-angle scattering experiments show that a second RRM domain located at the C-terminus binds the apical loop of the 3′ hairpin of 7SK, while the N-terminal domains bind at its foot. Our results suggest that LARP7 uses both its N- and C-terminal domains to stabilize 7SK in a closed structure, which forms by joining conserved sequences at the 5′-end with the foot of the 3′ hairpin and has thus functional implications.
Collapse
Affiliation(s)
- Emiko Uchikawa
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology, 67404 Illkirch, France Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France Université de Strasbourg, 67000 Strasbourg, France
| | - Kundhavai S Natchiar
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology, 67404 Illkirch, France Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France Université de Strasbourg, 67000 Strasbourg, France
| | - Xiao Han
- Department of functional genomics, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), 75005 Paris, France CNRS UMR 8197, 75005 Paris, France INSERM U1024, 75005 Paris, France Key Laboratory of Brain Functional Genomics, East China Normal University (ECNU), 200241 Shanghai, PR China
| | - Florence Proux
- Department of functional genomics, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), 75005 Paris, France CNRS UMR 8197, 75005 Paris, France INSERM U1024, 75005 Paris, France
| | - Pierre Roblin
- SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France INRA-URBIA, 44316 Nantes, France
| | - Elodie Zhang
- Department of functional genomics, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), 75005 Paris, France CNRS UMR 8197, 75005 Paris, France INSERM U1024, 75005 Paris, France
| | - Alexandre Durand
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology, 67404 Illkirch, France Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France Université de Strasbourg, 67000 Strasbourg, France
| | - Bruno P Klaholz
- Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology, 67404 Illkirch, France Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France Université de Strasbourg, 67000 Strasbourg, France
| | - Anne-Catherine Dock-Bregeon
- Department of functional genomics, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), 75005 Paris, France CNRS UMR 8197, 75005 Paris, France INSERM U1024, 75005 Paris, France
| |
Collapse
|
33
|
The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response. PLoS Genet 2015; 11:e1004903. [PMID: 25569619 PMCID: PMC4287443 DOI: 10.1371/journal.pgen.1004903] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/19/2014] [Indexed: 12/22/2022] Open
Abstract
The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control. All organisms must respond to changes in their external environment such as exposure to different stresses. The availability of genome sequences and post-genomic technologies has enabled the analysis of these adaptive responses at the molecular level in terms of altered gene expression profiles. However, relatively few studies have focused on how cells regulate the translation of mRNA into protein in response to stress, despite its fundamental role in gene expression pathways. In this study, we show that a previously identified RNA-binding protein called Slf1p plays a major role in mRNA-specific regulation of translation during oxidative stress conditions and is necessary to promote the translation of stress-responsive mRNAs. This protein is a member of the so-called “La-related” family of proteins that have not been well characterized, although they are conserved throughout evolution. Exposure to oxidants is known to cause a general down-regulation of protein synthesis, although many stress response proteins are able to overcome this inhibition and increase their protein levels following stress by as yet unknown mechanisms. Our experiments offer one possible explanation, as they show that Slf1p plays a critical role in enhancing translation of many of these proteins, including many that are necessary for the cellular stress response.
Collapse
|
34
|
Kuehnert J, Sommer G, Zierk AW, Fedarovich A, Brock A, Fedarovich D, Heise T. Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation. Nucleic Acids Res 2015; 43:581-94. [PMID: 25520193 PMCID: PMC4288197 DOI: 10.1093/nar/gku1309] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/13/2023] Open
Abstract
The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation.
Collapse
Affiliation(s)
- Julia Kuehnert
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gunhild Sommer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Avery W Zierk
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Brock
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dzmitry Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tilman Heise
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
35
|
Martino L, Pennell S, Kelly G, Busi B, Brown P, Atkinson RA, Salisbury NJH, Ooi ZH, See KW, Smerdon SJ, Alfano C, Bui TTT, Conte MR. Synergic interplay of the La motif, RRM1 and the interdomain linker of LARP6 in the recognition of collagen mRNA expands the RNA binding repertoire of the La module. Nucleic Acids Res 2015; 43:645-60. [PMID: 25488812 PMCID: PMC4288179 DOI: 10.1093/nar/gku1287] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023] Open
Abstract
The La-related proteins (LARPs) form a diverse group of RNA-binding proteins characterized by the possession of a composite RNA binding unit, the La module. The La module comprises two domains, the La motif (LaM) and the RRM1, which together recognize and bind to a wide array of RNA substrates. Structural information regarding the La module is at present restricted to the prototypic La protein, which acts as an RNA chaperone binding to 3' UUUOH sequences of nascent RNA polymerase III transcripts. In contrast, LARP6 is implicated in the regulation of collagen synthesis and interacts with a specific stem-loop within the 5' UTR of the collagen mRNA. Here, we present the structure of the LaM and RRM1 of human LARP6 uncovering in both cases considerable structural variation in comparison to the equivalent domains in La and revealing an unprecedented fold for the RRM1. A mutagenic study guided by the structures revealed that RNA recognition requires synergy between the LaM and RRM1 as well as the participation of the interdomain linker, probably in realizing tandem domain configurations and dynamics required for substrate selectivity. Our study highlights a considerable complexity and plasticity in the architecture of the La module within LARPs.
Collapse
Affiliation(s)
- Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Simon Pennell
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Geoff Kelly
- MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Baptiste Busi
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK Department of Biology, École Normale Supérieure de Lyon, CEDEX 07, France
| | - Paul Brown
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - R Andrew Atkinson
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Nicholas J H Salisbury
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Zi-Hao Ooi
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Kang-Wei See
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Stephen J Smerdon
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Caterina Alfano
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Tam T T Bui
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Maria R Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
36
|
Mark Glover JN, Chaulk SG, Edwards RA, Arthur D, Lu J, Frost LS. The FinO family of bacterial RNA chaperones. Plasmid 2014; 78:79-87. [PMID: 25102058 DOI: 10.1016/j.plasmid.2014.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/25/2022]
Abstract
Antisense RNAs have long been known to regulate diverse aspects of plasmid biology. Here we review the FinOP system that modulates F plasmid gene expression through regulation of the F plasmid transcription factor, TraJ. FinOP is a two component system composed of an antisense RNA, FinP, which represses TraJ translation, and a protein, FinO, which is required to stabilize FinP and facilitate its interactions with its traJ mRNA target. We review the evidence that FinO acts as an RNA chaperone to bind and destabilize internal stem-loop structures within the individual RNAs that would otherwise block intermolecular RNA duplexing. Recent structural studies have provided mechanistic insights into how FinO may facilitate interactions between FinP and traJ mRNA. We also review recent findings that two other proteins, Escherichia coli ProQ and Neisseria meningitidis NMB1681, may represent FinO-like RNA chaperones.
Collapse
Affiliation(s)
- J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Steven G Chaulk
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David Arthur
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jun Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Laura S Frost
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
37
|
Hussain RH, Zawawi M, Bayfield MA. Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7. Nucleic Acids Res 2013; 41:8715-25. [PMID: 23887937 PMCID: PMC3794603 DOI: 10.1093/nar/gkt649] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/22/2022] Open
Abstract
The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3'OH-dependent trailer binding/protection and a UUU-3'OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3'OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.
Collapse
Affiliation(s)
| | | | - Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
38
|
Aoki K, Adachi S, Homoto M, Kusano H, Koike K, Natsume T. LARP1 specifically recognizes the 3' terminus of poly(A) mRNA. FEBS Lett 2013; 587:2173-8. [PMID: 23711370 DOI: 10.1016/j.febslet.2013.05.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/06/2023]
Abstract
A poly(A) tail functions in mRNA turnover and in facilitating translation as a ribonucleoprotein complex with poly(A) binding proteins (PABPs). However, factors that associate with the poly(A) tail other than PABPs have not been described. Using proteomics, we identified candidate proteins that interact to the 3' terminus of the poly(A) tail. Among these proteins, we focused on La motif-related protein 1 (LARP1) and found that LARP1 specifically recognizes the 3' termini of normal poly(A) tails. We also reveal that LARP1 stabilizes multiple mRNAs carrying 5' terminal oligopyrimidine tract (5'TOP). Our findings suggest that LARP1 may be involved in the post-transcriptional regulation of gene expression, at least in several 5'TOP mRNAs, through the binding to 3' terminus of the poly(A) tail.
Collapse
Affiliation(s)
- Kazuma Aoki
- Molecular Profiling Research Center for Drug Discovery(molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Law MJ, Lee DS, Lee CS, Anglim PP, Haworth IS, Laird-Offringa IA. The role of the C-terminal helix of U1A protein in the interaction with U1hpII RNA. Nucleic Acids Res 2013; 41:7092-100. [PMID: 23703211 PMCID: PMC3737524 DOI: 10.1093/nar/gkt326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous kinetic investigations of the N-terminal RNA Recognition Motif (RRM) domain of spliceosomal A protein of the U1 small nuclear ribonucleoprotein particle (U1A) interacting with its RNA target U1 hairpin II (U1hpII) provided experimental evidence for a ‘lure and lock’ model of binding. The final step of locking has been proposed to involve conformational changes in an α-helix immediately C-terminal to the RRM domain (helix C), which occludes the RNA binding surface in the unbound protein. Helix C must shift its position to accommodate RNA binding in the RNA–protein complex. This results in a new hydrophobic core, an intraprotein hydrogen bond and a quadruple stacking interaction between U1A and U1hpII. Here, we used a surface plasmon resonance-based biosensor to gain mechanistic insight into the role of helix C in mediating the interaction with U1hpII. Truncation, removal or disruption of the helix exposes the RNA-binding surface, resulting in an increase in the association rate, while simultaneously reducing the ability of the complex to lock, reflected in a loss of complex stability. Disruption of the quadruple stacking interaction has minor kinetic effects when compared with removal of the intraprotein hydrogen bonds. These data provide new insights into the mechanism whereby sequences C-terminal to an RRM can influence RNA binding.
Collapse
Affiliation(s)
- Michael J Law
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
40
|
Merret R, Martino L, Bousquet-Antonelli C, Fneich S, Descombin J, Billey É, Conte MR, Deragon JM. The association of a La module with the PABP-interacting motif PAM2 is a recurrent evolutionary process that led to the neofunctionalization of La-related proteins. RNA (NEW YORK, N.Y.) 2013; 19:36-50. [PMID: 23148093 PMCID: PMC3527725 DOI: 10.1261/rna.035469.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/12/2012] [Indexed: 05/27/2023]
Abstract
La-related proteins (LARPs) are largely uncharacterized factors, well conserved throughout evolution. Recent reports on the function of human LARP4 and LARP6 suggest that these proteins fulfill key functions in mRNA metabolism and/or translation. We report here a detailed evolutionary history of the LARP4 and 6 families in eukaryotes. Genes coding for LARP4 and 6 were duplicated in the common ancestor of the vertebrate lineage, but one LARP6 gene was subsequently lost in the common ancestor of the eutherian lineage. The LARP6 gene was also independently duplicated several times in the vascular plant lineage. We observed that vertebrate LARP4 and plant LARP6 duplication events were correlated with the acquisition of a PABP-interacting motif 2 (PAM2) and with a significant reorganization of their RNA-binding modules. Using isothermal titration calorimetry (ITC) and immunoprecipitation methods, we show that the two plant PAM2-containing LARP6s (LARP6b and c) can, indeed, interact with the major plant poly(A)-binding protein (PAB2), while the third plant LARP6 (LARP6a) is unable to do so. We also analyzed the RNA-binding properties and the subcellular localizations of the two types of plant LARP6 proteins and found that they display nonredundant characteristics. As a whole, our results support a model in which the acquisition by LARP4 and LARP6 of a PAM2 allowed their targeting to mRNA 3' UTRs and led to their neofunctionalization.
Collapse
Affiliation(s)
- Rémy Merret
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Cécile Bousquet-Antonelli
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Sara Fneich
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Julie Descombin
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Élodie Billey
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, UMR5096 LGDP, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, 66860 Perpignan Cedex, France
| |
Collapse
|
41
|
Molecular and structural insight into plasmodium falciparum RIO2 kinase. J Mol Model 2012; 19:485-96. [PMID: 22949065 DOI: 10.1007/s00894-012-1572-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/14/2012] [Indexed: 01/31/2023]
Abstract
Among approximately 65 kinases of the malarial genome, RIO2 (right open reading frame) kinase belonging to the atypical class of kinase is unique because along with a kinase domain, it has a highly conserved N-terminal winged helix (wHTH) domain. The wHTH domain resembles the wing like domain found in DNA binding proteins and is situated near to the kinase domain. Ligand binding to this domain may reposition the kinase domain leading to inhibition of enzyme function and could be utilized as a novel allosteric site to design inhibitor. In the present study, we have generated a model of RIO2 kinase from Plasmodium falciparum utilizing multiple modeling, simulation approach. A novel putative DNA-binding site is identified for the first time in PfRIO2 kinase to understand the DNA binding events involving wHTH domain and flexible loop. Induced fit DNA docking followed by minimization, molecular dynamics simulation, energetic scoring and binding mode studies are used to reveal the structural basis of PfRIO2-ATP-DNA complex. Ser105 as a potential site of phosphorylation is revealed through the structural studies of ATP binding in PfRIO2. Overall the present study discloses the structural facets of unknown PfRIO2 complex and opens an avenue toward exploration of novel drug target.
Collapse
|
42
|
Singh M, Wang Z, Koo BK, Patel A, Cascio D, Collins K, Feigon J. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol Cell 2012; 47:16-26. [PMID: 22705372 PMCID: PMC3398246 DOI: 10.1016/j.molcel.2012.05.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/02/2012] [Accepted: 05/10/2012] [Indexed: 02/07/2023]
Abstract
Telomerase is a ribonucleoprotein complex essential for maintenance of telomere DNA at linear chromosome ends. The catalytic core of Tetrahymena telomerase comprises a ternary complex of telomerase RNA (TER), telomerase reverse transcriptase (TERT), and the essential La family protein p65. NMR and crystal structures of p65 C-terminal domain and its complex with stem IV of TER reveal that RNA recognition is achieved by a combination of single- and double-stranded RNA binding, which induces a 105° bend in TER. The domain is a cryptic, atypical RNA recognition motif with a disordered C-terminal extension that forms an α helix in the complex necessary for hierarchical assembly of TERT with p65-TER. This work provides the first structural insight into biogenesis and assembly of TER with a telomerase-specific protein. Additionally, our studies define a structurally homologous domain (xRRM) in genuine La and LARP7 proteins and suggest a general mode of RNA binding for biogenesis of their diverse RNA targets.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Zhonghua Wang
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Bon-Kyung Koo
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Anooj Patel
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
43
|
Teichmann M, Dumay-Odelot H, Fribourg S. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes. Transcription 2012; 3:2-7. [PMID: 22456313 DOI: 10.4161/trns.3.1.18917] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.
Collapse
Affiliation(s)
- Martin Teichmann
- Université de Bordeaux, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | |
Collapse
|
44
|
Schenk L, Meinel DM, Strässer K, Gerber AP. La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA (NEW YORK, N.Y.) 2012; 18:449-61. [PMID: 22271760 PMCID: PMC3285933 DOI: 10.1261/rna.028506.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
The La-motif (LAM) is an ancient and ubiquitous RNA-binding domain defining a superfamily of proteins, which comprises the genuine La proteins and La-related proteins (LARPs). In contrast to La, which binds and stabilizes pre-tRNAs and other RNA polymerase III transcripts, data on function and RNA targets of the LARPs have remained scarce. We have undertaken a global approach to elucidate the previously suggested role of the yeast LARP Slf1p in copper homeostasis. By applying RNA-binding protein immunopurification-microarray (RIP-Chip) analysis, we show that Slf1p and its paralog Sro9p copurify with overlapping sets of hundreds of functionally related mRNAs, including many transcripts coding for ribosomal proteins and histones. Interestingly, among these potential RNA targets were also mRNAs coding for proteins critical for protection of cells against elevated copper concentrations. Mutations introduced in the conserved aromatic patch of the LAM in Slf1p drastically impaired both association with its targets and Slf1-mediated protection of cells against toxic copper concentrations. Furthermore, we show that Slf1p stabilizes copper-related mRNA targets in a LAM-dependent manner. These results provide the first evidence for post-transcriptional regulation of factors/pathways implicated in copper homeostasis by a cytoplasmic RBP.
Collapse
Affiliation(s)
- Luca Schenk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dominik M. Meinel
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich (CIPSM), University of Munich, 81377 Munich, Germany
| | - Katja Strässer
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich (CIPSM), University of Munich, 81377 Munich, Germany
| | - André P. Gerber
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
45
|
Naeeni AR, Conte MR, Bayfield MA. RNA chaperone activity of human La protein is mediated by variant RNA recognition motif. J Biol Chem 2012; 287:5472-82. [PMID: 22203678 PMCID: PMC3285324 DOI: 10.1074/jbc.m111.276071] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/23/2011] [Indexed: 02/05/2023] Open
Abstract
La proteins are conserved factors in eukaryotes that bind and protect the 3' trailers of pre-tRNAs from exonuclease digestion via sequence-specific recognition of UUU-3'OH. La has also been hypothesized to assist pre-tRNAs in attaining their native fold through RNA chaperone activity. In addition to binding polymerase III transcripts, human La has also been shown to enhance the translation of several internal ribosome entry sites and upstream ORF-containing mRNA targets, also potentially through RNA chaperone activity. Using in vitro FRET-based assays, we show that human and Schizosaccharomyces pombe La proteins harbor RNA chaperone activity by enhancing RNA strand annealing and strand dissociation. We use various RNA substrates and La mutants to show that UUU-3'OH-dependent La-RNA binding is not required for this function, and we map RNA chaperone activity to its RRM1 motif including a noncanonical α3-helix. We validate the importance of this α3-helix by appending it to the RRM of the unrelated U1A protein and show that this fusion protein acquires significant strand annealing activity. Finally, we show that residues required for La-mediated RNA chaperone activity in vitro are required for La-dependent rescue of tRNA-mediated suppression via a mutated suppressor tRNA in vivo. This work delineates the structural elements required for La-mediated RNA chaperone activity and provides a basis for understanding how La can enhance the folding of its various RNA targets.
Collapse
Affiliation(s)
- Amir R. Naeeni
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada and
| | - Maria R. Conte
- the Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Mark A. Bayfield
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada and
| |
Collapse
|
46
|
Trivedi V, Nag S. In silico characterization of atypical kinase PFD0975w from Plasmodium kinome: a suitable target for drug discovery. Chem Biol Drug Des 2012; 79:600-9. [PMID: 22233458 DOI: 10.1111/j.1747-0285.2012.01321.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
RIO-2 kinase is known to regulate ribosome biogenesis and other cell cycle events. The 3D model of ATP bound and an unbound form of PFD0975w was generated using AfRIO-2 crystal structure 1TQI, 1ZAO as template employing Modeller9v7 program. Structural characterization identified N-terminal winged helix domain (1-84), C-terminal kinase domain (148-275), and presence of other critical residues known for ATP binding and kinase activity. Using Q-site and pocket finder, a number of well-defined substrate (peptide) binding regions were identified in the catalytic core of the protein. The peptide binding regions were further validated by molecular modeling a non-specific polyalanine peptide and a sequence-specific peptide2 into these sites to generate a stable PFD0975w/peptide complexes. Peptide fits well into identified pocket on PFD0975w and makes extensive interaction with the protein residues. These newly identified peptide binding sites potentially give opportunity to design a specific inhibitor against PFD0975w. There are subtle but significant differences between Plasmodium falciparum and human RIO-2 to exploit PFD0975w for drug development. In conclusion, our finding will let us to design effective chemotherapy against malaria parasite exploiting PFD0975w as a drug target.
Collapse
Affiliation(s)
- Vishal Trivedi
- Department of Biotechnology, Malaria Research Group, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India.
| | | |
Collapse
|
47
|
Martino L, Pennell S, Kelly G, Bui TTT, Kotik-Kogan O, Smerdon SJ, Drake AF, Curry S, Conte MR. Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein. Nucleic Acids Res 2012; 40:1381-94. [PMID: 22009680 PMCID: PMC3273827 DOI: 10.1093/nar/gkr890] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 12/31/2022] Open
Abstract
Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3' oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3' UUU(OH) trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3' UUU(OH) trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3' oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation.
Collapse
Affiliation(s)
- Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Simon Pennell
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Geoff Kelly
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Tam T. T. Bui
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Olga Kotik-Kogan
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Stephen J. Smerdon
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Alex F. Drake
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Stephen Curry
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, Division of Molecular Structure, MRC Biomedical NMR Centre, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, Pharmaceutical Science Division, King's College London, The Wolfson Wing, Guy's Campus, London SE1 1UL and Department of Life Sciences, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
48
|
Schmier BJ, Seetharaman J, Deutscher MP, Hunt JF, Malhotra A. The structure and enzymatic properties of a novel RNase II family enzyme from Deinococcus radiodurans. J Mol Biol 2012; 415:547-59. [PMID: 22133431 PMCID: PMC3269974 DOI: 10.1016/j.jmb.2011.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 01/07/2023]
Abstract
Exoribonucleases are vital in nearly all aspects of RNA metabolism, including RNA maturation, end-turnover, and degradation. RNase II and RNase R are paralogous members of the RNR superfamily of nonspecific, 3'→5', processive exoribonucleases. In Escherichia coli, RNase II plays a primary role in mRNA decay and has a preference for unstructured RNA. RNase R, in contrast, is capable of digesting structured RNA and plays a role in the degradation of both mRNA and stable RNA. Deinococcus radiodurans, a radiation-resistant bacterium, contains two RNR family members. The shorter of these, DrR63, includes a sequence signature typical of RNase R, but we show here that this enzyme is an RNase II-type exonuclease and cannot degrade structured RNA. We also report the crystal structure of this protein, now termed DrII. The DrII structure reveals a truncated RNA binding region in which the N-terminal cold shock domains, typical of most RNR family nucleases, are replaced by an unusual winged helix-turn-helix domain, where the "wing" is contributed by the C-terminal S1 domain. Consistent with its truncated RNA binding region, DrII is able to remove 3' overhangs from RNA molecules closer to duplexes than do other RNase II-type enzymes. DrII also displays distinct sensitivity to pyrimidine-rich regions of single-stranded RNA and is able to process tRNA precursors with adenosine-rich 3' extensions in vitro. These data indicate that DrII is the RNase II of D. radiodurans and that its structure and catalytic properties are distinct from those of other related enzymes.
Collapse
Affiliation(s)
- Brad J. Schmier
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, PO Box 016129, Miami, FL, 33101-6129, USA
| | - Jayaraman Seetharaman
- Northeast Structural Genomics Consortium (NESG) & Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, PO Box 016129, Miami, FL, 33101-6129, USA
| | - John F. Hunt
- Northeast Structural Genomics Consortium (NESG) & Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, PO Box 016129, Miami, FL, 33101-6129, USA
| |
Collapse
|
49
|
Chourasia M, Sastry GM, Sastry GN. Aromatic–Aromatic Interactions Database, A2ID: An analysis of aromatic π-networks in proteins. Int J Biol Macromol 2011; 48:540-52. [DOI: 10.1016/j.ijbiomac.2011.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/12/2011] [Indexed: 11/16/2022]
|
50
|
Muhs M, Yamamoto H, Ismer J, Takaku H, Nashimoto M, Uchiumi T, Nakashima N, Mielke T, Hildebrand PW, Nierhaus KH, Spahn CMT. Structural basis for the binding of IRES RNAs to the head of the ribosomal 40S subunit. Nucleic Acids Res 2011; 39:5264-75. [PMID: 21378123 PMCID: PMC3130280 DOI: 10.1093/nar/gkr114] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Some viruses exploit internal initiation for their propagation in the host cell. This type of initiation is facilitated by structured elements (internal ribosome entry site, IRES) upstream of the initiator AUG and requires only a reduced number of canonical initiation factors. An important example are IRES of the virus family Dicistroviridae that bind to the inter-subunit side of the small ribosomal 40S subunit and lead to the formation of elongation-competent 80S ribosomes without the help of any initiation factor. Here, we present a comprehensive functional and structural analysis of eukaryotic-specific ribosomal protein rpS25 in the context of this type of initiation and propose a structural model explaining the essential involvement of rpS25 for hijacking the ribosome.
Collapse
Affiliation(s)
- Margarita Muhs
- Institut für Medizinische Physik und Biophysik, Charite - Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117-Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|