1
|
Lim JJ, Jones CM, Loh TJ, Dao HT, Tran MT, Tye-Din JA, La Gruta NL, Rossjohn J. A naturally selected αβ T cell receptor binds HLA-DQ2 molecules without co-contacting the presented peptide. Nat Commun 2025; 16:3330. [PMID: 40199885 PMCID: PMC11979002 DOI: 10.1038/s41467-025-58690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
αβ T cell receptors (TCR) co-recognise peptide (p) antigens that are presented by major histocompatibility complex (MHC) molecules. While marked variations in TCR-p-MHC docking topologies have been observed from structural studies, the co-recognition paradigm has held fast. Using HLA-DQ2.5-peptide tetramers, here we identify a TRAV12-1+-TRBV5-1+ G9 TCR from human peripheral blood that binds HLA-DQ2.5 in a peptide-agnostic manner. The crystal structures of TCR-HLA-DQ2.5-peptide complexes show that the G9 TCR binds HLA-DQ2.5 in a reversed docking topology without contacting the peptide, with the TCR contacting the β1 region of HLA-DQ2.5 and distal from the peptide antigen binding cleft. High-throughput screening of HLA class I and II molecules finds the G9 TCR to be pan-HLA-DQ2 reactive, with leucine-55 of HLA-DQ2.5 being a key determinant underpinning G9 TCR specificity excluding other HLA-II allomorphs. Consistent with the functional assays, the interactions of the G9 TCR and HLA-DQ2.5 precludes CD4 binding, thereby impeding T cell activation. Collectively, we describe a naturally selected αβTCR from human peripheral blood that deviates from the TCR-p-MHC co-recognition paradigm.
Collapse
MESH Headings
- Humans
- HLA-DQ Antigens/metabolism
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/chemistry
- HLA-DQ Antigens/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Peptides/metabolism
- Peptides/immunology
- Peptides/chemistry
- Protein Binding
- Crystallography, X-Ray
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Jia Jia Lim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tiing Jen Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hien Thy Dao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mai T Tran
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jason A Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
2
|
Morello M, Mastrogiovanni S, Falcione F, Rossi V, Bernardini S, Casciani S, Viola A, Reali M, Pieri M. Laboratory Diagnosis of Intrathecal Synthesis of Immunoglobulins: A Review about the Contribution of OCBs and K-index. Int J Mol Sci 2024; 25:5170. [PMID: 38791208 PMCID: PMC11121313 DOI: 10.3390/ijms25105170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The diagnosis of MS relies on a combination of imaging, clinical examinations, and biological analyses, including blood and cerebrospinal fluid (CSF) assessments. G-Oligoclonal bands (OCBs) are considered a "gold standard" for MS diagnosis due to their high sensitivity and specificity. Recent advancements have involved the introduced of kappa free light chain (k-FLC) assay into cerebrospinal fluid (CSF) and serum (S), along with the albumin quotient, leading to the development of a novel biomarker known as the "K-index" or "k-FLC index". The use of the K-index has been recommended to decrease costs, increase laboratory efficiency, and to skip potential subjective operator-dependent risk that could happen during the identification of OCBs profiles. This review aims to provide a comprehensive overview and analysis of recent scientific articles, focusing on updated methods for MS diagnosis with an emphasis on the utility of the K-index. Numerous studies indicate that the K-index demonstrates high sensitivity and specificity, often comparable to or surpassing the diagnostic accuracy of OCBs evaluation. The integration of the measure of the K-index with OCBs assessment emerges as a more precise method for MS diagnosis. This combined approach not only enhances diagnostic accuracy, but also offers a more efficient and cost-effective alternative.
Collapse
Affiliation(s)
- Maria Morello
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Simone Mastrogiovanni
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Fabio Falcione
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Vanessa Rossi
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Stefania Casciani
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Antonietta Viola
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Marilina Reali
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Massimo Pieri
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
3
|
Thomas OG, Olsson T. Mimicking the brain: Epstein-Barr virus and foreign agents as drivers of neuroimmune attack in multiple sclerosis. Front Immunol 2023; 14:1304281. [PMID: 38022632 PMCID: PMC10655090 DOI: 10.3389/fimmu.2023.1304281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
T cells have an essential role in adaptive immunity against pathogens and cancer, but failure of thymic tolerance mechanisms can instead lead to escape of T cells with the ability to attack host tissues. Multiple sclerosis (MS) occurs when structures such as myelin and neurons in the central nervous system (CNS) are the target of autoreactive immune responses, resulting in lesions in the brain and spinal cord which cause varied and episodic neurological deficits. A role for autoreactive T cell and antibody responses in MS is likely, and mounting evidence implicates Epstein-Barr virus (EBV) in disease mechanisms. In this review we discuss antigen specificity of T cells involved in development and progression of MS. We examine the current evidence that these T cells can target multiple antigens such as those from pathogens including EBV and briefly describe other mechanisms through which viruses could affect disease. Unravelling the complexity of the autoantigen T cell repertoire is essential for understanding key events in the development and progression of MS, with wider implications for development of future therapies.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Zhang Z, Gao J, Yu J, Zhang N, Fu Y, Jiang X, Wang X, Song J, Wen Z. Transcriptome analysis of novel macrophage M1-related biomarkers and potential therapeutic agents in ischemia-reperfusion injury after lung transplantation based on the WGCNA and CIBERSORT algorithms. Transpl Immunol 2023; 79:101860. [PMID: 37230395 DOI: 10.1016/j.trim.2023.101860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
Lung transplantation is the last effective treatment for end-stage respiratory failure, however, with ischemia-reperfusion injury (IRI) inevitably occurring in postoperative period. IRI is the major pathophysiologic mechanism of primary graft dysfunction, a severe complication that contributes to prolonged length of stay and overall mortality. The understanding of pathophysiology and etiology remain limited and the underlying molecular mechanism, as well as novel diagnostic biomarkers and therapeutic targets, urgently require exploration. Excessive uncontrolled inflammatory response is the core mechanism of IRI. In this research, a weighted gene co-expression network was established using the CIBERSORT and WGCNA algorithms in order to identify macrophage-related hub genes based on the data downloaded from the GEO database (GSE127003, GSE18995). 692 differentially expressed genes (DEGs) in reperfused lung allografts were identified, with three genes recognized as being related to M1 macrophages and validated as differentially expressed using GSE18995 dataset. Of these putative novel biomarker genes, TCRα subunit constant gene (TRAC) were downregulated, while Perforin-1 (PRF1) and Granzyme B (GZMB) were upregulated in reperfused vs. ischemic lung allografts. Furthermore, we obtained 189 potentially therapeutic small molecules for IRI after lung transplantation from the CMap database among which PD-98059 was the top molecule with the highest absolute correlated connectivity score (CS). Our study provides the novel insights into the impact of immune cells on the etiology of IRI and potential targets for therapeutic intervention. Nevertheless, further investigation of these key genes and therapeutic drugs is needed to validate their effects.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | - Xingan Wang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiong Song
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, People's Republic of China.
| |
Collapse
|
5
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Gabibov AG. MHC Class II Presentation in Autoimmunity. Cells 2023; 12:314. [PMID: 36672249 PMCID: PMC9856717 DOI: 10.3390/cells12020314] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Life Sciences, Higher School of Economics, 101000 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
A class-mismatched TCR bypasses MHC restriction via an unorthodox but fully functional binding geometry. Nat Commun 2022; 13:7189. [PMID: 36424374 PMCID: PMC9691722 DOI: 10.1038/s41467-022-34896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
MHC restriction, which describes the binding of TCRs from CD4+ T cells to class II MHC proteins and TCRs from CD8+ T cells to class I MHC proteins, is a hallmark of immunology. Seemingly rare TCRs that break this paradigm exist, but mechanistic insight into their behavior is lacking. TIL1383I is a prototypical class-mismatched TCR, cloned from a CD4+ T cell but recognizing the tyrosinase tumor antigen presented by the class I MHC HLA-A2 in a fully functional manner. Here we find that TIL1383I binds this class I target with a highly atypical geometry. Despite unorthodox binding, TCR signaling, antigen specificity, and the ability to use CD8 are maintained. Structurally, a key feature of TIL1383I is an exceptionally long CDR3β loop that mediates functions that are traditionally performed separately by hypervariable and germline loops in canonical TCR structures. Our findings thus expand the range of known TCR binding geometries compatible with normal function and specificity, provide insight into the determinants of MHC restriction, and may help guide TCR selection and engineering for immunotherapy.
Collapse
|
7
|
MOLECULAR MIMICRY OF SARS-COV-2 SPIKE PROTEIN IN THE NERVOUS SYSTEM: A BIOINFORMATICS APPROACH. Comput Struct Biotechnol J 2022; 20:6041-6054. [PMID: 36317085 PMCID: PMC9605789 DOI: 10.1016/j.csbj.2022.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in record time to cope with the ongoing coronavirus disease 2019 (COVID-19) pandemic has led to uncertainty about their use and the appearance of adverse neurological reactions. The SARS-CoV-2 spike protein (SP) is used to produce neutralizing antibodies and stimulate innate immunity. However, considering the alterations in the nervous system (NS) caused by COVID- 19, cross-reactions are plausible. Objective To identify peptides in Homo sapiens SP-like proteins involved in myelin and axon homeostasis that may be affected due to molecular mimicry by antibodies and T cells induced by interaction with SP. Materials and methods A bioinformatics approach was used. To select the H. sapiens proteins to be studied, related biological processes categorized based on gene ontology were extracted through the construction of a protein–protein interaction network. Peripheral myelin protein 22, a major component of myelin in the peripheral nervous system, was used as the query protein. The extracellular domains and regions susceptible to recognition by antibodies were extracted from UniProt. In the study of T cells, linear sequence similarity between H. sapiens proteins and SP was assessed using BLASTp. This study considered the similarity in terms of biochemical groups per residue and affinity to the human major histocompatibility complex (human leukocyte antigen I), which were evaluated using Needle and NetMHCpan 4.1, respectively. Results A large number of shared pentapeptides between SP and H. sapiens proteins were identified. However, only a small group of 39 proteins was linked to axon and myelin homeostasis. In particular, some proteins, such as phosphacan, attractin, and teneurin-4, were susceptible targets of B and T cells. Other proteins closely related to myelin components in the NS, such as myelin-associated glycoprotein, were found to share at least one pentamer with SP in extracellular domains. Conclusion Proteins involved in the maintenance of nerve conduction in the central and peripheral NS were identified in H. sapiens. Based on these findings, re-evaluation of the vaccine composition is recommended to prevent possible neurological side effects.
Collapse
|
8
|
Erausquin E, Serra P, Parras D, Santamaria P, López-Sagaseta J. Structural plasticity in I-Ag7 links autoreactivity to hybrid insulin peptides in type I diabetes. Front Immunol 2022; 13:924311. [PMID: 35967292 PMCID: PMC9365947 DOI: 10.3389/fimmu.2022.924311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
We recently provided evidence for promiscuous recognition of several different hybrid insulin peptides (HIPs) by the highly diabetogenic, I-Ag7-restricted 4.1-T cell receptor (TCR). To understand the structural determinants of this phenomenon, we solved the structure of an agonistic HIP/I-Ag7 complex, both in isolation as well as bound to the 4.1-TCR. We find that HIP promiscuity of the 4.1-TCR is dictated, on the one hand, by an amino acid sequence pattern that ensures I-Ag7 binding and, on the other hand, by the presence of three acidic residues at positions P5, P7 and P8 that favor an optimal engagement by the 4.1-TCR’s complementary determining regions. Surprisingly, comparison of the TCR-bound and unbound HIP/I-Ag7 structures reveals that 4.1-TCR binding triggers several novel and unique structural motions in both the I-Ag7 molecule and the peptide that are essential for docking. This observation indicates that the type 1 diabetes-associated I-Ag7 molecule is structurally malleable and that this plasticity allows the recognition of multiple peptides by individual TCRs that would otherwise be unable to do so.
Collapse
Affiliation(s)
- Elena Erausquin
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, Spain
- Navarra University Hospital, Pamplona, Spain
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Jacinto López-Sagaseta, ; Pere Santamaria,
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, Spain
- Navarra University Hospital, Pamplona, Spain
- *Correspondence: Jacinto López-Sagaseta, ; Pere Santamaria,
| |
Collapse
|
9
|
CDR3 binding chemistry controls TCR V-domain rotational probability and germline CDR2 scanning of polymorphic MHC. Mol Immunol 2022; 144:138-151. [DOI: 10.1016/j.molimm.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022]
|
10
|
A previously unappreciated polymorphism in the beta chain of I-A s expressed in autoimmunity-prone SJL mice: Combined impact on antibody, CD4 T cell recognition and MHC class II dimer structural stability. Mol Immunol 2022; 143:17-26. [PMID: 34995990 PMCID: PMC9261112 DOI: 10.1016/j.molimm.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 01/14/2023]
Abstract
In the process of structure-function studies on the MHC class II molecule expressed in autoimmunity prone SJL mice, I-As, we discovered a disparity from the reported sequence of the MHC class II beta chain. The variant is localized at a highly conserved site of the beta chain, at residue 58. Our studies revealed that this single amino acid substitution of Pro for Ala at this residue, found in I-As, changes the structure of the MHC class II molecule, as evidenced by a loss of recognition by two monoclonal antibodies, and elements of MHC class II conformational stability identified through molecular dynamics simulation. Two other rare polymorphisms in I-As involved in hydrogen bonding potential between the alpha chain and the peptide main chain are located at the same end of the MHC class II binding pocket, studied in parallel may impact the consequences of the β chain variant. Despite striking changes in MHC class II structure, CD4 T cell recognition of influenza-derived peptides was preserved. These disparate findings were reconciled by discovering, through monoclonal antibody blocking approaches, that CD4 T cell recognition by I-As restricted CD4 T cells focused more on the region of MHC class II at the peptide's amino terminus. These studies argue that the conformational variability or flexibility of the MHC class II molecule in that region of I-As select a CD4 T cell repertoire that deviates from the prototypical docking mode onto MHC class II peptide complexes. Overall, our results are consistent with the view that naturally occurring MHC class II molecules can possess polymorphisms that destabilize prototypical features of the MHC class II molecule but that can maintain T cell recognition of the MHC class II:peptide ligand via alternate docking modes.
Collapse
|
11
|
Martin R, Sospedra M, Eiermann T, Olsson T. Multiple sclerosis: doubling down on MHC. Trends Genet 2021; 37:784-797. [PMID: 34006391 DOI: 10.1016/j.tig.2021.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/12/2023]
Abstract
Human leukocyte antigen (HLA)-encoded surface molecules present antigenic peptides to T lymphocytes and play a key role in adaptive immune responses. Besides their physiological role of defending the host against infectious pathogens, specific alleles serve as genetic risk factors for autoimmune diseases. For multiple sclerosis (MS), an autoimmune disease that affects the brain and spinal cord, an association with the HLA-DR15 haplotype was described in the early 1970s. This short opinion piece discusses the difficulties of disentangling the details of this association and recent observations about the functional involvement of not only one, but also the second gene of the HLA-DR15 haplotype. This information is not only important for understanding the pathomechanism of MS, but also for antigen-specific therapies.
Collapse
Affiliation(s)
- Roland Martin
- Neuroimmunology and Multiple Sclerosis Research, Neurology Clinic, Frauenklinikstrasse 26, 8091 Zurich, University Hospital Zurich, University Zurich, Switzerland.
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research, Neurology Clinic, Frauenklinikstrasse 26, 8091 Zurich, University Hospital Zurich, University Zurich, Switzerland
| | - Thomas Eiermann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| |
Collapse
|
12
|
Iannuzzi R, Rossetti G, Spitaleri A, Bonnal RJP, Pagani M, Mollica L. A Simplified Amino Acidic Alphabet to Unveil the T-Cells Receptors Antigens: A Computational Perspective. Front Chem 2021; 9:598802. [PMID: 33718327 PMCID: PMC7947793 DOI: 10.3389/fchem.2021.598802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/19/2021] [Indexed: 11/15/2022] Open
Abstract
The exposure to pathogens triggers the activation of adaptive immune responses through antigens bound to surface receptors of antigen presenting cells (APCs). T cell receptors (TCR) are responsible for initiating the immune response through their physical direct interaction with antigen-bound receptors on the APCs surface. The study of T cell interactions with antigens is considered of crucial importance for the comprehension of the role of immune responses in cancer growth and for the subsequent design of immunomodulating anticancer drugs. RNA sequencing experiments performed on T cells represented a major breakthrough for this branch of experimental molecular biology. Apart from the gene expression levels, the hypervariable CDR3α/β sequences of the TCR loops can now be easily determined and modelled in the three dimensions, being the portions of TCR mainly responsible for the interaction with APC receptors. The most direct experimental method for the investigation of antigens would be based on peptide libraries, but their huge combinatorial nature, size, cost, and the difficulty of experimental fine tuning makes this approach complicated time consuming, and costly. We have implemented in silico methodology with the aim of moving from CDR3α/β sequences to a library of potentially antigenic peptides that can be used in immunologically oriented experiments to study T cells’ reactivity. To reduce the size of the library, we have verified the reproducibility of experimental benchmarks using the permutation of only six residues that can be considered representative of all ensembles of 20 natural amino acids. Such a simplified alphabet is able to correctly find the poses and chemical nature of original antigens within a small subset of ligands of potential interest. The newly generated library would have the advantage of leading to potentially antigenic ligands that would contribute to a better understanding of the chemical nature of TCR-antigen interactions. This step is crucial in the design of immunomodulators targeted towards T-cells response as well as in understanding the first principles of an immune response in several diseases, from cancer to autoimmune disorders.
Collapse
Affiliation(s)
- Raffaele Iannuzzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Grazisa Rossetti
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raoul J P Bonnal
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Massimiliano Pagani
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Mamedov AE, Filimonova IN, Smirnov IV, Belogurov AA. Peculiarities of the Presentation of the Encephalitogenic MBP Peptide by HLA-DR Complexes Providing Protection and Predisposition to Multiple Sclerosis. Acta Naturae 2021; 13:127-133. [PMID: 33959392 PMCID: PMC8084299 DOI: 10.32607/actanaturae.11008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 12/02/2022] Open
Abstract
Predisposition to multiple sclerosis (MS), a chronic autoimmune disease of the central nervous system, is due to various factors. The genetic component is considered one of the most important factors. HLA class II genes contribute the most to the development of MS. The HLA-DRB1*15 allele group is considered one of the main genetic risk factors predisposing to MS. The group of HLA-DRB1*01 alleles was shown to have a protective effect against this disease in the Russian population. In this work, we compared the binding of the encephalitogenic fragment of the myelin basic protein (MBP) to two HLA-DR complexes that provide protection against and predisposition to MS: HLA-DR1 (HLA-DRB1*0101) and HLA-DR15 (HLA-DRB1*1501), respectively. We found that the myelin peptide MBP88-100 binds to HLA-DR1 at a rate almost an order of magnitude lower than the viral peptide of hemagglutinin (HA). The same was true for the binding of MBP85-97 to HLA-DR15 in comparison with viral pp65. The structure of the C-terminal part of the peptide plays a key role in the binding to HLA-DR1 for equally high-affinity N-terminal regions of the peptides. The IC50 of the myelin peptide MBP88-100 competing with viral HA for binding to HLA-DR1 is almost an order of magnitude higher than that of HA. As for HA, the same was also true for the binding of MBP85-97 to HLA-DR15 in comparison with viral pp65. Thus, autoantigenic MBP cannot compete with the viral peptide for binding to protective HLA-DR1. However, it is more competitive than viral peptide for HLA-DR15.
Collapse
Affiliation(s)
- A. E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - I. N. Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal University, Kazan, 420008 Russia
| | - A. A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
- Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
14
|
Mo XB, Zhang YH, Lei SF. Integrative analysis identifies potential causal methylation-mRNA regulation chains for rheumatoid arthritis. Mol Immunol 2020; 131:89-96. [PMID: 33386149 DOI: 10.1016/j.molimm.2020.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies have identified many genetic loci for rheumatoid arthritis (RA). However, causal factors underlying these loci were largely unknown. The aim of this study was to identify potential causal methylation-mRNA regulation chains for RA. We identified differentially expressed mRNAs and methylations and conducted summary statistic data-based Mendelian randomization (SMR) analysis to detect potential causal mRNAs and methylations for RA. Then causal inference test (CIT) was performed to determine if the methylation-mRNA pairs formed causal chains. We identified 11,170 mRNAs and 24,065 methylations that were nominally associated with RA. Among them, 197 mRNAs and 104 methylations passed the SMR test. According to physical positions, we defined 16 cis methylation-mRNA pairs and inferred 5 chains containing 4 methylations and 4 genes (BACH2, MBP, MX1 and SYNGR1) to be methylation→mRNA→RA causal chains. The effect of SYNGR1 expression in peripheral blood mononuclear cells on RA risk was found to be consistent in both the in-house and public data. The identified methylations located in CpG Islands that overlap promoters in the 5' region of the genes. The promoter regions showed long-range interactions with other enhancers and promoters, suggesting a regulatory potential of these methylations. Therefore, the present study provided a new integrative analysis strategy and highlighted potential causal methylation-mRNA chains for RA. Taking the evidences together, SYNGR1 promoter methylations most probably affect mRNA expressions and then affect RA risk.
Collapse
Affiliation(s)
- Xing-Bo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Shu-Feng Lei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
15
|
Mindur JE, Yadav SK, Ito N, Senoh M, Kato H, Dhib-Jalbut S, Ito K. Surface Layer Protein A Expressed in Clostridioides difficile DJNS06-36 Possesses an Encephalitogenic Mimotope of Myelin Basic Protein. Microorganisms 2020; 9:microorganisms9010034. [PMID: 33374217 PMCID: PMC7824458 DOI: 10.3390/microorganisms9010034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Recent studies suggest that migration of Th1 and Th17 cells specific for enteric bacteria from the gut to the CNS may lead to the initiation and/or exacerbation of autoimmune diseases including MS. Human leukocyte antigen (HLA)-DR15 is an MHC class II (MHCII) haplotype highly associated with the development of MS that contains the two HLA-DRB* genes, DRB1*1501 (DR2b) and DRB5*0101 (DR2a). To identify enteric bacteria which harbor antigenic epitopes that activate myelin-specific T cells and drive CNS inflammation, we screened for enteric bacteria which express cross-reactive epitopes ('mimotopes') of an immunodominant myelin basic protein 89-98 (MBP89-98) epitope. Based on known MHCII HLA-DR2a amino acid binding motifs and cultivation with splenic T cells isolated from MBP-T cell receptor (TCR)/DR2a transgenic (Tg) mice, we discovered that a certain variant of surface layer protein A (SLPA), which is expressed by a subtype of Clostridioides difficile, contains an amino acid sequence that activates MBP89-98-reactive T cells. Furthermore, activation of MBP-specific T cells by SLPA upon active immunization induced experimental autoimmune encephalomyelitis (EAE) in MBP-TCR/DR2a Tg mice. This study suggests that a unique strain of C. difficile possesses an encephalitogenic mimotope of MBP that activates autoreactive, myelin-specific T cells.
Collapse
Affiliation(s)
- John E. Mindur
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sudhir K. Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
| | - Naoko Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
| | - Mitsutoshi Senoh
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-001, Japan; (M.S.); (H.K.)
| | - Haru Kato
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-001, Japan; (M.S.); (H.K.)
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (J.E.M.); (S.K.Y.); (N.I.); (S.D.-J.)
- Correspondence: ; Tel.: +1-732-235-5482
| |
Collapse
|
16
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|
17
|
Wang J, Jelcic I, Mühlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y, Cruciani C, Faigle W, Naghavian R, Foege M, Binder TMC, Eiermann T, Opitz L, Fuentes-Font L, Reynolds R, Kwok WW, Nguyen JT, Lee JH, Lutterotti A, Münz C, Rammensee HG, Hauri-Hohl M, Sospedra M, Stevanovic S, Martin R. HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell 2020; 183:1264-1281.e20. [PMID: 33091337 PMCID: PMC7707104 DOI: 10.1016/j.cell.2020.09.054] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/04/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
The HLA-DR15 haplotype is the strongest genetic risk factor for multiple sclerosis (MS), but our understanding of how it contributes to MS is limited. Because autoreactive CD4+ T cells and B cells as antigen-presenting cells are involved in MS pathogenesis, we characterized the immunopeptidomes of the two HLA-DR15 allomorphs DR2a and DR2b of human primary B cells and monocytes, thymus, and MS brain tissue. Self-peptides from HLA-DR molecules, particularly from DR2a and DR2b themselves, are abundant on B cells and thymic antigen-presenting cells. Furthermore, we identified autoreactive CD4+ T cell clones that can cross-react with HLA-DR-derived self-peptides (HLA-DR-SPs), peptides from MS-associated foreign agents (Epstein-Barr virus and Akkermansia muciniphila), and autoantigens presented by DR2a and DR2b. Thus, both HLA-DR15 allomorphs jointly shape an autoreactive T cell repertoire by serving as antigen-presenting structures and epitope sources and by presenting the same foreign peptides and autoantigens to autoreactive CD4+ T cells in MS. HLA-DR15 present abundant HLA-DR-derived self-peptides on B cells Autoreactive T cells in MS recognize HLA-DR-derived self-peptides/DR15 complexes Foreign peptides/DR15 complexes trigger potential autoreactive T cells in MS HLA-DR15 shape an autoreactive T cell repertoire by cross-reactivity/restriction
Collapse
Affiliation(s)
- Jian Wang
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Ivan Jelcic
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Lena Mühlenbruch
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Veronika Haunerdinger
- Pediatric Stem Cell Transplantation, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Nora C Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich 8093, Switzerland; Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD 20850, USA
| | - Carolina Cruciani
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Reza Naghavian
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Magdalena Foege
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Thomas M C Binder
- HLA Laboratory of the Stefan Morsch Foundation (SMS), Birkenfeld 55765, Germany
| | - Thomas Eiermann
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich 8057, Switzerland
| | - Laura Fuentes-Font
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Julie T Nguyen
- One Lambda, Inc., a part of Transplant Diagnostics Thermo Fisher Scientific, 22801 Roscoe Blvd., West Hills, CA 91304, USA
| | - Jar-How Lee
- One Lambda, Inc., a part of Transplant Diagnostics Thermo Fisher Scientific, 22801 Roscoe Blvd., West Hills, CA 91304, USA
| | - Andreas Lutterotti
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Hans-Georg Rammensee
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Mathias Hauri-Hohl
- Pediatric Stem Cell Transplantation, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Stefan Stevanovic
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland.
| |
Collapse
|
18
|
Madley R, Nauman G, Danzl N, Borsotti C, Khosravi Maharlooei M, Li HW, Chavez E, Creusot RJ, Nakayama M, Roep B, Sykes M. Negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen in the human thymus. J Transl Autoimmun 2020; 3:100061. [PMID: 32875283 PMCID: PMC7451786 DOI: 10.1016/j.jtauto.2020.100061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
During T cell development in mice, thymic negative selection deletes cells with the potential to recognize and react to self-antigens. In human T cell-dependent autoimmune diseases such as Type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, T cells reactive to autoantigens are thought to escape negative selection, traffic to the periphery and attack self-tissues. However, physiological thymic negative selection of autoreactive human T cells has not been previously studied. We now describe a human T-cell receptor-transgenic humanized mouse model that permits the study of autoreactive T-cell development in a human thymus. Our studies demonstrate that thymocytes expressing the autoreactive Clone 5 TCR, which recognizes insulin B:9-23 presented by HLA-DQ8, are efficiently negatively selected at the double and single positive stage in human immune systems derived from HLA-DQ8+ HSCs. In the absence of hematopoietic expression of the HLA restriction element, negative selection of Clone 5 is less efficient and restricted to the single positive stage. To our knowledge, these data provide the first demonstration of negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen. Intrathymic antigen presenting cells are required to delete less mature thymocytes, while presentation by medullary thymic epithelial cells may be sufficient to delete more mature single positive cells. These observations set the stage for investigation of putative defects in negative selection in human autoimmune diseases.
Collapse
Affiliation(s)
- Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA,Columbia University Department of Microbiology and Immunology, New York, NY, 10032, USA
| | - Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA,Columbia University Department of Microbiology and Immunology, New York, NY, 10032, USA
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Chiara Borsotti
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Mohsen Khosravi Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Estefania Chavez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Remi J. Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bart Roep
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands,Department of Diabetes Immunology, Diabetes & Metabolism Research Institute at the Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA,Columbia University Department of Microbiology and Immunology, New York, NY, 10032, USA,Columbia University Department of Surgery, New York, NY, 10032, USA,Corresponding author. Columbia Center for Translational Immunology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
19
|
Affiliation(s)
- Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Carine Farenc
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nicole L. La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
20
|
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020; 9:cells9020470. [PMID: 32085570 PMCID: PMC7072810 DOI: 10.3390/cells9020470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
- Correspondence:
| |
Collapse
|
21
|
Abstract
T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to influence this response is to incorporate amino acid substitutions into these T cell-specific epitopes. This strategy is being reconsidered now with the goal of increasing time to regression with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in autoimmunity. We discuss how these amino acid substitutions change the interactions with the MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC molecules and cross-react with the same repertoire of T cells as the natural antigen.
Collapse
Affiliation(s)
- Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA.
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19thAvenue, Aurora, CO 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Mamedov A, Vorobyeva N, Filimonova I, Zakharova M, Kiselev I, Bashinskaya V, Baulina N, Boyko A, Favorov A, Kulakova O, Ziganshin R, Smirnov I, Poroshina A, Shilovskiy I, Khaitov M, Sykulev Y, Favorova O, Vlassov V, Gabibov A, Belogurov A. Protective Allele for Multiple Sclerosis HLA-DRB1*01:01 Provides Kinetic Discrimination of Myelin and Exogenous Antigenic Peptides. Front Immunol 2020; 10:3088. [PMID: 32010139 PMCID: PMC6978714 DOI: 10.3389/fimmu.2019.03088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Risk of the development of multiple sclerosis (MS) is known to be increased in individuals bearing distinct class II human leukocyte antigen (HLA) variants, whereas some of them may have a protective effect. Here we analyzed distribution of a highly polymorphous HLA-DRB1 locus in more than one thousand relapsing-remitting MS patients and healthy individuals of Russian ethnicity. Carriage of HLA-DRB1*15 and HLA-DRB1*03 alleles was associated with MS risk, whereas carriage of HLA-DRB1*01 and HLA-DRB1*11 was found to be protective. Analysis of genotypes revealed the compensatory effect of risk and resistance alleles in trans. We have identified previously unknown MBP153-161 peptide located at the C-terminus of MBP protein and MBP90-98 peptide that bound to recombinant HLA-DRB1*01:01 protein with affinity comparable to that of classical antigenic peptide 306-318 from the hemagglutinin (HA) of the influenza virus demonstrating the ability of HLA-DRB1*01:01 to present newly identified MBP153-161 and MBP90-98 peptides. Measurements of kinetic parameters of MBP and HA peptides binding to HLA-DRB1*01:01 catalyzed by HLA-DM revealed a significantly lower rate of CLIP exchange for MBP153-161 and MBP90-98 peptides as opposed to HA peptide. Analysis of the binding of chimeric MBP-HA peptides demonstrated that the observed difference between MBP153-161, MBP90-98, and HA peptide epitopes is caused by the lack of anchor residues in the C-terminal part of the MBP peptides resulting in a moderate occupation of P6/7 and P9 pockets of HLA-DRB1*01:01 by MBP153-161 and MBP90-98 peptides in contrast to HA308-316 peptide. This leads to the P1 and P4 docking failure and rapid peptide dissociation and release of empty HLA-DM-HLA-DR complex. We would like to propose that protective properties of the HLA-DRB1*01 allele could be directly linked to the ability of HLA-DRB1*01:01 to kinetically discriminate between antigenic exogenous peptides and endogenous MBP derived peptides.
Collapse
Affiliation(s)
- Azad Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Ioanna Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Kiselev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Natalia Baulina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia.,Neuroimmunological Department of the Federal Center of Cerebrovascular Diseases and Stroke, Moscow, Russia
| | - Alexander Favorov
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD, United States.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Olga Kulakova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal University, Kazan, Russia
| | - Alina Poroshina
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Igor Shilovskiy
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Musa Khaitov
- National Research Center Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Yuri Sykulev
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Olga Favorova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
23
|
Chow IT, Gates TJ, Papadopoulos GK, Moustakas AK, Kolawole EM, Notturno RJ, McGinty JW, Torres-Chinn N, James EA, Greenbaum C, Nepom GT, Evavold BD, Kwok WW. Discriminative T cell recognition of cross-reactive islet-antigens is associated with HLA-DQ8 transdimer-mediated autoimmune diabetes. SCIENCE ADVANCES 2019; 5:eaaw9336. [PMID: 31457096 PMCID: PMC6703875 DOI: 10.1126/sciadv.aaw9336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/11/2019] [Indexed: 05/04/2023]
Abstract
Human leukocyte antigen (HLA)-DQ8 transdimer (HLA-DQA1*0501/DQB1*0302) confers exceptionally high risk in autoimmune diabetes. However, little is known about HLA-DQ8 transdimer-restricted CD4 T cell recognition, an event crucial for triggering HLA-DQ8 transdimer-specific anti-islet immunity. Here, we report a high degree of epitope overlap and T cell promiscuity between susceptible HLA-DQ8 and HLA-DQ8 transdimer. Despite preservation of putative residues for T cell receptor (TCR) contact, stronger disease-associated responses to cross-reactive, immunodominant islet epitopes are elicited by HLA-DQ8 transdimer. Mutagenesis at the α chain of HLA-DQ8 transdimer in complex with the disease-relevant GAD65250-266 peptide and in silico analysis reveal the DQ α52 residue located within the N-terminal edge of the peptide-binding cleft for the enhanced T cell reactivity, altering avidity and biophysical affinity between TCR and HLA-peptide complexes. Accordingly, a structurally promiscuous but nondegenerate TCR-HLA-peptide interface is pivotal for HLA-DQ8 transdimer-mediated autoimmune diabetes.
Collapse
Affiliation(s)
- I-Ting Chow
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
| | - Theresa J. Gates
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
| | - George K. Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, GR47100 Arta, Greece
| | - Antonis K. Moustakas
- Department of Food Technology, Ionian University, GR28100 Argostoli, Cephallonia, Greece
| | - Elizabeth M. Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Richard J. Notturno
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
| | - John W. McGinty
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
| | - Nadia Torres-Chinn
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
| | - Carla Greenbaum
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
| | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Brian D. Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA 98101, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Corresponding author.
| |
Collapse
|
24
|
Madura F, Rizkallah PJ, Legut M, Holland CJ, Fuller A, Bulek A, Schauenburg AJ, Trimby A, Hopkins JR, Wells SA, Godkin A, Miles JJ, Sami M, Li Y, Liddy N, Jakobsen BK, Loveridge EJ, Cole DK, Sewell AK. TCR-induced alteration of primary MHC peptide anchor residue. Eur J Immunol 2019; 49:1052-1066. [PMID: 31091334 PMCID: PMC6618058 DOI: 10.1002/eji.201948085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
The HLA-A*02:01-restricted decapeptide EAAGIGILTV, derived from melanoma antigen recognized by T-cells-1 (MART-1) protein, represents one of the best-studied tumor associated T-cell epitopes, but clinical results targeting this peptide have been disappointing. This limitation may reflect the dominance of the nonapeptide, AAGIGILTV, at the melanoma cell surface. The decapeptide and nonapeptide are presented in distinct conformations by HLA-A*02:01 and TCRs from clinically relevant T-cell clones recognize the nonapeptide poorly. Here, we studied the MEL5 TCR that potently recognizes the nonapeptide. The structure of the MEL5-HLA-A*02:01-AAGIGILTV complex revealed an induced fit mechanism of antigen recognition involving altered peptide-MHC anchoring. This "flexing" at the TCR-peptide-MHC interface to accommodate the peptide antigen explains previously observed incongruences in this well-studied system and has important implications for future therapeutic approaches. Finally, this study expands upon the mechanisms by which molecular plasticity can influence antigen recognition by T cells.
Collapse
Affiliation(s)
| | | | | | | | - Anna Fuller
- School of MedicineCardiff UniversityCardiffUK
| | - Anna Bulek
- School of MedicineCardiff UniversityCardiffUK
| | | | | | | | | | | | - John J. Miles
- School of MedicineCardiff UniversityCardiffUK
- Centre for Biodiscovery and Molecular Development of TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | | | - Yi Li
- Immunocore Ltd.AbingdonUK
| | | | | | - E. Joel Loveridge
- School of ChemistryCardiff UniversityCardiffUK
- Department of ChemistrySwansea UniversitySwanseaUK
| | - David K. Cole
- School of MedicineCardiff UniversityCardiffUK
- Immunocore Ltd.AbingdonUK
| | - Andrew K. Sewell
- School of MedicineCardiff UniversityCardiffUK
- Systems Immunity Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
25
|
Salutari I, Martin R, Caflisch A. The 3A6-TCR/superagonist/HLA-DR2a complex shows similar interface and reduced flexibility compared to the complex with self-peptide. Proteins 2019; 88:31-46. [PMID: 31237711 DOI: 10.1002/prot.25764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 11/11/2022]
Abstract
T-cell receptor (TCR) recognition of the myelin basic protein (MBP) peptide presented by major histocompatibility complex (MHC) protein HLA-DR2a, one of the MHC class II alleles associated with multiple sclerosis, is highly variable. Interactions in the trimolecular complex between the TCR of the MBP83-99-specific T cell clone 3A6 with the MBP-peptide/HLA-DR2a (abbreviated TCR/pMHC) lead to substantially different proliferative responses when comparing the wild-type decapeptide MBP90-99 and a superagonist peptide, which differs mainly in the residues that point toward the TCR. Here, we investigate the influence of the peptide sequence on the interface and intrinsic plasticity of the TCR/pMHC trimolecular and pMHC bimolecular complexes by molecular dynamics simulations. The intermolecular contacts at the TCR/pMHC interface are similar for the complexes with the superagonist and the MBP self-peptide. The orientation angle between TCR and pMHC fluctuates less in the complex with the superagonist peptide. Thus, the higher structural stability of the TCR/pMHC tripartite complex with the superagonist peptide, rather than a major difference in binding mode with respect to the self-peptide, seems to be responsible for the stronger proliferative response.
Collapse
Affiliation(s)
- Ilaria Salutari
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Raasakka A, Jones NC, Hoffmann SV, Kursula P. Ionic strength and calcium regulate membrane interactions of myelin basic protein and the cytoplasmic domain of myelin protein zero. Biochem Biophys Res Commun 2019; 511:7-12. [DOI: 10.1016/j.bbrc.2019.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/03/2023]
|
27
|
Cossu D, Yokoyama K, Hattori N. Bacteria-Host Interactions in Multiple Sclerosis. Front Microbiol 2018; 9:2966. [PMID: 30564215 PMCID: PMC6288311 DOI: 10.3389/fmicb.2018.02966] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is caused by a complex interaction of genetic and environmental factors. Numerous causative factors have been identified that play a role in MS, including exposure to bacteria. Mycobacteria, Chlamydia pneumoniae, Helicobacter pylori, and other bacteria have been proposed as risk factors for MS with different mechanisms of action. Conversely, some pathogens may have a protective effect on its etiology. In terms of acquired immunity, molecular mimicry has been hypothesized as the mechanism by which bacterial structures such as DNA, the cell wall, and intracytoplasmic components can activate autoreactive T cells or produce autoantibodies in certain host genetic backgrounds of susceptible individuals. In innate immunity, Toll-like receptors play an essential role in combating invading bacteria, and their activation leads to the release of cytokines or chemokines that mediate effective adaptive immune responses. These receptors may also be involved in central nervous system autoimmunity, and their contribution depends on the infection site and on the pathogen. We have reviewed the current knowledge of the influence of bacteria on MS development, emphasizing the potential mechanisms of action by which bacteria affect MS initiation and/or progression.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
28
|
Common ground: shared risk factors for type 1 diabetes and celiac disease. Nat Immunol 2018; 19:685-695. [DOI: 10.1038/s41590-018-0130-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
|
29
|
|
30
|
Scholz EM, Marcilla M, Daura X, Arribas-Layton D, James EA, Alvarez I. Human Leukocyte Antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 Present Complementary Peptide Repertoires. Front Immunol 2017; 8:984. [PMID: 28871256 PMCID: PMC5566978 DOI: 10.3389/fimmu.2017.00984] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022] Open
Abstract
Human leukocyte antigen (HLA)-DR15 is a haplotype associated with multiple sclerosis. It contains the two DRB* genes DRB1*1501 (DR2b) and DRB5*0101 (DR2a). The reported anchor motif of the corresponding HLA-DR molecules was determined in 1994 based on a small number of peptide ligands and binding assays. DR2a could display a set of peptides complementary to that presented by DR2b or, alternatively, a similar peptide repertoire but recognized in a different manner by T cells. It is known that DR2a and DR2b share some peptide ligands, although the degree of similarity of their associated peptidomes remains unclear. In addition, the contribution of each molecule to the global peptide repertoire presented by the HLA-DR15 haplotype has not been evaluated. We used mass spectrometry to analyze the peptide pools bound to DR2a and DR2b, identifying 169 and 555 unique peptide ligands of DR2a and DR2b, respectively. The analysis of these sets of peptides allowed the refinement of the corresponding binding motifs revealing novel anchor residues that had been overlooked in previous analyses. Moreover, the number of shared ligands between both molecules was low, indicating that DR2a and DR2b present complementary peptide repertoires to T cells. Finally, our analysis suggests that, quantitatively, both molecules contribute to the peptide repertoire presented by cells expressing the HLA-DR15 haplotype.
Collapse
Affiliation(s)
- Erika Margaret Scholz
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Immunology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miguel Marcilla
- Proteomics Unit, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Iñaki Alvarez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Immunology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
31
|
Raasakka A, Ruskamo S, Kowal J, Barker R, Baumann A, Martel A, Tuusa J, Myllykoski M, Bürck J, Ulrich AS, Stahlberg H, Kursula P. Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci Rep 2017; 7:4974. [PMID: 28694532 PMCID: PMC5504075 DOI: 10.1038/s41598-017-05364-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Compact myelin comprises most of the dry weight of myelin, and its insulative nature is the basis for saltatory conduction of nerve impulses. The major dense line (MDL) is a 3-nm compartment between two cytoplasmic leaflets of stacked myelin membranes, mostly occupied by a myelin basic protein (MBP) phase. MBP is an abundant myelin protein involved in demyelinating diseases, such as multiple sclerosis. The association of MBP with lipid membranes has been studied for decades, but the MBP-driven formation of the MDL remains elusive at the biomolecular level. We employed complementary biophysical methods, including atomic force microscopy, cryo-electron microscopy, and neutron scattering, to investigate the formation of membrane stacks all the way from MBP binding onto a single membrane leaflet to the organisation of a stable MDL. Our results support the formation of an amorphous protein phase of MBP between two membrane bilayers and provide a molecular model for MDL formation during myelination, which is of importance when understanding myelin assembly and demyelinating conditions.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury, Kent, United Kingdom
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Jussi Tuusa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
32
|
Cortés A, Coral J, McLachlan C, Benítez R, Pinilla L. Planar molecular arrangements aid the design of MHC class II binding peptides. Mol Biol 2017. [DOI: 10.1134/s002689331702008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Design and Synthesis of Non-Peptide Mimetics Mapping the Immunodominant Myelin Basic Protein (MBP 83-96) Epitope to Function as T-Cell Receptor Antagonists. Int J Mol Sci 2017; 18:ijms18061215. [PMID: 28594344 PMCID: PMC5486038 DOI: 10.3390/ijms18061215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023] Open
Abstract
Encephalitogenic T cells are heavily implicated in the pathogenesis of multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system. Their stimulation is triggered by the formation of a trimolecular complex between the human leukocyte antigen (HLA), an immunodominant myelin basic protein (MBP) epitope, and the T cell receptor (TCR). We detail herein our studies directed towards the rational design and synthesis of non-peptide mimetic molecules, based on the immunodominant MBP83-96 epitope that is recognized by the TCR in complex with HLA. We focused our attention on the inhibition of the trimolecular complex formation and consequently the inhibition of proliferation of activated T cells. A structure-based pharmacophore model was generated, in view of the interactions between the TCR and the HLA-MBP83-96 complex. As a result, new candidate molecules were designed based on lead compounds obtained through the ZINC database. Moreover, semi-empirical and density functional theory methods were applied for the prediction of the binding energy between the proposed non-peptide mimetics and the TCR. We synthesized six molecules that were further evaluated in vitro as TCR antagonists. Analogues 15 and 16 were able to inhibit to some extent the stimulation of T cells by the immunodominant MBP83-99 peptide from immunized mice. Inhibition was followed to a lesser degree by analogues 17 and 18 and then by analogue 19. These studies show that lead compounds 15 and 16 may be used for immunotherapy against MS.
Collapse
|
34
|
Abstract
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
Collapse
Affiliation(s)
- Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University , Clayton, Victoria 3800, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
35
|
Dynamical footprint of cross-reactivity in a human autoimmune T-cell receptor. Sci Rep 2017; 7:42496. [PMID: 28195200 PMCID: PMC5307354 DOI: 10.1038/srep42496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022] Open
Abstract
The present work focuses on the dynamical aspects of cross-reactivity between myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient suffering from multiple sclerosis (MS). The study aims at highlighting the chemical interactions underlying recognition mechanisms between TCR and the peptides presented by Major Histocompatibility Complex (MHC) proteins, which form a crucial component in adaptive immune response against foreign antigens. Since the ability of a TCR to recognize different peptide antigens presented by MHC depends on its cross-reactivity, we used molecular dynamics methods to obtain atomistic detail on TCR-peptide-MHC complexes. Our results show how the dynamical basis of Hy.1B11 TCR’s cross-reactivity is rooted in a similar bridging interaction pattern across the TCR-peptide-MHC interface. Our simulations confirm the importance of TCR CDR3α E98 residue interaction with MHC and a predominant role of P6 peptide residue in MHC binding affinity. Altogether, our study provides energetic and dynamical insights into factors governing peptide recognition by the cross-reactive Hy.1B11 TCR, found in MS patient.
Collapse
|
36
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
37
|
Bettini ML, Bettini M. Understanding Autoimmune Diabetes through the Prism of the Tri-Molecular Complex. Front Endocrinol (Lausanne) 2017; 8:351. [PMID: 29312143 PMCID: PMC5735072 DOI: 10.3389/fendo.2017.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 and HLA-DQ8 have revealed the stability of the T cell receptor (TCR)/HLA/peptide tri-molecular complex as an important parameter in the development of autoimmune T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, we will provide a summary of the current understanding with regard to autoimmune T cell development, the significance of the antigens targeted in T1D, and the relationship between TCR affinity and immune regulation.
Collapse
Affiliation(s)
- Matthew L. Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| | - Maria Bettini
- Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, McNair Medical Institute, Houston, TX, United States
- *Correspondence: Matthew L. Bettini, ; Maria Bettini,
| |
Collapse
|
38
|
Cyclic citrullinated MBP 87-99 peptide stimulates T cell responses: Implications in triggering disease. Bioorg Med Chem 2016; 25:528-538. [PMID: 27908754 DOI: 10.1016/j.bmc.2016.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022]
Abstract
Amino acid mutations to agonist peptide epitopes of myelin proteins have been used to modulate immune responses and experimental autoimmune encephalomyelitis (EAE, animal model of multiple sclerosis). Such amino acid alteration are termed, altered peptide ligands (APL). We have shown that the agonist myelin basic protein (MBP) 87-99 epitope (MBP87-99) with crucial T cell receptor (TCR) substitutions at positions 91 and 96 (K91,P96 (TCR contact residues) to R91,A96; [R91,A96]MBP87-99) results in altered T cell responses and inhibits EAE symptoms. In this study, the role of citrullination of arginines in [R91,A96]MBP87-99 peptide analog was determined using in vivo experiments in combination with computational studies. The immunogenicity of linear [Cit91,A96,Cit97]MBP87-99 and its cyclic analog - cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 when conjugated to the carrier mannan (polysaccharide) were studied in SJL/J mice. It was found that mannosylated cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 peptide induced strong T cell proliferative responses and IFN-gamma cytokine secretion compared with the linear one. Moreover, the interaction of linear and cyclic peptide analogs with the major histocompatibility complex (MHC II, H2-IAs) and TCR was analyzed using molecular dynamics simulations at the receptor level, in order to gain a better understanding of the molecular recognition mechanisms that underly the different immunological profiles of citrullinated peptides compared to its agonist native counterpart MBP87-99 epitope. The results demonstrate that the citrullination of arginine in combination with the backbone conformation of mutated linear and cyclic analogs are significant elements for the immune response triggering the induction of pro-inflammatory cytokines.
Collapse
|
39
|
Liu Z, Fang H, Slikker W, Tong W. Potential Reuse of Oncology Drugs in the Treatment of Rare Diseases. Trends Pharmacol Sci 2016; 37:843-857. [DOI: 10.1016/j.tips.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
|
40
|
T cells from hemophilia A subjects recognize the same HLA-restricted FVIII epitope with a narrow TCR repertoire. Blood 2016; 128:2043-2054. [PMID: 27471234 DOI: 10.1182/blood-2015-11-682468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Factor VIII (FVIII)-neutralizing antibodies ("inhibitors") are a serious problem in hemophilia A (HA). The aim of this study was to characterize HLA-restricted T-cell responses from a severe HA subject with a persistent inhibitor and from 2 previously studied mild HA inhibitor subjects. Major histocompatibility complex II tetramers corresponding to both of the severe HA subject's HLA-DRA-DRB1 alleles were loaded with peptides spanning FVIII-A2, C1, and C2 domains. Interestingly, only 1 epitope was identified, in peptide FVIII2194-2213, and it was identical to the HLA-DRA*01-DRB1*01:01-restricted epitope recognized by the mild HA subjects. Multiple T-cell clones and polyclonal lines having different avidities for the peptide-loaded tetramer were isolated from all subjects. Only high- and medium-avidity T cells proliferated and secreted cytokines when stimulated with FVIII2194-2213 T-cell receptor β (TCRB) gene sequencing of 15 T-cell clones from the severe HA subject revealed that all high-avidity clones expressed the same TCRB gene. High-throughput immunosequencing of high-, medium-, and low-avidity cells sorted from a severe HA polyclonal line revealed that 94% of the high-avidity cells expressed the same TCRB gene as the high-avidity clones. TCRB sequencing of clones and lines from the mild HA subjects also identified a limited TCRB gene repertoire. These results suggest a limited number of epitopes in FVIII drive inhibitor responses and that the T-cell repertoires of FVIII-responsive T cells can be quite narrow. The limited diversity of both epitopes and TCRB gene usage suggests that targeting of specific epitopes and/or T-cell clones may be a promising approach to achieve tolerance to FVIII.
Collapse
|
41
|
Cole DK, Bulek AM, Dolton G, Schauenberg AJ, Szomolay B, Rittase W, Trimby A, Jothikumar P, Fuller A, Skowera A, Rossjohn J, Zhu C, Miles JJ, Peakman M, Wooldridge L, Rizkallah PJ, Sewell AK. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J Clin Invest 2016; 126:2191-204. [PMID: 27183389 PMCID: PMC4887163 DOI: 10.1172/jci85679] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease.
Collapse
Affiliation(s)
- David K. Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Anna M. Bulek
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrea J. Schauenberg
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - William Rittase
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrew Trimby
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Prithiviraj Jothikumar
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna Fuller
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Ania Skowera
- Department of Immunobiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Jamie Rossjohn
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John J. Miles
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark Peakman
- Department of Immunobiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Pierre J. Rizkallah
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
42
|
Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity. Sci Rep 2016; 6:25070. [PMID: 27118724 PMCID: PMC4846865 DOI: 10.1038/srep25070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/11/2016] [Indexed: 12/27/2022] Open
Abstract
Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling.
Collapse
|
43
|
|
44
|
Motozono C, Pearson JA, De Leenheer E, Rizkallah PJ, Beck K, Trimby A, Sewell AK, Wong FS, Cole DK. Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. J Biol Chem 2015; 290:18924-33. [PMID: 26085090 PMCID: PMC4521012 DOI: 10.1074/jbc.m114.622522] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/12/2015] [Indexed: 01/23/2023] Open
Abstract
The non-obese diabetic mouse model of type 1 diabetes continues to be an important tool for delineating the role of T-cell-mediated destruction of pancreatic β-cells. However, little is known about the molecular mechanisms that enable this disease pathway. We show that insulin reactivity by a CD8(+) T-cell clone, known to induce type 1 diabetes, is characterized by weak T-cell antigen receptor binding to a relatively unstable peptide-MHC. The structure of the native 9- and 10-mer insulin epitopes demonstrated that peptide residues 7 and 8 form a prominent solvent-exposed bulge that could potentially be the main focus of T-cell receptor binding. The C terminus of the peptide governed peptide-MHC stability. Unexpectedly, we further demonstrate a novel mode of flexible peptide presentation in which the MHC peptide-binding groove is able to "open the back door" to accommodate extra C-terminal peptide residues.
Collapse
Affiliation(s)
- Chihiro Motozono
- From the Division of Infection and Immunity and the Department of Immunology, Kinki University School of Medicine, Osaka 589-8511, Japan, and
| | - James A Pearson
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Evy De Leenheer
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | - Konrad Beck
- the Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY, United Kingdom
| | | | | | - F Susan Wong
- the Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom,
| | | |
Collapse
|
45
|
Sadegh-Nasseri S, Kim A. MHC Class II Auto-Antigen Presentation is Unconventional. Front Immunol 2015; 6:372. [PMID: 26257739 PMCID: PMC4510428 DOI: 10.3389/fimmu.2015.00372] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
Antigen presentation is highly critical in adoptive immunity. Only by interacting with antigens presented by major histocompatibility complex class II molecules, helper T cells can be stimulated to fight infections or diseases. The degradation of a full protein into small peptide fragments bound to class II molecules is a dynamic, lengthy process consisting of many steps and chaperons. Deregulation in any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Indeed, human leukocyte antigens class II genes are the predominant contributors to susceptibility to autoimmune diseases. Conventional antigen-processing calls for internalization of extracellular antigens followed by processing and epitope selection within antigen-processing subcellular compartments, enriched with all necessary accessory molecules, processing enzymes, and proper pH and denaturing conditions. However, recent data examining the temporal relationship between antigen uptakes, processing, and epitope selection revealed unexpected characteristics for auto-antigenic epitopes, which were not shared with antigenic epitopes from pathogens. This review provides a discussion of the relevance of these findings to the mechanisms of autoimmunity.
Collapse
Affiliation(s)
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins School of Medicine , Baltimore, MD , USA
| |
Collapse
|
46
|
Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products. Cell Immunol 2015; 295:118-26. [DOI: 10.1016/j.cellimm.2015.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|
47
|
Bluestone JA, Bour-Jordan H, Cheng M, Anderson M. T cells in the control of organ-specific autoimmunity. J Clin Invest 2015; 125:2250-60. [PMID: 25985270 DOI: 10.1172/jci78089] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune tolerance is critical to the avoidance of unwarranted immune responses against self antigens. Multiple, non-redundant checkpoints are in place to prevent such potentially deleterious autoimmune responses while preserving immunity integral to the fight against foreign pathogens. Nevertheless, a large and growing segment of the population is developing autoimmune diseases. Deciphering cellular and molecular pathways of immune tolerance is an important goal, with the expectation that understanding these pathways will lead to new clinical advances in the treatment of these devastating diseases. The vast majority of autoimmune diseases develop as a consequence of complex mechanisms that depend on genetic, epigenetic, molecular, cellular, and environmental elements and result in alterations in many different checkpoints of tolerance and ultimately in the breakdown of immune tolerance. The manifestations of this breakdown are harmful inflammatory responses in peripheral tissues driven by innate immunity and self antigen-specific pathogenic T and B cells. T cells play a central role in the regulation and initiation of these responses. In this Review we summarize our current understanding of the mechanisms involved in these fundamental checkpoints, the pathways that are defective in autoimmune diseases, and the therapeutic strategies being developed with the goal of restoring immune tolerance.
Collapse
|
48
|
Day S, Tselios T, Androutsou ME, Tapeinou A, Frilligou I, Stojanovska L, Matsoukas J, Apostolopoulos V. Mannosylated Linear and Cyclic Single Amino Acid Mutant Peptides Using a Small 10 Amino Acid Linker Constitute Promising Candidates Against Multiple Sclerosis. Front Immunol 2015; 6:136. [PMID: 26082772 PMCID: PMC4450228 DOI: 10.3389/fimmu.2015.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/11/2015] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a serious autoimmune demyelinating disease leading to loss of neurological function. The design and synthesis of various altered peptide ligands of immunodominant epitopes of myelin proteins to alter the autoimmune response, is a promising therapeutic approach for MS. In this study, linear and cyclic peptide analogs based on the myelin basic protein 83–99 (MBP83–99) immunodominant epitope conjugated to reduced mannan via the (KG)5 and keyhole limpet hemocyanin (KLH) bridge, respectively, were evaluated for their biological/immunological profiles in SJL/J mice. Of all the peptide analogs tested, linear MBP83–99(F91) and linear MBP83–99(Y91) conjugated to reduced mannan via a (KG)5 linker and cyclic MBP83–99(F91) conjugated to reduce mannan via KLH linker, yielded the best immunological profile and constitute novel candidates for further immunotherapeutic studies against MS in animal models and in human clinical trials.
Collapse
Affiliation(s)
- Stephanie Day
- Immunology and Vaccine Laboratory, Burnet Institute , Melbourne, VIC , Australia
| | | | - Maria-Eleni Androutsou
- Department of Chemistry, University of Patras , Patras , Greece ; Eldrug S.A. , Patras , Greece
| | - Anthi Tapeinou
- Department of Chemistry, University of Patras , Patras , Greece
| | - Irene Frilligou
- Department of Chemistry, University of Patras , Patras , Greece
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University , Melbourne, VIC , Australia
| | - John Matsoukas
- Department of Chemistry, University of Patras , Patras , Greece ; Eldrug S.A. , Patras , Greece
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University , Melbourne, VIC , Australia
| |
Collapse
|
49
|
Madura F, Rizkallah PJ, Holland CJ, Fuller A, Bulek A, Godkin AJ, Schauenburg AJ, Cole DK, Sewell AK. Structural basis for ineffective T-cell responses to MHC anchor residue-improved "heteroclitic" peptides. Eur J Immunol 2015; 45:584-91. [PMID: 25471691 PMCID: PMC4357396 DOI: 10.1002/eji.201445114] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/03/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Abstract
MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation.
Collapse
MESH Headings
- Alanine/chemistry
- Alanine/genetics
- Amino Acid Sequence
- Amino Acid Substitution
- Crystallography, X-Ray
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Leucine/chemistry
- Leucine/genetics
- MART-1 Antigen/chemistry
- MART-1 Antigen/genetics
- MART-1 Antigen/immunology
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Florian Madura
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Anna Bulek
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrea J Schauenburg
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of MedicineHeath Park, Cardiff, UK
| |
Collapse
|
50
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 567] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|