1
|
Popov IK, Tao J, Chang C. The RhoGEF protein Plekhg5 self-associates via its PH domain to regulate apical cell constriction. Mol Biol Cell 2024; 35:ar134. [PMID: 39196644 PMCID: PMC11481697 DOI: 10.1091/mbc.e24-04-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/30/2024] Open
Abstract
RhoGEFs are critical activators of Rho family small GTPases and regulate diverse biological processes, such as cell division and tissue morphogenesis. We reported previously that the RhoGEF gene plekhg5 controls apical constriction of bottle cells at the blastopore lip during Xenopus gastrulation, but the detailed mechanism of plekhg5 action is not understood in depth. In this study, we show that localization of Plekhg5 in the apical cortex depends on its N-terminal sequences and intact guanine nucleotide exchange activity, whereas the C-terminal sequences prevent ectopic localization of the protein to the basolateral compartment. We also reveal that Plekhg5 self-associates via its PH domain, and this interaction leads to functional rescue of two mutants that lack the N-terminal region and the guanine nucleotide exchange factor activity, respectively, in trans. A point mutation in the PH domain corresponding to a variant associated with human disease leads to loss of self-association and failure of the mutant to induce apical constriction. Taken together, our results suggest that PH-mediated self-association and N-terminal domain-mediated subcellular localization are both crucial for the function of Plekhg5 in inducing apical constriction.
Collapse
Affiliation(s)
- Ivan K. Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
2
|
Jausoro I, Marzolo MP. Reelin activates the small GTPase TC10 and VAMP7 to promote neurite outgrowth and regeneration of dorsal root ganglia (DRG) neurons. J Neurosci Res 2021; 99:392-406. [PMID: 32652719 DOI: 10.1002/jnr.24688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023]
Abstract
Axonal outgrowth is a fundamental process during the development of central (CNS) and peripheral (PNS) nervous system as well as in nerve regeneration and requires accurate axonal navigation and extension to the correct target. These events need proper coordination between membrane trafficking and cytoskeletal rearrangements and are under the control of the small GTPases of the Rho family, among other molecules. Reelin, a relevant protein for CNS development and synaptic function in the adult, is also present in the PNS. Upon sciatic nerve damage, Reelin expression increases and, on the other hand, mice deficient in Reelin exhibit an impaired nerve regeneration. However, the mechanism(s) involved the Reelin-dependent axonal growth is still poorly understood. In this work, we present evidence showing that Reelin stimulates dorsal root ganglia (DRG) regeneration after axotomy. Moreover, dissociated DRG neurons express the Reelin receptor Apolipoprotein E-receptor 2 and also require the presence of TC10 to develop their axons. TC10 is a Rho GTPase that promotes neurite outgrowth through the exocytic fusion of vesicles at the growth cone. Here, we demonstrate for the first time that Reelin controls TC10 activation in DRG neurons. Besides, we confirmed that the known CNS Reelin target Cdc42 is also activated in DRG and controls TC10 activity. Finally, in the process of membrane addition, we found that Reelin stimulates the fusion of membrane carriers containing the v-SNARE protein VAMP7 in vesicles that contain TC10. Altogether, our work shows a new role of Reelin in PNS, opening the option of therapeutic interventions to improve the regeneration process.
Collapse
Affiliation(s)
- Ignacio Jausoro
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
4
|
Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res 2020; 388:111824. [PMID: 31926148 DOI: 10.1016/j.yexcr.2020.111824] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chi Dong
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
5
|
Duarte K, Heide S, Poëa-Guyon S, Rousseau V, Depienne C, Rastetter A, Nava C, Attié-Bitach T, Razavi F, Martinovic J, Moutard ML, Cherfils J, Mignot C, Héron D, Barnier JV. PAK3 mutations responsible for severe intellectual disability and callosal agenesis inhibit cell migration. Neurobiol Dis 2019; 136:104709. [PMID: 31843706 DOI: 10.1016/j.nbd.2019.104709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/13/2019] [Accepted: 12/08/2019] [Indexed: 01/12/2023] Open
Abstract
Corpus callosum agenesis (CCA) is a brain malformation associated with a wide clinical spectrum including intellectual disability (ID) and an etiopathological complexity. We identified a novel missense G424R mutation in the X-linked p21-activated kinase 3 (PAK3) gene in a boy presenting with severe ID, microcephaly and CCA and his fetal sibling with CCA and severe hydrocephaly. PAK3 kinase is known to control synaptic plasticity and dendritic spine dynamics but its implication is less characterized in brain ontogenesis. In order to identify developmental functions of PAK3 impacted by mutations responsible for CCA, we compared the biochemical and biological effects of three PAK3 mutations localized in the catalytic domain. These mutations include two "severe" G424R and K389N variants (responsible for severe ID and CCA) and the "mild" A365E variant (responsible for nonsyndromic mild ID). Whereas they suppressed kinase activity, only the two severe variants displayed normal protein stability. Furthermore, they increased interactions between PAK3 and the guanine exchange factor αPIX/ARHGEF6, disturbed adhesion point dynamics and cell spreading, and severely impacted cell migration. Our findings highlight new molecular defects associated with mutations responsible for severe clinical phenotypes with developmental brain defects.
Collapse
Affiliation(s)
- Kévin Duarte
- Department of Cognition and Behavior, Paris-Saclay Institute of Neuroscience (Neuro-PSI CNRS, UMR 9197), Paris-Sud and Paris-Saclay Universities, Orsay, France.
| | - Solveig Heide
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Sandrine Poëa-Guyon
- Department of Cognition and Behavior, Paris-Saclay Institute of Neuroscience (Neuro-PSI CNRS, UMR 9197), Paris-Sud and Paris-Saclay Universities, Orsay, France.
| | - Véronique Rousseau
- Department of Cognition and Behavior, Paris-Saclay Institute of Neuroscience (Neuro-PSI CNRS, UMR 9197), Paris-Sud and Paris-Saclay Universities, Orsay, France.
| | - Christel Depienne
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France; Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Agnès Rastetter
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Caroline Nava
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Tania Attié-Bitach
- Unité d'Embryofoetopathologie, Service of Histology-Embryology-Cytogenetics, APHP Necker Enfants Malades & Imagine Institute, Inserm U1163, Paris, France.
| | - Ferechté Razavi
- Unité d'Embryofoetopathologie, Service of Histology-Embryology-Cytogenetics, APHP Necker Enfants Malades & Imagine Institute, Inserm U1163, Paris, France
| | | | - Marie Laure Moutard
- Department of Pediatrics Neurology, Reference Center for Intellectual Disabilities of Rare Causes APHP, Armand-Trousseau Hospital, Paris, France.
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole normale supérieure Paris-Saclay, Cachan, France.
| | - Cyril Mignot
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Delphine Héron
- Department of genetics, Reference Center for Intellectual Disabilities of Rare Causes, APHP, GH Pitié Salpêtrière, Paris, France.
| | - Jean-Vianney Barnier
- Department of Cognition and Behavior, Paris-Saclay Institute of Neuroscience (Neuro-PSI CNRS, UMR 9197), Paris-Sud and Paris-Saclay Universities, Orsay, France.
| |
Collapse
|
6
|
Pantarelli C, Welch HCE. Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment. Eur J Clin Invest 2018; 48 Suppl 2:e12939. [PMID: 29682742 PMCID: PMC6321979 DOI: 10.1111/eci.12939] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022]
Abstract
Rac-GTPases and their Rac-GEF activators play important roles in the recruitment and host defence functions of neutrophils. These proteins control the activation of adhesion molecules and the cytoskeletal dynamics that enable the adhesion, migration and tissue recruitment of neutrophils. They also regulate the effector functions that allow neutrophils to kill bacterial and fungal pathogens, and to clear debris. This review focuses on the roles of Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment.
Collapse
|
7
|
Pathogenic predictions of non-synonymous variants and their impacts: A computational assessment of ARHGEF6 gene. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
López Tobón A, Suresh M, Jin J, Vitriolo A, Pietralla T, Tedford K, Bossenz M, Mahnken K, Kiefer F, Testa G, Fischer KD, Püschel AW. The guanine nucleotide exchange factor Arhgef7/βPix promotes axon formation upstream of TC10. Sci Rep 2018; 8:8811. [PMID: 29891904 PMCID: PMC5995858 DOI: 10.1038/s41598-018-27081-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
The characteristic six layers of the mammalian neocortex develop sequentially as neurons are generated by neural progenitors and subsequently migrate past older neurons to their final position in the cortical plate. One of the earliest steps of neuronal differentiation is the formation of an axon. Small GTPases play essential roles during this process by regulating cytoskeletal dynamics and intracellular trafficking. While the function of GTPases has been studied extensively in cultured neurons and in vivo much less is known about their upstream regulators. Here we show that Arhgef7 (also called βPix or Cool1) is essential for axon formation during cortical development. The loss of Arhgef7 results in an extensive loss of axons in cultured neurons and in the developing cortex. Arhgef7 is a guanine-nucleotide exchange factor (GEF) for Cdc42, a GTPase that has a central role in directing the formation of axons during brain development. However, active Cdc42 was not able to rescue the knockdown of Arhgef7. We show that Arhgef7 interacts with the GTPase TC10 that is closely related to Cdc42. Expression of active TC10 can restore the ability to extend axons in Arhgef7-deficient neurons. Our results identify an essential role of Arhgef7 during neuronal development that promotes axon formation upstream of TC10.
Collapse
Affiliation(s)
- Alejandro López Tobón
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Megalakshmi Suresh
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany
| | - Jing Jin
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany
| | - Alessandro Vitriolo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Thorben Pietralla
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany
| | - Kerry Tedford
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Michael Bossenz
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Kristina Mahnken
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany
| | - Friedemann Kiefer
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.,Max-Planck-Institute for Molecular Biomedicine, Mammalian cell signaling laboratory, Röntgenstr. 20, D-48149, Münster, Germany.,European Institute for Molecular Imaging, Westfälische Wilhelms-Universität, Waldeyerstr. 15, D-48149, Münster, Germany
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany. .,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.
| |
Collapse
|
9
|
Rathor N, Chung HK, Wang SR, Qian M, Turner DJ, Wang JY, Rao JN. β-PIX plays an important role in regulation of intestinal epithelial restitution by interacting with GIT1 and Rac1 after wounding. Am J Physiol Gastrointest Liver Physiol 2018; 314:G399-G407. [PMID: 29191942 PMCID: PMC5899242 DOI: 10.1152/ajpgi.00296.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early gut mucosal restitution is a process by which intestinal epithelial cells (IECs) migrate over the wounded area, and its defective regulation occurs commonly in various critical pathological conditions. This rapid reepithelialization is mediated by different activating small GTP-binding proteins, but the exact mechanism underlying this process remains largely unknown. Recently, it has been reported that interaction between p21-activated kinase-interacting exchange factor (β-PIX) and G protein-coupled receptor kinase-interacting protein 1 (GIT1) activates small GTPases and plays an important role in the regulation of cell motility. Here, we show that induced association of β-PIX with GIT1 is essential for the stimulation of IEC migration after wounding by activating Rac1. Levels of β-PIX and GIT1 proteins and their association in differentiated IECs (line of IEC-Cdx2L1) were much higher than those observed in undifferentiated IECs (line of IEC-6), which was associated with an increase in IEC migration after wounding. Decreased levels of endogenous β-PIX by its gene-silencing destabilized β-PIX/GIT1 complexes, repressed Rac1 activity and inhibited cell migration over the wounded area. In contrast, ectopic overexpression of β-PIX increased the levels of β-PIX/GIT1 complexes, stimulated Rac1 activity, and enhanced intestinal epithelial restitution. Increased levels of cellular polyamines also stimulated β-PIX/GIT1 association, increased Rac1 activity, and promoted the epithelial restitution. Moreover, polyamine depletion decreased cellular abundances of β-PIX/GIT1 complex and repressed IEC migration after wounding, which was rescued by ectopic overexpression of β-PIX or GIT1. These results indicate that β-PIX/GIT1/Rac1 association is necessary for stimulation of IEC migration after wounding and that this signaling pathway is tightly regulated by cellular polyamines. NEW & NOTEWORTHY Our current study demonstrates that induced association of β-PIX with GIT1 is essential for the stimulation of intestinal epithelial restitution by activating Rac1, and this signaling pathway is tightly regulated by cellular polyamines.
Collapse
Affiliation(s)
- Navneeta Rathor
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee Kyoung Chung
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Shelley R. Wang
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Michael Qian
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J. Turner
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland,3Department of Pathology, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N. Rao
- 1Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland,2Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
10
|
Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci 2017; 129:1963-74. [PMID: 27182061 DOI: 10.1242/jcs.179465] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui 323000, China
| | - Xiaobo Li
- Department of Computer Science and Technology, College of Engineering and Design, Lishui University, Lishui 323000, China
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Sero JE, Bakal C. Multiparametric Analysis of Cell Shape Demonstrates that β-PIX Directly Couples YAP Activation to Extracellular Matrix Adhesion. Cell Syst 2017; 4:84-96.e6. [PMID: 28065575 PMCID: PMC5289939 DOI: 10.1016/j.cels.2016.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/14/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023]
Abstract
Mechanical signals from the extracellular matrix (ECM) and cellular geometry regulate the nuclear translocation of transcriptional regulators such as Yes-associated protein (YAP). Elucidating how physical signals control the activity of mechanosensitive proteins poses a technical challenge, because perturbations that affect cell shape may also affect protein localization indirectly. Here, we present an approach that mitigates confounding effects of cell-shape changes, allowing us to identify direct regulators of YAP localization. This method uses single-cell image analysis and statistical models that exploit the naturally occurring heterogeneity of cellular populations. Through systematic depletion of all human kinases, Rho family GTPases, GEFs, and GTPase activating proteins (GAPs), together with targeted chemical perturbations, we found that β-PIX, a Rac1/Ccd42 GEF, and PAK2, a Rac1/Cdc42 effector, drive both YAP activation and cell-ECM adhesion turnover during cell spreading. Our observations suggest that coupling YAP to adhesion dynamics acts as a mechano-timer, allowing cells to rapidly tune gene expression in response to physical signals.
Collapse
Affiliation(s)
- Julia E Sero
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
12
|
Thomas LL, Fromme JC. GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. J Cell Biol 2016; 215:499-513. [PMID: 27872253 PMCID: PMC5119942 DOI: 10.1083/jcb.201608123] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022] Open
Abstract
Rab GTPases control vesicle formation and transport, but which proteins are important for their regulation is incompletely understood. Thomas and Fromme provide definitive evidence that TRAPPII is a GEF for the yeast Rab11 homologues Ypt31/32 and implicate the GTPase Arf1 in TRAPPII recruitment, suggesting that a bidirectional cross talk mechanism drives vesicle biogenesis. Rab guanosine triphosphatases (GTPases) control cellular trafficking pathways by regulating vesicle formation, transport, and tethering. Rab11 and its paralogs regulate multiple secretory and endocytic recycling pathways, yet the guanine nucleotide exchange factor (GEF) that activates Rab11 in most eukaryotic cells is unresolved. The large multisubunit transport protein particle (TRAPP) II complex has been proposed to act as a GEF for Rab11 based on genetic evidence, but conflicting biochemical experiments have created uncertainty regarding Rab11 activation. Using physiological Rab-GEF reconstitution reactions, we now provide definitive evidence that TRAPPII is a bona fide GEF for the yeast Rab11 homologues Ypt31/32. We also uncover a direct role for Arf1, a distinct GTPase, in recruiting TRAPPII to anionic membranes. Given the known role of Ypt31/32 in stimulating activation of Arf1, a bidirectional cross talk mechanism appears to drive biogenesis of secretory and endocytic recycling vesicles. By coordinating simultaneous activation of two essential GTPase pathways, this mechanism ensures recruitment of the complete set of effectors needed for vesicle formation, transport, and tethering.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
13
|
Kortüm F, Harms FL, Hennighausen N, Rosenberger G. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor. PLoS One 2015; 10:e0132737. [PMID: 26177020 PMCID: PMC4503440 DOI: 10.1371/journal.pone.0132737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR). We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow.
Collapse
Affiliation(s)
- Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Leonie Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natascha Hennighausen
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Wuertenberger S, Groemping Y. A single PXXP motif in the C-terminal region of srGAP3 mediates binding to multiple SH3 domains. FEBS Lett 2015; 589:1156-63. [PMID: 25819436 DOI: 10.1016/j.febslet.2015.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 11/17/2022]
Abstract
The Slit-Robo GTPase-activating protein 3 (srGAP3) has been implicated in different critical aspects of neuronal development. These findings have mainly been based on the characterisation of the three conserved globular N-terminal domains, while the function of the C-terminal region (CTR) is still unknown. We show that this predicted unstructured region acts as an adaptor by binding to the endocytic proteins Amphiphysin, Endophilin-A2, Endophilin-A1, as well as the Ras signalling protein Grb2. All these interactions depend on a single proline-rich motif in the CTR and the Src-homology 3 domains of the binding partners. Via these interactions srGAP3 could link receptor signalling events to the endocytic machinery.
Collapse
Affiliation(s)
- Silvia Wuertenberger
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstr. 35, D-72076 Tübingen, Germany
| | - Yvonne Groemping
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstr. 35, D-72076 Tübingen, Germany.
| |
Collapse
|
15
|
Llavero F, Urzelai B, Osinalde N, Gálvez P, Lacerda HM, Parada LA, Zugaza JL. Guanine nucleotide exchange factor αPIX leads to activation of the Rac 1 GTPase/glycogen phosphorylase pathway in interleukin (IL)-2-stimulated T cells. J Biol Chem 2015; 290:9171-82. [PMID: 25694429 DOI: 10.1074/jbc.m114.608414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.
Collapse
Affiliation(s)
- Francisco Llavero
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain, the Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, 48170 Zamudio, Spain
| | - Bakarne Urzelai
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain
| | - Nerea Osinalde
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Patricia Gálvez
- the Pharmascience Division, Technological Park of Health Sciences, Avda. de la Ciencia, s/n 18100 Armilla, Granada, Spain
| | - Hadriano M Lacerda
- the Department of Biomedical Sciences and Human Oncology, Unit of Cancer Epidemiology, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luis A Parada
- the Instituto de Patología Experimental, Universidad Nacional de Salta, 4400 Salta, Argentina, and
| | - José L Zugaza
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain, the Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, 48170 Zamudio, Spain, the IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
16
|
Yan Y, Tsukamoto O, Nakano A, Kato H, Kioka H, Ito N, Higo S, Yamazaki S, Shintani Y, Matsuoka K, Liao Y, Asanuma H, Asakura M, Takafuji K, Minamino T, Asano Y, Kitakaze M, Takashima S. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5. Nat Commun 2015; 6:6137. [PMID: 25635515 PMCID: PMC4317497 DOI: 10.1038/ncomms7137] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022] Open
Abstract
Augmented AMP-activated protein kinase (AMPK) activity inhibits cell migration, possibly contributing to the clinical benefits of chemical AMPK activators in preventing atherosclerosis, vascular remodelling and cancer metastasis. However, the underlying mechanisms remain largely unknown. Here we identify PDZ and LIM domain 5 (Pdlim5) as a novel AMPK substrate and show that it plays a critical role in the inhibition of cell migration. AMPK directly phosphorylates Pdlim5 at Ser177. Exogenous expression of phosphomimetic S177D-Pdlim5 inhibits cell migration and attenuates lamellipodia formation. Consistent with this observation, S177D-Pdlim5 suppresses Rac1 activity at the cell periphery and displaces the Arp2/3 complex from the leading edge. Notably, S177D-Pdlim5, but not WT-Pdlim5, attenuates the association with Rac1-specific guanine nucleotide exchange factors at the cell periphery. Taken together, our findings indicate that phosphorylation of Pdlim5 on Ser177 by AMPK mediates inhibition of cell migration by suppressing the Rac1-Arp2/3 signalling pathway. Augmented AMP-activated protein kinase (AMPK) activity inhibits cell migration through an unknown mechanism. Here, Yan et al. show that AMPK phosphorylates the novel substrate PDZ and LIM domain 5 (Pdlim5), and that phosphomimetic Pdlim5 impairs cell migration by disrupting the Rac1-Arp2/3 signalling pathway.
Collapse
Affiliation(s)
- Yi Yan
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Nakano
- Depertment of Clinical Research and Development, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriaki Ito
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoru Yamazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Yasunori Shintani
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken Matsuoka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515 Guangzhou, China
| | - Hiroshi Asanuma
- Depertment of Clinical Research and Development, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Masanori Asakura
- Depertment of Clinical Research and Development, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Kazuaki Takafuji
- Center for Research Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Minamino
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Kitakaze
- Depertment of Clinical Research and Development, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Seiji Takashima
- 1] Department of Medical Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Kawaguchi 332-0012, Japan
| |
Collapse
|
17
|
Dent LG, Poon CLC, Zhang X, Degoutin JL, Tipping M, Veraksa A, Harvey KF. The GTPase regulatory proteins Pix and Git control tissue growth via the Hippo pathway. Curr Biol 2014; 25:124-30. [PMID: 25484297 DOI: 10.1016/j.cub.2014.11.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 01/01/2023]
Abstract
The Salvador-Warts-Hippo (Hippo) pathway is a conserved regulator of organ size and is deregulated in human cancers. In epithelial tissues, the Hippo pathway is regulated by fundamental cell biological properties, such as polarity and adhesion, and coordinates these with tissue growth. Despite its importance in disease, development, and regeneration, the complete set of proteins that regulate Hippo signaling remain undefined. To address this, we used proteomics to identify proteins that bind to the Hippo (Hpo) kinase. Prominent among these were PAK-interacting exchange factor (known as Pix or RtGEF) and G-protein-coupled receptor kinase-interacting protein (Git). Pix is a conserved Rho-type guanine nucleotide exchange factor (Rho-GEF) homologous to Beta-PIX and Alpha-PIX in mammals. Git is the single Drosophila melanogaster homolog of the mammalian GIT1 and GIT2 proteins, which were originally identified in the search for molecules that interact with G-protein-coupled receptor kinases. Pix and Git form an oligomeric scaffold to facilitate sterile 20-like kinase activation and have also been linked to GTPase regulation. We show that Pix and Git regulate Hippo-pathway-dependent tissue growth in D. melanogaster and that they do this in parallel to the known upstream regulator Fat cadherin. Pix and Git influence activity of the Hpo kinase by acting as a scaffold complex, rather than enzymes, and promote Hpo dimerization and autophosphorylation of Hpo's activation loop. Therefore, we provide important new insights into an ancient signaling network that controls the growth of metazoan tissues.
Collapse
Affiliation(s)
- Lucas G Dent
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, VIC 3002, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Carole L C Poon
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiaomeng Zhang
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joffrey L Degoutin
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marla Tipping
- Department of Biology, Providence College, Providence, RI 02918, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kieran F Harvey
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Seong MW, Park JH, Yoo HM, Yang SW, Oh KH, Ka SH, Park DE, Lee ST, Chung CH. c-Cbl regulates αPix-mediated cell migration and invasion. Biochem Biophys Res Commun 2014; 455:153-8. [PMID: 25450678 DOI: 10.1016/j.bbrc.2014.10.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 12/23/2022]
Abstract
c-Cbl, a RING-type ubiquitin E3 ligase, down-regulates receptor tyrosine kinases, including EGF receptor, and inhibits cell proliferation. Moreover, c-Cbl mutations are frequently found in patients with myeloid neoplasm. Therefore, c-Cbl is known as a tumor suppressor. αPix is expressed only in highly proliferative and mobile cells, including immune cells, and up-regulated in certain invasive tumors, such as glioblastoma multiforme. Here, we showed that c-Cbl serves as an ubiquitin E3 ligase for proteasome-mediated degradation of αPix, but not βPix. Remarkably, the rat C6 and human A172 glioma cells were unable to express c-Cbl, which leads to a dramatic accumulation of αPix. Depletion of αPix by shRNA markedly reduced the ability of the glioma cells to migrate and invade, whereas complementation of shRNA-insensitive αPix promoted it. These results indicate that c-Cbl negatively regulates αPix-mediated cell migration and invasion and the lack of c-Cbl in the C6 and A172 glioma cells is responsible for their malignant behavior.
Collapse
Affiliation(s)
- Min Woo Seong
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Ho Park
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Min Yoo
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Wook Yang
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyu Hee Oh
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Hyeun Ka
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dong Eun Park
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - Chin Ha Chung
- School of Biological Sciences and Institute for Protein Metabolism, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
19
|
Spuul P, Ciufici P, Veillat V, Leclercq A, Daubon T, Kramer IJ, Génot E. Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 2014; 5:e28195. [PMID: 24967648 DOI: 10.4161/sgtp.28713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are specialized plasma-membrane actin-based microdomains that combine adhesive properties with matrix degrading and/or mechanosensor activities. These organelles have been extensively studied in vitro and current concerted efforts aim at establishing their physiological relevance and subsequent association with human diseases. Proper functioning of the bone, immune, and vascular systems is likely to depend on these structures while their occurrence in cancer cells appears to be linked to tumor metastasis. The elucidation of the mechanisms driving invadosome assembly is a prerequisite to understanding their role in vivo and ultimately to controlling their functions. Adhesive and soluble ligands act via transmembrane receptors that propagate signals to the cytoskeleton via small G proteins of the Rho family, assisted by tyrosine kinases and scaffold proteins to induce invadosome formation and rearrangements. Oncogene expression and cell-cell interactions may also trigger their assembly. Manipulation of the signals that regulate invadosome formation and dynamics could therefore be a strategy to interfere with their functions in a multitude of pathological settings, such as excessive bone breakdown, infections, vascular remodeling, transendothelial diapedesis, and metastasis.
Collapse
Affiliation(s)
- Pirjo Spuul
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Paolo Ciufici
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Véronique Veillat
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Anne Leclercq
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Thomas Daubon
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - IJsbrand Kramer
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Elisabeth Génot
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| |
Collapse
|
20
|
Zhou Y, Johnson JL, Cerione RA, Erickson JW. Prenylation and membrane localization of Cdc42 are essential for activation by DOCK7. Biochemistry 2013; 52:4354-63. [PMID: 23718289 DOI: 10.1021/bi301688g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The unconventional guanine nucleotide exchange factor (GEF) family comprising 11 DOCK180 related proteins is classified into four subfamilies, A through D, based on their relative GEF activity toward the closely related Rac and Cdc42 GTPases. DOCK proteins participate in the remodeling of the actin cytoskeleton and are key regulators of cell motility, phagocytosis, and adhesion. Here we show that the guanine nucleotide exchange domain of DOCK7, DHR2 (for DOCK homology region 2), is a potent GEF for prenylated Cdc42 and Rac1 in a model liposome system, demonstrating that the prenylation and membrane localization of Cdc42 or Rac1 are necessary for their activation by DOCK7. Additionally, we identify DOCK7 residues that confer GTPase GEF specificity. Finally, using our liposome reconstitution assay, we show that a more narrowly defined GEF domain of DHR2 (designated DHR2s) harbors an N-terminal site distinct from the GEF active site that binds preferentially to the active, GTP-bound forms of Cdc42 and Rac1 and thereby recruits free DHR2s from solution to the membrane surface. This recruitment results in a progressive increase in the effective concentration of DHR2s at the membrane surface that in turn provides for an accelerated rate of guanine nucleotide exchange on Cdc42. The positive cooperativity observed in our reconstituted system suggests that the action of DOCK7 in vivo may involve the coordinated integration of Cdc42/Rac signaling in the context of the membrane recruitment of a DOCK7 GEF complex.
Collapse
Affiliation(s)
- Yeyun Zhou
- Field of Biophysics/MacCHESS, Cornell High Energy Synchrotron Source, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | | | | | | |
Collapse
|
21
|
Ba W, van der Raadt J, Nadif Kasri N. Rho GTPase signaling at the synapse: implications for intellectual disability. Exp Cell Res 2013; 319:2368-74. [PMID: 23769912 DOI: 10.1016/j.yexcr.2013.05.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Intellectual disability (ID) imposes a major medical and social-economical problem in our society. It is defined as a global reduction in cognitive and intellectual abilities, associated with impaired social adaptation. The causes of ID are extremely heterogeneous and include non-genetic and genetic changes. Great progress has been made over recent years towards the identification of ID-related genes, resulting in a list of approximately 450 genes. A prominent neuropathological feature of patients with ID is altered dendritic spine morphogenesis. These structural abnormalities, in part, reflect impaired cytoskeleton remodeling and are associated with synaptic dysfunction. The dynamic, actin-rich nature of dendritic spines points to the Rho GTPase family as a central contributor, since they are key regulators of actin dynamics and organization. It is therefore not surprising that mutations in genes encoding regulators and effectors of the Rho GTPases have been associated with ID. This review will focus on the role of Rho GTPase signaling in synaptic structure/function and ID.
Collapse
Affiliation(s)
- Wei Ba
- Donders Institute for Brain Cognition and Behavior, Radboud University Nijmegen Medical Center, Department Cognitive Neuroscience, the Netherlands
| | | | | |
Collapse
|
22
|
Camand E, Peglion F, Osmani N, Sanson M, Etienne-Manneville S. N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J Cell Sci 2012; 125:844-57. [PMID: 22275437 DOI: 10.1242/jcs.087668] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perturbation of cell polarity is a hallmark of cancer cells. In carcinomas, loss of epithelial E-cadherin contributes to the loss of cell polarity and promotes epithelial-mesenchymal transition and carcinoma infiltration. However, the contribution of classical cadherins to the development of non-epithelial tumours is less well documented. We investigated the impact of the level of N-cadherin expression on the polarity and migration of normal and tumour glial cells. Low levels of N-cadherin were frequently observed in human glioma samples and purified glioma cells. Using a wound-healing assay, we show that a decreased level of N-cadherin promotes a faster and less-directed migration both in normal and tumour cells. N-cadherin-mediated contacts control cell velocity and polarity through the regulation of focal adhesions. In cells expressing low levels of N-cadherin, small focal adhesions are present at the entire cell periphery of confluent cells and are not affected by wounding of the cell monolayer. Under these conditions, wound-induced integrin-mediated recruitment of the small GTPase Cdc42, activation of the Cdc42-mediated polarity pathway and centrosome reorientation do not occur. Re-expression of N-cadherin in gliomas restores cell polarity and strongly reduces cell velocity, suggesting that loss of N-cadherin could contribute to the invasive capacity of tumour astrocytes.
Collapse
Affiliation(s)
- Emeline Camand
- Institut Pasteur-CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris CEDEX 15, France
| | | | | | | | | |
Collapse
|
23
|
The secret life of kinases: functions beyond catalysis. Cell Commun Signal 2011; 9:23. [PMID: 22035226 PMCID: PMC3215182 DOI: 10.1186/1478-811x-9-23] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/28/2011] [Indexed: 02/07/2023] Open
Abstract
Protein phosphorylation participates in the regulation of all fundamental biological processes, and protein kinases have been intensively studied. However, while the focus was on catalytic activities, accumulating evidence suggests that non-catalytic properties of protein kinases are essential, and in some cases even sufficient for their functions. These non-catalytic functions include the scaffolding of protein complexes, the competition for protein interactions, allosteric effects on other enzymes, subcellular targeting, and DNA binding. This rich repertoire often is used to coordinate phosphorylation events and enhance the specificity of substrate phosphorylation, but also can adopt functions that do not rely on kinase activity. Here, we discuss such kinase independent functions of protein and lipid kinases focussing on kinases that play a role in the regulation of cell proliferation, differentiation, apoptosis, and motility.
Collapse
|
24
|
Ramakers GJA, Wolfer D, Rosenberger G, Kuchenbecker K, Kreienkamp HJ, Prange-Kiel J, Rune G, Richter K, Langnaese K, Masneuf S, Bösl MR, Fischer KD, Krugers HJ, Lipp HP, van Galen E, Kutsche K. Dysregulation of Rho GTPases in the αPix/Arhgef6 mouse model of X-linked intellectual disability is paralleled by impaired structural and synaptic plasticity and cognitive deficits. Hum Mol Genet 2011; 21:268-86. [PMID: 21989057 DOI: 10.1093/hmg/ddr457] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutations in the ARHGEF6 gene, encoding the guanine nucleotide exchange factor αPIX/Cool-2 for the Rho GTPases Rac1 and Cdc42, cause X-linked intellectual disability (ID) in humans. We show here that αPix/Arhgef6 is primarily expressed in neuropil regions of the hippocampus. To study the role of αPix/Arhgef6 in neuronal development and plasticity and gain insight into the pathogenic mechanisms underlying ID, we generated αPix/Arhgef6-deficient mice. Gross brain structure in these mice appeared to be normal; however, analysis of Golgi-Cox-stained pyramidal neurons revealed an increase in both dendritic length and spine density in the hippocampus, accompanied by an overall loss in spine synapses. Early-phase long-term potentiation was reduced and long-term depression was increased in the CA1 hippocampal area of αPix/Arhgef6-deficient animals. Knockout animals exhibited impaired spatial and complex learning and less behavioral control in mildly stressful situations, suggesting that this model mimics the human ID phenotype. The structural and electrophysiological alterations in the hippocampus were accompanied by a significant reduction in active Rac1 and Cdc42, but not RhoA. In conclusion, we suggest that imbalance in activity of different Rho GTPases may underlie altered neuronal connectivity and impaired synaptic function and cognition in αPix/Arhgef6 knockout mice.
Collapse
Affiliation(s)
- Ger J A Ramakers
- Department of Neurons and Networks, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shaheen R, Faqeih E, Sunker A, Morsy H, Al-Sheddi T, Shamseldin H, Adly N, Hashem M, Alkuraya. F. Recessive mutations in DOCK6, encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and Adams-Oliver syndrome. Am J Hum Genet 2011; 89:328-33. [PMID: 21820096 DOI: 10.1016/j.ajhg.2011.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 12/26/2022] Open
Abstract
Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition.
Collapse
|
26
|
Wu X, Ramachandran S, Cerione RA, Erickson JW. A minimal Rac activation domain in the unconventional guanine nucleotide exchange factor Dock180. Biochemistry 2011; 50:1070-80. [PMID: 21033699 PMCID: PMC3048587 DOI: 10.1021/bi100971y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by catalyzing the exchange of bound GDP for GTP, thereby resulting in downstream effector recognition. Two metazoan families of GEFs have been described: Dbl-GEF family members that share conserved Dbl homology (DH) and Pleckstrin homology (PH) domains and the more recently described Dock180 family members that share little sequence homology with the Dbl family and are characterized by conserved Dock homology regions 1 and 2 (DHR-1 and -2, respectively). While extensive characterization of the Dbl family has been performed, less is known about how Dock180 family members act as GEFs, with only a single X-ray structure having recently been reported for the Dock9-Cdc42 complex. To learn more about the mechanisms used by the founding member of the family, Dock180, to act as a Rac-specific GEF, we set out to identify and characterize its limit functional GEF domain. A C-terminal portion of the DHR-2 domain, composed of approximately 300 residues (designated as Dock180(DHR-2c)), is shown to be necessary and sufficient for robust Rac-specific GEF activity both in vitro and in vivo. We further show that Dock180(DHR-2c) binds to Rac in a manner distinct from that of Rac-GEFs of the Dbl family. Specifically, Ala(27) and Trp(56) of Rac appear to provide a bipartite binding site for the specific recognition of Dock180(DHR-2c), whereas for Dbl family Rac-GEFs, Trp(56) of Rac is the sole primary determinant of GEF specificity. On the basis of our findings, we are able to define the core of Dock180 responsible for its Rac-GEF activity as well as highlight key recognition sites that distinguish different Dock180 family members and determine their corresponding GTPase specificities.
Collapse
Affiliation(s)
- Xin Wu
- Department of Chemistry and Chemical Biology and Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Sekar Ramachandran
- Department of Chemistry and Chemical Biology and Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology and Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Jon W. Erickson
- Department of Chemistry and Chemical Biology and Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
27
|
Hua KT, Tan CT, Johansson G, Lee JM, Yang PW, Lu HY, Chen CK, Su JL, Chen PB, Wu YL, Chi CC, Kao HJ, Shih HJ, Chen MW, Chien MH, Chen PS, Lee WJ, Cheng TY, Rosenberger G, Chai CY, Yang CJ, Huang MS, Lai TC, Chou TY, Hsiao M, Kuo ML. N-α-acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins and inhibiting Cdc42/Rac1 activity. Cancer Cell 2011; 19:218-31. [PMID: 21295525 DOI: 10.1016/j.ccr.2010.11.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 06/03/2010] [Accepted: 11/08/2010] [Indexed: 12/28/2022]
Abstract
N-α-acetyltransferase 10 protein, Naa10p, is an N-acetyltransferase known to be involved in cell cycle control. We found that Naa10p was expressed lower in varieties of malignancies with lymph node metastasis compared with non-lymph node metastasis. Higher Naa10p expression correlates the survival of lung cancer patients. Naa10p significantly suppressed migration, tumor growth, and metastasis independent of its enzymatic activity. Instead, Naa10p binds to the GIT-binding domain of PIX, thereby preventing the formation of the GIT-PIX-Paxillin complex, resulting in reduced intrinsic Cdc42/Rac1 activity and decreased cell migration. Forced expression of PIX in Naa10-transfected tumor cells restored the migration and metastasis ability. We suggest that Naa10p functions as a tumor metastasis suppressor by disrupting the migratory complex, PIX-GIT- Paxillin, in cancer cells.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Feng Q, Baird D, Yoo S, Antonyak M, Cerione RA. Phosphorylation of the cool-1/beta-Pix protein serves as a regulatory signal for the migration and invasive activity of Src-transformed cells. J Biol Chem 2010; 285:18806-16. [PMID: 20375009 DOI: 10.1074/jbc.m109.098079] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that Cool-1 (Cloned out of library-1)/beta-Pix (Pak-interactive exchange factor) is phosphorylated at a specific tyrosine residue (Tyr-442) in a Src-dependent manner and serves as a dual function guanine nucleotide exchange factor (GEF)/signaling-effector for Cdc42 that is essential for transformation by Src. Here, we show that knocking-down Cool-1 or overexpressing a Cool-1 mutant that contains substitutions within its Dbl homology domain and is defective for GEF activity, inhibits Src-promoted cell migration. Similarly, the expression of a Cool-1 mutant containing a tyrosine to phenylalanine substitution at position 442, making it incapable of being phosphorylated in response to serum, epidermal growth factor (EGF), or Src, also causes a significant inhibition of the migration and invasive activity of cells expressing oncogenic Src. We further demonstrate that the phosphorylation of Cool-1 at Tyr-442 weakens its ability to bind to one of its primary interaction-partners, Cat-1 (Cool-associated tyrosine phosphosubstrate-1)/Git-1 (G protein-coupled receptor kinase-interactor-1), thus making Cat more accessible for binding to paxillin. This enables cells to alternate between states where they contain large numbers of focal complexes (i.e. conditions favoring Cool-1-Cat interactions) versus reduced numbers of focal complexes (conditions favoring Cat-paxillin interactions). Overall, these findings show that the phosphorylation-dephosphorylation cycle of Cool-1 at Tyr-442 can serve as a key regulatory signal for focal complex assembly-disassembly, and consequently, for the migration and invasive activity of Src-transformed cells.
Collapse
Affiliation(s)
- Qiyu Feng
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
29
|
Wang Z, Kumamoto Y, Wang P, Gan X, Lehmann D, Smrcka AV, Cohn L, Iwasaki A, Li L, Wu D. Regulation of immature dendritic cell migration by RhoA guanine nucleotide exchange factor Arhgef5. J Biol Chem 2009; 284:28599-606. [PMID: 19713215 PMCID: PMC2781403 DOI: 10.1074/jbc.m109.047282] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/26/2009] [Indexed: 12/21/2022] Open
Abstract
There are a large number of Rho guanine nucleotide exchange factors, most of which have no known functions. Here, we carried out a short hairpin RNA-based functional screen of Rho-GEFs for their roles in leukocyte chemotaxis and identified Arhgef5 as an important factor in chemotaxis of a macrophage phage-like RAW264.7 cell line. Arhgef5 can strongly activate RhoA and RhoB and weakly RhoC and RhoG, but not Rac1, RhoQ, RhoD, or RhoV, in transfected human embryonic kidney 293 cells. In addition, Gbetagamma interacts with Arhgef5 and can stimulate Arhgef5-mediated activation of RhoA in an in vitro assay. In vivo roles of Arhgef5 were investigated using an Arhgef-5-null mouse line. Arhgef5 deficiency did not affect chemotaxis of mouse macrophages, T and B lymphocytes, and bone marrow-derived mature dendritic cells (DC), but it abrogated MIP1alpha-induced chemotaxis of immature DCs and impaired migration of DCs from the skin to lymph node. In addition, Arhgef5 deficiency attenuated allergic airway inflammation. Therefore, this study provides new insights into signaling mechanisms for DC migration regulation.
Collapse
Affiliation(s)
- Zhenglong Wang
- From the Program for Vascular Biology and Therapeutics and Department of Pharmacology
| | | | - Ping Wang
- From the Program for Vascular Biology and Therapeutics and Department of Pharmacology
| | - Xiaoqing Gan
- From the Program for Vascular Biology and Therapeutics and Department of Pharmacology
| | - David Lehmann
- the Department of Pharmacology, University of Rochester, Rochester, New York 14642, and
| | - Alan V. Smrcka
- the Department of Pharmacology, University of Rochester, Rochester, New York 14642, and
| | - Lauren Cohn
- the Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Lin Li
- the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianqing Wu
- From the Program for Vascular Biology and Therapeutics and Department of Pharmacology
| |
Collapse
|
30
|
Hota PK, Buck M. Thermodynamic characterization of two homologous protein complexes: associations of the semaphorin receptor plexin-B1 RhoGTPase binding domain with Rnd1 and active Rac1. Protein Sci 2009; 18:1060-71. [PMID: 19388051 DOI: 10.1002/pro.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plexin receptors function in response to semaphorin guidance cues in a variety of developmental processes involving cell motility. Interactions with Rho, as well as Ras family small GTPases are critical events in the cell signaling mechanism. We have recently determined the structure of a cytoplasmic domain (RBD) of plexin-B1 and mapped its binding interface with several Rho-GTPases, Rac1, Rnd1, and RhoD. All three GTPases associate with a similar region of this plexin domain, but show different functional behavior in cells. To understand whether thermodynamic properties of the GTPase-RBD interaction contribute to such different behavior, we have examined the interaction at different temperatures, buffer, and pH conditions. Although the binding affinity of both Rnd1 and Rac1 with the plexin-B1 RBD is similar, the detailed thermodynamic properties of the interactions are considerably different. These data suggest that on Rac1 binding to the plexin-B1 RBD, the proteins become more rigid in the complex. By contrast, Rnd1 binding is consistent with unchanged or slightly increased flexibility in one or both proteins. Both GTPases show an appreciable reduction in affinity for the dimeric plexin-B1 RBD indicating that GTPase binding is not cooperative with dimer formation, but that a partial steric hindrance destabilizes the dimer. However, a reduced affinity binding mode to a disulphide stabilized model for the dimeric RBD is also possible. Consistent with cellular studies, the interaction thermodynamics imply that further levels of regulation involving additional binding partners and/or regions outside of the RhoGTPase binding domain are required for receptor activation.
Collapse
Affiliation(s)
- Prasanta K Hota
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
31
|
Modulation of Rho guanine exchange factor Lfc activity by protein kinase A-mediated phosphorylation. Mol Cell Biol 2009; 29:5963-73. [PMID: 19667072 DOI: 10.1128/mcb.01268-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lfc is a guanine nucleotide exchange factor (GEF) for Rho that demonstrates an unusual ability to associate with microtubules. While several phosphorylated residues have been detected in the Lfc polypeptide, the mechanism(s) by which phosphorylation regulates the exchange activity of Lfc remains unclear. We confirm that Lfc is a phosphorylated protein and demonstrate that 14-3-3 interacts directly and in a phosphorylation-dependent manner with Lfc. We identify AKAP121 as an Lfc-binding protein and show that Lfc is phosphorylated in an AKAP-dependent manner by protein kinase A (PKA). Forskolin treatment induced 14-3-3 binding to Lfc and suppressed the exchange activity of wild-type Lfc on RhoA. Importantly, a mutant of Lfc that is unable to associate with 14-3-3 proteins was resistant to inhibition by forskolin. Tctex-1, a dynein motor light chain, binds to Lfc in a competitive manner with 14-3-3.
Collapse
|
32
|
Saini DK, Chisari M, Gautam N. Shuttling and translocation of heterotrimeric G proteins and Ras. Trends Pharmacol Sci 2009; 30:278-86. [PMID: 19427041 PMCID: PMC3097116 DOI: 10.1016/j.tips.2009.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 12/21/2022]
Abstract
Heterotrimeric G proteins (alphabetagamma) and Ras proteins are activated by cell-surface receptors that sense extracellular signals. Both sets of proteins were traditionally thought to be constrained to the plasma membrane and some intracellular membranes. Live-cell-imaging experiments have now shown that these proteins are mobile inside a cell, shuttling continually between the plasma membrane and intracellular membranes in the basal state, maintaining these proteins in dynamic equilibrium in different membrane compartments. Furthermore, on receptor activation, a family of G protein betagamma subunits translocates rapidly and reversibly to the Golgi and endoplasmic reticulum enabling direct communication between the extracellular signal and intracellular membranes. A member of the Ras family has similarly been shown to translocate on activation. Although the impact of this unexpected intracellular movement of signaling proteins on cell physiology is likely to be distinct, there are striking similarities in the properties of these two families of signal-transducing proteins.
Collapse
Affiliation(s)
- Deepak K Saini
- Department of Anesthesiology, Box 8054, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
33
|
Schlenker O, Rittinger K. Structures of dimeric GIT1 and trimeric beta-PIX and implications for GIT-PIX complex assembly. J Mol Biol 2009; 386:280-9. [PMID: 19136011 DOI: 10.1016/j.jmb.2008.12.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 01/05/2023]
Abstract
GIT (G protein-coupled receptor kinase-interacting protein) and PIX (p21-activated kinase-interacting exchange factor) family proteins integrate signaling pathways involving Arf and Rho family GTPases. GIT1 and beta-PIX form a constitutively associated complex that acts as a scaffold to allow the formation of large multiprotein assemblies that regulate synaptogenesis, cell polarity and cell migration among other physiological processes. Complex formation is mediated by the GIT binding domain (GBD) in beta-PIX, which recognizes the Spa homology domain of GIT1. Both binding domains are adjacent to predicted coiled-coil segments that allow homo-oligomerization of GIT1 and beta-PIX, respectively. Oligomerization of GIT and PIX proteins is important for their physiological functions, and deletion of the coiled-coil domains interferes with correct subcellular localization and the GEF (guanine nucleotide exchange factor) activity of PIX. We have solved the crystal structures of the CC domains of GIT1 and beta-PIX and determined the stoichiometry of complex formation between the two proteins in order to understand the molecular architecture of the GIT1-beta-PIX complex. The crystal structure of the CC domain of GIT1 solved at 1.4 A resolution shows a dimeric, parallel CC that spans 67 A in length. Unexpectedly, and in contrast to prevalent dimeric models, the structure of the CC region of beta-PIX determined at 2.8 A resolution, combined with hydrodynamic studies, reveals that this protein forms a parallel trimer. Furthermore, we demonstrate that dimeric GIT and trimeric PIX form an unusual high-affinity heteropentameric complex in which each Spa homology domain of the GIT1 dimer recognizes one GBD of the beta-PIX trimer, leaving one GBD unoccupied. These results can serve as a basis to better understand oligomerization-dependent GIT1-beta-PIX-regulated signaling events and provide an insight into the architecture of large signaling complexes involving GIT1 and beta-PIX.
Collapse
Affiliation(s)
- Oliver Schlenker
- Medical Research Council National Institute for Medical Research, The Ridgeway, London, UK
| | | |
Collapse
|
34
|
Waters JE, Astle MV, Ooms LM, Balamatsias D, Gurung R, Mitchell CA. P-Rex1 - a multidomain protein that regulates neurite differentiation. J Cell Sci 2008; 121:2892-903. [PMID: 18697831 DOI: 10.1242/jcs.030353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Rac-GEF P-Rex1 promotes membrane ruffling and cell migration in response to Rac activation, but its role in neuritogenesis is unknown. Rac1 promotes neurite differentiation; Rac3, however, may play an opposing role. Here we report that in nerve growth factor (NGF)-differentiated rat PC12 cells, P-Rex1 localised to the distal tips of developing neurites and to the axonal shaft and growth cone of differentiating hippocampal neurons. P-Rex1 expression inhibited NGF-stimulated PC12 neurite differentiation and this was dependent on the Rac-GEF activity of P-Rex1. P-Rex1 inhibition of neurite outgrowth was rescued by low-dose cytochalasin D treatment, which prevents actin polymerisation. P-Rex1 activated Rac3 GTPase activity when coexpressed in PC12 cells. In the absence of NGF stimulation, targeted depletion of P-Rex1 in PC12 cells by RNA interference induced the spontaneous formation of beta-tubulin-enriched projections. Following NGF stimulation, enhanced neurite differentiation, with neurite hyper-elongation correlating with decreased F-actin at the growth cone, was demonstrated in P-Rex1 knockdown cells. Interestingly, P-Rex1-depleted PC12 cells exhibited reduced Rac3 and Rac1 GTPase activity. This study has identified P-Rex1 as a Rac3-GEF in neuronal cells that localises to, and regulates, actin cytoskeletal dynamics at the axonal growth cone to in turn regulate neurite differentiation.
Collapse
Affiliation(s)
- Joanne E Waters
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Yoshida T, Mishina M. Zebrafish orthologue of mental retardation protein IL1RAPL1 regulates presynaptic differentiation. Mol Cell Neurosci 2008; 39:218-28. [PMID: 18657618 DOI: 10.1016/j.mcn.2008.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/13/2008] [Accepted: 06/21/2008] [Indexed: 01/10/2023] Open
Abstract
IL1-receptor accessory protein-like 1 (IL1RAPL1), a member of interleukin-1/toll receptor (TIR) family, is responsible for a nonsyndromic form of mental retardation (MR). The zebrafish orthologue of mammalian IL1RAPL1, designated as Il1rapl1b, was expressed widely in the brain and in the olfactory placode. We employed an olfactory sensory neuron-specific gene manipulation system in combination with in vivo imaging of transparent zebrafish embryos to examine the functional role of Il1rapl1b in synaptic vesicle accumulation and subsequent morphological remodeling of axon terminals, the characteristic features of presynaptic differentiation of zebrafish olfactory sensory neurons during synapse formation. Antisense morpholino oligonucleotide against il1rapl1b suppressed both the synaptic vesicle accumulation and axon terminal remodeling. Consistently, the overexpression of Il1rapl1b stimulated synaptic vesicle accumulation. Swapping the carboxyl-terminal domain of Il1rapl1b with that of mouse IL-1 receptor accessory protein abolished the stimulatory effect. On the other hand, a substitution mutation in the TIR domain suppressed the morphological remodeling of axon terminals. Thus, the regulation of synaptic vesicle accumulation and subsequent morphological remodeling by Il1rapl1b appeared to be mediated by distinct domains. These results suggest that Il1rapl1b plays an important role in presynaptic differentiation during synapse formation.
Collapse
Affiliation(s)
- Tomoyuki Yoshida
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
36
|
Frank SR, Hansen SH. The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin Cell Dev Biol 2008; 19:234-44. [PMID: 18299239 PMCID: PMC2394276 DOI: 10.1016/j.semcdb.2008.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/16/2008] [Indexed: 01/24/2023]
Abstract
Arf and Rho GTP-binding proteins coordinately regulate membrane dynamics and cytoskeletal rearrangements. The Cdc42/Rac guanine nucleotide exchange factor PIX and the Arf GTPase-activating protein GIT form a stable complex in cells. The PIX-GIT complex functions to integrate signaling among Arf, Cdc42, and Rac proteins in response to cues emanating from integrins, heterotrimeric G proteins, receptor tyrosine kinases, and cell-cell interactions. A concept that emerges from the literature is that the PIX-GIT complex serves as a cassette to elicit changes in cell shape essential for polarized cell responses in a wide range of biological contexts.
Collapse
Affiliation(s)
- Scott R. Frank
- GI Cell Biology Laboratory, The Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Steen H. Hansen
- GI Cell Biology Laboratory, The Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
37
|
Urano D, Nakata A, Mizuno N, Tago K, Itoh H. Domain-domain interaction of P-Rex1 is essential for the activation and inhibition by G protein betagamma subunits and PKA. Cell Signal 2008; 20:1545-54. [PMID: 18514484 DOI: 10.1016/j.cellsig.2008.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 04/11/2008] [Indexed: 01/02/2023]
Abstract
PtdIns(3, 4, 5)P(3)-dependent Rac exchanger (P-Rex) 1 is a guanine nucleotide exchange factor (GEF) for the small GTPase Rac. P-Rex1 is activated by G protein betagamma subunits (Gbetagamma), and the Gbetagamma-induced activation is inhibited by cAMP-dependent protein kinase A (PKA). However, the details of regulatory mechanism of P-Rex1 remain to be clarified. In the present study, we investigated the mechanism of activation and inhibition of P-Rex1 using various truncated and alanine-substituted mutants and found that the domain-domain interaction of P-Rex1 is important for Gbetagamma-induced activation and PKA-induced inhibition. Immunoprecipitation analysis showed that the second Disheveled/EGL-10/Pleckstrin (DEP) and first PSD-95/Dlg/ZO-1 (PDZ) domains of P-Rex1 associate with the inositol polyphosphate-4-phosphatase (IP4P) domain. Carboxyl-terminal truncation on the IP4P domain or mutations in the protein-binding pocket of the first PDZ domain abolished the association. Analysis of in vitro guanine nucleotide exchange assay, PAK1/2 phosphorylation, and Rac-specific actin reorganization revealed that Gbetagamma could activate a complex of the P-Rex1 mutant lacking the IP4P domain and the isolated IP4P domain as well as full-length P-Rex1. Moreover, PKA phosphorylation prevented the domain-domain interaction and Gbetagamma-binding. These results provide a new insight into the regulation of other Rho-family GEFs and cell responses induced by the heterotrimeric G protein.
Collapse
Affiliation(s)
- Daisuke Urano
- Laboratory of Signal Transduction, Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
38
|
AlphaPIX Rho GTPase guanine nucleotide exchange factor regulates lymphocyte functions and antigen receptor signaling. Mol Cell Biol 2008; 28:3776-89. [PMID: 18378701 DOI: 10.1128/mcb.00507-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AlphaPIX is a Rho GTPase guanine nucleotide exchange factor domain-containing signaling protein that associates with other proteins involved in cytoskeletal-membrane complexes. It has been shown that PIX proteins play roles in some immune cells, including neutrophils and T cells. In this study, we report the immune system phenotype of alphaPIX knockout mice. We extended alphaPIX expression experiments and found that whereas alphaPIX was specific to immune cells, its homolog betaPIX was expressed in a wider range of cells. Mice lacking alphaPIX had reduced numbers of mature lymphocytes and defective immune responses. Antigen receptor-directed proliferation of alphaPIX(-) T and B cells was also reduced, but basal migration was enhanced. Accompanying these defects, formation of T-cell-B-cell conjugates and recruitment of PAK and Lfa-1 integrin to the immune synapse were impaired in the absence of alphaPIX. Proximal antigen receptor signaling was largely unaffected, with the exception of reduced phosphorylation of PAK and expression of GIT2 in both T cells and B cells. These results reveal specific roles for alphaPIX in the immune system and suggest that redundancy with betaPIX precludes a more severe immune phenotype.
Collapse
|
39
|
Matsuda C, Kameyama K, Suzuki A, Mishima W, Yamaji S, Okamoto H, Nishino I, Hayashi YK. Affixin activates Rac1 via βPIX in C2C12 myoblast. FEBS Lett 2008; 582:1189-96. [DOI: 10.1016/j.febslet.2008.01.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/31/2008] [Indexed: 01/15/2023]
|
40
|
Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR. Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 2008; 57:94-107. [PMID: 18184567 PMCID: PMC2277504 DOI: 10.1016/j.neuron.2007.11.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 08/17/2007] [Accepted: 11/21/2007] [Indexed: 01/04/2023]
Abstract
Neuronal activity augments maturation of mushroom-shaped spines to form excitatory synapses, thereby strengthening synaptic transmission. We have delineated a Ca(2+)-signaling pathway downstream of the NMDA receptor that stimulates calmodulin-dependent kinase kinase (CaMKK) and CaMKI to promote formation of spines and synapses in hippocampal neurons. CaMKK and CaMKI form a multiprotein signaling complex with the guanine nucleotide exchange factor (GEF) betaPIX and GIT1 that is localized in spines. CaMKI-mediated phosphorylation of Ser516 in betaPIX enhances its GEF activity, resulting in activation of Rac1, an established enhancer of spinogenesis. Suppression of CaMKK or CaMKI by pharmacological inhibitors, dominant-negative (dn) constructs and siRNAs, as well as expression of the betaPIX Ser516Ala mutant, decreases spine formation and mEPSC frequency. Constitutively-active Pak1, a downstream effector of Rac1, rescues spine inhibition by dnCaMKI or betaPIX S516A. This activity-dependent signaling pathway can promote synapse formation during neuronal development and in structural plasticity.
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Vollum Institute, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zegers M. Roles of P21-activated kinases and associated proteins in epithelial wound healing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:253-98. [PMID: 18544501 PMCID: PMC3142609 DOI: 10.1016/s1937-6448(08)00606-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The primary function of epithelia is to provide a barrier between the extracellular environment and the interior of the body. Efficient epithelial repair mechanisms are therefore crucial for homeostasis. The epithelial wound-healing process involves highly regulated morphogenetic changes of epithelial cells that are driven by dynamic changes of the cytoskeleton. P21-activated kinases are serine/threonine kinases that have emerged as important regulators of the cytoskeleton. These kinases, which are activated downsteam of the Rho GTPases Rac and cd42, were initially mostly implicated in the regulation of cell migration. More recently, however, these kinases were shown to have many additional functions that are relevant to the regulation of epithelial wound healing. Here, we provide an overview of the morphogenetic changes of epithelial cells during wound healing and the many functions of p21-activated kinases in these processes.
Collapse
Affiliation(s)
- Mirjam Zegers
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Protein kinase A-dependent phosphorylation modulates beta1Pix guanine nucleotide exchange factor activity through 14-3-3beta binding. Mol Cell Biol 2007; 28:1679-87. [PMID: 18160719 DOI: 10.1128/mcb.00898-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
beta(1)Pix is a guanine nucleotide exchange factor (GEF) for the small GTPases Rac and Cdc42 which has been shown to mediate signaling pathways leading to cytoskeletal reorganization. In the present study, we show that the basal association between endogenous betaPix and endogenous 14-3-3beta was increased after forskolin stimulation and significantly inhibited by protein kinase A inhibitor. However, forskolin stimulation failed to increase the interaction between 14-3-3beta and a beta(1)Pix mutant that is insensitive to protein kinase A phosphorylation, beta(1)Pix(S516A, T526A). We present evidence indicating that forskolin-induced binding of 14-3-3beta to beta(1)Pix results in inhibition of Rac1 GTP loading in 293 cells and in vitro. Furthermore, we show that deletion of 10 amino acid residues within the leucine zipper domain is sufficient to block beta(1)Pix homodimerization and 14-3-3beta binding and modulates beta(1)Pix-GEF activity. These residues also play a crucial role in beta(1)Pix intracellular localization. These results indicate that 14-3-3beta negatively affects the GEF activity of dimeric beta(1)Pix only. Altogether, these results provide a mechanistic insight into the role of 14-3-3beta in modulating beta(1)Pix-GEF activity.
Collapse
|
43
|
Jones NP, Katan M. Role of phospholipase Cgamma1 in cell spreading requires association with a beta-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1. Mol Cell Biol 2007; 27:5790-805. [PMID: 17562871 PMCID: PMC1952113 DOI: 10.1128/mcb.00778-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/24/2007] [Indexed: 11/20/2022] Open
Abstract
The significance of multiprotein signaling complexes in cell motility is becoming increasingly important. We have previously shown that phospholipase Cgamma1 (PLCgamma1) is critical for integrin-mediated cell spreading and motility (N. Jones et al., J. Cell Sci. 118:2695-2706, 2005). In the current study we show that, on a basement membrane-type matrix, PLCgamma1 associates with the adaptor protein GIT1 and the Rac1/Cdc42 guanine exchange factor beta-Pix; GIT1 and beta-Pix form tight complexes independently of PLCgamma1. The association of PLCgamma1 with the complex requires both GIT1 and beta-Pix and the specific array region (gammaSA) of PLCgamma1. Mutations of PLCgamma1 within the gammaSA region reveal that association with this complex is essential for the phosphorylation of PLCgamma1 and the progression to an elongated morphology after integrin engagement. Short interfering RNA (siRNA) depletion of either beta-Pix or GIT1 inhibited cell spreading in a fashion similar to that seen with siRNA against PLCgamma1. Furthermore, siRNA depletion of PLCgamma1, beta-Pix, or GIT1 inhibited Cdc42 and Rac1 activation, while constitutively active forms of Cdc42 or Rac1, but not RhoA, were able to rescue the elongation of these cells. Signaling of the PLCgamma1/GIT1/beta-Pix complex to Cdc42/Rac1 was found to involve the activation of calpains, calcium-dependent proteases. Therefore, we propose that the association of PLCgamma1 with complexes containing GIT1 and beta-Pix is essential for its role in integrin-mediated cell spreading and motility. As a component of this complex, PLCgamma1 is also involved in the activation of Cdc42 and Rac1.
Collapse
Affiliation(s)
- Neil P Jones
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | |
Collapse
|
44
|
Kawasaki Y, Sagara M, Shibata Y, Shirouzu M, Yokoyama S, Akiyama T. Identification and characterization of Asef2, a guanine-nucleotide exchange factor specific for Rac1 and Cdc42. Oncogene 2007; 26:7620-267. [PMID: 17599059 DOI: 10.1038/sj.onc.1210574] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor suppressor adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumors. APC interacts with the Rac1-specific guanine-nucleotide exchange factor (GEF) Asef, which contains an APC-binding region (ABR) in addition to Dbl homology (DH), Pleckstrin (PH) and Src homology 3 (SH3) domains. APC stimulates the GEF activity of Asef, and thereby regulates cell adhesion and migration. Here, we have identified a second Asef, termed Asef2, that shows significant structural and functional similarities to Asef. We found that both the N-terminal ABR and SH3 domains of Asef2 are responsible for its interaction with APC. When expressed in HeLa cells, a mutant Asef2 lacking the ABR and SH3 domains, Asef2-DeltaABR/SH3, induced increases in the levels of the active forms of Rac1 and Cdc42. Full-length Asef2 also showed this activity when co-transfected with truncated mutant APC expressed in colorectal tumor cells. Consistent with this, either Asef2-DeltaABR/SH3 or Asef2 plus truncated mutant APC stimulated lamellipodia formation in MDCK cells and filopodia formation in HeLa cells. Furthermore, RNA interference experiments showed that Asef2 is required for migration of colorectal tumor cells expressing truncated APC. These results suggest that similar to Asef, Asef2 plays an important role in cell migration, and that Asef2 activated by truncated mutant APC is required for aberrant migration of colorectal tumor cells.
Collapse
Affiliation(s)
- Y Kawasaki
- Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Wang Z, Oh E, Thurmond DC. Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion. J Biol Chem 2007; 282:9536-9546. [PMID: 17289663 PMCID: PMC2396332 DOI: 10.1074/jbc.m610553200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The small Rho family GTPases Cdc42 and Rac1 have each been shown to function in insulin exocytosis and are presumed to function in actin remodeling and insulin granule mobilization. However, whether either GTPase is required for the mobilization phase of insulin release (second phase) and are linked in a common signaling pathway has remained unknown. Here we demonstrate that small interfering RNA-mediated depletion of Cdc42 from isolated islets results in the selective loss of second phase insulin release. Consistent with a role in this nutrient-dependent phase, Cdc42 activation was detected exclusively in response to D-glucose and was unresponsive to KCl or non-metabolizable glucose analogs in MIN6 beta-cells. Cdc42 activation occurred early in secretion (3 min), whereas Rac1 activation required approximately 15-20 min, suggesting Cdc42 as proximal and Rac1 as distal regulators of second-phase secretion. Importantly, Rac1 activation and function was linked in a common pathway downstream of Cdc42; Cdc42 depletion ablated glucose-induced Rac1 activation, and expression of constitutively active Rac1 in Cdc42-depleted cells functionally restored glucose-stimulated insulin secretion. Occurring at a time midway between Cdc42 and Rac1 activations was the phosphorylation of p21-activated-kinase 1 (Pak1), and this phosphorylation event required Cdc42. Moreover, small interfering RNA-mediated Pak1 depletion abolished Rac1 activation and glucose-stimulated insulin release, suggesting that Pak1 may mediate the link between Cdc42 and Rac1 in this pathway. Taken together, these data substantiate the existence of a novel signaling pathway in the islet beta-cell whereby Cdc42 functions as a key proximal transmitter of the glucose signal early in stimulus-secretion coupling to support the later stage of insulin release.
Collapse
Affiliation(s)
- Zhanxiang Wang
- Department of Biochemistry and Molecular Biology and Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Eunjin Oh
- Department of Biochemistry and Molecular Biology and Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Debbie C Thurmond
- Department of Biochemistry and Molecular Biology and Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
46
|
Baumeister M, Rossman K, Sondek J, Lemmon M. The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Biochem J 2006; 400:563-72. [PMID: 17007612 PMCID: PMC1698603 DOI: 10.1042/bj20061020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 01/17/2023]
Abstract
Dbl family GEFs (guanine nucleotide-exchange factors) for the Rho GTPases almost invariably contain a PH (pleckstrin homology) domain adjacent to their DH (Dbl homology) domain. The DH domain is responsible for GEF activity, and the PH domain plays a regulatory role that remains poorly understood. We demonstrated previously that Dbl family PH domains bind phosphoinositides with low affinity and cannot function as independent membrane targeting modules. In the present study, we show that dimerization of a Dbs (Dbl's big sister) DH/PH domain fragment is sufficient to drive it to the plasma membrane through a mechanism involving PH domain-phosphoinositide interactions. Thus, the Dbs PH domain could play a significant role in membrane targeting if it co-operates with other domains in the protein. We also show that mutations that prevent phosphoinositide binding by the Dbs PH domain significantly impair cellular GEF activity even in chimaeric proteins that are robustly membrane targeted by farnesylation or by the PH domain of phospholipase C-delta1. This finding argues that the Dbs PH domain plays a regulatory role that is independent of its ability to aid membrane targeting. Thus, we suggest that the PH domain plays dual roles, contributing independently to membrane localization of Dbs (as part of a multi-domain interaction) and allosteric regulation of the DH domain.
Collapse
Key Words
- dbl's big sister (dbs)
- guanine nucleotide exchange factor (gef)
- membrane targeting
- pleckstrin homology (ph) domain
- phosphoinositide
- rho
- bs3, bis(sulfosuccinimidyl) suberate
- dbs, dbl's big sister
- dh, dbl homology
- dmem, dulbecco's modified eagle's medium
- egfp, enhanced green fluorescent protein
- fbs, fetal bovine serum
- fkbp, fk506-binding protein
- gef, guanine nucleotide-exchange factor
- gst, glutathione s-transferase
- h-ras, harvey-ras
- pak1, p21-activated protein kinase
- pbd, p21-binding domain
- ph, pleckstrin homology
- plc, phospholipase-c
- ptdins3p, phosphatidylinositol-3-phosphate
- ptdins(4,5)p2, phosphatidylinositol-4,5-bisphosphate
- ras-grf, ras guanine-nucleotide releasing factor
- rbd, rho-binding domain
- sh3, src homology 3
- spr, surface plasmon resonance
- ttbs, tris-buffered saline containing 0.1% triton x-100
Collapse
Affiliation(s)
- Mark A. Baumeister
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
- †Graduate Group in Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Kent L. Rossman
- ‡Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - John Sondek
- §Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Mark A. Lemmon
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
47
|
Hamann MJ, Lubking CM, Luchini DN, Billadeau DD. Asef2 functions as a Cdc42 exchange factor and is stimulated by the release of an autoinhibitory module from a concealed C-terminal activation element. Mol Cell Biol 2006; 27:1380-93. [PMID: 17145773 PMCID: PMC1800726 DOI: 10.1128/mcb.01608-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Asef (herein called Asef1) was identified as a Rac1-specific exchange factor stimulated by adenomatous polyposis coli (APC), contributing to colorectal cancer cell metastasis. We investigated Asef2, an Asef1 homologue having a similar N-terminal APC binding region (ABR) and Src-homology 3 (SH3) domain. Contrary to previous reports, we found that Asef1 and Asef2 exchange activity is Cdc42 specific. Moreover, the ABR of Asef2 did not function independently but acted in tandem with the SH3 domain to bind APC. The ABRSH3 also bound the C-terminal tail of Asef2, allowing it to function as an autoinhibitory module within the protein. Deletion of the C-terminal tail did not constitutively activate Asef2 as predicted; rather, a conserved C-terminal segment was required for augmented Cdc42 GDP/GTP exchange. Thus, Asef2 activation involves APC releasing the ABRSH3 from the C-terminal tail, resulting in Cdc42 exchange. These results highlight a novel exchange factor regulatory mechanism and establish Asef1 and Asef2 as Cdc42 exchange factors, providing a more appropriate context for understanding the contribution of APC in establishing cell polarity and migration.
Collapse
Affiliation(s)
- Michael J Hamann
- Division of Oncology Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
48
|
Angrand PO, Segura I, Völkel P, Ghidelli S, Terry R, Brajenovic M, Vintersten K, Klein R, Superti-Furga G, Drewes G, Kuster B, Bouwmeester T, Acker-Palmer A. Transgenic Mouse Proteomics Identifies New 14-3-3-associated Proteins Involved in Cytoskeletal Rearrangements and Cell Signaling. Mol Cell Proteomics 2006; 5:2211-27. [PMID: 16959763 DOI: 10.1074/mcp.m600147-mcp200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Identification of protein-protein interactions is crucial for unraveling cellular processes and biochemical mechanisms of signal transduction. Here we describe, for the first time, the application of the tandem affinity purification (TAP) and LC-MS method to the characterization of protein complexes from transgenic mice. The TAP strategy developed in transgenic mice allows the emplacement of complexes in their physiological environment in contact with proteins that might only be specifically expressed in certain tissues while simultaneously ensuring the right stoichiometry of the TAP protein versus their binding partners and represents a novelty in proteomics approaches used so far. Mouse lines expressing TAP-tagged 14-3-3zeta protein were generated, and protein interactions were determined. 14-3-3 proteins are general regulators of cell signaling and represent up to 1% of the total brain protein. This study allowed the identification of almost 40 novel 14-3-3zeta-binding proteins. Biochemical and functional characterization of some of these interactions revealed new mechanisms of action of 14-3-3zeta in several signaling pathways, such as glutamate receptor signaling via binding to homer homolog 3 (Homer 3) and in cytoskeletal rearrangements and spine morphogenesis by binding and regulating the activity of the signaling complex formed by G protein-coupled receptor kinase-interactor 1 (GIT1) and p21-activated kinase-interacting exchange factor beta (betaPIX).
Collapse
Affiliation(s)
- Pierre-Olivier Angrand
- Cellzome AG and the European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chang F, Lemmon CA, Park D, Romer LH. FAK potentiates Rac1 activation and localization to matrix adhesion sites: a role for betaPIX. Mol Biol Cell 2006; 18:253-64. [PMID: 17093062 PMCID: PMC1751318 DOI: 10.1091/mbc.e06-03-0207] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
FAK, a cytoplasmic protein tyrosine kinase, is activated and localized to focal adhesions upon cell attachment to extracellular matrix. FAK null cells spread poorly and exhibit altered focal adhesion turnover. Rac1 is a member of the Rho-family GTPases that promotes membrane ruffling, leading edge extension, and cell spreading. We investigated the activation and subcellular location of Rac1 in FAK null and FAK reexpressing fibroblasts. FAK reexpressers had a more robust pattern of Rac1 activation after cell adhesion to fibronectin than the FAK null cells. Translocation of Rac1 to focal adhesions was observed in FAK reexpressers, but seldom in FAK null cells. Experiments with constitutively active L61Rac1 and dominant negative N17Rac1 indicated that the activation state of Rac1 regulated its localization to focal adhesions. We demonstrated that FAK tyrosine-phosphorylated betaPIX and thereby increased its binding to Rac1. In addition, betaPIX facilitated the targeting of activated Rac1 to focal adhesions and the efficiency of cell spreading. These data indicate that FAK has a role in the activation and focal adhesion translocation of Rac1 through the tyrosine phosphorylation of betaPIX.
Collapse
Affiliation(s)
- Fumin Chang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
50
|
Lin Q, Yang W, Baird D, Feng Q, Cerione RA. Identification of a DOCK180-related Guanine Nucleotide Exchange Factor That Is Capable of Mediating a Positive Feedback Activation of Cdc42. J Biol Chem 2006; 281:35253-62. [PMID: 16968698 DOI: 10.1074/jbc.m606248200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cdc42, a member of the Rho subfamily of small GTPases, influences a wide range of activities including the establishment of cell polarity, migration, and the regulation of cell growth and differentiation. Here we describe the identification of an approximately 220-kDa protein that formed a stable complex with activated forms of Cdc42 and thereby showed characteristics of a downstream target/effector for this GTPase. However, molecular cloning of the cDNA encoding this protein (p220) revealed that it was highly related to Zizimin-1 and identical in sequence to a gene product in the data base designated DOCK11, which are members of the DOCK180 family of guanine nucleotide exchange factors (GEFs) for Cdc42 and Rac. Biochemical characterization shows that p220 is a specific GEF for Cdc42, with the GEF activity originating from its DHR2 (for DOCK homology region 2) domain. Nucleotide-depleted Cdc42 forms a stable complex with the DHR2 domain, whereas the binding of activated Cdc42 requires both the DHR2 domain and residues 66-126 within the amino-terminal portion of p220. Moreover, the full-length protein shows markedly higher GEF activity than the isolated DHR2 domain, whereas removal of the amino-terminal 126 amino acids necessary for binding-activated Cdc42 dramatically diminishes the activity. These and other results point to activated Cdc42 providing a positive feedback regulation of the GEF activity of p220. Thus, we refer to p220/DOCK11 as activated Cdc42-associated GEF, befitting its functional activity.
Collapse
Affiliation(s)
- Qiong Lin
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|