1
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Targeting carbohydrate metabolism in colorectal cancer - synergy between DNA-damaging agents, cannabinoids, and intermittent serum starvation. Oncoscience 2024; 11:99-105. [PMID: 39534512 PMCID: PMC11556254 DOI: 10.18632/oncoscience.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Chemotherapy is a therapy of choice for many cancers. However, it is often inefficient for long-term patient survival and is usually accompanied by multiple adverse effects. The adverse effects are mainly associated with toxicity to normal cells, frequently resulting in immune system depression, nausea, loss of appetite and metabolic changes. In this respect, the combination of chemotherapy with cannabinoids, especially non-psychoactive, such as cannabidiol, cannabinol and other minor cannabinoids, as well as terpenes, may become very useful. This is especially pertinent because the mechanisms of anticancer effects of cannabinoids on cancer cells are often different from conventional chemotherapeutics. In addition, cannabinoids help alleviate chemotherapy-induced adverse effects, regulate sleep and appetite, and are shown to have analgesic properties. Another component for achieving potential anti-cancer synergism is regulating nutrient availability and metabolism by calorie restriction and intermittent fasting in cancer cells. As tumours require a lot of energy to grow and because glucose is constantly available, malignant cells often opt to use glucose as a primary source of ATP production through substrate-level phosphorylation (fermentation) rather than through oxidative phosphorylation. Thus, periodic depletion of cancer cells of primary fuel, glucose, could result in a strong synergy in killing cancer cells by chemo- and possibly radiotherapy when combined with cannabinoids. This commentary will discuss what is known about such combinatorial treatments, including potential mechanisms and future protocols.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Xie B, Zhou X, Luo C, Fang Y, Wang Y, Wei J, Cai L, Chen T. Reversal of Platinum-based Chemotherapy Resistance in Ovarian Cancer by Naringin Through Modulation of The Gut Microbiota in a Humanized Nude Mouse Model. J Cancer 2024; 15:4430-4447. [PMID: 38947385 PMCID: PMC11212103 DOI: 10.7150/jca.96448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024] Open
Abstract
As a chemotherapy agent, cisplatin (DDP) is often associated with drug resistance and gastrointestinal toxicity, factors that severely limit therapeutic efficacy in patients with ovarian cancer (OC). Naringin has been shown to increase sensitivity to cisplatin, but whether the intestinal microbiota is associated with this effect has not been reported so far. In this study, we applied a humanized mouse model for the first time to evaluate the reversal of cisplatin resistance by naringin, as well as naringin combined with the microbiota in ovarian cancer. The results showed that naringin combined with Bifidobacterium animalis subsp. lactis NCU-01 had an inhibitory effect on the tumor, significantly reducing tumor size (p<0.05), as well as the concentrations of serum tumor markers CA125 and HE4, increased the relative abundance of Bifidobacterium and Bacteroides, inhibit Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)-induced intestinal inflammation and increase the expression of intestinal permeability-associated proteins ZO-1 (p<0.001) and occludin (p<0.01). In conclusion, the above data demonstrate how naringin combined with Bifidobacterium animalis subsp. lactis NCU-01 reverses cisplatin resistance in ovarian cancer by modulating the intestinal microbiota, inhibiting the TLR4/NF-κB signaling pathway and modulating the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Bingqing Xie
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaoni Zhou
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chuanlin Luo
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yilin Fang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yufei Wang
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Liping Cai
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang,330031, Jiangxi, China
| |
Collapse
|
3
|
Mashayekh E, Ghiasi ZNK, Bhia I, Khorrami ZA, Malekahmadi O, Bhia M, Malekmohammadi S, Ertas YN. Metal-Organic Frameworks for Cisplatin Delivery to Cancer Cells: A Molecular Dynamics Simulation. ACS OMEGA 2024; 9:19627-19636. [PMID: 38708264 PMCID: PMC11064028 DOI: 10.1021/acsomega.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Metal-organic frameworks (MOFs) are utilized as nanocarriers to enhance the efficiency of chemotherapy drugs, including cisplatin, which exhibit limitations such as side effects and resistance mechanisms. To evaluate the role of MOFs, we employed a molecular dynamics simulation, which, unlike other experiments, is cost-effective, less dangerous, and provides accurate results. Furthermore, we conducted molecular docking simulations to understand the interaction between cisplatin and MOF, as well as their internal interactions and how they bind to each other. Cisplatin and MOF molecules were parametrized using the Avogadro software and x2top command in GROMACS 5.1.2 and optimized by CP2K software; the Charmm-GUI site parametrized the cell cancer membrane. Three molecular dynamics simulations were conducted in four stages at various pHs, followed by simulated umbrella sampling. The simulations analyzed the pH responsiveness, total energy, Gibbs free energy, gyration radius, radial distribution function (RDF), solvent accessible surface area, and nanoparticles' toxicity. Results demonstrated that a neutral pH level (7.4) has greater adsorption and interaction compared to acidic pH values (6.4 and 5.4) because it displays the highest total energy (-17.1 kJ/mol), the highest RDF value (6.66), and the shortest distance (0.51 nm). Furthermore, the combination of cisplatin and MOFs displayed increased penetration compared to that of their individual forms. This study highlights the suitability of MOFs as nanocarriers and identifies the optimal pH values for desirable outcomes. Thus, it provides future studies with appropriate data to conduct their experiments in assessing MOFs.
Collapse
Affiliation(s)
- Elham Mashayekh
- Department
of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115, Iran
| | - Zahra Nouri Khajeh Ghiasi
- Department
of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood 36155163, Iran
| | - Iman Bhia
- Faculty
of Medicine, Shahid Beheshti University
of Medical Sciences, Tehran 1985717443, Iran
| | - Zohreh Arefi Khorrami
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Omid Malekahmadi
- Department
of Mining and Metallurgical Engineering, Yazd University, Yazd 89195, Iran
| | - Mohammed Bhia
- Department
of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Samira Malekmohammadi
- School
of Materials, University of Manchester, Engineering Building A, MECD, Manchester M1 3BB, U.K.
| | - Yavuz Nuri Ertas
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Türkiye
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye
| |
Collapse
|
4
|
Cherkasova V, Ilnytskyy Y, Kovalchuk O, Kovalchuk I. Targeting Colorectal Cancer: Unravelling the Transcriptomic Impact of Cisplatin and High-THC Cannabis Extract. Int J Mol Sci 2024; 25:4439. [PMID: 38674023 PMCID: PMC11050262 DOI: 10.3390/ijms25084439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Cisplatin and other platinum-derived chemotherapy drugs have been used for the treatment of cancer for a long time and are often combined with other medications. Unfortunately, tumours often develop resistance to cisplatin, forcing scientists to look for alternatives or synergistic combinations with other drugs. In this work, we attempted to find a potential synergistic effect between cisplatin and cannabinoid delta-9-THC, as well as the high-THC Cannabis sativa extract, for the treatment of HT-29, HCT-116, and LS-174T colorectal cancer cell lines. However, we found that combinations of the high-THC cannabis extract with cisplatin worked antagonistically on the tested colorectal cancer cell lines. To elucidate the mechanisms of drug interactions and the distinct impacts of individual treatments, we conducted a comprehensive transcriptomic analysis of affected pathways within the colorectal cancer cell line HT-29. Our primary objective was to gain a deeper understanding of the underlying molecular mechanisms associated with each treatment modality and their potential interactions. Our findings revealed an antagonistic interaction between cisplatin and high-THC cannabis extract, which could be linked to alterations in gene transcription associated with cell death (BCL2, BAD, caspase 10), DNA repair pathways (Rad52), and cancer pathways related to drug resistance.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| |
Collapse
|
5
|
Wang YS, Yang SJ, Wan ZX, Shen A, Ahmad MJ, Chen MY, Huo LJ, Pan JH. Chlorothalonil exposure compromised mouse oocyte in vitro maturation through inducing oxidative stress and activating MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116100. [PMID: 38367607 DOI: 10.1016/j.ecoenv.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Xuan Wan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ao Shen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming-Yue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun-Hua Pan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
6
|
Federman N, Gordon EM, Chawla SP, Hall FL. Editorial: Celebrating the 200th mendel's anniversary: gene-targeted diagnostics and therapies for cancer. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1366963. [PMID: 39086436 PMCID: PMC11285536 DOI: 10.3389/fmmed.2024.1366963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Noah Federman
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Erlinda M. Gordon
- Cancer Center of Southern California, Santa Monica, CA, United States
- Aveni Foundation, Santa Monica, CA, United States
| | - Sant P. Chawla
- Cancer Center of Southern California, Santa Monica, CA, United States
- Counterpoint Biomedica LLC, Santa Monica, CA, United States
| | - Frederick L. Hall
- Counterpoint Biomedica LLC, Santa Monica, CA, United States
- Delta Next-Gene, LLC, Santa Monica, CA, United States
| |
Collapse
|
7
|
Cherkasova V, Ilnytskyy Y, Kovalchuk O, Kovalchuk I. Transcriptome Analysis of Cisplatin, Cannabidiol, and Intermittent Serum Starvation Alone and in Various Combinations on Colorectal Cancer Cells. Int J Mol Sci 2023; 24:14743. [PMID: 37834191 PMCID: PMC10572413 DOI: 10.3390/ijms241914743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Platinum-derived chemotherapy medications are often combined with other conventional therapies for treating different tumors, including colorectal cancer. However, the development of drug resistance and multiple adverse effects remain common in clinical settings. Thus, there is a necessity to find novel treatments and drug combinations that could effectively target colorectal cancer cells and lower the probability of disease relapse. To find potential synergistic interaction, we designed multiple different combinations between cisplatin, cannabidiol, and intermittent serum starvation on colorectal cancer cell lines. Based on the cell viability assay, we found that combinations between cannabidiol and intermittent serum starvation, cisplatin and intermittent serum starvation, as well as cisplatin, cannabidiol, and intermittent serum starvation can work in a synergistic fashion on different colorectal cancer cell lines. Furthermore, we analyzed differentially expressed genes and affected pathways in colorectal cancer cell lines to understand further the potential molecular mechanisms behind the treatments and their interactions. We found that synergistic interaction between cannabidiol and intermittent serum starvation can be related to changes in the transcription of genes responsible for cell metabolism and cancer's stress pathways. Moreover, when we added cisplatin to the treatments, there was a strong enrichment of genes taking part in G2/M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| |
Collapse
|
8
|
Anantha J, Wilson FE, McCarthy E, Morales-Prieto N, Mazzocchi M, Collins LM, Sullivan AM, O'Keeffe GW. A combined proteomics and bioinformatics analysis of ZNHIT1-interacting proteins reveals a significant enrichment in proteins associated with mitochondrial function. J Chem Neuroanat 2023; 131:102288. [PMID: 37178741 DOI: 10.1016/j.jchemneu.2023.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is the principal source of cellular energy, which is essential for neuronal health and maintenance. Parkinson's disease (PD) and other neurodegenerative disorders are characterised by impairments in mitochondrial function and reductions in cellular ATP levels. Thus there is a need to better understand the biology of intracellular regulators of ATP production, in order to inform the development of new neuroprotective therapies for diseases such as PD. One such regulator is Zinc finger HIT-domain containing protein 1 (ZNHIT1). ZNHIT1 is an evolutionarily-conserved component of a chromatin-remodelling complex, which has been recently shown to increase cellular ATP production in SH-SY5Y cells and to protect against impairments in mitochondrial function caused by alpha-synuclein, a protein which is integral to PD pathophysiology. This effect of ZNHIT1 on cellular ATP production is thought to be due to increased expression of genes associated with mitochondrial function, but it is also possible that ZNHIT1 regulates mitochondrial function by binding to mitochondrial proteins. To examine this question, we performed a combined proteomics and bioinformatics analysis to identify ZNHIT1-interacting proteins in SH-SY5Y cells. We report that ZNHIT1-interacting proteins are significantly enriched in multiple functional categories, including mitochondrial transport, ATP synthesis and ATP-dependent activity. Furthermore we also report that the correlation between ZNHIT1 and dopaminergic markers is reduced in the PD brain. These data suggest that the reported beneficial effects of ZNHIT1 on ATP production may be mediated, at least in part, by its direct interaction with mitochondrial proteins and suggest that potential alterations in ZNHIT1 in PD may contribute to the known impairments in ATP generation in midbrain dopaminergic neurons in PD.
Collapse
Affiliation(s)
- Jayanth Anantha
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Fionnuala E Wilson
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Erin McCarthy
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | | | - Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise M Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland; Parkinson's Disease Research Cluster (PDRC), University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Natural and synthetic compounds for glioma treatment based on ROS-mediated strategy. Eur J Pharmacol 2023:175537. [PMID: 36871663 DOI: 10.1016/j.ejphar.2023.175537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023]
Abstract
Glioma is the most frequent and most malignant tumor of the central nervous system (CNS),accounting for about 50% of all CNS tumor and approximately 80% of the malignant primary tumors in the CNS. Patients with glioma benefit from surgical resection, chemo- and radio-therapy. However these therapeutical strategies do not significantly improve the prognosis, nor increase survival rates owing to restricted drug contribution in the CNS and to the malignant characteristics of glioma. Reactive oxygen species (ROS) are important oxygen-containing molecules that regulate tumorigenesis and tumor progression. When ROS accumulates to cytotoxic levels, this can lead to anti-tumor effects. Multiple chemicals used as therapeutic strategies are based on this mechanism. They regulate intracellular ROS levels directly or indirectly, resulting in the inability of glioma cells to adapt to the damage induced by these substances. In the current review, we summarize the natural products, synthetic compounds and interdisciplinary techniques used for the treatment of glioma. Their possible molecular mechanisms are also presented. Some of them are also used as sensitizers: they modulate ROS levels to improve the outcomes of chemo- and radio-therapy. In addition, we summarize some new targets upstream or downstream of ROS to provide ideas for developing new anti-glioma therapies.
Collapse
|
10
|
Gordon EM, Hall FL. The advent of a pan-collagenous CLOVIS POINT for pathotropic targeting and cancer gene therapy, a retrospective. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1125928. [PMID: 39086682 PMCID: PMC11285703 DOI: 10.3389/fmmed.2023.1125928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 08/02/2024]
Abstract
The 'Clovis Point'-an enabling prehistoric gain-of-function in stone-age tool technologies which empowered the Paleoindian-Americans to hunt, to strike-deep, and to kill designated target megafauna more efficiently-was created biochemically by molecular-genetic bio-engineering. This Biomedical "Clovis Point" was crafted by adapting a broad-spectrum Pan-Collagen Binding Domain (Pan-Coll/CBD) found within the immature pre-pro-peptide segment of Von Willebrand Factor into a constructive series of advanced medical applications. Developed experimentally, preclinically, and clinically into a cutting-edge Biotechnology Platform, the Clovis Point is suitable for 1) solid-state binding of growth factors on collagenous scaffolds for improved orthopedic wound healing, 2) promoting regeneration of injured/diseased tissues; and 3) autologous stem cell capture, expansion, and gene-based therapies. Subsequent adaptations of the high-affinity Pan-Coll/CBD (exposed-collagen-seeking/surveillance function) for intravenous administration in humans, enabled the physiological delivery, aka Pathotropic Targeting to diseased tissues via the modified envelopes of gene vectors; enabling 4) precision tumor-targeting for cancer gene therapy and 5) adoptive/localized immunotherapies, demonstrating improved long-term survival value-thus pioneering a proximal and accessible cell cycle control point for cancer management-empowering modern medical oncologists to address persistent problems of chemotherapy resistance, recurrence, and occult progression of metastatic disease. Recent engineering adaptations have advanced the clinical utility to include the targeted delivery of small molecule APIs: including taxanes, mAbs, and RNA-based therapeutics.
Collapse
Affiliation(s)
- Erlinda M. Gordon
- Counterpoint Biomedica LLC, Santa Monica, CA, United States
- Delta Next-Gene, LLC, Santa Monica, CA, United States
| | - Frederick L. Hall
- Counterpoint Biomedica LLC, Santa Monica, CA, United States
- Delta Next-Gene, LLC, Santa Monica, CA, United States
| |
Collapse
|
11
|
Bai L, Zhou L, Han W, Chen J, Gu X, Hu Z, Yang Y, Li W, Zhang X, Niu C, Chen Y, Li H, Cui J. BAX as the mediator of C-MYC sensitizes acute lymphoblastic leukemia to TLR9 agonists. J Transl Med 2023; 21:108. [PMID: 36765389 PMCID: PMC9921080 DOI: 10.1186/s12967-023-03969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The prognosis of B-cell acute lymphoblastic leukemia (B-ALL) has improved significantly with current first-line therapy, although the recurrence of B-ALL is still a problem. Toll-like receptor 9 (TLR9) agonists have shown good safety and efficiency as immune adjuvants. Apart from their immune regulatory effect, the direct effect of TLR9 agonists on cancer cells with TLR9 expression cannot be ignored. However, the direct effect of TLR9 agonists on B-ALL remains unknown. METHODS We discussed the relationship between TLR9 expression and the clinical characteristics of B-ALL and explored whether CpG 685 exerts direct apoptotic effect on B-ALL without inhibiting normal B-cell function. By using western blot, co-immunoprecipitation, immunofluorescence co-localization, and chromatin immunoprecipitation, we explored the mechanism of the apoptosis-inducing effect of CpG 685 in treating B-ALL cells. By exploring the mechanism of CpG 685 on B-ALL, the predictive biomarkers of the efficacy of CpG 685 in treating B-ALL were explored. These efficiencies were also confirmed in mouse model as well as clinical samples. RESULTS High expression of TLR9 in B-ALL patients showed good prognosis. C-MYC-induced BAX activation was the key to the effect of CpG oligodeoxynucleotides against B-ALL. C-MYC overexpression promoted P53 stabilization, enhanced Bcl-2 associated X-protein (BAX) activation, and mediated transcription of the BAX gene. Moreover, combination therapy using CpG 685 and imatinib, a BCR-ABL kinase inhibitor, could reverse resistance to CpG 685 or imatinib alone by promoting BAX activation and overcoming BCR-ABL1-independent PI3K/AKT activation. CONCLUSION TLR9 is not only a prognostic biomarker but also a potential target for B-ALL therapy. CpG 685 monotherapy might be applicable to Ph- B-ALL patients with C-MYC overexpression and without BAX deletion. CpG 685 may also serve as an effective combinational therapy against Ph+ B-ALL.
Collapse
Affiliation(s)
- Ling Bai
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Lei Zhou
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Wei Han
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Jingtao Chen
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiaoyi Gu
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Zheng Hu
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Yongguang Yang
- grid.430605.40000 0004 1758 4110Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021 China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, Changchun, 130021 China
| | - Wei Li
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Xiaoying Zhang
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Chao Niu
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Yongchong Chen
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Hui Li
- grid.430605.40000 0004 1758 4110Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021 China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
12
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|
13
|
Znhit1 and HIF-2α are correlated with cancer stem cell markers in breast cancer patients. Sci Rep 2022; 12:13918. [PMID: 35978075 PMCID: PMC9385614 DOI: 10.1038/s41598-022-18133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Epigenetic alterations have emerged as fundamental players in development and progression of breast cancer (BC). A hypoxic tumour microenvironment regulates the stemness phenotype in breast cancer stem cells (BCSCs). The aim of this study was to investigate Znhit1 and HIF-2α gene expression in breast cancer tissues as well as their relation to CSCs markers LGR5, ALDH1A1 and β-catenin in tissue and serum of BC patients. The present study included 160 females divided into two groups, group I: 80 healthy females served as control group and group II: 80 breast cancer patients. Gene expression of tissue Znhit1 and HIF-2α was determined by qRT-PCR. Tissue and serum ALDH1A1, LGR5 and β-catenin levels were determined by ELISA. We found that gene expression of Znhit1 was significantly downregulated in BC tissues. Moreover, it was significantly negatively correlated with clinical stage and β-catenin levels in BC patients. Regarding HIF-2α, gene expression of HIF-2α was significantly upregulated in BC tissues. Moreover, it was significantly positively correlated with Her-2/neu expression and β-catenin levels in BC patients. Based upon our results, Znhit1 and HIF-2α may serve as novel therapeutic targets for BC therapy. Additionally, each of serum ALDH1A1, LGR5 and β-catenin may play a crucial role in non-invasive detection of BC with a high specificity and sensitivity.
Collapse
|
14
|
Lee SY, Wong PF, Jamal J, Roebuck MM. Naturally-derived endoplasmic reticulum stress inhibitors for osteoarthritis? Eur J Pharmacol 2022; 922:174903. [DOI: 10.1016/j.ejphar.2022.174903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 01/15/2023]
|
15
|
Gad El-Hak HN, Mahmoud HS, Ahmed EA, Elnegris HM, Aldayel TS, Abdelrazek HMA, Soliman MTA, El-Menyawy MAI. Methanolic Phoenix dactylifera L. Extract Ameliorates Cisplatin-Induced Hepatic Injury in Male Rats. Nutrients 2022; 14:1025. [PMID: 35268000 PMCID: PMC8912432 DOI: 10.3390/nu14051025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
This study investigated the ameliorative potential of methanolic date flesh extract (MDFE) against cisplatin-induced hepatic injury. Twenty male rats (weighing 180-200 g) were allocated into four groups: control; date flesh (DF) group (oral 600 mg/kg MDFE for 21 days); Cis group (7.5 mg/kg i.p. at day 16); and date flesh/cisplatin (DF/Cis) group (oral 600 mg/kg MDFE for 21 days and 7.5 mg/kg i.p. at day 16). Hepatic biochemical parameters in sera, and inflammatory and oxidant/antioxidant hepatic biomarkers were estimated. Hepatic histological changes and the immunohistochemistry of cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), and alpha smooth muscle actin (α-SMA) were assessed. Pretreatment with MDFE decreased Cis-triggered liver biochemical parameters, oxidative stress, inflammatory biomarkers, and histological damage. Moreover, MDFE treatment reduced Cis-induced hepatic NF-κB, COX-2, and α-SMA protein expression. MDFE exerted a hepatoprotective effect when used concomitantly with Cis. Its effect was mediated via its antioxidant and anti-inflammatory ingredients.
Collapse
Affiliation(s)
- Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia 41522, Egypt;
| | - Hany Salah Mahmoud
- Center of Scientific Foundation for Experimental Studies and Research, Ismailia 41511, Egypt;
| | - Eman A. Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. Elnegris
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Department of Histology and Cell Biology, Faculty of Medicine, Badr University in Cairo, Cairo 11829, Egypt
| | - Tahany Saleh Aldayel
- Department of Physical Sport Sciences, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Heba M. A. Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed T. A. Soliman
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 67614, Saudi Arabia;
| | | |
Collapse
|
16
|
Ji K, Li Z, Lei Y, Xu W, Ouyang L, He T, Xing Y. Resveratrol attenuates retinal ganglion cell loss in a mouse model of retinal ischemia reperfusion injury via multiple pathways. Exp Eye Res 2021; 209:108683. [PMID: 34181937 DOI: 10.1016/j.exer.2021.108683] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Resveratrol (RES) is a natural polyphenol that has been shown to protect retinal ganglion cells (RGCs) following retinal ischemia reperfusion (I/R) injury. However, the molecular mechanisms of resveratrol function are yet to be fully elucidated. Thus, this study explored the potential mechanisms of resveratrol in vivo. METHODS A retinal ischemia reperfusion injury model was established in adult male C57BL/6 J mice. Intraperitoneal injection of resveratrol was administered continuously for 5 days. RGC survival was determined by immunofluorescence staining with Brn3a. Flash electroretinography (ERG) was conducted to assess visual function. Proteins of HIF-1a, VEGF, p38, p53, PI3K, Akt, Bax, Bcl2, and Cleaved Caspase3 were detected using Western blot. RESULTS RES administration significantly ameliorated retinal thickness damage and increased Brn3a stained RGCs 7 days after I/R injury. We also found that administration of RES remarkably inhibited the upregulation of mitochondrial apoptosis-related protein Bax and Cleaved Caspase3, as well as increased the expression of Bcl2. Furthermore, RES administration significantly suppressed the I/R injury-induced upregulation of the HIF-1a/VEGF and p38/p53 pathways, while activating the I/R injury-induced downregulation of the PI3K/Akt pathway. Moreover, RES administration remarkably improved retinal function after I/R injury-induced functional impairment. CONCLUSIONS Our data demonstrated that resveratrol can mitigate retinal ischemic injury induced RGC loss and retinal function impairment by inhibiting the HIF-1a/VEGF and p38/p53 pathways while activating the PI3K/Akt pathway. Therefore, our results further reinforce that resveratrol has potential for treating glaucoma.
Collapse
Affiliation(s)
- Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Zongyuan Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Yiming Lei
- Nanchang University School of Ophthalmology & Optometry, Nanchang, China
| | - Wanxin Xu
- Department of Clinical Laboratory, Jingdezhen Second People's Hospital, Jiangxi, China
| | - Lingyi Ouyang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China.
| |
Collapse
|
17
|
Rellmann Y, Eidhof E, Dreier R. Review: ER stress-induced cell death in osteoarthritic cartilage. Cell Signal 2020; 78:109880. [PMID: 33307190 DOI: 10.1016/j.cellsig.2020.109880] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.
Collapse
Affiliation(s)
- Yvonne Rellmann
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany
| | - Elco Eidhof
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany
| | - Rita Dreier
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Münster, Germany.
| |
Collapse
|
18
|
Roche O, Fernández-Aroca DM, Arconada-Luque E, García-Flores N, Mellor LF, Ruiz-Hidalgo MJ, Sánchez-Prieto R. p38β and Cancer: The Beginning of the Road. Int J Mol Sci 2020; 21:ijms21207524. [PMID: 33053909 PMCID: PMC7589630 DOI: 10.3390/ijms21207524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer. However, the specific role of p38β (MAPK11) in cancer is still elusive, and further investigation is needed. Here, we summarize what is currently known about the role of p38β in different types of tumors and its putative implication in cancer therapy. All evidence suggests that p38β might be a key player in cancer development, and could be an important therapeutic target in several pathologies, including cancer.
Collapse
Affiliation(s)
- Olga Roche
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Elena Arconada-Luque
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Natalia García-Flores
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - Liliana F. Mellor
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (O.R.); (D.M.F.-A.); (E.A.-L.); (N.G.-F.); (L.F.M.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Departamento de Ciencias Médicas, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-420
| |
Collapse
|
19
|
Jabbehdari S, Handa JT. Oxidative stress as a therapeutic target for the prevention and treatment of early age-related macular degeneration. Surv Ophthalmol 2020; 66:423-440. [PMID: 32961209 DOI: 10.1016/j.survophthal.2020.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration, the leading cause of irreversible visual loss among older adults in developed countries, is a chronic, multifactorial, and progressive disease with the development of painless, central vision loss. Retinal pigment epithelial cell dysfunction is a core change in age-related macular degeneration that results from aging and the accumulated effects of genetic and environmental factors that, in part, is both caused by and leads to oxidative stress. In this review, we describe the role of oxidative stress, the cytoprotective oxidative stress pathways, and the impact of oxidative stress on critical cellular processes involved in age-related macular degeneration pathobiology. We also offer targeted therapy that may define how antioxidant therapy can either prevent or improve specific stages of age-related macular degeneration.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
20
|
Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int J Mol Sci 2020; 21:ijms21176102. [PMID: 32847129 PMCID: PMC7504396 DOI: 10.3390/ijms21176102] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ’s substrates, concentrating mainly on the nuclear targets and their role in p38α/β functions. Finally, we also provide information on the mechanisms of nuclear p38α/β translocation and its use as a therapeutic target for p38α/β-dependent diseases.
Collapse
|
21
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
22
|
Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci 2020; 21:ijms21072346. [PMID: 32231094 PMCID: PMC7177758 DOI: 10.3390/ijms21072346] [Citation(s) in RCA: 734] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.
Collapse
|
23
|
ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol 2020; 99:151073. [PMID: 32201025 DOI: 10.1016/j.ejcb.2020.151073] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Elevation of the level of intracellular reactive oxygen species (ROS) has immense implication in the biological system. On the one hand, ROS promote the signaling cascades for the maintenance of normal physiological functions, the phenomenon referred to as redox biology, and on the other hand increased ROS can cause damages to the cellular macromolecules as well as genetic material, the process known as oxidative stress. Oxidative stress acts as an etiological factor for wide varieties of pathologies, cancer being one of them. ROS is regarded as a "double-edged sword" with respect to oncogenesis. It can suppress as well as promote the malignant progression depending on the type of signaling pathway it uses. Moreover, the attribution of ROS in promoting phenotypic plasticity as well as acquisition of stemness during neoplasia has become a wide area of research. The current review discussed all the aspects of ROS in the perspective of tumor biology with special reference to epithelial-mesenchymal transition (EMT) and cancer stem cells.
Collapse
|
24
|
Wang A, Li J, Zhou T, Li T, Cai H, Shi H, Liu A. CUEDC2 Contributes to Cisplatin-Based Chemotherapy Resistance in Ovarian Serious Carcinoma by Regulating p38 MAPK Signaling. J Cancer 2019; 10:1800-1807. [PMID: 31205536 PMCID: PMC6547988 DOI: 10.7150/jca.29889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Chemoresistance remains an obstacle to the successful treatment of ovarian carcinoma. CUE domain-containing 2 (CUEDC2) plays critical roles in tumor genesis and overexpresses in many solid cancers, including ovarian serous carcinoma. In previous study, we found that overexpression of CUEDC2 might be a promising biomarker to evaluate the progression and to predict likely relapse of serous ovarian carcinoma. In present study, we found that higher expression of CUEDC2 was associated with higher resistance to cisplatin. The overall survival (OS) and disease-free survival time (DFS) of patients with cisplatin resistant was shorter than that of those with cisplatin sensitive, respectively, and the cisplatin sensitivity was independent predictor of a shorter OS time and DFS time. Knockdown of CUEDC2 by small interfering RNA enhanced the cisplatin sensitivity of serous ovarian carcinoma cells in SKOV3 cell lines. Furthermore, the phosphorylation of p38 MAPK were obviously increased after CUEDC2 knockdown, while p38 MAPK signaling contributes to cell growth and cell apoptosis. Our data suggest that CUEDC2 takes part in cisplatin-based chemotherapy resistance by regulating p38 MAPK signaling. And CUEDC2 is a promising biomarker and therapeutic target of cisplatin resistance in ovarian serous carcinoma.
Collapse
Affiliation(s)
- Aichun Wang
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China.,Department of Pathology, Haidian Maternal & Children Health Hospital, Beijing, 100080, China
| | - Jinhang Li
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| | - Tao Zhou
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tao Li
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong Cai
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huaiyin Shi
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| | - Aijun Liu
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
25
|
Bucio-Mendez A, Cruz-Becerra G, Valadez-Graham V, Dinkova TD, Zurita M. The Dmp8-Dmp18 bicistron messenger RNA enables unusual translation during cellular stress. J Cell Biochem 2018; 120:3887-3897. [PMID: 30270456 DOI: 10.1002/jcb.27670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/21/2018] [Indexed: 11/07/2022]
Abstract
Alternatives to the cap mechanism in translation are often used by viruses and cells to allow them to synthesize proteins in events of stress and viral infection. In Drosophila there are hundreds of polycistronic messenger RNA (mRNA), and various mechanisms are known to achieve this. However, proteins in a same mRNA often work in the same cellular mechanism, this is not the case for Drosophila's Swc6/p18Hamlet homolog Dmp18, part of the SWR1 chromatin remodeling complex, who is encoded in a bicistronic mRNA next to Dmp8 (Dmp8-Dmp18 transcript), a structural component of transcription factor TFIIH. The organization of these two genes as a bicistron is conserved in all arthropods, however the length of the intercistronic sequence varies from more than 90 to 2 bases, suggesting an unusual translation mechanism for the second open reading frame. We found that even though translation of Dmp18 occurs independently from that of Dmp8, it is necessary for Dmp18 to be in that conformation to allow its correct translation during cellular stress caused by damage via heat-shock and UV radiation.
Collapse
Affiliation(s)
- Alyeri Bucio-Mendez
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Grisel Cruz-Becerra
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Viviana Valadez-Graham
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Tzvetanka D Dinkova
- Department of Biochemistry and Molecular Biology, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mario Zurita
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
26
|
Shao J, Wang C, Li L, Liang H, Dai J, Ling X, Tang H. Luteoloside Inhibits Proliferation and Promotes Intrinsic and Extrinsic Pathway-Mediated Apoptosis Involving MAPK and mTOR Signaling Pathways in Human Cervical Cancer Cells. Int J Mol Sci 2018; 19:ijms19061664. [PMID: 29874795 PMCID: PMC6032149 DOI: 10.3390/ijms19061664] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is a common gynecological malignancy with high incidence and mortality. Drugs commonly used in chemotherapy are often accompanied by strong side-effects. To find an anti-cervical cancer drug with high effects and low toxicity, luteoloside was used to treat the cervical cancer cell line Hela to investigate its effects on cell morphology, proliferation, apoptosis, and related proteins. The study demonstrated that luteoloside could inhibit proliferation remarkably; promote apoptosis and cytochrome C release; decrease the mitochondrial membrane potential and reactive oxygen species level; upregulate the expression of Fas, Bax, p53, phospho-p38, phospho-JNK, and cleaved PARP; downregulate the expression of Bcl-2 and phospho-mTOR; activate caspase-3 and caspase-8; change the nuclear morphology, and fragmentate DNA in Hela cells. These results strongly suggest that luteoloside can significantly inhibit the proliferation and trigger apoptosis in Hela cells. In contrast, luteoloside had less proliferation inhibiting effects on the normal cell lines HUVEC12 and LO2, and minor apoptosis promoting effects on HUVEC12 cells. Furthermore, the luteoloside-induced apoptosis in Hela cells is mediated by both intrinsic and extrinsic pathways and the effects of luteoloside may be regulated by the mitogen-activated protein kinases and mTOR signaling pathways via p53.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chaoxi Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Linqiu Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Juanxiu Dai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
27
|
Sabatino ME, Grondona E, Sosa LDV, Mongi Bragato B, Carreño L, Juarez V, da Silva RA, Remor A, de Bortoli L, de Paula Martins R, Pérez PA, Petiti JP, Gutiérrez S, Torres AI, Latini A, De Paul AL. Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth. Free Radic Biol Med 2018; 120:41-55. [PMID: 29548793 DOI: 10.1016/j.freeradbiomed.2018.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression.
Collapse
Affiliation(s)
- Maria Eugenia Sabatino
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Ezequiel Grondona
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Liliana D V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Bethania Mongi Bragato
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Lucia Carreño
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Virginia Juarez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Rodrigo A da Silva
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Remor
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucila de Bortoli
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pablo A Pérez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Juan Pablo Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvina Gutiérrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana L De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
28
|
Wang SW, Xu Y, Weng YY, Fan XY, Bai YF, Zheng XY, Lou LJ, Zhang F. Astilbin ameliorates cisplatin-induced nephrotoxicity through reducing oxidative stress and inflammation. Food Chem Toxicol 2018; 114:227-236. [DOI: 10.1016/j.fct.2018.02.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/30/2022]
|
29
|
Abstract
Changes in the intracellular thiol-disulfide balance are considered major determinants in the redox status/signaling of the cell. Cellular signaling is very sensitive to both exogenous and intracellular redox status and respond to many exogenous pro-oxidative or oxidative stresses. Redox status has dual effects on upstream signaling systems and downstream transcription factors. Redox signaling pathways use reactive oxygen species (ROS) to transfer signals from different sources to the nucleus to regulate such functions as growth, differentiation, proliferation, and apoptosis. Mitogen-activated protein kinases are activated by numerous cellular stresses and ligand-receptor bindings. An imbalance in the oxidant/antioxidant system, either resulting from excessive ROS/reactive nitrogen species production and/or antioxidant system impairment, leads to oxidative stress. Glutathione (GSH) is known to play a critical role in the cellular defense against unregulated oxidative stress in mammalian cells and involvement of large molecular antioxidants include classical antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Cadmium (Cd), a potent toxic heavy metal, is a widespread environmental contaminant. It is known to cause renal dysfunction, hepatic toxicity, genotoxicity, and apoptotic effects depending on the dose, route, and duration of exposure. This review examines the signaling pathways and mechanisms of activation of transcription factors by Cd-induced oxidative stress thus representing an important basis for understanding the mechanisms of Cd effect on the cells.
Collapse
Affiliation(s)
- Saïd Nemmiche
- LSTPA Laboratory, Department of Biology, Faculty of SNV, University of Mostaganem, Mostaganem 27000, Algeria
| |
Collapse
|
30
|
Cheng X, Peuckert C, Wölfl S. Essential role of mitochondrial Stat3 in p38 MAPK mediated apoptosis under oxidative stress. Sci Rep 2017; 7:15388. [PMID: 29133922 PMCID: PMC5684365 DOI: 10.1038/s41598-017-15342-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
Stat3 is an oncogene, frequently associated with malignant transformation. A body of evidence implicates that phospho-Stat3Y705 contributes to its nucleic translocation, while phospho-Stat3S727 leads to the accumulation in mitochondria. Both are of importance for tumor cell proliferation. In comparison to well-characterized signaling pathways interplaying with Stat3Y705, little is known about Stat3S727. In this work, we studied the influence of Stat3 deficiency on the viability of cells exposed to H2O2 or hypoxia using siRNA and CRISPR/Cas9 genome-editing. We found dysregulation of mitochondrial activity, which was associated with excessive ROS formation and reduced mitochondrial membrane potential, and observed a synergistic effect for oxidative stress-mediated apoptosis in Stat3-KD cells or cells carrying Stat3Y705F, but not Stat3S727D, suggesting the importance of functional mitochondrial Stat3 in this context. We also found that ROS-mediated activation of ASK1/p38MAPK was involved and adding antioxidants, p38MAPK inhibitor, or genetic repression of ASK1 could easily rescue the cellular damage. Our finding reveals a new role of mitochondrial Stat3 in preventing ASK1/p38MAPK-mediated apoptosis, wich further support the notion that selective inhibition mitochondrial Stat3 could provide a primsing target for chemotherapy.
Collapse
Affiliation(s)
- Xinlai Cheng
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - Christiane Peuckert
- Department of Organismal Biology, Uppsala University, Uppsala, S-75236, Sweden
| | - Stefan Wölfl
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
31
|
Zhang Y, Liu H, Yan F, Zhou J. Oscillatory dynamics of p38 activity with transcriptional and translational time delays. Sci Rep 2017; 7:11495. [PMID: 28904347 PMCID: PMC5597677 DOI: 10.1038/s41598-017-11149-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/31/2017] [Indexed: 01/30/2023] Open
Abstract
Recent experimental evidence reports that oscillations of p38 MAPK (p38) activity would efficiently induce pro-inflammatory gene expression, which might be deleterious to immune systems and may even cause cellular damage and apoptosis. It is widely accepted now that transcriptional and translational delays are ubiquitous in gene expression, which can typically result in oscillatory responses of gene regulations. Consequently, delay-driven sustained oscillations in p38 activity (p38*) could in principle be commonplace. Nevertheless, so far the studies of the impact of such delays on p38* have been lacking both experimentally and theoretically. Here, we use experimental data to develop a delayed mathematical model, with the aim of understanding how such delays affect oscillatory behaviour on p38*. We analyze the stability and oscillation of the model with and without explicit time delays. We show that a sufficiently input stimulation strength is prerequisite for generating p38* oscillations, and that an optimal rate of model parameters is also essential to these oscillations. Moreover, we find that the time delays required for transcription and translation in mitogen-activated protein kinase phosphatase-1 (MKP-1) gene expression can drive p38* to be oscillatory even when the concentration of p38* level is at a stable state. Furthermore, the length of these delays can determine the amplitude and period of the oscillations and can enormously extend the oscillatory ranges of model parameters. These results indicate that time delays in MKP-1 synthesis are required, albeit not sufficient, for p38* oscillations, which may lead to new insights related to p38 oscillations.
Collapse
Affiliation(s)
- Yuan Zhang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, China
| | - Haihong Liu
- Department of mathematics, Yunnan Normal University, Kunming, 650092, China
| | - Fang Yan
- Department of mathematics, Yunnan Normal University, Kunming, 650092, China
| | - Jin Zhou
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072, China.
| |
Collapse
|
32
|
Messina G, Atterrato MT, Prozzillo Y, Piacentini L, Losada A, Dimitri P. The human Cranio Facial Development Protein 1 (Cfdp1) gene encodes a protein required for the maintenance of higher-order chromatin organization. Sci Rep 2017; 7:45022. [PMID: 28367969 PMCID: PMC5377257 DOI: 10.1038/srep45022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
The human Cranio Facial Development Protein 1 (Cfdp1) gene maps to chromosome 16q22.2-q22.3 and encodes the CFDP1 protein, which belongs to the evolutionarily conserved Bucentaur (BCNT) family. Craniofacial malformations are developmental disorders of particular biomedical and clinical interest, because they represent the main cause of infant mortality and disability in humans, thus it is important to understand the cellular functions and mechanism of action of the CFDP1 protein. We have carried out a multi-disciplinary study, combining cell biology, reverse genetics and biochemistry, to provide the first in vivo characterization of CFDP1 protein functions in human cells. We show that CFDP1 binds to chromatin and interacts with subunits of the SRCAP chromatin remodeling complex. An RNAi-mediated depletion of CFDP1 in HeLa cells affects chromosome organization, SMC2 condensin recruitment and cell cycle progression. Our findings provide new insight into the chromatin functions and mechanisms of the CFDP1 protein and contribute to our understanding of the link between epigenetic regulation and the onset of human complex developmental disorders.
Collapse
Affiliation(s)
- Giovanni Messina
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| | - Maria Teresa Atterrato
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| | - Yuri Prozzillo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| | - Lucia Piacentini
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| | | | - Patrizio Dimitri
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
33
|
Al-Khalaf HH, Nallar SC, Kalvakolanu DV, Aboussekhra A. p16 INK4A enhances the transcriptional and the apoptotic functions of p53 through DNA-dependent interaction. Mol Carcinog 2017; 56:1687-1702. [PMID: 28218424 DOI: 10.1002/mc.22627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/16/2017] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
p16INK4A and p53 are two important tumor suppressor proteins that play essential roles during cell proliferation and aging through regulating the expression of several genes. Here, we report that p16INK4A and p53 co-regulate a plethora of transcripts. Furthermore, both proteins colocalize in the nucleus of human primary skin fibroblasts and breast luminal cells, and form a heteromer whose level increases in response to genotoxic stress as well as aging of human fibroblasts and various mouse organs. CDK4 is also present in this heteromeric complex, which is formed only in the presence of DNA both in vitro using pure recombinant proteins and in vivo. We have also shown that p16INK4A enhances the binding efficiency of p53 to its cognate sequence presents in the CDKN1A promoter in vitro, and both proteins are present at the promoters of CDKN1A and BAX in vivo. Importantly, the fourth ankyrin repeat of p16INK4A and the C-terminal domain of p53 were necessary for the physical association between these two proteins. The physiologic importance of this association was revealed by the inability of cancer-associated p16INK4A mutants to interact with p53 and to transactivate the expression of its major targets CDKN1A and BAX in the p16-defective U2OS cells expressing either wild-type or mutated p16INK4A . Furthermore, the association between p16INK4A and p53 was capital for their nuclear colocalization, the X-ray-dependent induction of p21 and Bax proteins as well as the induction of apoptosis in various types of cells. Together, these results show DNA-dependent physical interaction between p16INK4A and p53.
Collapse
Affiliation(s)
- Huda H Al-Khalaf
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,The National Center for Genomics Research, King Abdulaziz City for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Shreeram C Nallar
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Norrie JL, Li Q, Co S, Huang BL, Ding D, Uy JC, Ji Z, Mackem S, Bedford MT, Galli A, Ji H, Vokes SA. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud. Development 2016; 143:4608-4619. [PMID: 27827819 DOI: 10.1242/dev.140715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis.
Collapse
Affiliation(s)
- Jacqueline L Norrie
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Qiang Li
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Swanie Co
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Jann C Uy
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, 1808 Park Road 1C (P.O. Box 389), Smithville, TX 78957, USA
| | - Antonella Galli
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Steven A Vokes
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| |
Collapse
|
35
|
Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico-Petruzzelli M, Raschellà G. DNA repair and aging: the impact of the p53 family. Aging (Albany NY) 2016; 7:1050-65. [PMID: 26668111 PMCID: PMC4712331 DOI: 10.18632/aging.100858] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR.
Collapse
Affiliation(s)
- Sara Nicolai
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Antonello Rossi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133 Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Leicester LE1 9HN, UK
| | | | - Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, 00123 Rome, Italy
| |
Collapse
|
36
|
García-Cano J, Roche O, Cimas FJ, Pascual-Serra R, Ortega-Muelas M, Fernández-Aroca DM, Sánchez-Prieto R. p38MAPK and Chemotherapy: We Always Need to Hear Both Sides of the Story. Front Cell Dev Biol 2016; 4:69. [PMID: 27446920 PMCID: PMC4928511 DOI: 10.3389/fcell.2016.00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
The p38MAPK signaling pathway was initially described as a stress response mechanism. In fact, during previous decades, it was considered a pathway with little interest in oncology especially in comparison with other MAPKs such as ERK1/2, known to be target of oncogenes like Ras. However, its involvement in apoptotic cell death phenomena makes this signaling pathway more attractive for many cancer research laboratories. This apoptotic role allows to establish a link between p38MAPK and regular chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or 5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies. In addition, the oncogenic or tumor suppressor potential of this signaling pathway has aroused the interest of the scientific community in evaluating p38MAPK as a novel target for cancer therapy. In this review, we will summarize the role of p38MAPK in chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer therapy. All the evidences suggest that p38MAPK could be a double-edged sword and that the search for the most appropriate candidate patients, depending on their pathology and treatment, will lead to a more rational use of this new therapeutic tool.
Collapse
Affiliation(s)
- Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Olga Roche
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Raquel Pascual-Serra
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Marta Ortega-Muelas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Diego M Fernández-Aroca
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| |
Collapse
|
37
|
Kim GT, Lee SH, Kim YM. Torilis japonica extract-generated intracellular ROS induces apoptosis by reducing the mitochondrial membrane potential via regulation of the AMPK-p38 MAPK signaling pathway in HCT116 colon cancer. Int J Oncol 2016; 49:1088-98. [PMID: 27314881 DOI: 10.3892/ijo.2016.3578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 11/06/2022] Open
Abstract
Torilis japonica extract (TJE) has been reported to possess diverse medicinal properties including anti‑inflammatory and antibacterial activities. However, the precise mechanism of its anticancer effect is not understood. Thus, we evaluated the apoptotic effects of TJE and examined its underlying molecular mechanisms in HCT116 colorectal cancer cells. Our results show that TJE induces apoptosis through the generation of intracellular reactive oxygen species (ROS), and that it regulates the mitochondrial outer membrane potential via the AMPK/p38 MAPK signaling pathway. Importantly, ~50% of cancer cells have p53 mutations. Thus, the ability to induce apoptosis in a p53-independent manner would be of great value in cancer treatment. Our results show that not only does TJE regulate the AMPK/p38 signaling pathway, but it induces apoptosis in cells in which p53 has been knocked down using siRNA. Moreover, as in in vitro studies, TJE induced apoptosis and regulated apoptosis related-proteins in an HCT 116 xenograft model. Taken together, our results demonstrate that TJE, a natural compound that may provide a substitute for chemotherapeutic drugs, has potential as an anticancer agent.
Collapse
Affiliation(s)
- Guen Tae Kim
- Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Se Hee Lee
- Pharma-gene Inc., Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Young Min Kim
- Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon 305-811, Republic of Korea
| |
Collapse
|
38
|
Guillonneau M, Paris F, Dutoit S, Estephan H, Bénéteau E, Huot J, Corre I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response. FASEB J 2016; 30:2899-914. [PMID: 27142525 DOI: 10.1096/fj.201500194r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/26/2016] [Indexed: 11/11/2022]
Abstract
Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.
Collapse
Affiliation(s)
- Maëva Guillonneau
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and Le Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada
| | - François Paris
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and
| | - Soizic Dutoit
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and
| | - Hala Estephan
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and
| | - Elise Bénéteau
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and
| | - Jacques Huot
- Le Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada
| | - Isabelle Corre
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 6299, Nantes, France; INSERM, Unité Mixte de Recherche 892, Nantes, France; Université de Nantes, Nantes, France; and Le Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec City, Québec, Canada
| |
Collapse
|
39
|
Dasari SR, Velma V, Yedjou CG, Tchounwou PB. Preclinical Assessment of Low Doses of Cisplatin in the Management of Acute Promyelocytic Leukemia. ACTA ACUST UNITED AC 2015; 1. [PMID: 26900603 PMCID: PMC4758698 DOI: 10.16966/2381-3318.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cis-diamminedichloroplatinum (II) (cisplatin) is the most widely used chemotherapeutic drug for various cancers, but its effectiveness is limited by tumor cell resistance and the severe side effects it causes. Since high level of cisplatin is cytotoxic to both cancer and normal cells, the goal of the present study was to explore the effectiveness of prolonged low doses of cisplatin in the management of leukemia. To achieve our goal, human leukemia (HL-60) cells were treated with different doses (1, 2, or 3 µM) of cisplatin for 24, 48, 72 and 96 hours. Cell viability was assessed by MTS assay. Both oxidative stress damage and genotoxicity were estimated by antioxidants, lipid peroxidation, and comet assays, respectively. Data obtained from the MTS assay demonstrated that cisplatin treatment decreased the number of viable tumor cells by direct cell killing or by simply decreasing the rate of cellular proliferation in a dose- and time-dependent fashion. The results of the lipid peroxidation showed a significant increase (p<0.05) of malondialdehyde levels with increasing cisplatin doses. Results obtained from super oxide dismutase and catalase assays showed a gradual increase in antioxidant enzyme activity in cisplatin-treated cells compared to control cells. Data generated from the Comet assay demonstrated a significant dose-dependent increase in genotoxicity with respect to DNA damage as a result of cisplatin treatment. Taken together, our research demonstrated that cisplatin-induced cytotoxicity in HL-60 cells is mediated at least in part via induction of oxidative stress and oxidative damage.
Collapse
Affiliation(s)
- Shaloam R Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Venkatramreddy Velma
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Clement G Yedjou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| |
Collapse
|
40
|
St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Pelletier L, Gingras AC. Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission. Mol Cell Proteomics 2015; 14:946-60. [PMID: 25659891 PMCID: PMC4390272 DOI: 10.1074/mcp.m114.046086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
The myotubularins are a family of phosphatases that dephosphorylate the phosphatidylinositols phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-phosphate. Several family members are mutated in disease, yet the biological functions of the majority of myotubularins remain unknown. To gain insight into the roles of the individual enzymes, we have used affinity purification coupled to mass spectrometry to identify protein-protein interactions for the myotubularins. The myotubularin interactome comprises 66 high confidence (false discovery rate ≤1%) interactions, including 18 pairwise interactions between individual myotubularins. The results reveal a number of potential signaling contexts for this family of enzymes, including an intriguing, novel role for myotubularin-related protein 3 and myotubularin-related protein 4 in the regulation of abscission, the final step of mitosis in which the membrane bridge remaining between two daughter cells is cleaved. Both depletion and overexpression of either myotubularin-related protein 3 or myotubularin-related protein 4 result in abnormal midbody morphology and cytokinesis failure. Interestingly, myotubularin-related protein 3 and myotubularin-related protein 4 do not exert their effects through lipid regulation at the midbody, but regulate abscission during early mitosis, by interacting with the mitotic kinase polo-like kinase 1, and with centrosomal protein of 55 kDa (CEP55), an important regulator of abscission. Structure-function analysis reveals that, consistent with known intramyotubularin interactions, myotubularin-related protein 3 and myotubularin-related protein 4 interact through their respective coiled coil domains. The interaction between myotubularin-related protein 3 and polo-like kinase 1 relies on the divergent, nonlipid binding Fab1, YOTB, Vac1, and EEA1 domain of myotubularin-related protein 3, and myotubularin-related protein 4 interacts with CEP55 through a short GPPXXXY motif, analogous to endosomal sorting complex required for transport-I components. Disruption of any of these interactions results in abscission failure, by disrupting the proper recruitment of CEP55, and subsequently, of endosomal sorting complex required for transport-I, to the midbody. Our data suggest that myotubularin-related protein 3 and myotubularin-related protein 4 may act as a bridge between CEP55 and polo-like kinase 1, ensuring proper CEP55 phosphorylation and regulating CEP55 recruitment to the midbody. This work provides a novel role for myotubularin-related protein 3/4 heterodimers, and highlights the temporal and spatial complexity of the regulation of cytokinesis.
Collapse
Affiliation(s)
- Nicole St-Denis
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Gagan D Gupta
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Zhen Yuan Lin
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Beatriz Gonzalez-Badillo
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Laurence Pelletier
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; §Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- From the ‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; §Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| |
Collapse
|
41
|
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014; 740:364-78. [PMID: 25058905 PMCID: PMC4146684 DOI: 10.1016/j.ejphar.2014.07.025] [Citation(s) in RCA: 3698] [Impact Index Per Article: 336.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 02/06/2023]
Abstract
Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is paid to its molecular mechanisms of action, and its undesirable side effects.
Collapse
Affiliation(s)
- Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Paul Bernard Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD RCMI-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA.
| |
Collapse
|
42
|
Cheng X, Holenya P, Can S, Alborzinia H, Rubbiani R, Ott I, Wölfl S. A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells. Mol Cancer 2014; 13:221. [PMID: 25253202 PMCID: PMC4190468 DOI: 10.1186/1476-4598-13-221] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/04/2014] [Indexed: 12/27/2022] Open
Abstract
Background Cancer cells in the advanced stage show aberrant antioxidant capacity to detoxify excessive ROS resulting in the compensation for intrinsic oxidative stress and therapeutic resistance. PDAC is one of the most lethal cancers and often associated with a high accumulation of ROS. Recent studies identified gold(I) NHC complexes as potent TrxR inhibitors suppressing cell growth in a wide spectrum of human malignant cell lines at the low micromolar concentration. However, the mechanism of action is not completely elucidated yet. Methods To understand the biological function of gold(I) NHC complexes in PDAC, we used a recently published gold(I) NHC complex, MC3, and evaluated its anti-proliferative effect in four PDAC cell lines, determined by MTT and SRB assays. In further detailed analysis, we analyzed cellular ROS levels using the ROS indicator DHE and mitochondrial membrane potential indicated by the dye JC-1 in Panc1. We also analyzed cell cycle arrest and apoptosis by FACS. To elucidate the role of specific cell signaling pathways in MC3-induced cell death, co-incubation with ROS scavengers, a p38-MAPK inhibitor and siRNA mediated depletion of ASK1 were performed, and results were analyzed by immunoblotting, ELISA-microarrays, qRT-PCR and immunoprecipitation. Results Our data demonstrate that MC3 efficiently suppressed cell growth, and induced cell cycle arrest and apoptosis in pancreatic cancer cells, in particular in the gemcitabine-resistant cancer cells Panc1 and ASPC1. Treatment with MC3 resulted in a substantial alteration of the cellular redox homeostasis leading to increased ROS levels and a decrease in the mitochondrial membrane potential. ROS scavengers suppressed ROS formation and rescued cells from damage. On the molecular level, MC3 blocked the interaction of Trx with ASK1 and subsequently activated p38-associated signaling. Furthermore, inhibition of this pathway by using ASK1 siRNA or a p38 inhibitor clearly attenuated the effect of MC3 on cell proliferation in Panc1 and ASPC1. Conclusions Our results confirm that MC3 is a TrxR inhibitor and show MC3 induced apoptosis in gemcitabine-resistant PDACs. MC3 mediated cell death could be blocked by using anti-oxidants, ASK1 siRNA or p38 inhibitor suggesting that the Trx-ASK1-p38 signal cascade played an important role in gold(I) NHC complexes-mediated cellular damage. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-221) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefan Wölfl
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
43
|
Chen XZ, Li JN, Zhang YQ, Cao ZY, Liu ZZ, Wang SQ, Liao LM, Du J. Fuzheng Qingjie recipe induces apoptosis in HepG2 cells via P38 MAPK activation and the mitochondria-dependent apoptotic pathway. Mol Med Rep 2014; 9:2381-7. [PMID: 24737008 DOI: 10.3892/mmr.2014.2138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/13/2014] [Indexed: 11/06/2022] Open
Abstract
Fuzheng Qingjie (FZQJ) recipe is a polyherbal Chinese medicine capable of suppressing tumor growth and is used as an adjuvant therapy for various types of cancer. However, its anticancer mechanisms are yet to be fully elucidated. In the present study, we explored whether p38 mitogen-activated protein kinase (MAPK) was involved in FZQJ-mediated mitochondria-dependent apoptosis in human hepatocellular carcinoma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to measure the viability of HepG2 cells. 4,6-Diamidino-2-phenylindole (DAPI) and Annexin-V fluorescein isothiocyanate (FITC) were used to analyze the apoptosis of HepG2 cells. The mitochondrial membrane potential (∆ψ) and phosphorylated P38 MAPK protein were examined by a flow cytometer following 5,5',6,6'-tetrachloro‑1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) and Alexa Fluor® 647 mouse anti-phosphorylated P38 MAPK antibody staining, respectively. The activation of caspase-9 and caspase-3 were measured using colorimetric assays. Additionally, Bcl-2 and Bax expression were examined using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis. The results demonstrated that water extract of FZQJ was able to induce apoptosis of HepG2 cells in vitro. FZQJ-induced apoptosis was accompanied by the loss of ∆ψ, downregulation of Bcl-2 and upregulation of Bax expression, and the activation of caspase-3, -9 and P38 MAPK. These results indicated that FZQJ induced apoptosis in HepG2 cells at least via P38 MAPK activation and the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Xu-Zheng Chen
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jin-Nong Li
- Department of Pharmacognosy, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - You-Quan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350003, P.R. China
| | - Zhi-Yun Cao
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhi-Zhen Liu
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Su-Qing Wang
- Department of Pharmacy, Fuzhou University, Fuzhou, Fujian 350122, P.R. China
| | - Lian-Ming Liao
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jian Du
- Center of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
44
|
Eno CO, Zhao G, Venkatanarayan A, Wang B, Flores ER, Li C. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress. Free Radic Biol Med 2013; 65:26-37. [PMID: 23770082 PMCID: PMC3816129 DOI: 10.1016/j.freeradbiomed.2013.05.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 05/31/2013] [Indexed: 11/22/2022]
Abstract
The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.
Collapse
Affiliation(s)
- Colins O Eno
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Guoping Zhao
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Avinashnarayan Venkatanarayan
- Genes and Development Program, Metastasis Research Center, Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Wang
- School of Electronics and Information Engineering, Tongji University, Shanghai
| | - Elsa R Flores
- Genes and Development Program, Metastasis Research Center, Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi Li
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
45
|
Wang ZS, Luo P, Dai SH, Liu ZB, Zheng XR, Chen T. Salvianolic acid B induces apoptosis in human glioma U87 cells through p38-mediated ROS generation. Cell Mol Neurobiol 2013; 33:921-8. [PMID: 23842993 PMCID: PMC11497870 DOI: 10.1007/s10571-013-9958-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Salvianolic acid B (SalB), the main water-soluble bioactive compounds isolated from the traditional Chinese medical herb Danshen, has been shown to exert anti-cancer effect in several cancer cell lines. The aim of our study was to investigate the potential anti-cancer effect of SalB in human glioma U87 cells. We found that treatment with SalB significantly decreased cell viability of U87 cells in a dose- and time-dependent manner. SalB also enhanced the intracellular ROS generation and induced apoptotic cell death in U87 cells. Western blot analysis suggested that SalB increased the phosphorylation of p38 MAPK and p53 in a dose-dependent manner. Moreover, blocking p38 activation by specific inhibitor SB203580 or p38 specific siRNA partly reversed the anti-proliferative and pro-apoptotic effects, and ROS production induced by SalB treatment. The anti-tumor activity of SalB in vivo was also demonstrated in U87 xenograft glioma model. All of these findings extended the anti-cancer effect of SalB in human glioma cell lines, and suggested that these inhibitory effects of SalB on U87 glioma cell growth might be associated with p38 activation mediated ROS generation. Thus, SalB might be concerned as an effective and safe natural anticancer agent for glioma prevention and treatment.
Collapse
Affiliation(s)
- Zi-shu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004 Anhui China
| | - Peng Luo
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Shu-hui Dai
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Zao-bin Liu
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xin-rui Zheng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Tao Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
- Department of Neurosurgery, The 123th Hospital of PLA, Bengbu, 233000 Anhui China
| |
Collapse
|
46
|
Zhu Y, Regunath K, Jacq X, Prives C. Cisplatin causes cell death via TAB1 regulation of p53/MDM2/MDMX circuitry. Genes Dev 2013; 27:1739-51. [PMID: 23934659 PMCID: PMC3759692 DOI: 10.1101/gad.212258.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interdependence of p53 and MDM2 is critical for proper cell survival and cell death. Zhu et al. find that TAB1, an activator of TAK1 and p38α, inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Cisplatin-induced cell death is mitigated by TAB1 knockdown. TAB1 stabilizes MDMX and activates p38α to phosphorylate p53, allowing p53 target induction. TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian tumors, implicating TAB1 as a tumor suppressor. The interdependence of p53 and MDM2 is critical for proper cell survival and cell death and, when altered, can lead to tumorigenesis. Mitogen-activated protein kinase (MAPK) signaling pathways function in a wide variety of cellular processes, including cell growth, migration, differentiation, and death. Here we discovered that transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1), an activator of TAK1 and of p38α, associates with and inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Depletion of TAB1 inhibits MDM2 siRNA-mediated p53 accumulation and p21 induction, partially rescuing cell cycle arrest induced by MDM2 ablation. Interestingly, of several agents commonly used as DNA-damaging therapeutics, only cell death caused by cisplatin is mitigated by knockdown of TAB1. Two mechanisms are required for TAB1 to regulate apoptosis in cisplatin-treated cells. First, p38α is activated by TAB1 to phosphorylate p53 N-terminal sites, leading to selective induction of p53 targets such as NOXA. Second, MDMX is stabilized in a TAB1-dependent manner and is required for cell death after cisplatin treatment. Interestingly TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian patient's tumors compared with normal ovarian tissue. Together, our results indicate that TAB1 is a potential tumor suppressor that serves as a functional link between p53–MDM2 circuitry and a key MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
47
|
The role of p38 in irinotecan-induced DNA damage and apoptosis of colon cancer cells. Mutat Res 2013; 741-742:27-34. [PMID: 23422270 DOI: 10.1016/j.mrfmmm.2013.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/17/2013] [Accepted: 02/07/2013] [Indexed: 02/03/2023]
Abstract
The role of p38 in irinotecan (CPT-11)-induced damage and cell death in colon cancer cell line SW620 was investigated. We demonstrate that CPT-11 treatment activates p38 in exposed cells, however with concentration dependent dynamics and differing consequences. Higher CPT-11 concentrations induce a massive early but relatively short-lasting p38 activity leading to apoptosis mediated by mitochondria and caspases. Pharmacological or siRNA inhibition of p38 then significantly prevents CPT-11-dependent cell death. Conversely, lower CPT-11 concentrations activate p38 in a delayed, however sustained manner, with apoptosis occurring only in a fraction of cells and in the absence of significant autophagy. Blocking p38 in thus treated cells increases their sensitivity toward CPT-11 and increases cell death. In summary, our results confirm the involvement of p38 in colon cancer cells response to CPT-11 while indicating a varying role of p38 in the final biological response.
Collapse
|
48
|
Herrera-Cruz M, Cruz G, Valadez-Graham V, Fregoso-Lomas M, Villicaña C, Vázquez M, Reynaud E, Zurita M. Physical and functional interactions between Drosophila homologue of Swc6/p18Hamlet subunit of the SWR1/SRCAP chromatin-remodeling complex with the DNA repair/transcription factor TFIIH. J Biol Chem 2012; 287:33567-80. [PMID: 22865882 DOI: 10.1074/jbc.m112.383505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The multisubunit DNA repair and transcription factor TFIIH maintains an intricate cross-talk with different factors to achieve its functions. The p8 subunit of TFIIH maintains the basal levels of the complex by interacting with the p52 subunit. Here, we report that in Drosophila, the homolog of the p8 subunit (Dmp8) is encoded in a bicistronic transcript with the homolog of the Swc6/p18(Hamlet) subunit (Dmp18) of the SWR1/SRCAP chromatin remodeling complex. The SWR1 and SRCAP complexes catalyze the exchange of the canonical histone H2A with the H2AZ histone variant. In eukaryotic cells, bicistronic transcripts are not common, and in some cases, the two encoded proteins are functionally related. We found that Dmp18 physically interacts with the Dmp52 subunit of TFIIH and co-localizes with TFIIH in the chromatin. We also demonstrated that Dmp18 genetically interacts with Dmp8, suggesting that a cross-talk might exist between TFIIH and a component of a chromatin remodeler complex involved in histone exchange. Interestingly, our results also show that when the level of one of the two proteins is decreased and the other maintained, a specific defect in the fly is observed, suggesting that the organization of these two genes in a bicistronic locus has been selected during evolution to allow co-regulation of both genes.
Collapse
Affiliation(s)
- Mariana Herrera-Cruz
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | | | | | | | | | | | | | | |
Collapse
|
49
|
de la Cruz-Morcillo MA, Valero MLL, Callejas-Valera JL, Arias-González L, Melgar-Rojas P, Galán-Moya EM, García-Gil E, García-Cano J, Sánchez-Prieto R. P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance. Oncogene 2012; 31:1073-85. [PMID: 21841826 DOI: 10.1038/onc.2011.321] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/30/2022]
Abstract
5-Fluorouracil (5-FU), together with other drugs such as oxaliplatin, is one of the most important pharmacological agents in the treatment of colorectal cancer. Although mitogen-activated protein kinases (MAPKs) have been extensively connected with resistance to platinum compounds, no role has been established in 5-FU resistance. Here we demonstrate that p38MAPK activation is a key determinant in the cellular response to 5-FU. Thus, inhibition of p38MAPKα by SB203580 compound or by short-hairpin RNA interference-specific knockdown correlates with a decrease in the 5-FU-associated apoptosis and chemical resistance in both HaCaT and HCT116 cells. Activation of p38MAPK by 5-FU was dependent on canonical MAP2K, MAPK kinase (MKK)-3 and MKK6. In addition, ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) showed a redundancy of function for the final activation of p38MAPK. Resistance associated with p38MAPK inhibition correlates with an autophagic response that was mediated by a decrease in p53-driven apoptosis, without effect onto p53-dependent autophagy. Moreover, the results with colorectal cancer-derived cell lines with different p53 status and patterns of resistance to 5-FU suggest that de novo and acquired resistance was controlled by similar mechanisms. In summary, our data demonstrate a critical role for the p38MAPK signaling pathway in the cellular response to 5-FU by controlling the balance between apoptosis and autophagy.
Collapse
Affiliation(s)
- M A de la Cruz-Morcillo
- Laboratorio de Oncología Molecular, Centro Regional de Investigaciones Biomédicas, CRIB/PCYTA, Universidad de Castilla-La Mancha, UCLM, Albacete, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tromp JM, Geest CR, Breij ECW, Elias JA, van Laar J, Luijks DM, Kater AP, Beaumont T, van Oers MHJ, Eldering E. Tipping the Noxa/Mcl-1 balance overcomes ABT-737 resistance in chronic lymphocytic leukemia. Clin Cancer Res 2012; 18:487-98. [PMID: 22128299 DOI: 10.1158/1078-0432.ccr-11-1440] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) cells in lymph nodes (LN), from which relapses are postulated to originate, display an antiapoptotic profile in contrast to CLL cells from peripheral blood (PB). The BH3 mimetic ABT-737 antagonizes the antiapoptotic proteins Bcl-X(L) and Bcl-2 but not Mcl-1 or Bfl-1. Previously, it was shown that CD40-stimulated CLL cells were resistant to ABT-737. We aimed to define which antiapoptotic proteins determine resistance to ABT-737 in CLL and whether combination of known antileukemia drugs and ABT-737 was able to induce apoptosis of CD40-stimulated CLL cells. EXPERIMENTAL DESIGN To mimic the LN microenvironment, PB lymphocytes of CLL patients were cultured on feeder cells expressing CD40L and treated with ABT-737 with or without various drugs. In addition, we carried out overexpression or knockdown of pro- and antiapoptotic proteins in immortalized primary B cells. RESULTS Upon CD40 stimulation patient-specific variations in ABT-737 sensitivity correlated with differences in levels of Mcl-1 and its antagonist Noxa. Knockdown of Noxa, as well as Mcl-1 overexpression, corroborated the importance of the Noxa/Mcl-1 ratio in determining the response to ABT-737. Inhibition of NF-κB resulted in increased Noxa levels and enhanced sensitivity to ABT-737. Interestingly, increasing the Noxa/Mcl-1 ratio, by decreasing Mcl-1 (dasatinib and roscovitine) or increasing Noxa levels (fludarabine and bortezomib), resulted in synergy with ABT-737. CONCLUSIONS Thus, the Noxa/Mcl-1 balance determines sensitivity to ABT-737 in CD40-stimulated CLL cells. These data provide a rationale to investigate the combination of drugs which enhance the Noxa/Mcl-1 balance with ABT-737 to eradicate CLL in chemoresistant niches.
Collapse
Affiliation(s)
- Jacqueline M Tromp
- Departments of Hematology and Experimental Immunology, and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|