1
|
Chen K, Wang L, Yu Z, Yu J, Ren Y, Wang Q, Xu Y. Structure of the human TIP60 complex. Nat Commun 2024; 15:7092. [PMID: 39154037 PMCID: PMC11330486 DOI: 10.1038/s41467-024-51259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.
Collapse
Affiliation(s)
- Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
3
|
Tian Q, Yin Y, Tian Y, Wang Y, Wang Y, Fukunaga R, Fujii T, Liao A, Li L, Zhang W, He X, Xiang W, Zhou L. Chromatin Modifier EP400 Regulates Oocyte Quality and Zygotic Genome Activation in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308018. [PMID: 38493496 PMCID: PMC11132066 DOI: 10.1002/advs.202308018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Epigenetic modifiers that accumulate in oocytes, play a crucial role in steering the developmental program of cleavage embryos and initiating life. However, the identification of key maternal epigenetic regulators remains elusive. In the findings, the essential role of maternal Ep400, a chaperone for H3.3, in oocyte quality and early embryo development in mice is highlighted. Depletion of Ep400 in oocytes resulted in a decline in oocyte quality and abnormalities in fertilization. Preimplantation embryos lacking maternal Ep400 exhibited reduced major zygotic genome activation (ZGA) and experienced developmental arrest at the 2-to-4-cell stage. The study shows that EP400 forms protein complex with NFYA, occupies promoters of major ZGA genes, modulates H3.3 distribution between euchromatin and heterochromatin, promotes transcription elongation, activates the expression of genes regulating mitochondrial functions, and facilitates the expression of rate-limiting enzymes of the TCA cycle. This intricate process driven by Ep400 ensures the proper execution of the developmental program, emphasizing its critical role in maternal-to-embryonic transition.
Collapse
Affiliation(s)
- Qing Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Ying Yin
- Department of PhysiologySchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Center for Genomics and Proteomics ResearchSchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yu Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yufan Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yong‐feng Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Rikiro Fukunaga
- Department of BiochemistryOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐1094Japan
| | - Toshihiro Fujii
- Department of BiochemistryOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐1094Japan
| | - Ai‐hua Liao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Wei Zhang
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Ximiao He
- Department of PhysiologySchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Center for Genomics and Proteomics ResearchSchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li‐quan Zhou
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| |
Collapse
|
4
|
Kim HM, Zheng X, Lee E. Experimental Insights into the Interplay between Histone Modifiers and p53 in Regulating Gene Expression. Int J Mol Sci 2023; 24:11032. [PMID: 37446210 PMCID: PMC10342072 DOI: 10.3390/ijms241311032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chromatin structure plays a fundamental role in regulating gene expression, with histone modifiers shaping the structure of chromatin by adding or removing chemical changes to histone proteins. The p53 transcription factor controls gene expression, binds target genes, and regulates their activity. While p53 has been extensively studied in cancer research, specifically in relation to fundamental cellular processes, including gene transcription, apoptosis, and cell cycle progression, its association with histone modifiers has received limited attention. This review explores the interplay between histone modifiers and p53 in regulating gene expression. We discuss how histone modifications can influence how p53 binds to target genes and how this interplay can be disrupted in cancer cells. This review provides insights into the complex mechanisms underlying gene regulation and their implications for potential cancer therapy.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | | | | |
Collapse
|
5
|
Qiu Z, Hao S, Song S, Zhang R, Yan T, Lu Z, Wang H, Jia Z, Zheng J. PLK1-mediated phosphorylation of PPIL2 regulates HR via CtIP. Front Cell Dev Biol 2022; 10:902403. [PMID: 36092721 PMCID: PMC9452783 DOI: 10.3389/fcell.2022.902403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR) is an error-free DNA double-strand break (DSB) repair pathway, which safeguards genome integrity and cell viability. Human C-terminal binding protein (CtBP)—interacting protein (CtIP) is a central regulator of the pathway which initiates the DNA end resection in HR. Ubiquitination modification of CtIP is known in some cases to control DNA resection and promote HR. However, it remains unclear how cells restrain CtIP activity in unstressed cells. We show that the ubiquitin E3 ligase PPIL2 is recruited to DNA damage sites through interactions with an HR-related protein ZNF830, implying PPIL2’s involvement in DNA repair. We found that PPIL2 interacts with and ubiquitinates CtIP at the K426 site, representing a hereunto unknown ubiquitination site. Ubiquitination of CtIP by PPIL2 suppresses HR and DNA resection. This inhibition of PPIL2 is also modulated by phosphorylation at multiple sites by PLK1, which reduces PPIL2 ubiquitination of CtIP. Our findings reveal new regulatory complexity in CtIP ubiquitination in DSB repair. We propose that the PPIL2-dependent CtIP ubiquitination prevents CtIP from interacting with DNA, thereby inhibiting HR.
Collapse
Affiliation(s)
- Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Shikai Song
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruiling Zhang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Tingyu Yan
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhifang Lu
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- *Correspondence: Zongchao Jia, ; Jimin Zheng,
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China
- *Correspondence: Zongchao Jia, ; Jimin Zheng,
| |
Collapse
|
6
|
Fortuny A, Chansard A, Caron P, Chevallier O, Leroy O, Renaud O, Polo SE. Imaging the response to DNA damage in heterochromatin domains reveals core principles of heterochromatin maintenance. Nat Commun 2021; 12:2428. [PMID: 33893291 PMCID: PMC8065061 DOI: 10.1038/s41467-021-22575-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Heterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.
Collapse
Affiliation(s)
- Anna Fortuny
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Audrey Chansard
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Pierre Caron
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Olivier Leroy
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Olivier Renaud
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
7
|
LRIK interacts with the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair. Cell Death Differ 2020; 27:3337-3353. [PMID: 32587379 DOI: 10.1038/s41418-020-0581-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in our understanding of the function of long noncoding RNAs (lncRNAs), their roles and functions in DNA repair pathways remain poorly understood. By screening a panel of uncharacterized lncRNAs to identify those whose transcription is induced by double-strand breaks (DSBs), we identified a novel lncRNA referred to as LRIK that interacts with Ku, which enhances the ability of the Ku heterodimer to detect the presence of DSBs. Here, we show that depletion of LRIK generates significantly enhanced sensitivity to DSB-inducing agents and reduced DSB repair efficiency. In response to DSBs, LRIK enhances the recruitment of repair factors at DSB sites and facilitates γH2AX signaling. Our results demonstrate that LRIK is necessary for efficient repairing DSBs via nonhomologous end-joining pathway.
Collapse
|
8
|
The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis. Nat Commun 2019; 10:1827. [PMID: 31015444 PMCID: PMC6478875 DOI: 10.1038/s41467-019-09899-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
The Tip60/p400 chromatin-modifying complex, which is involved in the incorporation and post-translational modification of the H2A.Z histone variant, regulates cell proliferation and important signaling pathways, such as Wnt. Here, we study the involvement of H2A.Z in intestinal epithelial homeostasis, which is dependent on the finely-tuned equilibrium between stem cells renewal and differentiation, under the control of such pathway. We use cell models and inducible knock-out mice to study the impact of H2A.Z depletion on intestinal homeostasis. We show that H2A.Z is essential for the proliferation of human cancer and normal intestinal crypt cells and negatively controls the expression of a subset of differentiation markers, in cultured cells and mice. H2A.Z impairs the recruitment of the intestine-specific transcription factor CDX2 to chromatin, is itself a target of the Wnt pathway and thus, acts as an integrator for Wnt signaling in the control of intestinal epithelial cell fate and homeostasis. The histone variant, H2A.Z is known to regulate gene expression and cell proliferation. Here the authors show that H2A.Z has a central role in the control of intestinal epithelial homeostasis in mice, by preventing terminal differentiation of intestinal progenitors.
Collapse
|
9
|
Lashgari A, Fauteux M, Maréchal A, Gaudreau L. Cellular Depletion of BRD8 Causes p53-Dependent Apoptosis and Induces a DNA Damage Response in Non-Stressed Cells. Sci Rep 2018; 8:14089. [PMID: 30237520 PMCID: PMC6147888 DOI: 10.1038/s41598-018-32323-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 09/06/2018] [Indexed: 12/30/2022] Open
Abstract
Regulation of the chromatin state is crucial for biological processes such as the regulation of transcription, DNA replication, and DNA damage repair. Here we show that knockdown of the BRD8 bromodomain protein – a subunit of the p400/Tip60 complex - leads to p21 induction, and concomitant cell cycle arrest in G1/S. We further demonstrate that the p53 transcriptional pathway is activated in BRD8-depleted cells, and this accounts for upregulation of not only p21 but also of pro-apoptotic genes, leading to subsequent apoptosis. Importantly, the DNA damage response (DDR) is induced upon BRD8 depletion, and DNA damage foci are detectable in BRD8-depleted cells under normal growth conditions. Consistently with an activated DDR, we find that in BRD8-depleted cells, the ATM-CHK2 DDR pathway is turned on but, CHK1 proteins levels are severely reduced and replication stress is detectable as enhanced replication protein A (RPA32) phosphorylation levels. Notably, acetylation of histone H4 at K16 (H4K16ac) is reduced in BRD8-depleted cells, suggesting that BRD8 may have a role in the recruitment and/or stabilization of the p400/Tip60 complex within chromatin, thereby facilitating DNA repair. Taken together, our results suggest that BRD8 is involved not only in p53-dependent gene suppression, but also in the maintenance of genome stability.
Collapse
Affiliation(s)
- Anahita Lashgari
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Myriam Fauteux
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Alexandre Maréchal
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Luc Gaudreau
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
10
|
Rust K, Tiwari MD, Mishra VK, Grawe F, Wodarz A. Myc and the Tip60 chromatin remodeling complex control neuroblast maintenance and polarity in Drosophila. EMBO J 2018; 37:embj.201798659. [PMID: 29997178 DOI: 10.15252/embj.201798659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells establish cortical polarity and divide asymmetrically to simultaneously maintain themselves and generate differentiating offspring cells. Several chromatin modifiers have been identified as stemness factors in mammalian pluripotent stem cells, but whether these factors control stem cell polarity and asymmetric division has not been investigated so far. We addressed this question in Drosophila neural stem cells called neuroblasts. We identified the Tip60 chromatin remodeling complex and its interaction partner Myc as regulators of genes required for neuroblast maintenance. Knockdown of Tip60 complex members results in loss of cortical polarity, symmetric neuroblast division, and premature differentiation through nuclear entry of the transcription factor Prospero. We found that aPKC is the key target gene of Myc and the Tip60 complex subunit Domino in regulating neuroblast polarity. Our transcriptome analysis further showed that Domino regulates the expression of mitotic spindle genes previously identified as direct Myc targets. Our findings reveal an evolutionarily conserved functional link between Myc, the Tip60 complex, and the molecular network controlling cell polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Katja Rust
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany.,Department of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| | - Manu D Tiwari
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| | - Vivek Kumar Mishra
- Department of Dermatology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ferdi Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Fang X, Lu G, Ha K, Lin H, Du Y, Zuo Q, Fu Y, Zou C, Zhang P. Acetylation of TIP60 at K104 is essential for metabolic stress-induced apoptosis in cells of hepatocellular cancer. Exp Cell Res 2017; 362:279-286. [PMID: 29174981 DOI: 10.1016/j.yexcr.2017.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/03/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Tumor cells often encounter hypoglycemic microenvironment due to rapid cell expansion. It remains elusive how tumors reprogram the genome to survive the metabolic stress. The tumor suppressor TIP60 functions as the catalytic subunit of the human NuA4 histone acetyltransferase (HAT) multi-subunit complex and is involved in many different cellular processes including DNA damage response, cell growth and apoptosis. Attenuation of TIP60 expression has been detected in various tumor types. The function of TIP60 in tumor development has not been fully understood. Here we found that suppressing TIP60 inhibited p53 K120 acetylation and thus rescued apoptosis induced by glucose deprivation in hepatocellular cancer cells. Excitingly, Lys-104 (K104), a previously identified lysine acetylation site of TIP60 with unknown function, was observed to be indispensable for inducing p53-mediated apoptosis under low glucose condition. Mutation of Lys-104 to Arg (K104R) impeded the binding of TIP60 to human NuA4 complex, suppressed the acetyltransferase activity of TIP60, and inhibited the expression of pro-apoptotic genes including NOXA and PUMA upon glucose starvation. These findings demonstrate the critical regulation of TIP60/p53 pathway in apoptosis upon metabolic stress and provide a novel insight into the down-regulation of TIP60 in tumor cells.
Collapse
Affiliation(s)
- Xiao Fang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, China; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States.
| | - Guojun Lu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Kyungsoo Ha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Han Lin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ye Du
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Qiuhong Zuo
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yi Fu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States; Ruihua Affiliated Hospital of Soochow University, Suzhou 215100, China
| | - Chaoxia Zou
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States; Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, United States; Beijing Proteome Research Center, Beijing 102200, China
| |
Collapse
|
12
|
Cui H, Li X, Han C, Wang QE, Wang H, Ding HF, Zhang J, Yan C. The Stress-responsive Gene ATF3 Mediates Dichotomous UV Responses by Regulating the Tip60 and p53 Proteins. J Biol Chem 2016; 291:10847-57. [PMID: 26994140 DOI: 10.1074/jbc.m115.713099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/27/2022] Open
Abstract
The response to UV irradiation is important for a cell to maintain its genetic integrity when challenged by environmental genotoxins. An immediate early response to UV irradiation is the rapid induction of activating transcription factor 3 (ATF3) expression. Although emerging evidence has linked ATF3 to stress pathways regulated by the tumor suppressor p53 and the histone acetyltransferase Tip60, the role of ATF3 in the UV response remains largely unclear. Here, we report that ATF3 mediated dichotomous UV responses. Although UV irradiation enhanced the binding of ATF3 to Tip60, knockdown of ATF3 expression decreased Tip60 stability, thereby impairing Tip60 induction by UV irradiation. In line with the role of Tip60 in mediating UV-induced apoptosis, ATF3 promoted the death of p53-defective cells in response to UV irradiation. However, ATF3 could also activate p53 and promote p53-mediated DNA repair, mainly through altering histone modifications that could facilitate recruitment of DNA repair proteins (such as DDB2) to damaged DNA sites. As a result, ATF3 rather protected the p53 wild-type cells from UV-induced apoptosis. Our results thus indicate that ATF3 regulates cell fates upon UV irradiation in a p53-dependent manner.
Collapse
Affiliation(s)
| | | | - Chunhua Han
- the Department of Radiology, Ohio State University, Columbus, Ohio 43210
| | - Qi-En Wang
- the Department of Radiology, Ohio State University, Columbus, Ohio 43210
| | - Hongbo Wang
- the Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China, and
| | - Han-Fei Ding
- From the Georgia Cancer Center and Departments of Pathology and
| | - Junran Zhang
- the Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chunhong Yan
- From the Georgia Cancer Center and Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912,
| |
Collapse
|
13
|
Pradhan SK, Su T, Yen L, Jacquet K, Huang C, Côté J, Kurdistani SK, Carey MF. EP400 Deposits H3.3 into Promoters and Enhancers during Gene Activation. Mol Cell 2015; 61:27-38. [PMID: 26669263 DOI: 10.1016/j.molcel.2015.10.039] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Gene activation in metazoans is accompanied by the presence of histone variants H2AZ and H3.3 within promoters and enhancers. It is not known, however, what protein deposits H3.3 into chromatin or whether variant chromatin plays a direct role in gene activation. Here we show that chromatin containing acetylated H2AZ and H3.3 stimulates transcription in vitro. Analysis of the Pol II pre-initiation complex on immobilized chromatin templates revealed that the E1A binding protein p400 (EP400) was bound preferentially to and required for transcription stimulation by acetylated double-variant chromatin. EP400 also stimulated H2AZ/H3.3 deposition into promoters and enhancers and influenced transcription in vivo at a step downstream of the Mediator complex. EP400 efficiently exchanged recombinant histones H2A and H3.1 with H2AZ and H3.3, respectively, in a chromatin- and ATP-stimulated manner in vitro. Our data reveal that EP400 deposits H3.3 into chromatin alongside H2AZ and contributes to gene regulation after PIC assembly.
Collapse
Affiliation(s)
- Suman K Pradhan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Linda Yen
- The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA
| | - Karine Jacquet
- Laval University Cancer Research Center, CHU de Québec Research Center-Oncology, Hôtel-Dieu de Québec, 9 McMahon Street, Quebec City, QC G1R 2J6, Canada
| | - Chengyang Huang
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec Research Center-Oncology, Hôtel-Dieu de Québec, 9 McMahon Street, Quebec City, QC G1R 2J6, Canada
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA; The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA; The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
14
|
Dalvai M, Loehr J, Jacquet K, Huard CC, Roques C, Herst P, Côté J, Doyon Y. A Scalable Genome-Editing-Based Approach for Mapping Multiprotein Complexes in Human Cells. Cell Rep 2015; 13:621-633. [PMID: 26456817 DOI: 10.1016/j.celrep.2015.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Conventional affinity purification followed by mass spectrometry (AP-MS) analysis is a broadly applicable method used to decipher molecular interaction networks and infer protein function. However, it is sensitive to perturbations induced by ectopically overexpressed target proteins and does not reflect multilevel physiological regulation in response to diverse stimuli. Here, we developed an interface between genome editing and proteomics to isolate native protein complexes produced from their natural genomic contexts. We used CRISPR/Cas9 and TAL effector nucleases (TALENs) to tag endogenous genes and purified several DNA repair and chromatin-modifying holoenzymes to near homogeneity. We uncovered subunits and interactions among well-characterized complexes and report the isolation of MCM8/9, highlighting the efficiency and robustness of the approach. These methods improve and simplify both small- and large-scale explorations of protein interactions as well as the study of biochemical activities and structure-function relationships.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Caroline C Huard
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Céline Roques
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Pauline Herst
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada; St-Patrick Research Group in Basic Oncology and Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Quebec City, QC G1V 4G2, Canada.
| |
Collapse
|
15
|
Nagel R, Stigter-van Walsum M, Buijze M, van den Berg J, van der Meulen IH, Hodzic J, Piersma SR, Pham TV, Jiménez CR, van Beusechem VW, Brakenhoff RH. Genome-wide siRNA Screen Identifies the Radiosensitizing Effect of Downregulation of MASTL and FOXM1 in NSCLC. Mol Cancer Ther 2015; 14:1434-44. [PMID: 25808837 DOI: 10.1158/1535-7163.mct-14-0846] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/11/2015] [Indexed: 11/16/2022]
Abstract
Lung cancer is the most common cancer worldwide and on top of that has a very poor prognosis, which is reflected by a 5-year survival rate of 5% to 15%. Radiotherapy is an integral part of most treatment regimens for this type of tumor, often combined with radiosensitizing cytotoxic drugs. In this study, we identified many genes that could potentially be exploited for targeted radiosensitization using a genome-wide siRNA screen in non-small cell lung cancer (NSCLC) cells. The screen identified 433 siRNAs that potentially sensitize lung cancer cells to radiation. Validation experiments showed that knockdown of expression of Forkhead box M1 (FOXM1) or microtubule-associated serine/threonine kinase-like (MASTL) indeed causes radiosensitization in a panel of NSCLC cells. Strikingly, this effect was not observed in primary human fibroblasts, suggesting that the observed radiosensitization is specific for cancer cells. Phosphoproteomics analyses with and without irradiation showed that a number of cell-cycle-related proteins were significantly less phosphorylated after MASTL knockdown in comparison to the control, while there were no changes in the levels of phosphorylation of DNA damage response proteins. Subsequent analyses showed that MASTL knockdown cells respond differently to radiation, with a significantly shortened G2-M phase arrest and defects in cytokinesis, which are followed by a cell-cycle arrest. In summary, we have identified many potential therapeutic targets that could be used for radiosensitization of NSCLC cells, with MASTL being a very promising and druggable target to combine with radiotherapy.
Collapse
Affiliation(s)
- Remco Nagel
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Marijke Stigter-van Walsum
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Marijke Buijze
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Jaap van den Berg
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ida H van der Meulen
- RNA Interference Functional Oncogenomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands. Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jasmina Hodzic
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Connie R Jiménez
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Victor W van Beusechem
- RNA Interference Functional Oncogenomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands. Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Qi W, Wang R, Chen H, Wang X, Xiao T, Boldogh I, Ba X, Han L, Zeng X. BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51. J Cell Sci 2014; 128:317-30. [PMID: 25395584 DOI: 10.1242/jcs.159103] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA double-strand breaks (DSBs) are a type of lethal DNA damage. The repair of DSBs requires tight coordination between the factors modulating chromatin structure and the DNA repair machinery. BRG1, the ATPase subunit of the chromatin remodelling complex Switch/Sucrose non-fermentable (SWI/SNF), is often linked to tumorigenesis and genome instability, and its role in DSB repair remains largely unclear. In the present study, we show that BRG1 is recruited to DSB sites and enhances DSB repair. Using DR-GFP and EJ5-GFP reporter systems, we demonstrate that BRG1 facilitates homologous recombination repair rather than nonhomologous end-joining (NHEJ) repair. Moreover, the BRG1-RAD52 complex mediates the replacement of RPA with RAD51 on single-stranded DNA (ssDNA) to initiate DNA strand invasion. Loss of BRG1 results in a failure of RAD51 loading onto ssDNA, abnormal homologous recombination repair and enhanced DSB-induced lethality. Our present study provides a mechanistic insight into how BRG1, which is known to be involved in chromatin remodelling, plays a substantial role in the homologous recombination repair pathway in mammalian cells.
Collapse
Affiliation(s)
- Wenjing Qi
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Ruoxi Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Xiaolin Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Ting Xiao
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| | - Liping Han
- Department of Bioscience, Changchun Normal University, #677, Changji Northroad, Changchun, Jilin, 130032, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, 130024, China
| |
Collapse
|
17
|
Chevillard-Briet M, Quaranta M, Grézy A, Mattera L, Courilleau C, Philippe M, Mercier P, Corpet D, Lough J, Ueda T, Fukunaga R, Trouche D, Escaffit F. Interplay between chromatin-modifying enzymes controls colon cancer progression through Wnt signaling. Hum Mol Genet 2013; 23:2120-31. [PMID: 24287617 DOI: 10.1093/hmg/ddt604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer progression is associated with epigenetic alterations, such as changes in DNA methylation, histone modifications or variants incorporation. The p400 ATPase, which can incorporate the H2A.Z variant, and the Tip60 histone acetyltransferase are interacting chromatin-modifying proteins crucial for the control of cell proliferation. We demonstrate here that Tip60 acts as a tumor suppressor in colon, since mice heterozygous for Tip60 are more susceptible to chemically induced preneoplastic lesions and adenomas. Strikingly, heterozygosity for p400 reverses the Tip60-dependent formation of preneoplastic lesions, uncovering for the first time pro-oncogenic functions for p400. By genome-wide analysis and using a specific inhibitor in vivo, we demonstrated that these effects are dependent on Wnt signaling which is antagonistically impacted by p400 and Tip60: p400 directly favors the expression of a subset of Wnt-target genes and regulators, whereas Tip60 prevents β-catenin acetylation and activation. Taken together, our data underline the physiopathological importance of interplays between chromatin-modifying enzymes in the control of cancer-related signaling pathways.
Collapse
|
18
|
Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, Karaca E, Chiarle R, Skrzypczak M, Ginalski K, Pasero P, Rowicka M, Dikic I. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 2013; 10:361-5. [PMID: 23503052 PMCID: PMC3651036 DOI: 10.1038/nmeth.2408] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/12/2013] [Indexed: 12/16/2022]
Abstract
We present a genome-wide approach to map DNA double-strand breaks (DSBs) at nucleotide resolution by a method we termed BLESS (direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing). We validated and tested BLESS using human and mouse cells and different DSBs-inducing agents and sequencing platforms. BLESS was able to detect telomere ends, Sce endonuclease-induced DSBs and complex genome-wide DSB landscapes. As a proof of principle, we characterized the genomic landscape of sensitivity to replication stress in human cells, and we identified >2,000 nonuniformly distributed aphidicolin-sensitive regions (ASRs) overrepresented in genes and enriched in satellite repeats. ASRs were also enriched in regions rearranged in human cancers, with many cancer-associated genes exhibiting high sensitivity to replication stress. Our method is suitable for genome-wide mapping of DSBs in various cells and experimental conditions, with a specificity and resolution unachievable by current techniques.
Collapse
Affiliation(s)
- Nicola Crosetto
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Medical School, Frankfurt am Main, Germany
| | - Abhishek Mitra
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Maria Joao Silva
- IGH Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Magda Bienko
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Medical School, Frankfurt am Main, Germany
| | - Norbert Dojer
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Institute of Informatics, University of Warsaw, Warsaw, Poland
| | - Qi Wang
- Department of Pathology, Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elif Karaca
- Department of Pathology, Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto Chiarle
- Department of Pathology, Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Philippe Pasero
- IGH Institute of Human Genetics, CNRS UPR 1142, Montpellier, France
| | - Maga Rowicka
- Institute for Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Medical School, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Courilleau C, Chailleux C, Jauneau A, Grimal F, Briois S, Boutet-Robinet E, Boudsocq F, Trouche D, Canitrot Y. The chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA double-strand breaks. ACTA ACUST UNITED AC 2013; 199:1067-81. [PMID: 23266955 PMCID: PMC3529529 DOI: 10.1083/jcb.201205059] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chromatin remodeling enzyme p400 forms a complex with Rad51 and is required for its recruitment to double-strand breaks during DNA repair by homologous recombination. DNA damage signaling and repair take place in a chromatin context. Consequently, chromatin-modifying enzymes, including adenosine triphosphate–dependent chromatin remodeling enzymes, play an important role in the management of DNA double-strand breaks (DSBs). Here, we show that the p400 ATPase is required for DNA repair by homologous recombination (HR). Indeed, although p400 is not required for DNA damage signaling, DNA DSB repair is defective in the absence of p400. We demonstrate that p400 is important for HR-dependent processes, such as recruitment of Rad51 to DSB (a key component of HR), homology-directed repair, and survival after DNA damage. Strikingly, p400 and Rad51 are present in the same complex and both favor chromatin remodeling around DSBs. Altogether, our data provide a direct molecular link between Rad51 and a chromatin remodeling enzyme involved in chromatin decompaction around DNA DSBs.
Collapse
Affiliation(s)
- Céline Courilleau
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, UMR 5088, Université de Toulouse and 2 Centre National de la Recherche Scientifique, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Connecting chromatin modifying factors to DNA damage response. Int J Mol Sci 2013; 14:2355-69. [PMID: 23348929 PMCID: PMC3587991 DOI: 10.3390/ijms14022355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 01/25/2023] Open
Abstract
Cells are constantly damaged by factors that can induce DNA damage. Eukaryotic cells must rapidly load DNA repair proteins onto damaged chromatin during the DNA damage response (DDR). Chromatin-remodeling complexes use the energy from ATP hydrolysis to remodel nucleosomes and have well-established functions in transcription. Emerging lines of evidence indicate that chromatin-remodeling complexes are important and may remodel nucleosomes during DNA damage repair. New studies also reveal that ATP-dependent chromatin remodeling is involved in cell cycle progression, signal transduction pathways, and interaction and modification of DDR-related proteins that are specifically and intimately connected with the process of DNA damage. This article summarizes the recent advances in our understanding of the interplay between chromatin remodeling and DNA damage response.
Collapse
|
21
|
Bellucci L, Dalvai M, Kocanova S, Moutahir F, Bystricky K. Activation of p21 by HDAC inhibitors requires acetylation of H2A.Z. PLoS One 2013; 8:e54102. [PMID: 23349794 PMCID: PMC3548890 DOI: 10.1371/journal.pone.0054102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/06/2012] [Indexed: 12/31/2022] Open
Abstract
Differential positioning of the histone variant H2A.Z in a p53 dependent manner was shown to regulate p21 transcription. Whether H2A.Z is involved in p21 activity in the absence of p53 is not known. The p21 gene is repressed in estrogen receptor (ER) negative cell lines that are p53−/− and hormone independent for their growth. Here we demonstrate that class I and II pan Histone deacetylase inhibitors (HDACi) induce p21 transcription and reduce cell proliferation of MDA-MB231, an ERα-negative mammary tumor cell line, in a H2A.Z dependent manner. H2A.Z is associated with the transcription start site (TSS) of the repressed p21 gene. Depleting H2A.Z did not lead to transcription of p21 but annihilated the stimulating effect of HDACi on this gene. Acetylation of H2A.Z but not of H3K9 at the p21 promoter correlated with p21 activation. We further show that HDACi treatment reduced the presence of the p400 chromatin remodeler at the p21 TSS. We propose a model in which association of p400 negatively affects p21 transcription by interfering with acetylation of H2A.Z.
Collapse
Affiliation(s)
- Luca Bellucci
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
22
|
Abstract
RVB1/RVB2 (RuvBL1/RuvBL2 or pontin/reptin) are enigmatic AAA(+) ATPase proteins that are present in multiple cellular complexes. Although they have been implicated in many cellular functions, the exact molecular function of RVB proteins in the various complexes is not clear. TIP60 complex (TIP60.com) is a tumor suppressor chromatin-remodeling complex containing RVB proteins. RVBs are required for the lysine acetyltransferase activity of TIP60.com but not for that of the pure recombinant TIP60 polypeptide. Here we describe two molecular functions of RVBs in TIP60.com. First, RVBs negate the repression of catalytic activity of TIP60 by another protein in TIP60.com, p400. RVBs competitively displace the SNF2 domain of p400 from the TIP60 polypeptide. In addition RVBs are also required for heat stability of TIP60.com by a p400-independent pathway. RVB1 and RVB2 are redundant with each other for these functions and do not require their ATPase activities. Thus, RVB proteins act as molecular adaptors that can substitute for one another to facilitate the optimal assembly, heat stability, and function of the TIP60 complex.
Collapse
|
23
|
Lee K, Lau ZZ, Meredith C, Park JH. Decrease of p400 ATPase complex and loss of H2A.Z within the p21 promoter occur in senescent IMR-90 human fibroblasts. Mech Ageing Dev 2012; 133:686-94. [PMID: 23146670 DOI: 10.1016/j.mad.2012.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/02/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
Replicative senescence in human diploid fibroblasts is characterised by an exhaustion of proliferative potential and permanent cell cycle arrest. During senescence, telomere shortening-generated DNA damage activates p53 pathway that upregulates cell cycle inhibitors, such as p21. Human p400 ATPase is a chromatin remodeller that plays a key role in the deposition of the histone variant, H2A.Z within the p21 promoter, repressing p21 gene expression. Decline of p400 ATPase in senescent IMR-90 cells prompted us to investigate structural changes in the chromatin of the p21 promoter during in vitro aging. Whereas doxorubicin treatment in early-passaged cells results in nucleosome density changes near the p53 binding sites of the p21 promoter, our studies show that senescent cells with a high p21 transcription activity had a comparable nucleosome distribution as unstressed young cells. However, H2A.Z that is highly enriched within the p21 promoter of young cells is depleted in senescent cells, suggesting that downregulation of p400 and loss of H2A.Z localisation play roles in relieving p21 gene repression in senescent IMR-90 cells. Taken together, our results indicate that age-dependent p400 downregulation and loss of H2A.Z localisation may contribute to the onset of replicative senescence through a sustained high rate of p21 transcription.
Collapse
Affiliation(s)
- Kangmoon Lee
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
24
|
Lauscher JC, Elezkurtaj S, Dullat S, Lipka S, Gröne J, Buhr HJ, Huber O, Kruschewski M. Increased Pontin expression is a potential predictor for outcome in sporadic colorectal carcinoma. Oncol Rep 2012; 28:1619-24. [PMID: 22895545 DOI: 10.3892/or.2012.1968] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related death worldwide. Molecular biomarkers could help to predict patient outcome and to identify patients who benefit from adjuvant therapy. Pontin and Reptin are ATPases which are involved in transcriptional regulation, DNA damage repair and regulation of cell proliferation. Many interaction partners of Pontin and Reptin such as β-catenin and c-myc are important factors in carcinogenesis. We hypothesized that Pontin and Reptin expression may be a negative predictor for survival in colorectal carcinoma. Specimens from 115 patients with primary colon adenocarcinomas UICC stage III and primary rectal adenocarcinomas UICC stage II and III curatively resected at the Department of Surgery, Charité Berlin, were evaluated. Clinical follow-up data were complete and mean follow-up time of patients was 51.8 months. We evaluated the expression of Pontin, Reptin and Ki-67 by immunohistochemistry. Patients with Pontin-positive carcinomas showed no differences in recurrence-free survival (p=0.109) and overall survival (p=0.197). There were no differences in Reptin-positive carcinomas and Ki-67-positive carcinomas in recurrence-free survival (p=0.443 and p=0.160) and overall survival (p=0.477 and p=0.687). Patients with Pontin-positive colorectal carcinomas receiving adjuvant therapy had a significantly worse recurrence-free survival (p=0.008) and overall survival (p=0.011) than Pontin-negative patients with adjuvant therapy. In UICC stage III, Pontin-positive colorectal carcinomas had a significantly worse recurrence-free survival (p=0.028). Pontin-positivity seems to be a negative predictor for response to adjuvant therapy in colorectal cancer patients and may help to identify patients with adverse outcome in advanced tumor stages.
Collapse
Affiliation(s)
- Johannes C Lauscher
- Department of General, Vascular and Thoracic Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Naidu SR, Lakhter AJ, Androphy EJ. PIASy-mediated Tip60 sumoylation regulates p53-induced autophagy. Cell Cycle 2012; 11:2717-28. [PMID: 22751435 DOI: 10.4161/cc.21091] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Posttranslational modifications of p53 integrate diverse stress signals and regulate its activity, but their combinatorial contribution to overall p53 function is not clear. We investigated the roles of lysine (K) acetylation and sumoylation on p53 and their relation to apoptosis and autophagy. Here we describe the collaborative role of the SUMO E3 ligase PIASy and the lysine acetyltransferase Tip60 in p53-mediated autophagy. PIASy binding to p53 and PIASy-activated Tip60 lead to K386 sumoylation and K120 acetylation of p53, respectively. Even though these two modifications are not dependent on each other, together they act as a "binary death signal" to promote cytoplasmic accumulation of p53 and execution of PUMA-independent autophagy. PIASy-induced Tip60 sumoylation augments p53 K120 acetylation and apoptosis. In addition to p14(ARF) inactivation, impairment in this intricate signaling may explain why p53 mutations are not found in nearly 50% of malignancies.
Collapse
Affiliation(s)
- Samisubbu R Naidu
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | |
Collapse
|
26
|
Zhang SM, Song M, Yang TY, Fan R, Liu XD, Zhou PK. HIV-1 Tat impairs cell cycle control by targeting the Tip60, Plk1 and cyclin B1 ternary complex. Cell Cycle 2012; 11:1217-34. [PMID: 22391203 DOI: 10.4161/cc.11.6.19664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HIV-1 Tat triggers intrinsic and extrinsic apoptosis pathways in both infected and uninfected cells and plays an important role in the pathogenesis of AIDS. Knocking down Tip60, an interactive protein of Tat, leads to the impairment of cell cycle progression, indicating a key role of Tip60 in cell cycle control. We found that Tip60 interacts with Plk1 through its ZnFMYST domain, and that this interaction is enhanced in the G 2/M phase. In addition, cyclin B1 was confirmed to interact with the ZnF domain of Tip60. Immunofluorescence imaging showed that Tip60 co-localizes with both Plk1 and cyclin B1 at the centrosome during the mitotic phase and to the mid-body during cytokinesis. Further experiments revealed that Tip60 forms a ternary complex with Plk1 and cyclin B1 and acetylates Plk1 but not cyclin B1. HIV-1 Tat likely forms a quaternary complex with Tip60, cyclin B1 and Plk1. Fluorescent microscopy showed that Tat causes an unscheduled nuclear translocation of both cyclin B1 and Plk1, causing their co-localization with Tip60 in the nucleus. Tat, Tip60, cyclin B1 and Plk1 interactions provide new a mechanistic explanation for Tat-mediated cell cycle dysregulation and apoptosis.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
27
|
Caron P, Aymard F, Iacovoni JS, Briois S, Canitrot Y, Bugler B, Massip L, Losada A, Legube G. Cohesin protects genes against γH2AX Induced by DNA double-strand breaks. PLoS Genet 2012; 8:e1002460. [PMID: 22275873 PMCID: PMC3261922 DOI: 10.1371/journal.pgen.1002460] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/21/2011] [Indexed: 11/18/2022] Open
Abstract
Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome.
Collapse
Affiliation(s)
- Pierre Caron
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Francois Aymard
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Jason S. Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, Toulouse, France
| | - Sébastien Briois
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Yvan Canitrot
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Beatrix Bugler
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Laurent Massip
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| | - Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gaëlle Legube
- Université de Toulouse, UPS, LBCMCP, Toulouse, France
- CNRS, LBCMCP, Toulouse, France
| |
Collapse
|
28
|
Chen M, Pereira-Smith OM, Tominaga K. Loss of the chromatin regulator MRG15 limits neural stem/progenitor cell proliferation via increased expression of the p21 Cdk inhibitor. Stem Cell Res 2011; 7:75-88. [PMID: 21621175 PMCID: PMC3130620 DOI: 10.1016/j.scr.2011.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/24/2011] [Accepted: 04/15/2011] [Indexed: 01/01/2023] Open
Abstract
Chromatin regulation is crucial for many biological processes such as transcriptional regulation, DNA replication, and DNA damage repair. We have found that it is also important for neural stem/progenitor cell (NSC) function and neurogenesis. Here, we demonstrate that expression of the cyclin-dependent kinase inhibitor p21 is specifically up-regulated in Mrg15 deficient NSCs. Knockdown of p21 expression by p21 shRNA results in restoration of cell proliferation. This indicates that p21 is directly involved in the growth defects observed in Mrg15 deficient NSCs. Activated p53 accumulates in Mrg15 deficient NSCs and this most likely accounts for the up-regulation of p21 expression in the cells. We observed decreased p53 and p21 levels and a concomitant increase in the percentage of BrdU positive cells in Mrg15 null cultures following expression of p53 shRNA. DNA damage foci, as indicated by immunostaining for γH2AX and 53BP1, are detectable in a sub-population of Mrg15 deficient NSC cultures under normal growing conditions and the majority of p21-positive cells are also positive for 53BP1 foci. Furthermore, Mrg15 deficient NSCs exhibit severe defects in DNA damage response following ionizing radiation. Our observations highlight the importance of chromatin regulation and DNA damage response in NSC function and maintenance.
Collapse
Affiliation(s)
- Meizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | - Olivia M. Pereira-Smith
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | - Kaoru Tominaga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| |
Collapse
|
29
|
Charvet C, Wissler M, Brauns-Schubert P, Wang SJ, Tang Y, Sigloch FC, Mellert H, Brandenburg M, Lindner SE, Breit B, Green DR, McMahon SB, Borner C, Gu W, Maurer U. Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol Cell 2011; 42:584-96. [PMID: 21658600 PMCID: PMC3184637 DOI: 10.1016/j.molcel.2011.03.033] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 11/21/2010] [Accepted: 03/30/2011] [Indexed: 11/30/2022]
Abstract
Activation of p53 by DNA damage results in either cell-cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here, we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the proapoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60(S86A) mutant was less active to induce p53 K120 acetylation, histone 4 acetylation, and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86 phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53.
Collapse
Affiliation(s)
- Céline Charvet
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Manuela Wissler
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Prisca Brauns-Schubert
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Shang-Jui Wang
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Yi Tang
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Florian C. Sigloch
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Hestia Mellert
- Department of Cancer Biology, The Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA
| | - Martin Brandenburg
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Silke E. Lindner
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Bernhard Breit
- Institute for Organic Chemisty und Biochemistry, Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Douglas R. Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Steven B. McMahon
- Department of Cancer Biology, The Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
- Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Albertstr. 19a, 79104 Freiburg, Germany
- bioss - Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, Albertstrasse 19, 79104 Freiburg, Germany
| | - Wei Gu
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
- Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Albertstr. 19a, 79104 Freiburg, Germany
| |
Collapse
|
30
|
Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 2011; 25:930-45. [PMID: 21536733 PMCID: PMC3084027 DOI: 10.1101/gad.627811] [Citation(s) in RCA: 320] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/17/2011] [Indexed: 12/16/2022]
Abstract
Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.
Collapse
Affiliation(s)
- Diogo S Castro
- Medical Research Council National Institute for Medical Research, Division of Molecular Neurobiology, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta Rev Cancer 2011; 1815:147-57. [DOI: 10.1016/j.bbcan.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
|
32
|
Pfeiffer MJ, Siatkowski M, Paudel Y, Balbach ST, Baeumer N, Crosetto N, Drexler HCA, Fuellen G, Boiani M. Proteomic analysis of mouse oocytes reveals 28 candidate factors of the "reprogrammome". J Proteome Res 2011; 10:2140-53. [PMID: 21344949 DOI: 10.1021/pr100706k] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oocyte is the only cell of the body that can reprogram transplanted somatic nuclei and sets the gold standard for all reprogramming methods. Therefore, an in-depth characterization of its proteome holds promise to advance our understanding of reprogramming and germ cell biology. To date, limitations on oocyte numbers and proteomic technology have impeded this task, and the search for reprogramming factors has been conducted in embryonic stem (ES) cells instead. Here, we present the proteome of metaphase II mouse oocytes to a depth of 3699 proteins, which substantially extends the number of proteins identified until now in mouse oocytes and is comparable by size to the proteome of undifferentiated mouse ES cells. Twenty-eight oocyte proteins, also detected in ES cells, match the criteria of our multilevel approach to screen for reprogramming factors, namely nuclear localization, chromatin modification, and catalytic activity. Our oocyte proteome catalog thus advances the definition of the "reprogrammome", the set of molecules--proteins, RNAs, lipids, and small molecules--that enable reprogramming.
Collapse
Affiliation(s)
- Martin J Pfeiffer
- Max-Planck Institute for Molecular Biomedicine, Mouse Embryology Laboratory, Röntgenstrasse 20, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 2010; 142:967-80. [PMID: 20850016 DOI: 10.1016/j.cell.2010.08.020] [Citation(s) in RCA: 632] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/09/2010] [Accepted: 08/13/2010] [Indexed: 01/22/2023]
Abstract
Trimethyl-lysine (me3) modifications on histones are the most stable epigenetic marks and they control chromatin-mediated regulation of gene expression. Here, we determine proteins that bind these marks by high-accuracy, quantitative mass spectrometry. These chromatin "readers" are assigned to complexes by interaction proteomics of full-length BAC-GFP-tagged proteins. ChIP-Seq profiling identifies their genomic binding sites, revealing functional properties. Among the main findings, the human SAGA complex binds to H3K4me3 via a double Tudor-domain in the C terminus of Sgf29, and the PWWP domain is identified as a putative H3K36me3 binding motif. The ORC complex, including LRWD1, binds to the three most prominent transcriptional repressive lysine methylation sites. Our data reveal a highly adapted interplay between chromatin marks and their associated protein complexes. Reading specific trimethyl-lysine sites by specialized complexes appears to be a widespread mechanism to mediate gene expression.
Collapse
Affiliation(s)
- Michiel Vermeulen
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fujii T, Ueda T, Nagata S, Fukunaga R. Essential role of p400/mDomino chromatin-remodeling ATPase in bone marrow hematopoiesis and cell-cycle progression. J Biol Chem 2010; 285:30214-23. [PMID: 20610385 DOI: 10.1074/jbc.m110.104513] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p400/mDomino is an ATP-dependent chromatin-remodeling protein that catalyzes the deposition of histone variant H2A.Z into nucleosomes to regulate gene expression. We previously showed that p400/mDomino is essential for embryonic development and primitive hematopoiesis. Here we generated a conditional knock-out mouse for the p400/mDomino gene and investigated the role of p400/mDomino in adult bone marrow hematopoiesis and in the cell-cycle progression of embryonic fibroblasts. The Mx1-Cre- mediated deletion of p400/mDomino resulted in an acute loss of nucleated cells in the bone marrow, including committed myeloid and erythroid cells as well as hematopoietic progenitor and stem cells. A hematopoietic colony assay revealed a drastic reduction in colony-forming activity after the deletion of p400/mDomino. Moreover, the loss of p400/mDomino in mouse embryonic fibroblasts (MEFs) resulted in strong growth inhibition. Cell-cycle analysis revealed that the mDomino-deficient MEFs exhibited a pleiotropic cell-cycle defect at the S and G(2)/M phases, and polyploid and multi-nucleated cells with micronuclei emerged. DNA microarray analysis revealed that the p400/mDomino deletion from MEFs caused the impaired expression of many cell-cycle-regulatory genes, including G(2)/M-specific genes targeted by the transcription factors FoxM1 and c-Myc. These results indicate that p400/mDomino plays a key role in cellular proliferation by controlling the expression of cell-cycle-regulatory genes.
Collapse
Affiliation(s)
- Toshihiro Fujii
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
35
|
Mattera L, Courilleau C, Legube G, Ueda T, Fukunaga R, Chevillard-Briet M, Canitrot Y, Escaffit F, Trouche D. The E1A-associated p400 protein modulates cell fate decisions by the regulation of ROS homeostasis. PLoS Genet 2010; 6:e1000983. [PMID: 20548951 PMCID: PMC2883595 DOI: 10.1371/journal.pgen.1000983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/12/2010] [Indexed: 12/01/2022] Open
Abstract
The p400 E1A-associated protein, which mediates H2A.Z incorporation at specific promoters, plays a major role in cell fate decisions: it promotes cell cycle progression and inhibits induction of apoptosis or senescence. Here, we show that p400 expression is required for the correct control of ROS metabolism. Depletion of p400 indeed increases intracellular ROS levels and causes the appearance of DNA damage, indicating that p400 maintains oxidative stress below a threshold at which DNA damages occur. Suppression of the DNA damage response using a siRNA against ATM inhibits the effects of p400 on cell cycle progression, apoptosis, or senescence, demonstrating the importance of ATM–dependent DDR pathways in cell fates control by p400. Finally, we show that these effects of p400 are dependent on direct transcriptional regulation of specific promoters and may also involve a positive feedback loop between oxidative stress and DNA breaks since we found that persistent DNA breaks are sufficient to increase ROS levels. Altogether, our results uncover an unexpected link between p400 and ROS metabolism and allow deciphering the molecular mechanisms largely responsible for cell proliferation control by p400. External or internal causes can lead to the generation of oxidative stress in mammalian cells. This oxidative stress is detrimental to cell life since it can induce protein damages or, even worse, DNA damages. Thus, cells have to control strictly oxidative stress levels. In this manuscript, we show that the p400 ATPase, a chaperone of specific histone H2A variants, is important for this control in mammals and therefore prevents DNA damage induction. Moreover, we demonstrate that the known roles of p400 in cell proliferation are dependent upon its effect on oxidative stress. Finally, we identify the mechanisms by which p400 modulates oxidative stress levels. Altogether, our study uncovers a new role of mammalian p400 and demonstrates its functional importance.
Collapse
Affiliation(s)
- Lise Mattera
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Céline Courilleau
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Gaëlle Legube
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Takeshi Ueda
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, Canada
| | - Rikiro Fukunaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Martine Chevillard-Briet
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Yvan Canitrot
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Fabrice Escaffit
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
| | - Didier Trouche
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), CNRS and Université de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
36
|
Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, Legube G. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 2010; 29:1446-57. [PMID: 20360682 DOI: 10.1038/emboj.2010.38] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/19/2010] [Indexed: 01/16/2023] Open
Abstract
Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.
Collapse
|
37
|
The SANT domain of p400 ATPase represses acetyltransferase activity and coactivator function of TIP60 in basal p21 gene expression. Mol Cell Biol 2010; 30:2750-61. [PMID: 20351180 DOI: 10.1128/mcb.00804-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The TIP60 histone acetyltransferase plays diverse roles in DNA damage responses, DNA double-strand break repair, and transcriptional regulation. TIP60 resides within a multisubunit complex that has been shown to be targeted by transcription factors and to be involved in histone acetylation and transcriptional activation. p400, an SWI2/SNF2-related ATPase that serves as an ATP-dependent chromatin remodeling enzyme, exists as an integral subunit of a TIP60 complex but also resides within a distinct complex that presumably lacks TIP60 and appears to be involved in the transcriptional repression of basal p53 target gene expression. Here, we describe a TIP60-containing p400 complex population in which the acetyltransferase activity of TIP60 is repressed by interactions with p400. We further show that an SWI3-ADA2-N-CoR-TFIIIB (SANT) domain of p400 binds directly to the histone acetyltransferase (HAT) domain of TIP60 and blocks both its enzymatic activity and its coactivator function in regulating basal p21 gene expression. Our results thus suggest that p400 represses basal p21 gene expression through dual mechanisms that include the direct inhibition of TIP60 enzymatic activity described here and the previously described ATP-dependent positioning of H2A.Z at the promoter.
Collapse
|
38
|
Chailleux C, Tyteca S, Papin C, Boudsocq F, Puget N, Courilleau C, Grigoriev M, Canitrot Y, Trouche D. Physical interaction between the histone acetyl transferase Tip60 and the DNA double-strand breaks sensor MRN complex. Biochem J 2010; 426:365-71. [PMID: 20070254 DOI: 10.1042/bj20091329] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chromatin modifications and chromatin-modifying enzymes are believed to play a major role in the process of DNA repair. The histone acetyl transferase Tip60 is physically recruited to DNA DSBs (double-strand breaks) where it mediates histone acetylation. In the present study, we show, using a reporter system in mammalian cells, that Tip60 expression is required for homology-driven repair, strongly suggesting that Tip60 participates in DNA DSB repair through homologous recombination. Moreover, Tip60 depletion inhibits the formation of Rad50 foci following ionizing radiation, indicating that Tip60 expression is necessary for the recruitment of the DNA damage sensor MRN (Mre11-Rad50-Nbs1) complex to DNA DSBs. Moreover, we found that endogenous Tip60 physically interacts with endogenous MRN proteins in a complex which is distinct from the classical Tip60 complex. Taken together, our results describe a physical link between a DNA damage sensor and a histone-modifying enzyme, and provide important new insights into the role and mechanism of action of Tip60 in the process of DNA DSB repair.
Collapse
Affiliation(s)
- Catherine Chailleux
- LBCMCP, CNRS and University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pluripotency maintenance mechanism of embryonic stem cells and reprogramming. Int J Hematol 2010; 91:360-72. [DOI: 10.1007/s12185-010-0517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022]
|
40
|
Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression. Proc Natl Acad Sci U S A 2010; 107:3752-7. [PMID: 20133580 DOI: 10.1073/pnas.0914818107] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An essential step in the pathogenesis of human papillomavirus (HPV)-associated cancers is the dysregulated expression of the viral oncogenes. The papillomavirus E2 protein can silence the long control region (LCR) promoter that controls viral E6 and E7 oncogene expression. The mechanisms by which E2 represses oncogene expression and the cellular factors through which E2 mediates this silencing are largely unknown. We conducted an unbiased, genome-wide siRNA screen and series of secondary screens that identified 96 cellular genes that contribute to the repression of the HPV LCR. In addition to confirming a role for the E2-binding bromodomain protein Brd4 in E2-mediated silencing, we identified a number of genes that have not previously been implicated in E2 repression, including the demethylase JARID1C/SMCX as well as EP400, a component of the NuA4/TIP60 histone acetyltransferase complex. Each of these genes contributes independently and additively to E2-mediated silencing, indicating that E2 functions through several distinct cellular complexes to repress E6 and E7 expression.
Collapse
|
41
|
Klanrit P, Taebunpakul P, Flinterman MB, Odell EW, Riaz MA, Melino G, Salomoni P, Mymryk JS, Gäken J, Farzaneh F, Tavassoli M. PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene 2009; 28:3499-512. [PMID: 19597475 PMCID: PMC2882231 DOI: 10.1038/onc.2009.191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 05/12/2009] [Accepted: 06/01/2009] [Indexed: 11/09/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase is commonly overexpressed in human cancers; however, the cellular mechanisms regulating EGFR expression remain unclear. p53, p63 and p73 are transcription factors regulating many cellular targets involved in controlling the cell cycle and apoptosis. p53 activates EGFR expression, whereas TAp63 represses EGFR transcription. The involvement of p73 in the regulation of EGFR has not been reported. Here, a strong correlation between EGFR overexpression and increased levels of the oncogenic DeltaNp73 isoform in head and neck squamous cell carcinoma (HNSCC) cell lines was observed. Ectopic expression of TAp73, particularly TAp73beta, resulted in suppression of the EGFR promoter, significant downregulation of EGFR protein and efficient induction of cell death in all six EGFR-overexpressing HNSCC cell lines. EGFR overexpression from a heterologous LTR promoter protected lung cancer cells from TAp73beta-induced EGFR suppression and apoptosis. Expression of TAp73beta efficiently induced promyelocytic leukaemia (PML) protein expression and PML knockdown by shRNA attenuated the downregulation of EGFR and induction of apoptosis by p73 in HNSCC cells. Furthermore, PML was found to be important for E1A-induced suppression of EGFR and subsequent killing of HNSCC cells. Our data therefore suggest a novel pathway involving PML and p73 in the regulation of EGFR expression.
Collapse
Affiliation(s)
- P Klanrit
- Head and Neck Oncology Group, King’s College London Dental Institute, Guy’s Hospital Campus, London, UK
| | - P Taebunpakul
- Head and Neck Oncology Group, King’s College London Dental Institute, Guy’s Hospital Campus, London, UK
| | - MB Flinterman
- Head and Neck Oncology Group, King’s College London Dental Institute, Guy’s Hospital Campus, London, UK
| | - EW Odell
- Department of Oral Pathology, King’s College London Dental Institute, Guy’s Hospital Campus, London, UK
| | - MA Riaz
- Head and Neck Oncology Group, King’s College London Dental Institute, Guy’s Hospital Campus, London, UK
| | - G Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - P Salomoni
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | - JS Mymryk
- London Regional Cancer Program, Department of Oncology, The University of Western Ontario, London, Ontario, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - J Gäken
- Department of Hematological and Molecular Medicine, King’s College London, London, UK
| | - F Farzaneh
- Department of Hematological and Molecular Medicine, King’s College London, London, UK
| | - M Tavassoli
- Head and Neck Oncology Group, King’s College London Dental Institute, Guy’s Hospital Campus, London, UK
| |
Collapse
|
42
|
March-Díaz R, Reyes JC. The beauty of being a variant: H2A.Z and the SWR1 complex in plants. MOLECULAR PLANT 2009; 2:565-577. [PMID: 19825639 DOI: 10.1093/mp/ssp019] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Numerous studies have shown that the nucleosome is a dynamic structure that strongly influences gene expression. Dynamism concerns different nucleosomal characteristics, including position, posttranslational modifications, and histone composition. Thus, within the nucleosome, canonical histones can be exchanged by histone variant proteins with specific functions-a process known as 'histone replacement'. The histone variant H2A.Z has an important function in transcription and, during the last few years, its role in plant development and immune response has become evident. Compiling genetic and biochemical studies from several laboratories has revealed that plants contain a multiprotein complex, similar to the SWR1/SRCAP complex from yeast and animals, involved in H2A.Z deposition. Despite intense research in different organisms, the mechanism by which H2A.Z influences transcription is still unknown. However, recent results from Arabidopsis have shown a strong inverse correlation between H2A.Z and DNA methylation, suggesting that H2A.Z might protect genes from silencing.
Collapse
Affiliation(s)
- Rosana March-Díaz
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC, Américo Vespucio s/n, E-41092 Sevilla, Spain
| | - Jose C Reyes
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC, Américo Vespucio s/n, E-41092 Sevilla, Spain.
| |
Collapse
|
43
|
Svotelis A, Gévry N, Gaudreau L. Regulation of gene expression and cellular proliferation by histone H2A.Z. Biochem Cell Biol 2009; 87:179-88. [PMID: 19234533 DOI: 10.1139/o08-138] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian genome is organized into a structure of DNA and proteins known as chromatin. In general, chromatin presents a barrier to gene expression that is regulated by several pathways, namely by the incorporation of histone variants into the nucleosome. In yeast, H2A.Z is an H2A histone variant that is incorporated into nucleosomes as an H2A.Z/H2B dimer by the Swr1 complex and by the SRCAP and p400/Tip60 complexes in mammalian cells. H2A.Z has been associated with the poising of genes for transcriptional activation in the yeast model system, and is essential for development in higher eukaryotes. Recent studies in our laboratory have demonstrated a p400-dependent deposition of H2A.Z at the promoter of p21WAF1/CIP1, a consequence that prevents the activation of the gene by p53, thereby inhibiting p53-dependent replicative senescence, a form of cell-cycle arrest crucial in the prevention of carcinogenic transformation of cells. Moreover, H2A.Z is overexpressed in several different types of cancers, and its overexpression has been associated functionally with the proliferation state of cells. Therefore, we suggest that H2A.Z is an important regulator of gene expression, and its deregulation may lead to the increased proliferation of mammalian cells.
Collapse
Affiliation(s)
- Amy Svotelis
- Departement de biologie, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | | | | |
Collapse
|
44
|
PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia 2009; 11:345-54. [PMID: 19308289 DOI: 10.1593/neo.81524] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/01/2009] [Accepted: 02/03/2009] [Indexed: 12/21/2022] Open
Abstract
Tip60 is a histone acetyltransferase (HAT) involved in the acetyltransferase activity and the cellular response to DNA damage. Here, we show that programmed cell death 5 (PDCD5), a human apoptosis-related protein, binds to Tip60 and enhances the stability of Tip60 protein in unstressed conditions. The binding amount of PDCD5 and Tip60 is significantly increased after UV irradiation. Further, PDCD5 enhances HAT activity of Tip60 and Tip60-dependent histone acetylation in both basal and UV-induced levels. We also find that PDCD5 increases Tip60-dependent K120 acetylation of p53 and participates in the p53-dependent expression of apoptosis-related genes, such as Bax. Moreover, we demonstrate the biological significance of the PDCD5-Tip60 interaction; that is, they function in cooperation to accelerate DNA damage-induced apoptosis and knockdown of PDCD5 or Tip60 impairs their apoptosis-accelerating activity, mutually. Consistent with this, PDCD5 levels increase significantly on DNA damage in U2OS cells, as does Tip60. Together, our findings indicate that PDCD5 may play a dual role in the Tip60 pathway. Specifically, under normal growth conditions, PDCD5 contributes to maintaining a basal pool of Tip60 and its HAT activity. After DNA damage, PDCD5 functions as a Tip60 coactivator to promote apoptosis.
Collapse
|
45
|
Bortolin-Cavaillé ML, Dance M, Weber M, Cavaillé J. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 2009; 37:3464-73. [PMID: 19339516 PMCID: PMC2691840 DOI: 10.1093/nar/gkp205] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are tiny RNA molecules that play important regulatory roles in a broad range of developmental, physiological or pathological processes. Despite recent progress in our understanding of miRNA processing and biological functions, little is known about the regulatory mechanisms that control their expression at the transcriptional level. C19MC is the largest human microRNA gene cluster discovered to date. This 100-kb long cluster consists of 46 tandemly repeated, primate-specific pre-miRNA genes that are flanked by Alu elements (Alus) and embedded within a ∼400- to 700-nt long repeated unit. It has been proposed that C19MC miRNA genes are transcribed by RNA polymerase III (Pol-III) initiating from A and B boxes embedded in upstream Alu repeats. Here, we show that C19MC miRNAs are intron-encoded and processed by the DGCR8-Drosha (Microprocessor) complex from a previously unidentified, non-protein-coding Pol-II (and not Pol-III) transcript which is mainly, if not exclusively, expressed in the placenta.
Collapse
Affiliation(s)
- Marie-Line Bortolin-Cavaillé
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote and CNRS, LBME, F-31000 Toulouse, France
| | | | | | | |
Collapse
|
46
|
Mattera L, Escaffit F, Pillaire MJ, Selves J, Tyteca S, Hoffmann JS, Gourraud PA, Chevillard-Briet M, Cazaux C, Trouche D. The p400/Tip60 ratio is critical for colorectal cancer cell proliferation through DNA damage response pathways. Oncogene 2009; 28:1506-17. [PMID: 19169279 DOI: 10.1038/onc.2008.499] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Tip60 histone acetyltransferase belongs to a multimolecular complex that contains many chromatin remodeling enzymes including the ATPase p400, a protein involved in nucleosomal incorporation of specific histone variants and that can directly or indirectly repress some Tip60-dependent pathways. Tip60 activity is critical for the cellular response to DNA damage and is affected during cancer progression. Here, we found that the ratio between Tip60 and p400 mRNAs is affected in most colorectal carcinoma. Strikingly, reversing the p400/Tip60 imbalance by Tip60 overexpression or the use of siRNAs resulted in increased apoptosis and decreased proliferation of colon-cancer-derived cells, suggesting that this ratio defect is important for cancer progression. Furthermore, we demonstrate that the p400/Tip60 ratio controls the oncogene-induced DNA damage response, a known anticancer barrier. Finally, we found that it is also critical for the response to 5-fluorouracil, a first-line treatment against colon cancer. Together, our data indicate that the p400/Tip60 ratio is critical for colon cancer cells proliferation and response to therapeutic drugs through the control of stress-response pathways.
Collapse
|
47
|
Fazzio TG, Huff JT, Panning B. Chromatin regulation Tip(60)s the balance in embryonic stem cell self-renewal. Cell Cycle 2008; 7:3302-6. [PMID: 18948739 DOI: 10.4161/cc.7.21.6928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Histone modifications affect chromatin dynamics on several levels by serving as binding sites for regulatory proteins. In many cell types, including embryonic stem cells (ESCs), a subset of genes is marked with histone modifications thought to be both activating and repressing: H3 lysine 4 trimethylation (H3K4me3) and lysine 27 trimethylation (H3K27me3), respectively. As a result, genes bearing this "bivalent" mark are transcribed at low levels, but are primed for activation, should the cell receive the appropriate cues during differentiation. Recently, we found that the Tip60-p400 acetyltransferase and histone exchange complex is necessary to maintain normal self-renewal in mouse ESCs. While Tip60-p400 has histone acetyltransferase activity, which is generally associated with transcriptional activation, it acts predominantly as a repressor of genes expressed during differentiation. Surprisingly, in ESCs Tip60-p400 localizes to the promoters of genes marked by H3K4me3, which include both highly expressed genes and "bivalent" genes expressed at low levels. Tip60-p400 acetylates histones at these targets, including the promoters for developmental regulators it helps to silence in ESCs. This suggests that the effect of chromatin modifications on transcription is not always simply positive or negative. Rather, we propose that the impact of specific modifications at each promoter is determined by the chromatin context in which they are found.
Collapse
Affiliation(s)
- Thomas G Fazzio
- The G.W. Hooper Research Foundation, University of California San Francisco, San Francisco, California 94143-0552, USA.
| | | | | |
Collapse
|
48
|
Martinato F, Cesaroni M, Amati B, Guccione E. Analysis of Myc-induced histone modifications on target chromatin. PLoS One 2008; 3:e3650. [PMID: 18985155 PMCID: PMC2574517 DOI: 10.1371/journal.pone.0003650] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 10/14/2008] [Indexed: 11/24/2022] Open
Abstract
The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10–15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression) of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks) at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP) to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1), incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.
Collapse
Affiliation(s)
- Francesca Martinato
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
| | - Matteo Cesaroni
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
- * E-mail: (BA); (EG)
| | - Ernesto Guccione
- Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
- * E-mail: (BA); (EG)
| |
Collapse
|
49
|
Huber O, Ménard L, Haurie V, Nicou A, Taras D, Rosenbaum J. Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res 2008; 68:6873-6. [PMID: 18757398 DOI: 10.1158/0008-5472.can-08-0547] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies in model organisms or cultured human cells suggest potential implications in carcinogenesis for the AAA+ ATPases Pontin and Reptin. Both proteins are associated with several chromatin-remodeling complexes and have many functions including transcriptional regulation, DNA damage repair, and telomerase activity. They also interact with major oncogenic actors such as beta-catenin and c-myc and regulate their oncogenic function. We only now begin to get insight into the role of Pontin and Reptin in human cancers.
Collapse
Affiliation(s)
- Otmar Huber
- Department of Laboratory Medicine and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Kranz D, Dohmesen C, Dobbelstein M. BRCA1 and Tip60 determine the cellular response to ultraviolet irradiation through distinct pathways. ACTA ACUST UNITED AC 2008; 182:197-213. [PMID: 18625847 PMCID: PMC2447902 DOI: 10.1083/jcb.200712014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The histone acetyltransferase Tip60 regulates the apoptotic response to ultraviolet (UV) irradiation. A previously suggested mechanism for this regulation consists of the ability of Tip60 to coactivate transcription by the tumor suppressor p53. In this study, we show that Tip60 is required for the early DNA damage response (DDR) to UV, including the phosphorylation of histone 2AX, c-Jun N-terminal kinases (JNKs), and ataxia telangiectasia–related substrates. In contrast, p53 was not required for UV-induced DDR. Rather, p53 accumulation by either knockdown of Mdm2 or addition of an Mdm2 inhibitor, Nutlin-3, before irradiation strongly attenuated the UV-induced DDR and increased cell survival. This protective effect of preaccumulated p53 was mediated, at least in part, by the increased expression of CDKN1A/p21, subsequent down-regulation of BRCA1, and impaired JNK activation accompanied by decreased association of replication protein A with chromatin. We conclude that Tip60 enables UV-induced DDR signaling even in the absence of p53, whereas preaccumulated p53 suppresses UV-induced DDR by reducing the levels of BRCA1.
Collapse
Affiliation(s)
- Dominique Kranz
- Medical Biotechnology Center, Institute for Medical Biology, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | |
Collapse
|