1
|
Mazzitelli M, Kiritoshi T, Presto P, Hurtado Z, Antenucci N, Ji G, Neugebauer V. BDNF Signaling and Pain Modulation. Cells 2025; 14:476. [PMID: 40214430 PMCID: PMC11987912 DOI: 10.3390/cells14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important neuromodulator of nervous system functions and plays a key role in neuronal growth and survival, neurotransmission, and synaptic plasticity. The effects of BDNF are mainly mediated by the activation of tropomyosin receptor kinase B (TrkB), expressed in both the peripheral and central nervous system. BDNF has been implicated in several neuropsychiatric conditions such as schizophrenia and anxio-depressive disorders, as well as in pain states. This review summarizes the evidence for a critical role of BDNF throughout the pain system and describes contrasting findings of its pro- and anti-nociceptive effects. Different cellular sources of BDNF, its influence on neuroimmune signaling in pain conditions, and its effects in different cell types and regions are described. These and endogenous BDNF levels, downstream signaling mechanisms, route of administration, and approaches to manipulate BDNF functions could explain the bidirectional effects in pain plasticity and pain modulation. Finally, current knowledge gaps concerning BDNF signaling in pain are discussed, including sex- and pathway-specific differences.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Zachary Hurtado
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Hussein AM, Abouelnaga AF, Obydah W, Saad S, Abass M, Yehia A, Ibrahim EM, Ahmed AT, Abulseoud OA. Lateral hypothalamic area high-frequency deep brain stimulation rescues memory decline in aged rat: behavioral, molecular, and electrophysiological study. Pflugers Arch 2025; 477:371-391. [PMID: 39836224 PMCID: PMC11825635 DOI: 10.1007/s00424-024-03059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment. Also, in vivo recording of the neuronal firing of the CA1 region in the hippocampus was done. Old rats show significant decline in memories, antioxidant genes (Nrf2 and HO-1), antioxidants (GSH and catalase), Hsp70, BDNF, and synaptophysin with significant increase in MDA in hippocampus (p < 0.05) and DBS for LHA caused a significant improvement in memories in old rats, with significant rise in fast gamma and theta waves in CA1 region in old rats (p < 0.05). This was associated with a significant increase in antioxidants (GSH and CAT), antioxidant genes (Nrf2, HO-1), Hsp70, BDNF, and synaptophysin with significant reduction in MDA in hippocampus (p < 0.05). DBS for LHA ameliorates the age-induced memory decline. This might be due to increase in fast gamma in CA1, attenuation of oxidative stress, upregulation of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin in the hippocampus.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt.
| | - Ahmed F Abouelnaga
- Department of Animal Behavior and Management, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa Obydah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Somaya Saad
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura (35516), Egypt
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
| | - Eman M Ibrahim
- Department of Anatomic Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed T Ahmed
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
3
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
4
|
Singh AA, Yadav D, Khan F, Song M. Indole-3-Carbinol and Its Derivatives as Neuroprotective Modulators. Brain Sci 2024; 14:674. [PMID: 39061415 PMCID: PMC11274471 DOI: 10.3390/brainsci14070674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its downstream tropomyosin receptor kinase B (TrkB) signaling pathway play pivotal roles in the resilience and action of antidepressant drugs, making them prominent targets in psychiatric research. Oxidative stress (OS) contributes to various neurological disorders, including neurodegenerative diseases, stroke, and mental illnesses, and exacerbates the aging process. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) serves as the primary cellular defense mechanism against OS-induced brain damage. Thus, Nrf2 activation may confer endogenous neuroprotection against OS-related cellular damage; notably, the TrkB/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, stimulated by BDNF-dependent TrkB signaling, activates Nrf2 and promotes its nuclear translocation. However, insufficient neurotrophin support often leads to the downregulation of the TrkB signaling pathway in brain diseases. Thus, targeting TrkB activation and the Nrf2-ARE system is a promising therapeutic strategy for treating neurodegenerative diseases. Phytochemicals, including indole-3-carbinol (I3C) and its metabolite, diindolylmethane (DIM), exhibit neuroprotective effects through BDNF's mimetic activity; Akt phosphorylation is induced, and the antioxidant defense mechanism is activated by blocking the Nrf2-kelch-like ECH-associated protein 1 (Keap1) complex. This review emphasizes the therapeutic potential of I3C and its derivatives for concurrently activating neuronal defense mechanisms in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (A.A.S.); (D.Y.)
| |
Collapse
|
5
|
Bimbi G, Tongiorgi E. Chemical LTP induces confinement of BDNF mRNA under dendritic spines and BDNF protein accumulation inside the spines. Front Mol Neurosci 2024; 17:1348445. [PMID: 38450041 PMCID: PMC10914971 DOI: 10.3389/fnmol.2024.1348445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays a key role in neuronal development and synaptic plasticity. The discovery that BDNF mRNA can be transported in neuronal dendrites in an activity-dependent manner has suggested that its local translation may support synapse maturation and plasticity. However, a clear demonstration that BDNF mRNA is locally transported and translated at activated synapses in response to long-term potentiation (LTP) is still lacking. Here, we study the dynamics of BDNF mRNA dendritic trafficking following the induction of chemical LTP (cLTP). Dendritic transport of BDNF transcripts was analyzed using the MS2 system for mRNA visualization, and chimeric BDNF-GFP constructs were used to monitor protein synthesis in living neurons. We found that within 15 min from cLTP induction, most BDNF mRNA granules become stationary and transiently accumulate in the dendritic shaft at the base of the dendritic spines, while at 30 min they accumulate inside the spine, similar to the control CamkIIα mRNA which also increased inside the spines at 60 min post-cLTP. At 60 min but not at 15 min from cLTP induction, we observed an increase in BDNF protein levels within the spines. Taken together, these findings suggest that BDNF mRNA trafficking is arrested in the early phase of cLTP, providing a local source of mRNA for BDNF translation at the base of the spine followed by translocation of both the BDNF mRNA and protein within the spine head in the late phase of LTP.
Collapse
Affiliation(s)
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Arévalo JC, Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 2023; 13:biom13050789. [PMID: 37238659 DOI: 10.3390/biom13050789] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rubén Deogracias
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
7
|
Combined long-term enriched environment and caffeine supplementation improve memory function in C57Bl6 mice. Eur Arch Psychiatry Clin Neurosci 2023; 273:269-281. [PMID: 35676374 PMCID: PMC9958139 DOI: 10.1007/s00406-022-01431-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
Regular physical activity has been associated with healthy brain aging, reflected by beneficial effects on cognition and learning and memory. Nutritional supplements such as caffeine have been shown to act as cognitive enhancers and may possess neuroprotective properties. Interestingly, caffeine also improves athletic capabilities and is widely used by athletes because of its performance-enhancing effect, while information on potential additive beneficial effects of physical activity and caffeine on cognitive performance is scarce. In the present study, the effects of caffeine supplementation in combination with prolonged physical and cognitive stimulation in the form of the enriched environment (EE) housing for a duration of 4 months were analyzed. We demonstrate that caffeine supplementation together with prolonged environmental enrichment led to enhanced memory function, resulting in improved recognition and spatial working memory in behavioral paradigms such as the novel object recognition task or the Morris water maze in C57Bl6 wild-type mice. Mice housed under EE conditions showed increased gene expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. The present findings underscore the potential impact of continuous physical activity in the prevention of age-related cognitive decline and may offer new options for combinatorial approaches.
Collapse
|
8
|
Mottarlini F, Fumagalli M, Castillo-Díaz F, Piazza S, Targa G, Sangiovanni E, Pacchetti B, Sodergren MH, Dell’Agli M, Fumagalli F, Caffino L. Single and Repeated Exposure to Cannabidiol Differently Modulate BDNF Expression and Signaling in the Cortico-Striatal Brain Network. Biomedicines 2022; 10:biomedicines10081853. [PMID: 36009400 PMCID: PMC9405391 DOI: 10.3390/biomedicines10081853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) is a phytocannabinoid contained in the Cannabis sativa plant, devoid of psychotomimetic effects but with a broad-spectrum pharmacological activity. Because of its pharmacological profile and its ability to counteract the psychoactive Δ9-tetrahydrocannabinol (Δ9THC), CBD may be a potential treatment for several psychiatric and neurodegenerative disorders. In this study, we performed a dose−response evaluation of CBD modulatory effects on BDNF, a neurotrophin subserving pleiotropic effects on the brain, focusing on the cortico-striatal pathway for its unique role in the brain trafficking of BDNF. Male adult rats were exposed to single and repeated CBD treatments at different dosing regimen (5, 15, and 30 mg/kg), to investigate the rapid modulation of the neurotrophin (1 h after the single treatment) as well as a potential drug-free time point (24 h after the repeated treatment). We show here, for the first time, that CBD can be found in the rat brain and, specifically, in the medial prefrontal cortex (mPFC) following single or repeated exposure. In fact, we found that CBD is present in the mPFC of rats treated either acutely or repeatedly with the phytocannabinoid, with a clear dose−response profile. From a molecular standpoint, we found that single, but not repeated, CBD exposure upregulates BDNF in the mPFC, while the repeated exposure increased BDNF only in the striatum, with a slight decrease in the mPFC. Together, these data reveal a CBD dose-dependent and anatomically specific modulation of BDNF, which may be functionally relevant and may represent an added value for CBD as a supplement.
Collapse
Affiliation(s)
- Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Fernando Castillo-Díaz
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | | | - Mikael H. Sodergren
- Curaleaf International, London EC2A 2EW, UK; (B.P.); (M.H.S.)
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
- Correspondence: ; Tel.: +39-02-503-18298
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (F.M.); (M.F.); (F.C.-D.); (S.P.); (G.T.); (E.S.); (M.D.); (L.C.)
| |
Collapse
|
9
|
Smith BJ, Côté PD, Tremblay F. Voltage-gated sodium channel-dependent retroaxonal modulation of photoreceptor function during post-natal development in mice. Dev Neurobiol 2021; 81:353-365. [PMID: 33248000 DOI: 10.1002/dneu.22793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022]
Abstract
Juvenile (postnatal day 16) mice lacking Nav 1.6 channels (null-mutant Scn8admu ) have reduced photoreceptor function, which is unexpected given that Nav channels have not been detected in mouse photoreceptors and do not contribute appreciably to photoreceptor function in adults. We demonstrate that acute block of Nav channels with intravitreal TTX in juvenile (P16) wild-type mice has no effect on photoreceptor function. However, reduced light activity by prolonged dark adaptation from P8 caused significant reduction in photoreceptor function at P16. Injecting TTX into the retrobulbar space at P16 to specifically block Nav channels in the optic nerve also caused a reduction in photoreceptor function comparable to that seen at P16 in null-mutant Scn8a mice. In both P16 null-mutant Scn8admu and retrobulbar TTX-injected wild-type mice, photoreceptor function was restored following intravitreal injection of the TrkB receptor agonist 7,8-dihydroxyflavone, linking Nav -dependent retrograde transport to TrkB-dependent neurotrophic factor production pathways as a modulatory influence of photoreceptor function at P16. We also found that in Scn8admu mice, photoreceptor function recovers by P22-25 despite more precarious general health of the animal. Retrobulbar injection of TTX in the wild type still reduced the photoreceptor response at this age but to a lesser extent, suggesting that Nav -dependent modulation of photoreceptor function is largely transient, peaking soon after eye opening. Together, these results suggest that the general photosensitivity of the retina is modulated following eye opening by retrograde transport through activity-dependent retinal ganglion cell axonal signaling targeting TrkB receptors.
Collapse
Affiliation(s)
- Benjamin J Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - François Tremblay
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,Izaak Walton Killam Health Centre, Halifax, NS, Canada
| |
Collapse
|
10
|
Radiske A, Gonzalez MC, Nôga DA, Rossato JI, Bevilaqua LRM, Cammarota M. mTOR inhibition impairs extinction memory reconsolidation. ACTA ACUST UNITED AC 2020; 28:1-6. [PMID: 33323495 PMCID: PMC7747651 DOI: 10.1101/lm.052068.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Fear-motivated avoidance extinction memory is prone to hippocampal brain-derived neurotrophic factor (BDNF)-dependent reconsolidation upon recall. Here, we show that extinction memory recall activates mammalian target of rapamycin (mTOR) in dorsal CA1, and that post-recall inhibition of this kinase hinders avoidance extinction memory persistence and recovers the learned aversive response. Importantly, coadministration of recombinant BDNF impedes the behavioral effect of hippocampal mTOR inhibition. Our results demonstrate that mTOR signaling is necessary for fear-motivated avoidance extinction memory reconsolidation and suggests that BDNF acts downstream mTOR in a protein synthesis-independent manner to maintain the reactivated extinction memory trace.
Collapse
Affiliation(s)
- Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Maria Carolina Gonzalez
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil.,Edmond and Lily Safra International Institute of Neuroscience, RN 59280-000 Macaiba, Brazil
| | - Diana A Nôga
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil.,Departament of Physiology, Federal University of Rio Grande do Norte, RN 59064-741 Natal, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450 Natal, Brazil
| |
Collapse
|
11
|
Miranda M, Morici JF, Gallo F, Piromalli Girado D, Weisstaub NV, Bekinschtein P. Molecular mechanisms within the dentate gyrus and the perirhinal cortex interact during discrimination of similar nonspatial memories. Hippocampus 2020; 31:140-155. [PMID: 33064924 DOI: 10.1002/hipo.23269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/29/2020] [Accepted: 09/13/2020] [Indexed: 12/27/2022]
Abstract
Differentiating between similar memories is a crucial cognitive function that enables correct episodic memory formation. The ability to separate the components of memories into distinct representations is thought to rely on a computational process known as pattern separation, by which differences are amplified to disambiguate similar events. Although pattern separation has been localized to the dentate gyrus (DG) of the hippocampus and shown to occur in a spatial domain, this cognitive function takes place also during processing of other types of information. In particular, there is some debate on whether the DG participates in pattern separation of nonspatial representations. Considering the classic role of the Prh in the acquisition and storage of object memories in general and tasks with similar features in particular, this cognitive function could rely more heavily on perirhinal regions when object-related information is processed. Here we show that two plasticity-related proteins, BDNF, and Arc, are required in the DG for nonspatial mnemonic differentiation. Moreover, we found that the crucial role of the DG is transient since activity of AMPAR is only required in the Prh but not the DG during differentiated object memory retrieval. Additionally, this memory is not modifiable by postacquisition rhBDNF infusions in the DG that are known to improve memory when given in the Prh. This highlights a differential role of Prh and DG during differentiated object memory consolidation. Additionally, we found that these molecular mechanisms actively interact in the DG and Prh for the formation of distinguishable memories, with infusions of rhBDNF in the Prh being able to rescue mnemonic deficits caused by reduced Arc expression in the DG. These results reveal a complex interaction between plasticity mechanisms in the Prh and DG for nonspatial pattern separation and posit the Prh as the key structure where unique object representations are stored.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Juan Facundo Morici
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Francisco Gallo
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Dinka Piromalli Girado
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Noelia V Weisstaub
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Solís 453, Buenos Aires, 1071, Argentina
| |
Collapse
|
12
|
Abstract
The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF concentration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further, we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological conditions.
Collapse
Affiliation(s)
- Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482, Zweibrücken, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University, D-39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
13
|
Martínez‐Laorden E, Navarro‐Zaragoza J, Milanés M, Laorden M, Almela P. Conditioned aversive memory associated with morphine withdrawal increases brain-derived neurotrophic factor in dentate gyrus and basolateral amygdala. Addict Biol 2020; 25:e12792. [PMID: 31282111 DOI: 10.1111/adb.12792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/12/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Morphine has been shown to increase the expression of brain-derived neurotrophic factor (BDNF) in the brain. However, little is known about the effect of conditioned naloxone-precipitated morphine withdrawal on BDNF and its precursor protein, proBDNF. We used the conditioned place aversion (CPA) paradigm to evaluate the role of corticotropin-releasing factor (CRF)/CRF1 receptor signaling on the BDNF expression and corticosterone plasma levels after CPA expression and extinction. Male mice were rendered dependent on morphine and injected acutely with naloxone before paired to confinement in a naloxone-associated compartment. The expression of BDNF and proBDNF in the dentate gyrus (DG) and basolateral amygdala (BLA) was measured in parallel with the corticosterone plasma levels with and without CRF1 receptor blockade. Mice subjected to conditioned naloxone-induced morphine withdrawal showed an increased expression of BDNF (in DG and BLA) in parallel with an enhancement of corticosterone plasma levels. These results demonstrated that BDNF expression together with the increased activity of hypothalamic-pituitary-adrenocortical (HPA) axis are critical to the acquisition of aversive memory. However, we have observed a decrease in corticosterone plasma levels and BDNF expression after CPA extinction reaffirming the importance of BDNF in the maintenance of aversive memory. In addition, the pre-treatment with the CRF1 receptor antagonist CP-154 526 before naloxone conditioning session impaired morphine withdrawal-induced aversive memory acquisition, the increased corticosterone plasma levels, and the expression of BDNF observed after CPA expression in the DG and BLA. Altogether, present results are suggesting a clear connection between HPA axis and BDNF in the formation and extinction of aversive memory.
Collapse
Affiliation(s)
| | | | | | - Maria‐Luisa Laorden
- Department of Pharmacology, Faculty of Medicine University of Murcia Murcia Spain
| | - Pilar Almela
- Department of Pharmacology, Faculty of Medicine University of Murcia Murcia Spain
| |
Collapse
|
14
|
Fred SM, Laukkanen L, Brunello CA, Vesa L, Göös H, Cardon I, Moliner R, Maritzen T, Varjosalo M, Casarotto PC, Castrén E. Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2. J Biol Chem 2019; 294:18150-18161. [PMID: 31631060 PMCID: PMC6885648 DOI: 10.1074/jbc.ra119.008837] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/15/2019] [Indexed: 01/19/2023] Open
Abstract
Several antidepressant drugs activate tropomyosin-related kinase B (TRKB) receptor, but it remains unclear whether these compounds employ a common mechanism for TRKB activation. Here, using MS, we found that a single intraperitoneal injection of fluoxetine disrupts the interaction of several proteins with TRKB in the hippocampus of mice. These proteins included members of adaptor protein complex-2 (AP-2) involved in vesicular endocytosis. The interaction of TRKB with the cargo-docking μ subunit of the AP-2 complex (AP2M) was confirmed to be disrupted by both acute and repeated fluoxetine treatments. Of note, fluoxetine disrupted the coupling between full-length TRKB and AP2M, but not the interaction between AP2M and the TRKB C-terminal region, indicating that the fluoxetine-binding site in TRKB lies outside the TRKB:AP2M interface. ELISA experiments revealed that in addition to fluoxetine, other chemically diverse antidepressants, such as imipramine, rolipram, phenelzine, ketamine, and its metabolite 2R,6R-hydroxynorketamine, also decreased the interaction between TRKB and AP2M in vitro Silencing the expression of AP2M in a TRKB-expressing mouse fibroblast cell line (MG87.TRKB) increased cell-surface expression of TRKB and facilitated its activation by brain-derived neurotrophic factor (BDNF), observed as levels of phosphorylated TRKB. Moreover, animals haploinsufficient for the Ap2m1 gene displayed increased levels of active TRKB, along with enhanced cell-surface expression of the receptor in cultured hippocampal neurons. Taken together, our results suggest that disruption of the TRKB:AP2M interaction is a common mechanism underlying TRKB activation by several chemically diverse antidepressants.
Collapse
Affiliation(s)
- Senem Merve Fred
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Liina Laukkanen
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Cecilia A Brunello
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Liisa Vesa
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Helka Göös
- Institute of Biotechnology-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Iseline Cardon
- Brain Master Program, Faculty of Science, Aix-Marseille Université, 13007 Marseille, France
| | - Rafael Moliner
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Markku Varjosalo
- Institute of Biotechnology-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Plinio C Casarotto
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| | - Eero Castrén
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Gaidin SG, Turovskaya MV, Gavrish MS, Babaev AA, Mal'tseva VN, Blinova EV, Turovsky EA. The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. Int J Neurosci 2019; 130:363-383. [PMID: 31694441 DOI: 10.1080/00207454.2019.1691205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: Cerebral ischemia is accompanied by damage and death of a significant number of neurons due to glutamate excitotoxicity with subsequent a global increase of cytosolic Ca2+ concentration ([Ca2+]i). This study aimed to investigate the neuroprotective action of BDNF overexpression in hippocampal neurons against injury under ischemia-like conditions (oxygen and glucose deprivation) and glutamate-induced excitotoxicity (GluTox).Methods: The overexpression of BDNF was reached by the transduction of cell cultures with the adeno-associated (AAV)-Syn-BDNF-EGFP virus construct. Neuroprotective effects were mediated by Ca2+-dependent BDNF release followed by activation of the neuroprotective signaling cascades and changes of the gene expression. Thus, BDNF overexpression modulates Ca2+ homeostasis in cells, preventing Ca2+ overload and initiation of apoptotic and necrotic processes.Results:Antiapoptotic effect of BDNF overexpression is mediated via activation of phosphoinositide-3-kinase (PI3K) pathway and changing the expression of PI3K, HIF-1, Src and an anti-inflammatory cytokine IL-10. On the contrary, the decrease of expression of proapoptotic proteins such as Jun, Mapk8, caspase-3 and an inflammatory cytokine IL-1β was observed. These changes of expression were accompanied by the decrease of quantity of IL-1β receptors and the level of TNFα in cells in control, as well as 24 h after OGD. Besides, BDNF overexpression changes the expression of GABA(B) receptors. Also, the expression of NMDA and AMPA receptor subunits was altered towards a change in the conductivity of the receptors for Ca2+.Conclusion: Thus, our results demonstrate that neuronal BDNF overexpression reveals complex neuroprotective effects on the neurons and astrocytes under OGD and GluTox via inhibition of Ca2+ responses and regulation of gene expression.
Collapse
Affiliation(s)
- S G Gaidin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M V Turovskaya
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M S Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V N Mal'tseva
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - E V Blinova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,N. P. Ogarev Mordovia State University, Saransk, Russia
| | - E A Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
16
|
Ortiz-Pérez A, Limón-Morales O, Rojas-Castañeda J, Cerbón M, Picazo O. Prolactin prevents the kainic acid-induced neuronal loss in the rat hippocampus by inducing prolactin receptor and putatively increasing the VGLUT1 overexpression. Neurosci Lett 2019; 694:116-123. [DOI: 10.1016/j.neulet.2018.11.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
|
17
|
Barford K, Keeler A, McMahon L, McDaniel K, Yap CC, Deppmann CD, Winckler B. Transcytosis of TrkA leads to diversification of dendritic signaling endosomes. Sci Rep 2018; 8:4715. [PMID: 29549340 PMCID: PMC5856830 DOI: 10.1038/s41598-018-23036-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/05/2018] [Indexed: 01/16/2023] Open
Abstract
The development of the peripheral nervous system relies on long-distance signaling from target organs back to the soma. In sympathetic neurons, this long-distance signaling is mediated by target derived Nerve Growth Factor (NGF) interacting with its axonal receptor, TrkA. This ligand receptor complex internalizes into what is commonly referred to as the signaling endosome which is transported retrogradely to the soma and dendrites to mediate survival signaling and synapse formation, respectively. The molecular identity of signaling endosomes in dendrites has not yet been determined. Here, we perform a detailed analysis of TrkA endosomal compartments and trafficking patterns. We find that signaling endosomes are not uniform but molecularly diversified into Rab7 (late endosome) and Rab11 (recycling endosome) populations in axons and dendrites in vitro and in the soma in vivo. Surprisingly, TrkA-NGF signaling endosomes in dendrites undergo dynamic trafficking events, including putative fusion and fission. Overall, we find that signaling endosomes do not remain as a singular endosomal subtype but instead exist in multiple populations that undergo dynamic endosomal trafficking events. These dynamic events might drive functional diversification of the signaling endosome.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Austin Keeler
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Kathryn McDaniel
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Christopher D Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903, USA. .,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903, USA.
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA.
| |
Collapse
|
18
|
Hing B, Sathyaputri L, Potash JB. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2018; 177:143-167. [PMID: 29243873 DOI: 10.1002/ajmg.b.32616] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a mood disorder that affects behavior and impairs cognition. A gene potentially important to this disorder is the brain derived neurotrophic factor (BDNF) as it is involved in processes controlling neuroplasticity. Various mechanisms exist to regulate BDNF's expression level, subcellular localization, and sorting to appropriate secretory pathways. Alterations to these processes by genetic factors and negative stressors can dysregulate its expression, with possible implications for MDD. Here, we review the mechanisms governing the regulation of BDNF expression, and discuss how disease-associated single nucleotide polymorphisms (SNPs) can alter these mechanisms, and influence MDD. As negative stressors increase the likelihood of MDD, we will also discuss the impact of these stressors on BDNF expression, the cellular effect of such a change, and its impact on behavior in animal models of stress. We will also describe epigenetic processes that mediate this change in BDNF expression. Similarities in BDNF expression between animal models of stress and those in MDD will be highlighted. We will also contrast epigenetic patterns at the BDNF locus between animal models of stress, and MDD patients, and address limitations to current clinical studies. Future work should focus on validating current genetic and epigenetic findings in tightly controlled clinical studies. Regions outside of BDNF promoters should also be explored, as should other epigenetic marks, to improve identification of biomarkers for MDD.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leela Sathyaputri
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James B Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
19
|
Gaydukov AE, Akutin IA, Bogacheva PO, Balezina OP. Changes in the Parameters of Quantal Acetylcholine Release after Activation of PAR1-Type Thrombin Receptors at the Mouse Neuromuscular Junctions. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Lao-Peregrín C, Ballesteros JJ, Fernández M, Zamora-Moratalla A, Saavedra A, Gómez Lázaro M, Pérez-Navarro E, Burks D, Martín ED. Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling. Addict Biol 2017; 22:1706-1718. [PMID: 27457910 PMCID: PMC5697621 DOI: 10.1111/adb.12433] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
Caffeine has cognitive‐enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor‐independent form of LTP (CAFLTP) in the CA1 region of the hippocampus by promoting calcium‐dependent secretion of BDNF, which subsequently activates TrkB‐mediated signaling required for the expression of CAFLTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAFLTP, a process that requires cytosolic free Ca2+. Consistent with the involvement of IRS2 signals in caffeine‐mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2−/− mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3‐kinase (PI3K) pathway. These findings indicate that TrkB‐IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.
Collapse
Affiliation(s)
- Cristina Lao-Peregrín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Jesús Javier Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Miriam Fernández
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - María Gómez Lázaro
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - Deborah Burks
- Centro de Investigación Príncipe Felipe, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Spain
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| |
Collapse
|
21
|
Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor. Cell Mol Life Sci 2017; 74:4369-4385. [PMID: 28698933 DOI: 10.1007/s00018-017-2589-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/15/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022]
Abstract
Proper communication among neurons depends on an appropriately formed dendritic arbor, and thus, aberrant changes to the arbor are implicated in many pathologies, ranging from cognitive disorders to neurodegenerative diseases. Due to the importance of dendritic shape to neuronal network function, the morphology of dendrites is tightly controlled and is influenced by both intrinsic and extrinsic factors. In this work, we examine how brain-derived neurotrophic factor (BDNF), one of the most well-studied extrinsic regulators of dendritic branching, affects the arbor when it is applied locally via microbeads to cultures of hippocampal neurons. We found that local application of BDNF increases both proximal and distal branching in a time-dependent manner and that local BDNF application attenuates pruning of dendrites that occurs with neuronal maturation. Additionally, we examined whether cytosolic PSD-95 interactor (cypin), an intrinsic regulator of dendritic branching, plays a role in these changes and found strong evidence for the involvement of cypin in BDNF-promoted increases in dendrites after 24 but not 48 h of application. This current study extends our previous work in which we found that bath application of BDNF for 72 h, but not shorter times, increases proximal dendrite branching and that this increase occurs through transcriptional regulation of cypin. Moreover, this current work illustrates how dendritic branching is regulated differently by the same growth factor depending on its spatial localization, suggesting a novel pathway for modulation of dendritic branching locally.
Collapse
|
22
|
Sasi M, Vignoli B, Canossa M, Blum R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch 2017; 469:593-610. [PMID: 28280960 PMCID: PMC5438432 DOI: 10.1007/s00424-017-1964-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of secreted proteins. Signaling cascades induced by BDNF and its receptor, the receptor tyrosine kinase TrkB, link neuronal growth and differentiation with synaptic plasticity. For this reason, interference with BDNF signaling has emerged as a promising strategy for potential treatments in psychiatric and neurological disorders. In many brain circuits, synaptically released BDNF is essential for structural and functional long-term potentiation, two prototypical cellular models of learning and memory formation. Recent studies have revealed an unexpected complexity in the synaptic communication of mature BDNF and its precursor proBDNF, not only between local pre- and postsynaptic neuronal targets but also with participation of glial cells. Here, we consider recent findings on local actions of the BDNF family of ligands at the synapse and discuss converging lines of evidence which emerge from per se conflicting results.
Collapse
Affiliation(s)
- Manju Sasi
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078, Würzburg, Germany
| | - Beatrice Vignoli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123, Povo, TN, Italy
| | - Marco Canossa
- Centre for Integrative Biology (CIBIO), University of Trento, 38123, Povo, TN, Italy.,European Brain Research Institute (EBRI) "Rita Levi-Montalcini", 00143, Rome, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078, Würzburg, Germany.
| |
Collapse
|
23
|
Fukata Y, Yokoi N, Miyazaki Y, Fukata M. The LGI1–ADAM22 protein complex in synaptic transmission and synaptic disorders. Neurosci Res 2017; 116:39-45. [DOI: 10.1016/j.neures.2016.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022]
|
24
|
Vignoli B, Canossa M. Glioactive ATP controls BDNF recycling in cortical astrocytes. Commun Integr Biol 2017; 10:e1277296. [PMID: 28289489 PMCID: PMC5333523 DOI: 10.1080/19420889.2016.1277296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
We have recently reported that long-term memory retention requires synaptic glia for proBDNF uptake and recycling. Through the recycling course, glial cells release endocytic BDNF, a mechanism that is activated in response to glutamate via AMPA and mGluRI/II receptors. Cortical astrocytes express receptors for many different transmitters suggesting for a complex signaling controlling endocytic BDNF secretion. Here, we demonstrated that the extracellular nucleotide ATP, activating P2X and P2Y receptors, regulates endocytic BDNF secretion in cultured astrocytes. Our data indicate that distinct glioactive molecules can participate in BDNF glial recycling and suggest that cortical astrocytes contributing to neuronal plasticity can be influenced by neurotransmitters in tune with synaptic needs.
Collapse
Affiliation(s)
- Beatrice Vignoli
- Centre for Integrative Biology (CIBIO), University of Trento , Povo (TN), Italy
| | - Marco Canossa
- Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy; European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
25
|
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to a family of small secreted proteins that also include nerve growth factor, neurotrophin 3, and neurotrophin 4. BDNF stands out among all neurotrophins by its high expression levels in the brain and its potent effects at synapses. Several aspects of BDNF biology such as transcription, processing, and secretion are regulated by synaptic activity. Such observations prompted the suggestion that BDNF may regulate activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP), a sustained enhancement of excitatory synaptic efficacy thought to underlie learning and memory. Here, we will review the evidence pointing to a fundamental role of this neurotrophin in LTP, especially within the hippocampus. Prominent questions in the field, including the release and action sites of BDNF during LTP, as well as the signaling and molecular mechanisms involved, will also be addressed. The diverse effects of BDNF at excitatory synapses are determined by the activation of TrkB receptors and downstream signaling pathways, and the functions, typically opposing in nature, of its immature form (proBDNF). The activation of p75NTR receptors by proBDNF and the implications for long-term depression will also be addressed. Finally, we discuss the synergy between TrkB and glucocorticoid receptor signaling to determine cellular responses to stress.
Collapse
Affiliation(s)
- G Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - C R Bramham
- K.G. Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
26
|
Vignoli B, Battistini G, Melani R, Blum R, Santi S, Berardi N, Canossa M. Peri-Synaptic Glia Recycles Brain-Derived Neurotrophic Factor for LTP Stabilization and Memory Retention. Neuron 2016; 92:873-887. [PMID: 27746130 DOI: 10.1016/j.neuron.2016.09.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/24/2016] [Accepted: 09/08/2016] [Indexed: 10/20/2022]
Abstract
Glial cells respond to neuronal activation and release neuroactive molecules (termed "gliotransmitters") that can affect synaptic activity and modulate plasticity. In this study, we used molecular genetic tools, ultra-structural microscopy, and electrophysiology to assess the role of brain-derived neurotrophic factor (BDNF) on cortical gliotransmission in vivo. We find that glial cells recycle BDNF that was previously secreted by neurons as pro-neurotrophin following long-term potentiation (LTP)-inducing electrical stimulation. Upon BDNF glial recycling, we observed tight, temporal, highly localized TrkB phosphorylation on adjacent neurons, a process required to sustain LTP. Engagement of BDNF recycling by astrocytes represents a novel mechanism by which cortical synapses can expand BDNF action and provide synaptic changes that are relevant for the acquisition of new memories. Accordingly, mice deficient in BDNF glial recycling fail to recognize familiar from novel objects, indicating a physiological requirement for this process in memory consolidation.
Collapse
Affiliation(s)
- Beatrice Vignoli
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", via del Fosso di Fiorano 64, 00143 Rome, Italy; Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Povo (TN), Italy.
| | - Giulia Battistini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, via San Donato 15, 40127 Bologna, Italy
| | - Riccardo Melani
- National Research Council (CNR), Institute of Neuroscience, via Moruzzi 1, 56100 Pisa, Italy
| | - Robert Blum
- Institute for Clinical Neurobiology, University Hospital, Julius Maximilians University, Versbacher Straße 5, 97078 Würzburg, Germany
| | - Spartaco Santi
- National Research Council (CNR), Institute of Molecular Genetics (IGM), Laboratory of Muscoloskeletal Cell Biology, IOR, via di Barbiano1/10, 40136 Bologna, Italy
| | - Nicoletta Berardi
- National Research Council (CNR), Institute of Neuroscience, via Moruzzi 1, 56100 Pisa, Italy; Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, via di San Salvi 26, 50100 Florence, Italy
| | - Marco Canossa
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", via del Fosso di Fiorano 64, 00143 Rome, Italy; Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Povo (TN), Italy.
| |
Collapse
|
27
|
Pang PT, Nagappan G, Guo W, Lu B. Extracellular and intracellular cleavages of proBDNF required at two distinct stages of late-phase LTP. NPJ SCIENCE OF LEARNING 2016; 1:16003. [PMID: 30792890 PMCID: PMC6380376 DOI: 10.1038/npjscilearn.2016.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/18/2016] [Accepted: 03/06/2016] [Indexed: 05/07/2023]
Abstract
Although late-phase long-term potentiation (L-LTP) is implicated in long-term memory, its molecular mechanisms are largely unknown. Here we provide evidence that L-LTP can be divided into two stages: an induction stage (I) and a maintenance stage (II). Both stages require mature brain-derived neurotrophic factor (mBDNF), but involve distinct underlying mechanisms. Stage I requires secretion of existing proBDNF followed by extracellular cleavage by tPA/plasmin. Stage II depends on newly synthesized BDNF. Surprisingly, mBDNF at stage II is derived from intracellular cleavage of proBDNF by furin/PC1. Moreover, stage I involves BDNF-TrkB signaling mainly through MAP kinase, whereas all three signaling pathways (phospholipase C-γ, PI3 kinase, and MAP kinase) are required for the maintenance of L-LTP at stage II. These results reveal the molecular basis for two temporally distinct stages in L-LTP, and provide insights on how BDNF modulates this long-lasting synaptic alternation at two critical time windows.
Collapse
Affiliation(s)
- Petti T Pang
- National Institute of Child Health and Human Development, Bethesda, MD, USA
- Sanofi-Genzyme, Framingham, MA, USA
| | - Guhan Nagappan
- National Institute of Child Health and Human Development, Bethesda, MD, USA
- GlaxoSmithKline, R&D China, Shanghai, China
| | - Wei Guo
- School of Medicine, Tsinghua Univ., Beijing, China
| | - Bai Lu
- National Institute of Child Health and Human Development, Bethesda, MD, USA
- School of Medicine, Tsinghua Univ., Beijing, China
- ()
| |
Collapse
|
28
|
Ju YY, Long JD, Liu Y, Liu JG. Formation of aversive memories associated with conditioned drug withdrawal requires BDNF expression in the amygdala in acute morphine-dependent rats. Acta Pharmacol Sin 2015; 36:1437-43. [PMID: 26567727 DOI: 10.1038/aps.2015.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/14/2015] [Indexed: 01/14/2023]
Abstract
AIM Brain-derived neurotrophic factor (BDNF) plays an important role in learning and memory in multiple brain areas. In the present study, we investigated the roles of BDNF in aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats. METHODS Conditioned place aversion (CPA) was induced in male SD rats exposed to a single dose of morphine (10 mg/kg, sc) followed by naloxone (0.3 mg/kg, sc). In some rats, BDNF receptor antagonist K252a (8.5 ng per side) or BDNF scavenger TrkB-FC (0.65 μg per side) was bilaterally microinjected into amygdala before naloxone injection. BDNF mRNA and protein expression levels in amygdala were detected after the behavior testing. RESULTS CPA behavior was induced in rats by the naloxone-precipitated morphine withdrawal, which was accompanied by significantly increased levels of BDNF mRNA and protein in the amygdala. Bilateral microinjection of TrkB-FC or K252a into the amygdala completely blocked CPA behavior in the rats. CONCLUSION Formation of aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats requires BDNF expression in the amygdala.
Collapse
|
29
|
Combined ampakine and BDNF treatments enhance poststroke functional recovery in aged mice via AKT-CREB signaling. J Cereb Blood Flow Metab 2015; 35:1272-9. [PMID: 25757752 PMCID: PMC4528000 DOI: 10.1038/jcbfm.2015.33] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Cerebral ischemia results in damage to neuronal circuits and lasting impairment in function. We have previously reported that stimulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors with the ampakine, CX1837, increases brain-derived neurotrophic factor (BDNF) levels and affords significant motor recovery after stroke in young mice. Here, we investigated whether administration of CX1837 in aged (24 months old) mice was equally effective. In a model of focal ischemia, administration of CX1837 from 5 days after stroke resulted in a small gain of motor function by week 6 after stroke. Mice that received a local delivery of BDNF via hydrogel implanted into the stroke cavity also showed a small gain of function from 4 to 6 weeks after stroke. Combining both treatments, however, resulted in a marked improvement in motor function from 2 weeks after insult. Assessment of peri-infarct tissue 2 weeks after stroke revealed a significant increase in p-AKT and p-CREB after the combined drug treatment. Using the pan-AKT inhibitor, GSK-690693, or deletion of CREB from forebrain neurons using the CREB-flox/CAMKii-cre mice, we were able to block the recovery of motor function. These data suggest that combined CX1837 and local delivery of BDNF are required to achieve maximal functional recovery after stroke in aged mice, and is occurring via the AKT-GSK3-CREB signaling pathway.
Collapse
|
30
|
Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proc Natl Acad Sci U S A 2015. [PMID: 26216953 DOI: 10.1073/pnas.1511830112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetitive neuronal spiking induced the release of BDNF-QDs at these sites, and this process required activation of glutamate receptors. Down-regulating complexin 1/2 (Cpx1/2) expression eliminated activity-induced BDNF-QD secretion, although the overall activity-independent secretion was elevated. Among eight synaptotagmin (Syt) isoforms examined, down-regulation of only Syt6 impaired activity-induced BDNF-QD secretion. In contrast, activity-induced release of endogenously synthesized BDNF did not depend on Syt6. Thus, neuronal activity could trigger the release of endosomal BDNF from postsynaptic dendrites in a Cpx- and Syt6-dependent manner, and endosomes containing BDNF may serve as a source of BDNF for activity-dependent synaptic modulation.
Collapse
|
31
|
Abstract
Therapies based on the impairment of reconsolidation or the enhancement of extinction offer the possibility of decreasing the persistent recollection of distressing memories. However, the direct interplay between reconsolidation and extinction has rarely been considered. Previously, we reported that reactivation induces reconsolidation of fear extinction memory. Here, using a step-down inhibitory avoidance learning paradigm in rats, we show that intrahippocampus infusion of function-blocking anti-BDNF antibody immediately or 6 h after extinction memory reactivation impairs the reconsolidation of extinction. Extinction memory reactivation increases proBDNF, BDNF, and tropomyosin receptor kinase B (TrkB) phosphorylation levels in dorsal CA1, while blocking BDNF maturation in the hippocampus with plasminogen activator inhibitor 1 hinders the persistence of extinction and induces the recurrence of fear. Moreover, coinfusion of recombinant BDNF (0.25 μg/side) after extinction memory reactivation impedes the recovery of the avoidance response induced by inhibiting gene expression and protein synthesis in the dorsal hippocampus. Our findings unravel a new role for BDNF, suggesting that this neurotrophin is necessary and sufficient to maintain the reactivated fear extinction engram.
Collapse
|
32
|
Powers MB, Medina JL, Burns S, Kauffman BY, Monfils M, Asmundson GJG, Diamond A, McIntyre C, Smits JAJ. Exercise Augmentation of Exposure Therapy for PTSD: Rationale and Pilot Efficacy Data. Cogn Behav Ther 2015; 44:314-27. [PMID: 25706090 DOI: 10.1080/16506073.2015.1012740] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is associated with synaptic plasticity, which is crucial for long-term learning and memory. Some studies suggest that people suffering from anxiety disorders show reduced BDNF relative to healthy controls. Lower BDNF is associated with impaired learning, cognitive deficits, and poor exposure-based treatment outcomes. A series of studies with rats showed that exercise elevates BDNF and enhances fear extinction. However, this strategy has not been tested in humans. In this pilot study, we randomized participants (N = 9, 8 females, M(Age) = 34) with posttraumatic stress disorder (PTSD) to (a) prolonged exposure alone (PE) or (b) prolonged exposure+exercise (PE+E). Participants randomized to the PE+E condition completed a 30-minute bout of moderate-intensity treadmill exercise (70% of age-predicted HR(max)) prior to each PE session. Consistent with prediction, the PE+E group showed a greater improvement in PTSD symptoms (d = 2.65) and elevated BDNF (d = 1.08) relative to the PE only condition. This pilot study provides initial support for further investigation into exercise augmented exposure therapy.
Collapse
Affiliation(s)
- Mark B Powers
- a Department of Psychology, Institute for Mental Health Research , The University of Texas at Austin , Austin , TX , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Panja D, Kenney J, D’Andrea L, Zalfa F, Vedeler A, Wibrand K, Fukunaga R, Bagni C, Proud C, Bramham C. Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK. Cell Rep 2014; 9:1430-45. [DOI: 10.1016/j.celrep.2014.10.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/18/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
|
34
|
Leal G, Afonso PM, Salazar IL, Duarte CB. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 2014; 1621:82-101. [PMID: 25451089 DOI: 10.1016/j.brainres.2014.10.019] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 01/01/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a major regulator of activity-dependent plasticity at excitatory synapses in the mammalian central nervous system. In particular, much attention has been given to the role of the neurotrophin in the regulation of hippocampal long-term potentiation (LTP), a sustained enhancement of excitatory synaptic strength believed to underlie learning and memory processes. In this review we summarize the evidence pointing to a role for BDNF in generating functional and structural changes at synapses required for both early- and late phases of LTP in the hippocampus. The available information regarding the pre- and/or postsynaptic release of BDNF and action of the neurotrophin during LTP will be also reviewed. Finally, we discuss the effects of BDNF on the synaptic proteome, either by acting on the protein synthesis machinery and/or by regulating protein degradation by calpains and possibly by the ubiquitin-proteasome system (UPS). This fine-tuned control of the synaptic proteome rather than a simple upregulation of the protein synthesis may play a key role in BDNF-mediated synaptic potentiation. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Graciano Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro M Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB) and Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
35
|
Andreska T, Aufmkolk S, Sauer M, Blum R. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. Front Cell Neurosci 2014; 8:107. [PMID: 24782711 PMCID: PMC3990111 DOI: 10.3389/fncel.2014.00107] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/25/2014] [Indexed: 11/23/2022] Open
Abstract
In the mammalian brain, the neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a key factor for synaptic refinement, plasticity and learning. Although BDNF-induced signaling cascades are well known, the spatial aspects of the synaptic BDNF localization remained unclear. Recent data provide strong evidence for an exclusive presynaptic location and anterograde secretion of endogenous BDNF at synapses of the hippocampal circuit. In contrast, various studies using BDNF overexpression in cultured hippocampal neurons support the idea that postsynaptic elements and other dendritic structures are the preferential sites of BDNF localization and release. In this study we used rigorously tested anti-BDNF antibodies and achieved a dense labeling of endogenous BDNF close to synapses. Confocal microscopy showed natural BDNF close to many, but not all glutamatergic synapses, while neither GABAergic synapses nor postsynaptic structures carried a typical synaptic BDNF label. To visualize the BDNF distribution within the fine structure of synapses, we implemented super resolution fluorescence imaging by direct stochastic optical reconstruction microscopy (dSTORM). Two-color dSTORM images of neurites were acquired with a spatial resolution of ~20 nm. At this resolution, the synaptic scaffold proteins Bassoon and Homer exhibit hallmarks of mature synapses and form juxtaposed bars, separated by a synaptic cleft. BDNF imaging signals form granule-like clusters with a mean size of ~60 nm and are preferentially found within the fine structure of the glutamatergic presynapse. Individual glutamatergic presynapses carried up to 90% of the synaptic BDNF immunoreactivity, and only a minor fraction of BDNF molecules was found close to the postsynaptic bars. Our data proof that hippocampal neurons are able to enrich and store high amounts of BDNF in small granules within the mature glutamatergic presynapse, at a principle site of synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Andreska
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg Würzburg, Germany
| | - Robert Blum
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg Würzburg, Germany
| |
Collapse
|
36
|
Zuccaro E, Bergami M, Vignoli B, Bony G, Pierchala BA, Santi S, Cancedda L, Canossa M. Polarized expression of p75(NTR) specifies axons during development and adult neurogenesis. Cell Rep 2014; 7:138-52. [PMID: 24685135 DOI: 10.1016/j.celrep.2014.02.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 02/10/2014] [Accepted: 02/20/2014] [Indexed: 01/07/2023] Open
Abstract
VIDEO ABSTRACT Newly generated neurons initiate polarizing signals that specify a single axon and multiple dendrites, a process critical for patterning neuronal circuits in vivo. Here, we report that the pan-neurotrophin receptor p75(NTR) is a polarity regulator that localizes asymmetrically in differentiating neurons in response to neurotrophins and is required for specification of the future axon. In cultured hippocampal neurons, local exposure to neurotrophins causes early accumulation of p75(NTR) into one undifferentiated neurite to specify axon fate. Moreover, knockout or knockdown of p75(NTR) results in failure to initiate an axon in newborn neurons upon cell-cycle exit in vitro and in the developing cortex, as well as during adult hippocampal neurogenesis in vivo. Hence, p75(NTR) governs neuronal polarity, determining pattern and assembly of neuronal circuits in adult hippocampus and cortical development.
Collapse
Affiliation(s)
- Emanuela Zuccaro
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy
| | - Matteo Bergami
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Beatrice Vignoli
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy
| | - Guillaume Bony
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Spartaco Santi
- National Research Council (CNR), Institute of Molecular Genetics (IGM)-Bologna, Laboratory of Muscoloskeletal Cell Biology, IOR, via di Barbiano1/10, I-40136 Bologna, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy.
| | - Marco Canossa
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), via Morego 30, I-16163 Genoa, Italy; European Brain Research Institute (EBRI) "Rita Levi-Montalcini," via del Fosso di Fiorano 64/65, I-00143 Rome, Italy.
| |
Collapse
|
37
|
Tarasyuk AV, Gudasheva TA, Sazonova NM, Antipov PI, Kurilov DV, Povarnina PY, Logvinov IO, Antipova TA, Seredenin SB. Study of structure-activity relationship among similar analogues of GSB-106, a dipeptide mimetic of a brain-derived neurotrophic factor. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
The BDNF/TrkB signaling pathway is involved in heat hyperalgesia mediated by Cdk5 in rats. PLoS One 2014; 9:e85536. [PMID: 24465591 PMCID: PMC3897472 DOI: 10.1371/journal.pone.0085536] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
Background Cyclin-dependent kinase 5 (Cdk5) has been shown to play an important role in mediating inflammation-induced heat hyperalgesia. However, the underlying mechanism remains unclear. The aim of this study was to determine whether roscovitine, an inhibitor of Cdk5, could reverse the heat hyperalgesia induced by peripheral injection of complete Freund's adjuvant (CFA) via the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway in the dorsal horn of the spinal cord in rats. Results Heat hyperalgesia induced by peripheral injection of CFA was significantly reversed by roscovitine, TrkB-IgG, and the TrkB inhibitor K252a, respectively. Furthermore, BDNF was significantly increased from 0.5 h to 24 h after CFA injection in the spinal cord dorsal horn. Intrathecal adminstration of the Cdk5 inhibitor roscovitine had no obvious effects on BDNF levels. Increased TrkB protein level was significantly reversed by roscovitine between 0.5 h and 6 h after CFA injection. Cdk5 and TrkB co-immunoprecipitation results suggested Cdk5 mediates the heat hyperalgesia induced by CFA injection by binding with TrkB, and the binding between Cdk5 and TrkB was markedly blocked by intrathecal adminstration of roscovitine. Conclusion Our data suggested that the BDNF-TrkB signaling pathway was involved in CFA-induced heat hyperalgesia mediated by Cdk5. Roscovitine reversed the heat hyperalgesia induced by peripheral injection of CFA by blocking BDNF/TrkB signaling pathway, suggesting that severing the close crosstalk between Cdk5 and the BDNF/TrkB signaling cascade may present a potential target for anti-inflammatory pain.
Collapse
|
39
|
D'Amore DE, Tracy BA, Parikh V. Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum. Neuropharmacology 2013; 75:312-23. [DOI: 10.1016/j.neuropharm.2013.07.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023]
|
40
|
Perovic M, Tesic V, Mladenovic Djordjevic A, Smiljanic K, Loncarevic-Vasiljkovic N, Ruzdijic S, Kanazir S. BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2057-2070. [PMID: 23255148 PMCID: PMC3824987 DOI: 10.1007/s11357-012-9495-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Neurotrophins are established molecular mediators of neuronal plasticity in the adult brain. We analyzed the impact of aging on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) protein isoforms, their receptors, and on the expression patterns of multiple 5' exon-specific BDNF transcripts in the rat cortex and hippocampus throughout the life span of the rat (6, 12, 18, and 24 months of age). ProNGF was increased during aging in both structures. Mature NGF gradually decreased in the cortex, and, in 24-month-old animals, it was 30% lower than that in adult 6-month-old rats. The BDNF expression did not change during aging, while proBDNF accumulated in the hippocampus of aged rats. Hippocampal total BDNF mRNA was lower in 12-month-old animals, mostly as a result of a decrease of BDNF transcripts 1 and 2. In contrast to the region-specific regulation of specific exon-containing BDNF mRNAs in adult animals, the same BDNF RNA isoforms (containing exons III, IV, or VI) were present in both brain structures of aged animals. Deficits in neurotrophin signaling were supported by the observed decrease in Trk receptor expression which was accompanied by lower levels of the two main downstream effector kinases, pAkt and protein kinase C. The proteolytic processing of p75NTR observed in 12-month-old rats points to an additional regulatory mechanism in early aging. The changes described herein could contribute to reduced brain plasticity underlying the age-dependent decline in cognitive function.
Collapse
Affiliation(s)
- Milka Perovic
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Vesna Tesic
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | | | - Kosara Smiljanic
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | | | - Sabera Ruzdijic
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Selma Kanazir
- />Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
- />Laboratory of Molecular Neurobiology, Department of Neurobiology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
41
|
Gudasheva TA, Logvinov IO, Antipova TA, Seredenin SB. Brain-derived neurotrophic factor loop 4 dipeptide mimetic GSB-106 activates TrkB, Erk, and Akt and promotes neuronal survival in vitro. DOKL BIOCHEM BIOPHYS 2013; 451:212-4. [PMID: 23975404 DOI: 10.1134/s1607672913040121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 12/14/2022]
Affiliation(s)
- T A Gudasheva
- Zakusov Research Institute of Pharmacology, Russian Academy of Medical Sciences, ul. Baltiiskaya 8, Moscow, 125315, Russia
| | | | | | | |
Collapse
|
42
|
BDNF-dependent recycling facilitates TrkB translocation to postsynaptic density during LTP via a Rab11-dependent pathway. J Neurosci 2013; 33:9214-30. [PMID: 23699532 DOI: 10.1523/jneurosci.3256-12.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the activity-dependent regulation of synaptic structure and function via tropomyosin related kinase B (TrkB) receptor activation. However, whether BDNF could regulate TrkB levels at synapse during long-term potentiation (LTP) is still unknown. We show in cultured rat hippocampal neurons that chemical LTP (cLTP) stimuli selectively promote endocytic recycling of BDNF-dependent full-length TrkB (TrkB-FL) receptors, but not isoform T1 (TrkB.T1) receptors, via a Rab11-dependent pathway. Moreover, neuronal-activity-enhanced TrkB-FL recycling could facilitate receptor translocation to postsynaptic density and enhance BDNF-induced extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation and rat hippocampal neuron survival. Finally, we found that cLTP could stimulate the switch of Rab11 from an inactive to an active form and that GTP-bound Rab11 could enhance the interaction between TrkB-FL and PSD-95. Therefore, the recycling endosome could serve as a reserve pool to supply TrkB-FL receptors for LTP maintenance. These findings provide a mechanistic link between Rab11-dependent endocytic recycling and TrkB modulation of synaptic plasticity.
Collapse
|
43
|
Aicardi G. Age-related impairment of visual recognition memory correlates with impaired synaptic distribution of GluA2 and protein kinase Mζ in the dentate gyrus. Rejuvenation Res 2013; 15:530-3. [PMID: 22985047 DOI: 10.1089/rej.2012.1375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Age-related functional alterations in the perforant path projection from the entorhinal cortex to the dentate gyrus (DG) of the hippocampus play a major role in age-related memory impairments, but little is known about the molecular mechanisms responsible for these changes. In a recent study, young and aged monkeys were tested on the visual recognition memory test "delayed nonmatching-to-sample"; then, electron microscopic immunocytochemistry was performed in the hippocampal DG to determine the subcellular localization of the GluA2 subunit of the glutamate α-amino-3-hydroxy-5-methyl-4- isoxazole-propionic acid receptor (AMPAR) and protein kinase Mζ (PKMζ), which promotes memory storage by regulating GluA2-containing AMPAR trafficking. The results obtained suggest that age-related deficits in visual recognition memory are coupled with impairment in PKMζ-dependent maintenance of GluA2 at the synapse. Together with previous evidences of the critical role of PKMζ in memory consolidation, these data render this enzyme an attractive potential therapeutic target for treating age-related memory decline, and support the view that the pharmacological manipulation of AMPAR trafficking in the synapses may provide new insights in the search of memory enhancers for aged individuals, including those affected by Alzheimer disease.
Collapse
Affiliation(s)
- Giorgio Aicardi
- Department of Human and General Physiology, and Interdepartmental Centre Luigi Galvani for the Study of Biophysics, Bioinformatics and Biocomplexity, University of Bologna, Via San Donato 19/2, Bologna, Italy.
| |
Collapse
|
44
|
Panja D, Bramham CR. BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology 2013; 76 Pt C:664-76. [PMID: 23831365 DOI: 10.1016/j.neuropharm.2013.06.024] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/21/2013] [Accepted: 06/23/2013] [Indexed: 12/12/2022]
Abstract
Unraveling the molecular mechanisms governing long-term synaptic plasticity is a key to understanding how the brain stores information in neural circuits and adapts to a changing environment. Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of stable, late phase long-term potentiation (L-LTP) at excitatory glutamatergic synapses in the adult brain. However, the mechanisms by which BDNF triggers L-LTP are controversial. Here, we distill and discuss the latest advances along three main lines: 1) TrkB receptor-coupled translational control underlying dendritic protein synthesis and L-LTP, 2) Mechanisms for BDNF-induced rescue of L-LTP when protein synthesis is blocked, and 3) BDNF-TrkB regulation of actin cytoskeletal dynamics in dendritic spines. Finally, we explore the inter-relationships between BDNF-regulated mechanisms, how these mechanisms contribute to different forms of L-LTP in the hippocampus and dentate gyrus, and outline outstanding issues for future research. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Debabrata Panja
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | |
Collapse
|
45
|
Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2013; 76 Pt C:610-27. [PMID: 23791959 DOI: 10.1016/j.neuropharm.2013.05.043] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|
46
|
Abstract
Dendritic arborization of neurons is regulated by brain-derived neurotrophic factor (BDNF) together with its receptor, TrkB. Endocytosis is required for dendritic branching and regulates TrkB signaling, but how postendocytic trafficking determines the neuronal response to BDNF is not well understood. The monomeric GTPase Rab11 regulates the dynamics of recycling endosomes and local delivery of receptors to specific dendritic compartments. We investigated whether Rab11-dependent trafficking of TrkB in dendrites regulates BDNF-induced dendritic branching in rat hippocampal neurons. We report that TrkB in dendrites is a cargo for Rab11 endosomes and that both Rab11 and its effector, MyoVb, are required for BDNF/TrkB-induced dendritic branching. In addition, BDNF induces the accumulation of Rab11-positive endosomes and GTP-bound Rab11 in dendrites and the expression of a constitutively active mutant of Rab11 is sufficient to increase dendritic branching by increasing TrkB localization in dendrites and enhancing sensitization to endogenous BDNF. We propose that Rab11-dependent dendritic recycling provides a mechanism to retain TrkB in dendrites and to increase local signaling to regulate arborization.
Collapse
|
47
|
Aicardi G. Protein kinase Mζ-dependent maintenance of GluA2 at the synapse: a possible target for preventing or treating age-related memory decline? Rejuvenation Res 2013; 16:327-9. [PMID: 23679685 DOI: 10.1089/rej.2013.1448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Age-related functional alterations in the perforant path projection from the entorhinal cortex to the dentate gyrus (DG) of the hippocampus play a major role in age-related memory impairments, but little is known about the molecular mechanisms responsible for these changes. In a recent interesting study, Hara and colleagues (J Neurosci 2012;32:7336-7344) tested young and aged monkeys on the visual recognition memory test "delayed nonmatching-to-sample" (DNMS). Then they performed electron microscopy immunocytochemistry in the hippocampal DG to determine the subcellular localization of the GluA2 subunit of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) and protein kinase Mζ (PKMζ), which promotes memory storage by regulating GluA2-containing AMPAR trafficking. The results obtained suggest that age-related deficits in visual recognition memory are coupled with impairment in PKMζ-dependent maintenance of GluA2 at the synapse. Together with previous evidence of the critical role of PKMζ in memory consolidation, these data render this enzyme an attractive potential therapeutic target for preventing or treating age-related memory decline, and support the view that the pharmacological manipulation of AMPAR trafficking in the synapses may provide new insights in the search of memory enhancers for aged individuals, including those affected by Alzheimer disease.
Collapse
Affiliation(s)
- Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
48
|
Abstract
Brain-derived neurotrophic factor (BDNF)--a member of a small family of secreted proteins that includes nerve growth factor, neurotrophin 3 and neurotrophin 4--has emerged as a key regulator of neural circuit development and function. The expression, secretion and actions of BDNF are directly controlled by neural activity, and secreted BDNF is capable of mediating many activity-dependent processes in the mammalian brain, including neuronal differentiation and growth, synapse formation and plasticity, and higher cognitive functions. This Review summarizes some of the recent progress in understanding the cellular and molecular mechanisms underlying neurotrophin regulation of neural circuits. The focus of the article is on BDNF, as this is the most widely expressed and studied neurotrophin in the mammalian brain.
Collapse
|
49
|
Ramirez-Amaya V, Angulo-Perkins A, Chawla MK, Barnes CA, Rosi S. Sustained transcription of the immediate early gene Arc in the dentate gyrus after spatial exploration. J Neurosci 2013; 33:1631-9. [PMID: 23345235 PMCID: PMC6618719 DOI: 10.1523/jneurosci.2916-12.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/12/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022] Open
Abstract
After spatial exploration in rats, Arc mRNA is expressed in ∼2% of dentate gyrus (DG) granule cells, and this proportion of Arc-positive neurons remains stable for ∼8 h. This long-term presence of Arc mRNA following behavior is not observed in hippocampal CA1 pyramidal cells. We report here that in rats ∼50% of granule cells with cytoplasmic Arc mRNA, induced some hours previously during exploration, also show Arc expression in the nucleus. This suggests that recent transcription can occur long after the exploration behavior that elicited it. To confirm that the delayed nuclear Arc expression was indeed recent transcription, Actinomycin D was administered immediately after exploration. This treatment resulted in inhibition of recent Arc expression both when evaluated shortly after exploratory behavior as well as after longer time intervals. Together, these data demonstrate a unique kinetic profile for Arc transcription in hippocampal granule neurons following behavior that is not observed in other cell types. Among a number of possibilities, this sustained transcription may provide a mechanism that ensures that the synaptic connection weights in the sparse population of granule cells recruited during a given behavioral event are able to be modified.
Collapse
Affiliation(s)
- Victor Ramirez-Amaya
- Redes Neuronales Plásticas Laboratory, Department of Neurobiología Conductual y Cognitiva Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| | | | | | | | | |
Collapse
|
50
|
Petoukhov E, Fernando S, Mills F, Shivji F, Hunter D, Krieger C, Silverman MA, Bamji SX. Activity-dependent secretion of progranulin from synapses. J Cell Sci 2013; 126:5412-21. [DOI: 10.1242/jcs.132076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The secreted growth factor progranulin (PGRN) has been shown to be important for regulating neuronal survival and outgrowth, as well as synapse formation and function. Mutations in the PGRN gene that result in PGRN haploinsufficiency have been identified as a major cause of frontotemporal dementia (FTD). Here we demonstrate that PGRN is colocalized with dense-core vesicle markers and is co-transported with brain-derived neurotrophic factor (BDNF) within axons and dendrites of cultured hippocampal neurons in both anterograde and retrograde directions. We also show that PGRN is secreted in an activity-dependent manner from synaptic and extrasynaptic sites, and that the temporal profiles of secretion are distinct in axons and dendrites. Neuronal activity is also shown to increase the recruitment of PGRN to synapses and to enhance the density of PGRN clusters along axons. Finally, treatment of neurons with recombinant PGRN is shown to increase synapse density, while decreasing the size of the presynaptic compartment and specifically the number of synaptic vesicles per synapse. Together, this indicates that activity-dependent secretion of PGRN can regulate synapse number and structure.
Collapse
|