1
|
Halwe S, Schauflinger M, Takamatsu Y, Dolnik O, Becker S. MyosinVb tail inhibits transport of Marburg virus glycoprotein GP to VP40-enriched sites at the plasma membrane. Virology 2025; 607:110503. [PMID: 40174331 DOI: 10.1016/j.virol.2025.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Marburg virus (MARV) is the causative agent of severe fever with case fatality rates between 25 and 90 %. The glycoprotein GP is the only surface protein of MARV responsible for receptor recognition and fusion. Therefore, proper intracellular transport of GP to the plasma membrane and incorporation into virus particles is essential for the viral infection cycle. However, neither the exact post-Golgi trafficking route nor the host factors are known that support the transport of GP to the cell surface. Using quantitative confocal microscopy and correlative light and electron microscopy (CLEM), we show here that GP colocalized in both transiently transfected and MARV-infected cells with a dominant negative (DN) tail mutant of myosin Vb (MyoVbT), which inhibits trafficking through recycling endosomes. Overexpression of MyoVbT resulted in an aberrant distribution of GP that accumulated in or near perinuclear MyoVbT-containing structures. Simultaneously, we observed significantly reduced GP levels at the plasma membrane and especially at the viral budding sites characterized by clusters of the viral matrix protein VP40. Further, incorporation of GP into VP40-induced filamentous virus-like particles was impaired by MyoVbT. Overall, our results show that intracellular transport of MARV GP is disrupted by a DN mutant of the recycling endosome-associated motor protein MyoVb. These results might indicate a possible role for the endosomal recycling system in MARV GP trafficking to VP40-enriched budding-sites at the plasma membrane.
Collapse
Affiliation(s)
- Sandro Halwe
- Institute of Virology, Philipps University Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany
| | | | - Yuki Takamatsu
- Institute of Virology, Philipps University Marburg, Marburg, Germany; Department of Virology, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
2
|
Chi J, Chen Y, Li C, Liu S, Che K, Kong Z, Guo Z, Chu Y, Huang Y, Yang L, Sun C, Wang Y, Lv W, Zhang Q, Guo H, Zhao H, Yang Z, Xu L, Wang P, Dong B, Hu J, Liu S, Wang F, Zhao Y, Qi M, Xin Y, Nan H, Zhao X, Zhang W, Xiao M, Si K, Wang Y, Cao Y. NUMB dysfunction defines a novel mechanism underlying hyperuricemia and gout. Cell Discov 2024; 10:106. [PMID: 39433541 PMCID: PMC11494200 DOI: 10.1038/s41421-024-00708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/03/2024] [Indexed: 10/23/2024] Open
Abstract
Defective renal excretion and increased production of uric acid engender hyperuricemia that predisposes to gout. However, molecular mechanisms underlying defective uric acid excretion remain largely unknown. Here, we report a rare genetic variant of gout-unprecedented NUMB gene within a hereditary human gout family, which was identified by an unbiased genome-wide sequencing approach. This dysfunctional missense variant within the conserved region of the NUMB gene (NUMBR630H) underwent intracellular redistribution and degradation through an autophagy-dependent mechanism. Mechanistically, we identified the uric acid transporter, ATP Binding Cassette Subfamily G Member 2 (ABCG2), as a novel NUMB-binding protein through its intracellular YxNxxF motif. In polarized renal tubular epithelial cells (RTECs), NUMB promoted ABCG2 trafficking towards the apical plasma membrane. Genetic loss-of-function of NUMB resulted in redistribution of ABCG2 in the basolateral domain and ultimately defective excretion of uric acid. To recapitulate the clinical situation in human gout patients, we generated a NUMBR630H knock-in mouse strain, which showed marked increases of serum urate and decreased uric acid excretion. The NUMBR630H knock-in mice exhibited clinically relevant hyperuricemia. In summary, we have uncovered a novel NUMB-mediated mechanism of uric acid excretion and a functional missense variant of NUMB in humans, which causes hyperuricemia and gout.
Collapse
Affiliation(s)
- Jingwei Chi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Ying Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changgui Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong, China
| | - Shiguo Liu
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kui Che
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zili Kong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanchen Chu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yajing Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Libo Yang
- Department of Endocrinology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Cunwei Sun
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhitao Yang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanyun Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengmeng Qi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Xin
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huiqi Nan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Min Xiao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ke Si
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Li X, Liu B, Wen Y, Wang J, Guo YR, Shi A, Lin L. Coordination of RAB-8 and RAB-11 during unconventional protein secretion. J Cell Biol 2024; 223:e202306107. [PMID: 38019180 PMCID: PMC10686230 DOI: 10.1083/jcb.202306107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Multiple physiology-pertinent transmembrane proteins reach the cell surface via the Golgi-bypassing unconventional protein secretion (UcPS) pathway. By employing C. elegans-polarized intestine epithelia, we recently have revealed that the small GTPase RAB-8/Rab8 serves as an important player in the process. Nonetheless, its function and the relevant UcPS itinerary remain poorly understood. Here, we show that deregulated RAB-8 activity resulted in impaired apical UcPS, which increased sensitivity to infection and environmental stress. We also identified the SNARE VTI-1/Vti1a/b as a new RAB-8-interacting factor involved in the apical UcPS. Besides, RAB-11/Rab11 was capable of recruiting RABI-8/Rabin8 to reduce the guanine nucleotide exchange activity of SMGL-1/GEF toward RAB-8, indicating the necessity of a finely tuned RAB-8/RAB-11 network. Populations of RAB-8- and RAB-11-positive endosomal structures containing the apical UcPS cargo moved toward the apical side. In the absence of RAB-11 or its effectors, the cargo was retained in RAB-8- and RAB-11-positive endosomes, respectively, suggesting that these endosomes are utilized as intermediate carriers for the UcPS.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yusong R. Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Mitchell JW, Midillioglu I, Schauer E, Wang B, Han C, Wildonger J. Coordination of Pickpocket ion channel delivery and dendrite growth in Drosophila sensory neurons. PLoS Genet 2023; 19:e1011025. [PMID: 37943859 PMCID: PMC10662761 DOI: 10.1371/journal.pgen.1011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Sensory neurons enable an organism to perceive external stimuli, which is essential for survival. The sensory capacity of a neuron depends on the elaboration of its dendritic arbor and the localization of sensory ion channels to the dendritic membrane. However, it is not well understood when and how ion channels localize to growing sensory dendrites and whether their delivery is coordinated with growth of the dendritic arbor. We investigated the localization of the DEG/ENaC/ASIC ion channel Pickpocket (Ppk) in the peripheral sensory neurons of developing fruit flies. We used CRISPR-Cas9 genome engineering approaches to tag endogenous Ppk1 and visualize it live, including monitoring Ppk1 membrane localization via a novel secreted split-GFP approach. Fluorescently tagged endogenous Ppk1 localizes to dendrites, as previously reported, and, unexpectedly, to axons and axon terminals. In dendrites, Ppk1 is present throughout actively growing dendrite branches and is stably integrated into the neuronal cell membrane during the expansive growth of the arbor. Although Ppk channels are dispensable for dendrite growth, we found that an over-active channel mutant severely reduces dendrite growth, likely by acting at an internal membrane and not the dendritic membrane. Our data reveal that the molecular motor dynein and recycling endosome GTPase Rab11 are needed for the proper trafficking of Ppk1 to dendrites. Based on our data, we propose that Ppk channel transport is coordinated with dendrite morphogenesis, which ensures proper ion channel density and distribution in sensory dendrites.
Collapse
Affiliation(s)
- Josephine W. Mitchell
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, Michigan, United States of America
| | - Ipek Midillioglu
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Ethan Schauer
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jill Wildonger
- Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
5
|
Sandoval L, Labarca M, Retamal C, Sánchez P, Larraín J, González A. Sonic hedgehog is basolaterally sorted from the TGN and transcytosed to the apical domain involving Dispatched-1 at Rab11-ARE. Front Cell Dev Biol 2022; 10:833175. [PMID: 36568977 PMCID: PMC9768590 DOI: 10.3389/fcell.2022.833175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hedgehog proteins (Hhs) secretion from apical and/or basolateral domains occurs in different epithelial cells impacting development and tissue homeostasis. Palmitoylation and cholesteroylation attach Hhs to membranes, and Dispatched-1 (Disp-1) promotes their release. How these lipidated proteins are handled by the complex secretory and endocytic pathways of polarized epithelial cells remains unknown. We show that polarized Madin-Darby canine kidney cells address newly synthesized sonic hedgehog (Shh) from the TGN to the basolateral cell surface and then to the apical domain through a transcytosis pathway that includes Rab11-apical recycling endosomes (Rab11-ARE). Both palmitoylation and cholesteroylation contribute to this sorting behavior, otherwise Shh lacking these lipid modifications is secreted unpolarized. Disp-1 mediates first basolateral secretion from the TGN and then transcytosis from Rab11-ARE. At the steady state, Shh predominates apically and can be basolaterally transcytosed. This Shh trafficking provides several steps for regulation and variation in different epithelia, subordinating the apical to the basolateral secretion.
Collapse
Affiliation(s)
- Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Paula Sánchez
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Alfonso González,
| |
Collapse
|
6
|
Shipman KE, Long KR, Cowan IA, Rbaibi Y, Baty CJ, Weisz OA. An Adaptable Physiological Model of Endocytic Megalin Trafficking in Opossum Kidney Cells and Mouse Kidney Proximal Tubule. FUNCTION 2022; 3:zqac046. [PMID: 36325513 PMCID: PMC9614980 DOI: 10.1093/function/zqac046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023] Open
Abstract
The cells that comprise the proximal tubule (PT) are specialized for high-capacity apical endocytosis necessary to maintain a protein-free urine. Filtered proteins are reclaimed via receptor-mediated endocytosis facilitated by the multiligand receptors megalin and cubilin. Despite the importance of this pathway, we lack a detailed understanding of megalin trafficking kinetics and how they are regulated. Here, we utilized biochemical and quantitative imaging methods in a highly differentiated model of opossum kidney (OK) cells and in mouse kidney in vivo to develop mathematical models of megalin traffic. A preliminary model based on biochemically quantified kinetic parameters was refined by colocalization of megalin with individual apical endocytic compartment markers. Our model predicts that megalin is rapidly internalized, resulting in primarily intracellular distribution of the receptor at steady state. Moreover, our data show that early endosomes mature rapidly in PT cells and suggest that Rab11 is the primary mediator of apical recycling of megalin from maturing endocytic compartments. Apical recycling represents the rate-limiting component of endocytic traffic, suggesting that this step has the largest impact in determining the endocytic capacity of PT cells. Adaptation of our model to the S1 segment of mouse PT using colocalization data obtained in kidney sections confirms basic aspects of our model and suggests that our OK cell model largely recapitulates in vivo membrane trafficking kinetics. We provide a downloadable application that can be used to adapt our working parameters to further study how endocytic capacity of PT cells may be altered under normal and disease conditions.
Collapse
Affiliation(s)
- Katherine E Shipman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kimberly R Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Isabella A Cowan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Catherine J Baty
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ora A Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Wang X, Li X, Wang J, Wang J, Hu C, Zeng J, Shi A, Lin L. SMGL-1/NBAS acts as a RAB-8 GEF to regulate unconventional protein secretion. J Cell Biol 2022; 221:213235. [PMID: 35604368 PMCID: PMC9129922 DOI: 10.1083/jcb.202111125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023] Open
Abstract
Unconventional protein secretion (UPS) pathways are conserved across species. However, the underlying mechanisms that regulate Golgi-bypassing UPS of integral proteins remain elusive. In this study, we show that RAB-8 and SMGL-1/NBAS are required for the UPS of integral proteins in C. elegans intestine. SMGL-1 resides in the ER-Golgi intermediate compartment and adjacent RAB-8-positive structures, and NRZ complex component CZW-1/ZW10 is required for this residency. Notably, SMGL-1 acts as a guanine nucleotide exchange factor for RAB-8, ensuring UPS of integral proteins by driving the activation of RAB-8. Furthermore, we show that Pseudomonas aeruginosa infection elevated the expression of SMGL-1 and RAB-8. Loss of SMGL-1 or RAB-8 compromised resistance to environmental colchicine, arsenite, and pathogenic bacteria. These results suggest that the SMGL-1/RAB-8-mediated UPS could integrate environmental signals to serve as a host defense response. Together, by establishing the C. elegans intestine as a multicellular model, our findings provide insights into RAB-8-dependent Golgi-bypassing UPS, especially in the context of epithelia in vivo.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junkai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Zeng
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Correspondence to Anbing Shi:
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Long Lin:
| |
Collapse
|
8
|
Evidence for the role of Rab11-positive recycling endosomes as intermediates in coronavirus egress from epithelial cells. Histochem Cell Biol 2022; 158:241-251. [PMID: 35604431 PMCID: PMC9124743 DOI: 10.1007/s00418-022-02115-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
AbstractAfter their assembly by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)–Golgi interface, coronaviruses (CoVs) are released from their host cells following a pathway that remains poorly understood. The traditional view that CoV exit occurs via the constitutive secretory route has recently been questioned by studies suggesting that this process involves unconventional secretion. Here, using the avian infectious bronchitis virus (IBV) as a well-established model virus, we have applied confocal microscopy to investigate the pathway of CoV egress from epithelial Vero cells. We report a novel effect of IBV infection on cellular endomembranes, namely, the compaction of the pericentrosomal endocytic recycling compartment (ERC) defined by the GTPase Rab11, which coincides with the previously described Golgi fragmentation, as well as virus release. Despite Golgi disassembly, the IC elements containing the major IBV membrane protein (M)—which mostly associates with newly formed virus particles—maintain their close spatial connection with the Rab11-positive endocytic recycling system. Moreover, partial colocalization of the M protein with Rab11 was observed, whereas M displayed negligible overlap with LAMP-1, indicating that IBV egress does not occur via late endosomes or lysosomes. Synchronization of virus release using temperature-shift protocols was accompanied by increased colocalization of M and Rab11 in vesicular and vacuolar structures in the pericentrosomal region and at the cell periphery, most likely representing IBV-containing transport carriers. In conclusion, these results add CoVs to the growing list of viruses exploiting the endocytic recycling apparatus defined by Rab11 for their assembly and/or release.
Collapse
|
9
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
10
|
Phan-Everson T, Etoc F, Li S, Khodursky S, Yoney A, Brivanlou AH, Siggia ED. Differential compartmentalization of BMP4/NOGGIN requires NOGGIN trans-epithelial transport. Dev Cell 2021; 56:1930-1944.e5. [PMID: 34051144 DOI: 10.1016/j.devcel.2021.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Using self-organizing human models of gastrulation, we previously showed that (1) BMP4 initiates the cascade of events leading to gastrulation, (2) BMP4 signal reception is restricted to the basolateral domain, and (3) in a human-specific manner, BMP4 directly induces the expression of NOGGIN. Here, we report the surprising discovery that in human epiblasts, NOGGIN and BMP4 were secreted into opposite extracellular spaces. Interestingly, apically presented NOGGIN could inhibit basally delivered BMP4. Apically imposed microfluidic flow demonstrated that NOGGIN traveled in the apical extracellular space. Our co-localization analysis detailed the endocytotic route that trafficked NOGGIN from the apical space to the basolateral intercellular space where BMP4 receptors were located. This apical-basal transcytosis was indispensable for NOGGIN inhibition. Taken together, the segregation of activator/inhibitor into distinct extracellular spaces challenges classical views of morphogen movement. We propose that the transport of morphogen inhibitors regulates the spatial availability of morphogens during embryogenesis.
Collapse
Affiliation(s)
- Tien Phan-Everson
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA; Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA
| | - Samuel Khodursky
- Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA
| | - Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA; Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA; Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, the Rockefeller University, New York, NY 10065, USA.
| | - Eric D Siggia
- Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
11
|
Lucken-Ardjomande Häsler S, Vallis Y, Pasche M, McMahon HT. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR ΔF508. J Cell Biol 2021; 219:151714. [PMID: 32344433 PMCID: PMC7199855 DOI: 10.1083/jcb.201811014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mathias Pasche
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
12
|
Deffieu MS, Cesonyte I, Delalande F, Boncompain G, Dorobantu C, Song E, Lucansky V, Hirschler A, Cianferani S, Perez F, Carapito C, Gaudin R. Rab7-harboring vesicles are carriers of the transferrin receptor through the biosynthetic secretory pathway. SCIENCE ADVANCES 2021; 7:7/2/eaba7803. [PMID: 33523982 PMCID: PMC7793588 DOI: 10.1126/sciadv.aba7803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 11/18/2020] [Indexed: 06/07/2023]
Abstract
The biosynthetic secretory pathway is particularly challenging to investigate as it is underrepresented compared to the abundance of the other intracellular trafficking routes. Here, we combined the retention using selective hook (RUSH) to a CRISPR-Cas9 gene editing approach (eRUSH) and identified Rab7-harboring vesicles as an important intermediate compartment of the Golgi-to-plasma membrane transport of neosynthesized transferrin receptor (TfR). These vesicles did not exhibit degradative properties and were not associated to Rab6A-harboring vesicles. Rab7A was transiently associated to neosynthetic TfR-containing post-Golgi vesicles but dissociated before fusion with the plasma membrane. Together, our study reveals a role for Rab7 in the biosynthetic secretory pathway of the TfR, highlighting the diversity of the secretory vesicles' nature.
Collapse
Affiliation(s)
- Maika S Deffieu
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, Univ Montpellier, 34293 Montpellier, France.
- INSERM, Univ Strasbourg, 67000 Strasbourg, France
| | | | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087 Strasbourg, France
| | - Gaelle Boncompain
- Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 26 rue d'Ulm, F-75005 Paris, France
| | | | - Eli Song
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087 Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087 Strasbourg, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 26 rue d'Ulm, F-75005 Paris, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087 Strasbourg, France
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, Univ Montpellier, 34293 Montpellier, France.
- INSERM, Univ Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
13
|
Wayt J, Cartagena-Rivera A, Dutta D, Donaldson JG, Waterman CM. Myosin II isoforms promote internalization of spatially distinct clathrin-independent endocytosis cargoes through modulation of cortical tension downstream of ROCK2. Mol Biol Cell 2020; 32:226-236. [PMID: 33326251 PMCID: PMC8098828 DOI: 10.1091/mbc.e20-07-0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the actomyosin cytoskeleton has been implicated in clathrin-mediated endocytosis, a clear requirement for actomyosin in clathrin-independent endocytosis (CIE) has not been demonstrated. We discovered that the Rho-associated kinase ROCK2 is required for CIE of MHCI and CD59 through promotion of myosin II activity. Myosin IIA promoted internalization of MHCI and myosin IIB drove CD59 uptake in both HeLa and polarized Caco2 intestinal epithelial cells. In Caco2 cells, myosin IIA localized to the basal cortex and apical brush border and mediated MHCI internalization from the basolateral domain, while myosin IIB localized at the basal cortex and apical cell–cell junctions and promoted CD59 uptake from the apical membrane. Atomic force microscopy demonstrated that myosin IIB mediated apical epithelial tension in Caco2 cells. Thus, specific cargoes are internalized by ROCK2-mediated activation of myosin II isoforms to mediate spatial regulation of CIE, possibly by modulation of local cortical tension.
Collapse
Affiliation(s)
- Jessica Wayt
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD 20814
| | - Alexander Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda MD 20814
| | - Dipannita Dutta
- National Center for Advancing Translational Sciences, Department of Health and Human Services, Rockville, MD 20850
| | - Julie G Donaldson
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD 20814
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD 20814
| |
Collapse
|
14
|
Rozés-Salvador V, González-Billault C, Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front Cell Dev Biol 2020; 8:603794. [PMID: 33425908 PMCID: PMC7793921 DOI: 10.3389/fcell.2020.603794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
15
|
Lebreton S, Paladino S, Zurzolo C. Clustering in the Golgi apparatus governs sorting and function of GPI‐APs in polarized epithelial cells. FEBS Lett 2019; 593:2351-2365. [DOI: 10.1002/1873-3468.13573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse Institut Pasteur Paris France
| | - Simona Paladino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse Institut Pasteur Paris France
| |
Collapse
|
16
|
Sato R, Okura T, Kawahara M, Takizawa N, Momose F, Morikawa Y. Apical Trafficking Pathways of Influenza A Virus HA and NA via Rab17- and Rab23-Positive Compartments. Front Microbiol 2019; 10:1857. [PMID: 31456775 PMCID: PMC6700264 DOI: 10.3389/fmicb.2019.01857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
The envelope proteins of influenza A virus, hemagglutinin (HA) and neuraminidase (NA), play critical roles in viral entry to host cells and release from the cells, respectively. After protein synthesis, they are transported from the trans-Golgi network (TGN) to the apical plasma membrane (PM) and assembled into virus particles. However, the post-TGN transport pathways of HA and NA have not been clarified. Temporal study by confocal microscopy revealed that HA and NA colocalized soon after their synthesis, and relocated together from the TGN to the upper side of the cell. Using the Rab family protein, we investigated the post-TGN transport pathways of HA and NA. HA partially colocalized with AcGFP-Rab15, Rab17, and Rab23, but rarely with AcGFP-Rab11. When analyzed in cells stably expressing AcGFP-Rab, HA/NA colocalized with Rab15 and Rab17, markers of apical sorting and recycling endosomes, and later colocalized with Rab23, which distributes to the apical PM and endocytic vesicles. Overexpression of the dominant-negative (DN) mutants of Rab15 and Rab17, but not Rab23, significantly delayed HA transport to the PM. However, Rab23DN impaired cell surface expression of HA. Live-cell imaging revealed that NA moved rapidly with Rab17 but not with Rab15. NA also moved with Rab23 in the cytoplasm, but this motion was confined at the upper side of the cell. A fraction of HA was localized to Rab17 and Rab23 double-positive vesicles in the cytoplasm. Coimmunoprecipitation indicated that HA was associated with Rab17 and Rab23 in lipid raft fractions. When cholesterol was depleted by methyl-β-cyclodextrin treatment, the motion of NA and Rab17 signals ceased. These results suggest that HA and NA are incorporated into lipid raft microdomains and are cotransported to the PM by Rab17-positive and followed by Rab23-positive vesicles.
Collapse
Affiliation(s)
- Ryota Sato
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Takashi Okura
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Madoka Kawahara
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Naoki Takizawa
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Fumitaka Momose
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Yuko Morikawa
- Graduate School for Infection Control, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
17
|
Bidaud-Meynard A, Bossard F, Schnúr A, Fukuda R, Veit G, Xu H, Lukacs GL. Transcytosis maintains CFTR apical polarity in the face of constitutive and mutation-induced basolateral missorting. J Cell Sci 2019; 132:jcs.226886. [PMID: 30975917 DOI: 10.1242/jcs.226886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
Apical polarity of cystic fibrosis transmembrane conductance regulator (CFTR) is essential for solute and water transport in secretory epithelia and can be impaired in human diseases. Maintenance of apical polarity in the face of CFTR non-polarized delivery and inefficient apical retention of mutant CFTRs lacking PDZ-domain protein (NHERF1, also known as SLC9A3R1) interaction, remains enigmatic. Here, we show that basolateral CFTR delivery originates from biosynthetic (∼35%) and endocytic (∼65%) recycling missorting. Basolateral channels are retrieved via basolateral-to-apical transcytosis (hereafter denoted apical transcytosis), enhancing CFTR apical expression by two-fold and suppressing its degradation. In airway epithelia, CFTR transcytosis is microtubule-dependent but independent of Myo5B, Rab11 proteins and NHERF1 binding to its C-terminal DTRL motif. Increased basolateral delivery due to compromised apical recycling and accelerated internalization upon impaired NHERF1-CFTR association is largely counterbalanced by efficient CFTR basolateral internalization and apical transcytosis. Thus, transcytosis represents a previously unrecognized, but indispensable, mechanism for maintaining CFTR apical polarity that acts by attenuating its constitutive and mutation-induced basolateral missorting.
Collapse
Affiliation(s)
| | - Florian Bossard
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Andrea Schnúr
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Ryosuke Fukuda
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Guido Veit
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Haijin Xu
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Gergely L Lukacs
- Department of Physiology, McGill University, Montréal, QC, H3G 1Y6, Canada .,Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada
| |
Collapse
|
18
|
Bedi S, Ono A. Friend or Foe: The Role of the Cytoskeleton in Influenza A Virus Assembly. Viruses 2019; 11:v11010046. [PMID: 30634554 PMCID: PMC6356976 DOI: 10.3390/v11010046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A Virus (IAV) is a respiratory virus that causes seasonal outbreaks annually and pandemics occasionally. The main targets of the virus are epithelial cells in the respiratory tract. Like many other viruses, IAV employs the host cell’s machinery to enter cells, synthesize new genomes and viral proteins, and assemble new virus particles. The cytoskeletal system is a major cellular machinery, which IAV exploits for its entry to and exit from the cell. However, in some cases, the cytoskeleton has a negative impact on efficient IAV growth. In this review, we highlight the role of cytoskeletal elements in cellular processes that are utilized by IAV in the host cell. We further provide an in-depth summary of the current literature on the roles the cytoskeleton plays in regulating specific steps during the assembly of progeny IAV particles.
Collapse
Affiliation(s)
- Sukhmani Bedi
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Kokkonen N, Khosrowabadi E, Hassinen A, Harrus D, Glumoff T, Kietzmann T, Kellokumpu S. Abnormal Golgi pH Homeostasis in Cancer Cells Impairs Apical Targeting of Carcinoembryonic Antigen by Inhibiting Its Glycosyl-Phosphatidylinositol Anchor-Mediated Association with Lipid Rafts. Antioxid Redox Signal 2019; 30:5-21. [PMID: 29304557 PMCID: PMC6276271 DOI: 10.1089/ars.2017.7389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS Carcinoembryonic antigen (CEACAM5, CEA) is a known tumor marker for colorectal cancer that localizes in a polarized manner to the apical surface in normal colon epithelial cells whereas in cancer cells it is present at both the apical and basolateral surfaces of the cells. Since the Golgi apparatus sorts and transports most proteins to these cell surface domains, we set out here to investigate whether any of the factors commonly associated with tumorigenesis, including hypoxia, generation of reactive oxygen species (ROS), altered redox homeostasis, or an altered Golgi pH, are responsible for mistargeting of CEA to the basolateral surface in cancer cells. RESULTS Using polarized nontumorigenic Madin-Darby canine kidney (MDCK) cells and CaCo-2 colorectal cancer cells as targets, we show that apical delivery of CEA is not affected by hypoxia, ROS, nor changes in the Golgi redox state. Instead, we find that an elevated Golgi pH induces basolateral targeting of CEA and increases its TX-100 solubility, indicating impaired association of CEA with lipid rafts. Moreover, disruption of lipid rafts by methyl-β-cyclodextrin induced accumulation of the CEA protein at the basolateral surface in MDCK cells. Experiments with the glycosylphosphatidylinositol (GPI)-anchorless CEA mutant and CEA-specific GPI-anchored enhanced green fluorescent protein (EGFP-GPI) fusion protein revealed that the GPI-anchor was critical for the pH-dependent apical delivery of the CEA in MDCK cells. Innovation and Conclusion: The findings indicate that an abnormal Golgi pH homeostasis in cancer cells is an important factor that causes mistargeting of CEA to the basolateral surface of cancer cells via inhibiting its GPI-anchor-mediated association with lipid rafts.
Collapse
Affiliation(s)
- Nina Kokkonen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Deborah Harrus
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Address correspondence to: Dr. Sakari Kellokumpu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu FI-90014, Finland
| |
Collapse
|
20
|
Zhu D, Yan H, Zhou Z, Tang J, Liu X, Hartmann R, Parak WJ, Feliu N, Shen Y. Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater Sci 2018; 6:1800-1817. [DOI: 10.1039/c8bm00128f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the various cationic polymers developed as non-viral gene delivery vectors, polyethylenimine (PEI) has been/is frequently used in in vitro transfection.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Huijie Yan
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | | | - Wolfgang J. Parak
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Neus Feliu
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| |
Collapse
|
21
|
Samson EB, Tsao DS, Zimak J, McLaughlin RT, Trenton NJ, Mace EM, Orange JS, Schweikhard V, Diehl MR. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks. Biol Open 2017; 6:785-799. [PMID: 28455356 PMCID: PMC5483015 DOI: 10.1242/bio.022624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks.
Collapse
Affiliation(s)
- Edward B Samson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - David S Tsao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jan Zimak
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - R Tyler McLaughlin
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77030, USA
| | | | - Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Michael R Diehl
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| |
Collapse
|
22
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
23
|
Stoops EH, Hull M, Caplan MJ. Newly synthesized and recycling pools of the apical protein gp135 do not occupy the same compartments. Traffic 2016; 17:1272-1285. [PMID: 27649479 PMCID: PMC5123909 DOI: 10.1111/tra.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022]
Abstract
Polarized epithelial cells sort newly synthesized and recycling plasma membrane proteins into distinct trafficking pathways directed to either the apical or basolateral membrane domains. While the trans-Golgi network is a well-established site of protein sorting, increasing evidence indicates a key role for endosomes in the initial trafficking of newly synthesized proteins. Both basolateral and apical proteins have been shown to traverse endosomes en route to the plasma membrane. In particular, apical proteins traffic through either subapical early or recycling endosomes. Here we use the SNAP tag system to analyze the trafficking of the apical protein gp135, also known as podocalyxin. We show that newly synthesized gp135 traverses the apical recycling endosome, but not the apical early endosomes (AEEs). In contrast, post-endocytic gp135 is delivered to the AEE before recycling back to the apical membrane. The pathways pursued by the newly synthesized and recycling gp135 populations do not detectably intersect, demonstrating that the biosynthetic and post-endocytic pools of this protein are subjected to distinct sorting processes.
Collapse
Affiliation(s)
- Emily H Stoops
- Department of Cellular and Molecular Physiology and Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Michael Hull
- Department of Cellular and Molecular Physiology and Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology and Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
24
|
Enrich C, Rentero C, Grewal T. Annexin A6 in the liver: From the endocytic compartment to cellular physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:933-946. [PMID: 27984093 DOI: 10.1016/j.bbamcr.2016.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin family - a group of Ca2+-dependent membrane binding proteins. AnxA6 is the largest of all annexins and highly expressed in smooth muscle, hepatocytes, endothelial cells and cardiomyocytes. Upon activation, AnxA6 binds to negatively charged phospholipids in a wide range of intracellular localizations, in particular the plasma membrane, late endosomes/pre-lysosomes, but also synaptic vesicles and sarcolemma. In these cellular sites, AnxA6 is believed to contribute to the organization of membrane microdomains, such as cholesterol-rich lipid rafts and confer multiple regulatory functions, ranging from vesicle fusion, endocytosis and exocytosis to programmed cell death and muscle contraction. Growing evidence supports that Ca2+ and Ca2+-binding proteins control endocytosis and autophagy. Their regulatory role seems to operate at the level of the signalling pathways that initiate autophagy or at later stages, when autophagosomes fuse with endolysosomal compartments. The convergence of the autophagic and endocytic vesicles to lysosomes shares several features that depend on Ca2+ originating from lysosomes/late endosomes and seems to depend on proteins that are subsequently activated by this cation. However, the involvement of Ca2+ and its effector proteins in these autophagic and endocytic stages still remains poorly understood. Although AnxA6 makes up almost 0.25% of total protein in the liver, little is known about its function in hepatocytes. Within the endocytic route, we identified AnxA6 in endosomes and autophagosomes of hepatocytes. Hence, AnxA6 and possibly other annexins might represent new Ca2+ effectors that regulate converging steps of autophagy and endocytic trafficking in hepatocytes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Reynier M, Allart S, Gaspard E, Moga A, Goudounèche D, Serre G, Simon M, Leprince C. Rab11a Is Essential for Lamellar Body Biogenesis in the Human Epidermis. J Invest Dermatol 2016; 136:1199-1209. [DOI: 10.1016/j.jid.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/05/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022]
|
26
|
Treyer A, Pujato M, Pechuan X, Müsch A. Iterative sorting of apical and basolateral cargo in Madin-Darby canine kidney cells. Mol Biol Cell 2016; 27:2259-71. [PMID: 27226480 PMCID: PMC4945143 DOI: 10.1091/mbc.e16-02-0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 01/21/2023] Open
Abstract
A novel assay quantitatively distinguishes different cargo pairs by their degree of colocalization at the TGN and the evolution of colocalization during their TGN-to-surface transport. Apical NTRp75 and basolateral VSVG in MDCK cells undergo continuous sorting between TGN exit and surface arrival. For several decades, the trans-Golgi network (TGN) was considered the most distal stop and hence the ultimate protein-sorting station for distinct apical and basolateral transport carriers that reach their respective surface domains in the direct trafficking pathway. However, recent reports of apical and basolateral cargoes traversing post-Golgi compartments accessible to endocytic ligands before their arrival at the cell surface and the post-TGN breakup of large pleomorphic membrane fragments that exit the Golgi region toward the surface raised the possibility that compartments distal to the TGN mediate or contribute to biosynthetic sorting. Here we describe the development of a novel assay that quantitatively distinguishes different cargo pairs by their degree of colocalization at the TGN and by the evolution of colocalization during their TGN-to-surface transport. Keys to the high resolution of our approach are 1) conversion of perinuclear organelle clustering into a two-dimensional microsomal spread and 2) identification of TGN and post-TGN cargo without the need for a TGN marker that universally cosegregates with all cargo. Using our assay, we provide the first evidence that apical NTRp75 and basolateral VSVG in Madin–Darby canine kidney cells still undergo progressive sorting after they exit the TGN toward the cell surface.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Mario Pujato
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Ximo Pechuan
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne Müsch
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
27
|
The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun 2016; 7:11550. [PMID: 27180806 PMCID: PMC4873671 DOI: 10.1038/ncomms11550] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/08/2016] [Indexed: 01/14/2023] Open
Abstract
The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station.
Collapse
|
28
|
Zurzolo C, Simons K. Glycosylphosphatidylinositol-anchored proteins: Membrane organization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:632-9. [DOI: 10.1016/j.bbamem.2015.12.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022]
|
29
|
Abstract
Epithelial cells display segregated early endosomal compartments, termed apical sorting endosomes and basolateral sorting endosomes, that converge into a common late endosomal-lysosomal degradative compartment and common recycling endosomes (CREs). Unlike recycling endosomes of nonpolarized cells, CREs have the ability to sort apical and basolateral plasma membrane proteins into distinct apical and basolateral recycling routes, utilizing mechanisms similar to those employed by the trans Golgi network in the biosynthetic pathway. The apical recycling route includes an additional compartment, the apical recycling endosomes, consisting of multiple vesicles bundled around the basal body. Recent evidence indicates that, in addition to their role in internalizing ligands and recycling their receptors back to the cell surface, endosomal compartments act as intermediate stations in the biosynthetic routes to the plasma membrane. Here we review methods employed by our laboratory to study the endosomal compartments of epithelial cells and their multiple trafficking roles.
Collapse
|
30
|
Fölsch H. Analyzing the role of AP-1B in polarized sorting from recycling endosomes in epithelial cells. Methods Cell Biol 2015; 130:289-305. [PMID: 26360041 DOI: 10.1016/bs.mcb.2015.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial cells polarize their plasma membrane into apical and basolateral domains where the apical membrane faces the luminal side of an organ and the basolateral membrane is in contact with neighboring cells and the basement membrane. To maintain this polarity, newly synthesized and internalized cargos must be sorted to their correct target domain. Over the last ten years, recycling endosomes have emerged as an important sorting station at which proteins destined for the apical membrane are segregated from those destined for the basolateral membrane. Essential for basolateral sorting from recycling endosomes is the tissue-specific adaptor complex AP-1B. This chapter describes experimental protocols to analyze the AP-1B function in epithelial cells including the analysis of protein sorting in LLC-PK1 cells lines, immunoprecipitation of cargo proteins after chemical crosslinking to AP-1B, and radioactive pulse-chase experiments in MDCK cells depleted of the AP-1B subunit μ1B.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
31
|
Abstract
Galectins, a family of β-galactoside binding proteins, do not possess a signalling sequence to enter the endoplasmic reticulum as a starting point for the classical secretory pathway. They use a so-called unconventional secretion mechanism for translocation across the plasma membrane and/or into the lumen of transport vesicles. The β-galactoside binding protein galectin-3 is highly expressed in a variety of epithelial cell lines. Polarized MDCK cells secrete this lectin predominantly into the apical medium. The lectin re-enters the cell by non-clathrin mediated endocytosis and passages through endosomal organelles. This internalized galectin-3 plays an important role in apical protein trafficking by directing the subcellular targeting of apical glycoproteins via oligomerization into high molecular weight clusters, a process that can be fine-tuned by changes in the environmental pH. Following release at the apical plasma membrane, the lectin can reenter the cell for another round of recycling and apical protein sorting. This review will briefly address galectin-3-functions in epithelia and focus on distinct phases in apical recycling of the lectin.
Collapse
Affiliation(s)
- Ellena Hönig
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - Katharina Schneider
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
32
|
Mihov D, Raja E, Spiess M. Chondroitin Sulfate Accelerates Trans-Golgi-to-Surface Transport of Proteoglycan Amyloid Precursor Protein. Traffic 2015; 16:853-70. [PMID: 25951880 DOI: 10.1111/tra.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/28/2022]
Abstract
The amyloid precursor protein (APP) is a membrane protein implicated in the pathogenesis of Alzheimer's disease. APP is a part-time proteoglycan, as splice variants lacking exon 15 are modified by a chondroitin sulfate glycosaminoglycan (GAG) chain. Investigating the effect of the GAG chain on the trafficking of APP in non-polarized cells, we found it to increase the steady-state surface-to-intracellular distribution, to reduce the rate of endocytosis and to accelerate transport kinetics from the trans-Golgi network (TGN) to the plasma membrane. Deletion of the cytosolic domain resulted in delayed surface arrival of GAG-free APP, but did not affect the rapid export kinetics of the proteoglycan form. Protein-free GAG chains showed the same TGN-to-cell surface transport kinetics as proteoglycan APP. Endosome ablation experiments were performed to distinguish between indirect endosomal and direct pathways to the cell surface. Surprisingly, TGN-to-cell surface transport of both GAG-free and proteoglycan APP was found to be indirect via transferrin-positive endosomes. Our results show that GAGs act as alternative sorting determinants in cellular APP transport that are dominant over cytoplasmic signals and involve distinct sorting mechanisms.
Collapse
Affiliation(s)
- Deyan Mihov
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Eva Raja
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| |
Collapse
|
33
|
Paladino S, Lebreton S, Zurzolo C. Trafficking and Membrane Organization of GPI-Anchored Proteins in Health and Diseases. CURRENT TOPICS IN MEMBRANES 2015; 75:269-303. [PMID: 26015286 DOI: 10.1016/bs.ctm.2015.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a class of lipid-anchored proteins attached to the membranes by a glycolipid anchor that is added, as posttranslation modification, in the endoplasmic reticulum. GPI-APs are expressed at the cell surface of eukaryotes where they play diverse vital functions. Like all plasma membrane proteins, GPI-APs must be correctly sorted along the different steps of the secretory pathway to their final destination. The presence of both a glycolipid anchor and a protein portion confers special trafficking features to GPI-APs. Here, we discuss the recent advances in the field of GPI-AP trafficking, focusing on the mechanisms regulating their biosynthetic pathway and plasma membrane organization. We also discuss how alterations of these mechanisms can result in different diseases. Finally, we will examine the strict relationship between the trafficking and function of GPI-APs in epithelial cells.
Collapse
Affiliation(s)
- Simona Paladino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Napoli, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Napoli, Italy; Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| |
Collapse
|
34
|
Mori K, Murano K, Ohniwa RL, Kawaguchi A, Nagata K. Oseltamivir expands quasispecies of influenza virus through cell-to-cell transmission. Sci Rep 2015; 5:9163. [PMID: 25772381 PMCID: PMC4649863 DOI: 10.1038/srep09163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
The population of influenza virus consists of a huge variety of variants, called quasispecies, due to error-prone replication. Previously, we reported that progeny virions of influenza virus become infected to adjacent cells via cell-to-cell transmission pathway in the presence of oseltamivir. During cell-to-cell transmission, viruses become infected to adjacent cells at high multiplicity since progeny virions are enriched on plasma membrane between infected cells and their adjacent cells. Co-infection with viral variants may rescue recessive mutations with each other. Thus, it is assumed that the cell-to-cell transmission causes expansion of virus quasispecies. Here, we have demonstrated that temperature-sensitive mutations remain in progeny viruses even at non-permissive temperature by co-infection in the presence of oseltamivir. This is possibly due to a multiplex infection through the cell-to-cell transmission by the addition of oseltamivir. Further, by the addition of oseltamivir, the number of missense mutation introduced by error-prone replication in segment 8 encoding NS1 was increased in a passage-dependent manner. The number of missense mutation in segment 5 encoding NP was not changed significantly, whereas silent mutation was increased. Taken together, we propose that oseltamivir expands influenza virus quasispecies via cell-to-cell transmission, and may facilitate the viral evolution and adaptation.
Collapse
Affiliation(s)
- Kotaro Mori
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kensaku Murano
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryosuke L Ohniwa
- Division of Biomedical Science, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
35
|
Sobajima T, Yoshimura SI, Iwano T, Kunii M, Watanabe M, Atik N, Mushiake S, Morii E, Koyama Y, Miyoshi E, Harada A. Rab11a is required for apical protein localisation in the intestine. Biol Open 2014; 4:86-94. [PMID: 25527643 PMCID: PMC4295169 DOI: 10.1242/bio.20148532] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023] Open
Abstract
The small GTPase Rab11 plays an important role in the recycling of proteins to the plasma membrane as well as in polarised transport in epithelial cells and neurons. We generated conditional knockout mice deficient in Rab11a. Rab11a-deficient mice are embryonic lethal, and brain-specific Rab11a knockout mice show no overt abnormalities in brain architecture. In contrast, intestine-specific Rab11a knockout mice begin dying approximately 1 week after birth. Apical proteins in the intestines of knockout mice accumulate in the cytoplasm and mislocalise to the basolateral plasma membrane, whereas the localisation of basolateral proteins is unaffected. Shorter microvilli and microvillus inclusion bodies are also observed in the knockout mice. Elevation of a serum starvation marker was also observed, likely caused by the mislocalisation of apical proteins and reduced nutrient uptake. In addition, Rab8a is mislocalised in Rab11a knockout mice. Conversely, Rab11a is mislocalised in Rab8a knockout mice and in a microvillus atrophy patient, which has a mutation in the myosin Vb gene. Our data show an essential role for Rab11a in the localisation of apical proteins in the intestine and demonstrate functional relationships between Rab11a, Rab8a and myosin Vb in vivo.
Collapse
Affiliation(s)
- Tomoaki Sobajima
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Iwano
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Nur Atik
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sotaro Mushiake
- Department of Pediatrics, Nara Hospital, Kinki University School of Medicine, Ikoma, Nara, 630-0293, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
36
|
Smith NL, Hammond S, Gadi D, Wagenknecht-Wiesner A, Baird B, Holowka D. Sphingosine derivatives inhibit cell signaling by electrostatically neutralizing polyphosphoinositides at the plasma membrane. SELF NONSELF 2014; 1:133-143. [PMID: 21423874 DOI: 10.4161/self.1.2.11672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mast cell stimulation via IgE receptors causes activation of multiple processes, including Ca(2+) mobilization, granule exocytosis, and outward trafficking of recycling endosomes to the plasma membrane. We used fluorescein-conjugated cholera toxin B (FITC-CTxB) to label GM(1) in recycling endsomes and to monitor antigen-stimulated trafficking to the plasma membrane in both fluorimeter and imaging-based assays. We find that the sphingosine derivatives D-sphingosine and N,N'-dimethylsphingosine effectively inhibit this outward trafficking response, whereas a quarternary ammonium derivative, N,N',N″-trimethylsphingosine, does not inhibit. This pattern of inhibition is also found for Ca(2+) mobilization and secretory lysosomal exocytosis, indicating a general effect on Ca(2+)-dependent signaling processes. This inhibition correlates with the capacity of sphingosine derivatives to flip to the inner leaflet of the plasma membrane that is manifested as changes in plasma membrane-associated FITC-CTxB fluorescence and cytoplasmic pH. Using a fluorescently labeled MARCKS effector domain to monitor plasma membrane-associated polyphosphoinositides, we find that these sphingosine derivatives displace the electrostatic binding of this MARCKS effector domain to the plasma membrane in parallel with their capacity to inhibit Ca(2+)-dependent signaling. Our results support roles for plasma membrane polyphosphoinositides in Ca(2+) signaling and stimulated exocytosis, and they illuminate a mechanism by which D-sphingosine regulates signaling responses in mammalian cells.
Collapse
Affiliation(s)
- Norah L Smith
- Department of Chemistry and Chemical Biology; Cornell University; Ithaca, NY USA
| | | | | | | | | | | |
Collapse
|
37
|
Hoff F, Greb C, Hollmann C, Hönig E, Jacob R. The Large GTPase Mx1 Is Involved in Apical Transport in MDCK Cells. Traffic 2014; 15:983-96. [DOI: 10.1111/tra.12186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Florian Hoff
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| | - Christoph Greb
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| | - Christina Hollmann
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| | - Ellena Hönig
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology; Philipps University of Marburg; Robert-Koch-Str. 6 35037 Marburg Germany
| |
Collapse
|
38
|
Endosome maturation, transport and functions. Semin Cell Dev Biol 2014; 31:2-10. [DOI: 10.1016/j.semcdb.2014.03.034] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022]
|
39
|
Influenza A virus hemagglutinin and neuraminidase mutually accelerate their apical targeting through clustering of lipid rafts. J Virol 2014; 88:10039-55. [PMID: 24965459 DOI: 10.1128/jvi.00586-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In polarized epithelial cells, influenza A virus hemagglutinin (HA) and neuraminidase (NA) are intrinsically associated with lipid rafts and target the apical plasma membrane for viral assembly and budding. Previous studies have indicated that the transmembrane domain (TMD) and cytoplasmic tail (CT) of HA and NA are required for association with lipid rafts, but the raft dependencies of their apical targeting are controversial. Here, we show that coexpression of HA with NA accelerated their apical targeting through accumulation in lipid rafts. HA was targeted to the apical plasma membrane even when expressed alone, but the kinetics was much slower than that of HA in infected cells. Coexpression experiments revealed that apical targeting of HA and NA was accelerated by their coexpression. The apical targeting of HA was also accelerated by coexpression with M1 but not M2. The mutations in the outer leaflet of the TMD and the deletion of the CT in HA and NA that reduced their association with lipid rafts abolished the acceleration of their apical transport, indicating that the lipid raft association is essential for efficient apical trafficking of HA and NA. An in situ proximity ligation assay (PLA) revealed that HA and NA were accumulated and clustered in the cytoplasmic compartments only when both were associated with lipid rafts. Analysis with mutant viruses containing nonraft HA/NA confirmed these findings. We further analyzed lipid raft markers by in situ PLA and suggest a possible mechanism of the accelerated apical transport of HA and NA via clustering of lipid rafts. IMPORTANCE Lipid rafts serve as sites for viral entry, particle assembly, and budding, leading to efficient viral replication. The influenza A virus utilizes lipid rafts for apical plasma membrane targeting and particle budding. The hemagglutinin (HA) and neuraminidase (NA) of influenza virus, key players for particle assembly, contain determinants for apical sorting and lipid raft association. However, it remains to be elucidated how lipid rafts contribute to the apical trafficking and budding. We investigated the relation of lipid raft association of HA and NA to the efficiency of apical trafficking. We show that coexpression of HA and NA induces their accumulation in lipid rafts and accelerates their apical targeting, and we suggest that the accelerated apical transport likely occurs by clustering of lipid rafts at the TGN. This finding provides the first evidence that two different raft-associated viral proteins induce lipid raft clustering, thereby accelerating apical trafficking of the viral proteins.
Collapse
|
40
|
Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42. [PMID: 24651541 DOI: 10.1038/nrm3775] [Citation(s) in RCA: 526] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, 1300 York Avenue, LC-301 New York City, New York 10065, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U 3209 MRB III, Nashville Tennessee 37232, USA
| |
Collapse
|
41
|
Stoops EH, Caplan MJ. Trafficking to the apical and basolateral membranes in polarized epithelial cells. J Am Soc Nephrol 2014; 25:1375-86. [PMID: 24652803 DOI: 10.1681/asn.2013080883] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells.
Collapse
Affiliation(s)
- Emily H Stoops
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Caplan
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
42
|
Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates. Proc Natl Acad Sci U S A 2014; 111:4127-32. [PMID: 24591614 DOI: 10.1073/pnas.1304168111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Emerging data suggest that in polarized epithelial cells newly synthesized apical and basolateral plasma membrane proteins traffic through different endosomal compartments en route to the respective cell surface. However, direct evidence for trans-endosomal pathways of plasma membrane proteins is still missing and the mechanisms involved are poorly understood. Here, we imaged the entire biosynthetic route of rhodopsin-GFP, an apical marker in epithelial cells, synchronized through recombinant conditional aggregation domains, in live Madin-Darby canine kidney cells using spinning disk confocal microscopy. Our experiments directly demonstrate that rhodopsin-GFP traffics through apical recycling endosomes (AREs) that bear the small GTPase Rab11a before arriving at the apical membrane. Expression of dominant-negative Rab11a drastically reduced apical delivery of rhodopsin-GFP and caused its missorting to the basolateral membrane. Surprisingly, functional inhibition of dynamin-2 trapped rhodopsin-GFP at AREs and caused aberrant accumulation of coated vesicles on AREs, suggesting a previously unrecognized role for dynamin-2 in the scission of apical carrier vesicles from AREs. A second set of experiments, using a unique method to carry out total internal reflection fluorescence microscopy (TIRFM) from the apical side, allowed us to visualize the fusion of rhodopsin-GFP carrier vesicles, which occurred randomly all over the apical plasma membrane. Furthermore, two-color TIRFM showed that Rab11a-mCherry was present in rhodopsin-GFP carrier vesicles and was rapidly released upon fusion onset. Our results provide direct evidence for a role of AREs as a post-Golgi sorting hub in the biosynthetic route of polarized epithelia, with Rab11a regulating cargo sorting at AREs and carrier vesicle docking at the apical membrane.
Collapse
|
43
|
Szalinski CM, Labilloy A, Bruns JR, Weisz OA. VAMP7 modulates ciliary biogenesis in kidney cells. PLoS One 2014; 9:e86425. [PMID: 24466086 PMCID: PMC3899255 DOI: 10.1371/journal.pone.0086425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/12/2013] [Indexed: 12/02/2022] Open
Abstract
Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.
Collapse
Affiliation(s)
- Christina M. Szalinski
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Anatália Labilloy
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Ciência sem Fronteiras, CNPq, Brasilia, Brazil
| | - Jennifer R. Bruns
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Ora A. Weisz
- Renal Electrolyte Division, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
45
|
Goldenring JR. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer 2013; 13:813-20. [PMID: 24108097 PMCID: PMC4011841 DOI: 10.1038/nrc3601] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cell carcinogenesis involves the loss of cell polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation, and increased cell motility and invasion. Membrane vesicle trafficking underlies all of these processes. Specific membrane trafficking regulators, including RAB small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine the cell surface presentation of proteins and the overall function of both differentiated and neoplastic cells. Although mutations in vesicle trafficking proteins may not be direct drivers of transformation, components of the machinery of vesicle movement have crucial roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are essential mediators of the full range of cell physiologies that drive cancer cell biology, including initial loss of cell polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may permit the manipulation of cancer cell behaviour.
Collapse
Affiliation(s)
- James R Goldenring
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center and the Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; and the Nashville Veternas Affairs Medical Center, Nashville, Tennessee 37212, USA
| |
Collapse
|
46
|
Perez Bay AE, Schreiner R, Mazzoni F, Carvajal-Gonzalez JM, Gravotta D, Perret E, Lehmann Mantaras G, Zhu YS, Rodriguez-Boulan EJ. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia. EMBO J 2013; 32:2125-2139. [PMID: 23749212 PMCID: PMC3730227 DOI: 10.1038/emboj.2013.130] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022] Open
Abstract
Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis.
Collapse
Affiliation(s)
- Andres E Perez Bay
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Ryan Schreiner
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Francesca Mazzoni
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Jose M Carvajal-Gonzalez
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Diego Gravotta
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Emilie Perret
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Gullermo Lehmann Mantaras
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Yuan-Shan Zhu
- Department of Medicine/Endocrinology, Weill Cornell Medical College, New York, NY, USA
| | - Enrique J Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
47
|
Razawi H, Kinlough CL, Staubach S, Poland PA, Rbaibi Y, Weisz OA, Hughey RP, Hanisch FG. Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1. Glycobiology 2013; 23:935-45. [PMID: 23640779 DOI: 10.1093/glycob/cwt030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005. Glycobiology. 15:1111-1124). Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. To address this novel observation, we used recombinant epitope-tagged MUC1 (MUC1-M) and mutant forms with abrogated clathrin-mediated endocytosis (MUC1-M-Y20,60N) or blocked recycling (palmitoylation-defective MUC1-M-CQC/AQA). We show that the CQC/AQA mutant transits the TGN at significantly lower levels, concomitant with a strongly reduced shedding from the plasma membrane and its accumulation in endosomal compartments. Intriguingly, the O-glycosylation of the shed MUC1 ectodomain subunit changes from preponderant sialylated core 1 (MUC1-M) to core 2 glycans on the non-recycling CQC/AQA mutant. The O-glycoprofile of the non-recycling CQC/AQA mutant resembles the core 2 glycoprofile on a secretory MUC1 probe that transits the Golgi complex only once. In contrast, the MUC1-M-Y20,60N mutant recycles via flotillin-dependent pathways and shows the wild-type phenotype with dominant core 1 expression. Differential radiolabeling of protein with [(35)S]Met/Cys or glycans with [(3)H]GlcNH2 in pulse-chase experiments of surface biotinylated MUC1 revealed a significantly shorter half-life of [(3)H]MUC1 when compared with [(35)S]MUC1, whereas the same ratio for the CQC/AQA mutant was close to one. This finding further supports the novel possibility of a recycling-associated O-glycan processing from Gal1-4GlcNAc1-6(Gal1-3)GalNAc (core 2) to Gal1-3GalNAc (core 1).
Collapse
Affiliation(s)
- Hanieh Razawi
- Medical Faculty, Institute of Biochemistry II, University of Cologne, 50931 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Youker RT, Bruns JR, Costa SA, Rbaibi Y, Lanni F, Kashlan OB, Teng H, Weisz OA. Multiple motifs regulate apical sorting of p75 via a mechanism that involves dimerization and higher-order oligomerization. Mol Biol Cell 2013; 24:1996-2007. [PMID: 23637462 PMCID: PMC3681702 DOI: 10.1091/mbc.e13-02-0078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75-green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery.
Collapse
Affiliation(s)
- Robert T Youker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Cells internalize extracellular solutes, ligands and proteins and lipids in the plasma membrane (PM) by endocytosis. The removal of membrane from the PM is counteracted by endosomal recycling pathways that return the endocytosed proteins and lipids back to the PM. Recycling to the PM can occur from early endosomes. However, many cells have a distinct subpopulation of endosomes that have a mildly acidic pH of 6.5 and are involved in the endosomal recycling. These endosomes are dubbed recycling endosomes (REs). In recent years, studies have begun to reveal that function of REs is not limited to the endosomal recycling. In this review, I summarize the nature of membrane trafficking pathways that pass through REs and the cell biological roles of these pathways.
Collapse
Affiliation(s)
- Tomohiko Taguchi
- Laboratory of Pathological Cell Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
50
|
|