1
|
Del Piano F, Monnolo A, Lama A, Pirozzi C, Comella F, Melini S, Naccari C, Pelagalli A, Meli R, Ferrante MC. Non-dioxin-like polychlorinated biphenyls (PCB 101, 153, and 180) and adipocyte lipid dysfunctions: Involvement of glycerol and role of aquaglyceroporins in mature 3T3-L1 cells. Toxicology 2025; 511:154050. [PMID: 39793953 DOI: 10.1016/j.tox.2025.154050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs), as well as dioxin-like PCBs, are endocrine disruptors that persist in human and animal tissues worldwide. Due to their lipophilicity and resistance to enzymatic degradation, PCBs accumulate in fat deposits contributing to the onset of endocrine and metabolic diseases. Aquaporins (AQPs) are transmembrane channel proteins that allow the transport of water and small solutes. In particular, the aquaglyceroporins AQP3, AQP7, and AQP9 mediate the release and the uptake of glycerol in adipose tissue. Here, we investigate the modulation of these AQPs by NDL-PCBs and the following effects on lipid metabolism in mature 3T3-L1 adipocytes exposed for 48 h to PCB 101, 153, or 180 (1 μM). NDL-PCBs modulated protein expression of AQP3 and AQP7, involved in glycerol release, and AQP9, implicated in glycerol uptake. This modulation induced a greater accumulation of glycerol in treated adipocytes indirectly evaluated by its reduction in the culture media. Interestingly, only PCB 153 altered the expression of enzymes involved in glycerol metabolism and lipid accumulation (i.e. Pparg, Fabp4, Gyk, Dgat1, and Agpat9). These modifications indicated an increase of adipocyte lipid accumulation confirmed by Oil Red O staining. The role of AQPs in the increased cellular accumulation of glycerol was confirmed using phloretin, an AQP9 inhibitor, that reverted the PCB 153 effect. Our results show the involvement of AQPs in PCB 153-induced dysfunction of glycerol metabolism and lipid storage in adipocytes, contributing to better defining the mechanisms underlying its known obesogenic effect.
Collapse
Affiliation(s)
- F Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - A Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - A Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - C Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - F Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - S Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - C Naccari
- Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro 88100, Italy
| | - A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - R Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy.
| |
Collapse
|
2
|
Wu Q, Jiao Y, Li J, Ma Y, Wang J, Luo M, Wang Y, Fan X, Liu C. Flavokawain B is an effective natural peroxisome proliferator-activated receptor γ-selective agonist with a strong glucose-lowering effect. Biochem Pharmacol 2024; 229:116548. [PMID: 39304103 DOI: 10.1016/j.bcp.2024.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Rosiglitazone, a full PPARγ agonist and a classical insulin sensitizer, was once used as a powerful weapon in the treatment of T2DM. However, its applications have been restricted recently because of its multiple side effects. Here, a natural compound, flavokawain B (FKB), which was screened in our previous experiments, was investigated for its potential as a preferable insulin sensitizer because it has no or few side effects. Using the surface plasmon resonance (SPR) technique, we confirmed that FKB is a natural ligand for PPARγ with high binding affinity. In in vitro experiments, FKB significantly increased 2-NBDG uptake in HepG2 and 3T3-L1 cells, which partially stimulated PPARγ transcriptional activity. Compared with rosiglitazone, FKB had little effect on the adipose differentiation of 3T3-L1 cells, and all of these features suggest that FKB is a selective modulator of PPARγ (SPPARγM). Moreover, FKB increased the mRNA expression levels of most genes related to insulin sensitivity and glucose metabolism but had no obvious effect on those related to adipose differentiation. In vivo experiments confirmed that FKB effectively decreased abnormal fasting blood glucose and postprandial blood glucose levels and reduced glycated hemoglobin levels, similar to rosiglitazone, in HFD-fed/STZ-treated and db/db mice, two T2DM animal models, but did not cause side effects, such as weight gain or liver or kidney damage. Further investigation revealed that FKB could inhibit PPARγ-Ser273 phosphorylation, which is the key mechanism involved in improving insulin resistance. Together, FKB is a well-performing SPPARγM that exerts a powerful glucose-lowering effect without causing the same side effects as rosiglitazone, and it may have great potential for development.
Collapse
Affiliation(s)
- Qixin Wu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Jiao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingzhe Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanyan Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingyi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingzhu Luo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yiting Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinrong Fan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Changzhen Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Batliner M, Schumacher F, Wigger D, Vivas W, Prell A, Fohmann I, Köhler T, Schempp R, Riedel A, Vaeth M, Fekete A, Kleuser B, Kurzai O, Nieuwenhuizen NE. The Candida albicans quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells. mBio 2024; 15:e0073224. [PMID: 38953353 PMCID: PMC11323541 DOI: 10.1128/mbio.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.
Collapse
Affiliation(s)
- Maria Batliner
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital–Friedrich Schiller University, Jena, Germany
- Associated Research Group Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute (HKI), Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital–Friedrich Schiller University, Jena, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Tobias Köhler
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Rebekka Schempp
- Institute for Virology and Immunobiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
| | - Natalie E. Nieuwenhuizen
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Wang Q, Xiong J, He Y, He J, Cai M, Luo Z, Zhang T, Zhou X. Effect of L-arabinose and lactulose combined with Lactobacillus plantarum on obesity induced by a high-fat diet in mice. Food Funct 2024; 15:5073-5087. [PMID: 38656276 DOI: 10.1039/d4fo00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
L-Arabinose, lactulose, and Lactobacillus plantarum (L. plantarum) have been reported to have glucolipid-lowering effects. Here, the effects of L-arabinose and lactulose combined with L. plantarum on obesity traits were investigated. According to the experimental results, the combination of L-arabinose, lactulose, and L. plantarum was more effective at reducing body weight, regulating glucolipid metabolism, and improving insulin resistance. Besides, this combination showed immunomodulatory activity by adjusting the T lymphocyte subsets and reduced the immune-related cytokine production. Moreover, it improved the gut barrier, ameliorated the disorder of gut microbiota, and upregulated the levels of SCFAs. More importantly, the AL group, LP group, and ALLP group showed different regulatory effects on the abundance of Bifidobacterium and Lactobacillus due to the presence of lactulose and L. plantarum. These findings elucidate that the combination of L-arabinose, lactulose, and L. plantarum constitutes a new synbiotic combination to control obesity by modulating glucolipid metabolism, immunomodulatory activity, inflammation, gut barrier, gut microbiota and production of SCFAs.
Collapse
Affiliation(s)
- Qiong Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jialu Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yalun He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Juncheng He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Miaomiao Cai
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zexian Luo
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Tongcun Zhang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiang Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Fang J, Zeng L, He Y, Liu X, Zhang T, Wang Q. Effects of Dietary Tannic Acid on Obesity and Gut Microbiota in C57BL/6J Mice Fed with High-Fat Diet. Foods 2022; 11:3325. [PMID: 36359937 PMCID: PMC9659306 DOI: 10.3390/foods11213325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 07/21/2023] Open
Abstract
Dietary tannic acid, as a natural polyphenolic, has many important biological activities. This study aimed to investigate the effect of dietary tannic acid on obesity and gut microbiota in mice with a high-fat diet. Male C57BL/6J mice fed a high-fat diet were treated with dietary tannic acid for eight weeks. Results showed that dietary tannic acid reduced the body weight gain, regulated glycolipid metabolism, improved the insulin resistance, and attenuated the liver oxidative stress in high-fat diet-fed mice. Moreover, both dietary tannic acid intervention groups repaired the gut barrier damage caused by a high-fat diet, especially in the 50 mg/kg/d dietary tannic acid intervention group. Interestingly, the effect of dietary tannic acid on serum endotoxin lipopolysaccharide (LPS) content was correlated with the abundance of the LPS-producing microbiota. In addition, dietary tannic acid altered the abundance of obesity-related gut microbiota (Firmicutes, Bacteroidetes, Bacteroides, Alistipes, and Odoribacter) in the 150 mg/kg/d dietary tannic acid intervention group, while it was not effective in the 50 mg/kg/d dietary tannic acid intervention group. These findings suggested the potential effect of dietary tannic acid for the prevention and control of obesity.
Collapse
|
6
|
Dixit G, Prabhu A. The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Exp Mol Pathol 2021; 124:104723. [PMID: 34822814 DOI: 10.1016/j.yexmp.2021.104723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.
Collapse
Affiliation(s)
- Gargi Dixit
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
7
|
Wang Q, Zhang L, He Y, Zeng L, He J, Yang Y, Zhang T. Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Noise-Induced Cochlear Damage Involves PPAR Down-Regulation through the Interplay between Oxidative Stress and Inflammation. Antioxidants (Basel) 2021; 10:antiox10081188. [PMID: 34439436 PMCID: PMC8388985 DOI: 10.3390/antiox10081188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
The cross-talk between oxidative stress and inflammation seems to play a key role in noise-induced hearing loss. Several studies have addressed the role of PPAR receptors in mediating antioxidant and anti-inflammatory effects and, although its protective activity has been demonstrated in several tissues, less is known about how PPARs could be involved in cochlear dysfunction induced by noise exposure. In this study, we used an in vivo model of noise-induced hearing loss to investigate how oxidative stress and inflammation participate in cochlear dysfunction through PPAR signaling pathways. Specifically, we found a progressive decrease in PPAR expression in the cochlea after acoustic trauma, paralleled by an increase in oxidative stress and inflammation. By comparing an antioxidant (Q-ter) and an anti-inflammatory (Anakinra) treatment, we demonstrated that oxidative stress is the primary element of damage in noise-induced cochlear injury and that increased inflammation can be considered a consequence of PPAR down-regulation induced by ROS production. Indeed, by decreasing oxidative stress, PPARs returned to control values, reactivating the negative control on inflammation in a feedback loop.
Collapse
|
9
|
Cao JJ, Gregoire BR, Michelsen KG, Shi X. Deficiency of PPARγ in Bone Marrow Stromal Cells Does not Prevent High-Fat Diet-Induced Bone Deterioration in Mice. J Nutr 2021; 151:2697-2704. [PMID: 34113980 PMCID: PMC8417918 DOI: 10.1093/jn/nxab173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Bone marrow osteoblasts and adipocytes are derived from a common mesenchymal stem cell and have a reciprocal relationship. Peroxisome proliferator-activated receptor gamma (PPARγ), a regulator for adipocyte differentiation, may be a potential target for reducing obesity and increasing bone mass. OBJECTIVES This study tested the hypothesis that bone-specific Pparg conditional knockout (cKO), via deletion of Pparg from bone marrow stromal cells (BMSC) using Osterix 1 (Osx1)-Cre, would prevent high-fat (HF) diet-induced bone deterioration in mice. METHODS PPARγ cKO (PPARγfl/fl: Osx1-Cre) and floxed littermate control (PPARγfl/fl Osx1-Cre- ) mice that were 6 weeks old were randomly assigned to 4 groups (n = 12/group, 6 male and 6 female) and fed ad libitum with either a normal-fat (NF) purified diet (3.85 kcal/g; 10% energy as fat) or an HF diet (4.73 kcal/g; 45% energy as fat) for 6 mo. Bone structure, body composition, and serum bone-related cytokines were measured. Data were analyzed by 2-way ANOVA with Tukey post hoc comparison. RESULTS The HF diet decreased the tibial and lumbar vertebrae trabecular bone volume/total volume (BV/TV) by 28% and 18%, respectively, compared to the NF diet (P < 0.01). PPARγ cKO mice had 23% lower body fat mass and 9% lower lean mass than control mice. PPARγ cKO mice had 41% greater tibial trabecular BV/TV compared to control mice. None of trabecular bone parameters at the second lumbar vertebra were affected by genotype. PPARγ cKO mice had decreased cortical thickness compared to control mice. PPARγ cKO mice had a 14% lower (P < 0.01) serum concentration of leptin and a 35% higher (P < 0.05) concentration of osteocalcin compared with control mice. CONCLUSIONS These data indicate that PPARγ has site-specific impacts on bone structures in mice and that knockout PPARγ in BMSC increased bone mass (BV/TV) in the tibia but not the lumbar vertebrae. PPARγ disruption in BMSC did not prevent HF diet-induced bone deterioration in mice.
Collapse
Affiliation(s)
- Jay J Cao
- Address correspondence to JJC (e-mail: )
| | - Brian R Gregoire
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, USDA, Grand Forks, ND, USA
| | - Kim G Michelsen
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, USDA, Grand Forks, ND, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA,Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA
| |
Collapse
|
10
|
Impact of A Cargo-Less Liposomal Formulation on Dietary Obesity-Related Metabolic Disorders in Mice. Int J Mol Sci 2020; 21:ijms21207640. [PMID: 33076522 PMCID: PMC7589567 DOI: 10.3390/ijms21207640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Current therapeutic options for obesity often require pharmacological intervention with dietary restrictions. Obesity is associated with underlying inflammation due to increased tissue macrophage infiltration, and recent evidence shows that inflammation can drive obesity, creating a feed forward mechanism. Therefore, targeting obesity-induced macrophage infiltration may be an effective way of treating obesity. Here, we developed cargo-less liposomes (UTS-001) using 1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC (synthetic phosphatidylcholine) as a single-agent to manage weight gain and related glucose disorders due to high fat diet (HFD) consumption in mice. UTS-001 displayed potent immunomodulatory properties, including reducing resident macrophage number in both fat and liver, downregulating liver markers involved in gluconeogenesis, and increasing marker involved in thermogenesis. As a result, UTS-001 significantly enhanced systemic glucose tolerance in vivo and insulin-stimulated cellular glucose uptake in vitro, as well as reducing fat accumulation upon ad libitum HFD consumption in mice. UTS-001 targets tissue residence macrophages to suppress tissue inflammation during HFD-induced obesity, resulting in improved weight control and glucose metabolism. Thus, UTS-001 represents a promising therapeutic strategy for body weight management and glycaemic control.
Collapse
|
11
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
12
|
Cardiovascular Risk and Safety Evaluation of a Dual Peroxisome Proliferator–Activated Receptor-Alpha/Gamma Agonist, Aleglitazar, in Patients With Type 2 Diabetes. J Cardiovasc Pharmacol 2020; 75:351-357. [PMID: 31929323 DOI: 10.1097/fjc.0000000000000796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kroon T, Harms M, Maurer S, Bonnet L, Alexandersson I, Lindblom A, Ahnmark A, Nilsson D, Gennemark P, O'Mahony G, Osinski V, McNamara C, Boucher J. PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol Metab 2020; 36:100964. [PMID: 32248079 PMCID: PMC7132097 DOI: 10.1016/j.molmet.2020.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Peroxisome proliferator-activated receptors (PPARs) are key transcription factors that regulate adipose development and function, and the conversion of white into brown-like adipocytes. Here we investigated whether PPARα and PPARγ activation synergize to induce the browning of white fat. METHODS A selection of PPAR activators was tested for their ability to induce the browning of both mouse and human white adipocytes in vitro, and in vivo in lean and obese mice. RESULTS All dual PPARα/γ activators tested robustly increased uncoupling protein 1 (Ucp1) expression in both mouse and human adipocytes in vitro, with tesaglitazar leading to the largest Ucp1 induction. Importantly, dual PPARα/γ activator tesaglitazar strongly induced browning of white fat in vivo in both lean and obese male mice at thermoneutrality, greatly exceeding the increase in Ucp1 observed with the selective PPARγ activator rosiglitazone. While selective PPARγ activation was sufficient for the conversion of white into brown-like adipocytes in vitro, dual PPARα/γ activation was superior to selective PPARγ activation at inducing white fat browning in vivo. Mechanistically, the superiority of dual PPARα/γ activators is mediated at least in part via a PPARα-driven increase in fibroblast growth factor 21 (FGF21). Combined treatment with rosiglitazone and FGF21 resulted in a synergistic increase in Ucp1 mRNA levels both in vitro and in vivo. Tesaglitazar-induced browning was associated with increased energy expenditure, enhanced insulin sensitivity, reduced liver steatosis, and an overall improved metabolic profile compared to rosiglitazone and vehicle control groups. CONCLUSIONS PPARγ and PPARα synergize to induce robust browning of white fat in vivo, via PPARγ activation in adipose, and PPARα-mediated increase in FGF21.
Collapse
Affiliation(s)
- Tobias Kroon
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Matthew Harms
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefanie Maurer
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Laurianne Bonnet
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Ida Alexandersson
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Anna Lindblom
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Nilsson
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Peter Gennemark
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gavin O'Mahony
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victoria Osinski
- Department of Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Coleen McNamara
- Department of Medicine, Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Jeremie Boucher
- Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| |
Collapse
|
14
|
Jeon YG, Lee JH, Ji Y, Sohn JH, Lee D, Kim DW, Yoon SG, Shin KC, Park J, Seong JK, Cho JY, Choe SS, Kim JB. RNF20 Functions as a Transcriptional Coactivator for PPARγ by Promoting NCoR1 Degradation in Adipocytes. Diabetes 2020; 69:20-34. [PMID: 31604693 DOI: 10.2337/db19-0508] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022]
Abstract
Adipose tissue is the key organ coordinating whole-body energy homeostasis. Although it has been reported that ring finger protein 20 (RNF20) regulates lipid metabolism in the liver and kidney, the roles of RNF20 in adipose tissue have not been explored. Here, we demonstrate that RNF20 promotes adipogenesis by potentiating the transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ). Under normal chow diet feeding, Rnf20 defective (Rnf20 +/- ) mice exhibited reduced fat mass with smaller adipocytes compared with wild-type littermates. In addition, high-fat diet-fed Rnf20 +/- mice alleviated systemic insulin resistance accompanied by a reduced expansion of fat tissue. Quantitative proteomic analyses revealed significantly decreased levels of PPARγ target proteins in adipose tissue of Rnf20 +/- mice. Mechanistically, RNF20 promoted proteasomal degradation of nuclear corepressor 1 (NCoR1), which led to stimulation of the transcriptional activity of PPARγ. Collectively, these data suggest that RNF20-NCoR1 is a novel axis in adipocyte biology through fine-tuning the transcriptional activity of PPARγ.
Collapse
Affiliation(s)
- Yong Geun Jeon
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jae Ho Lee
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yul Ji
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seul Gi Yoon
- Korea Mouse Phenotyping Center, Laboratory of Department of Anatomy and Cell Biology, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyung Cheul Shin
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jeu Park
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Laboratory of Department of Anatomy and Cell Biology, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
The Role of PARPs in Inflammation-and Metabolic-Related Diseases: Molecular Mechanisms and Beyond. Cells 2019; 8:cells8091047. [PMID: 31500199 PMCID: PMC6770262 DOI: 10.3390/cells8091047] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an essential post-translational modification catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. Poly(ADP-ribose) polymerase 1 (PARP1) is a well-characterized member of the PARP family. PARP1 plays a crucial role in multiple biological processes and PARP1 activation contributes to the development of various inflammatory and malignant disorders, including lung inflammatory disorders, cardiovascular disease, ovarian cancer, breast cancer, and diabetes. In this review, we will focus on the role and molecular mechanisms of PARPs enzymes in inflammation- and metabolic-related diseases. Specifically, we discuss the molecular mechanisms and signaling pathways that PARP1 is associated with in the regulation of pathogenesis. Recently, increasing evidence suggests that PARP inhibition is a promising strategy for intervention of some diseases. Thus, our in-depth understanding of the mechanism of how PARPs are activated and how their signaling downstream effecters can provide more potential therapeutic targets for the treatment of the related diseases in the future is crucial.
Collapse
|
16
|
CMHX008, a PPARγ partial agonist, enhances insulin sensitivity with minor influences on bone loss. Genes Dis 2018; 5:290-299. [PMID: 30320193 PMCID: PMC6176219 DOI: 10.1016/j.gendis.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023] Open
Abstract
Traditional thiazolidinediones (TZDs), such as rosiglitazone, are peroxisome proliferator-activated receptor γ (PPARγ) potent agonists that can be used to treat type 2 diabetes but carry unwanted effects, including increased risk for fracture. The present work aimed to compare the insulin-sensitizing efficacies and bone-loss side effects of CMHX008, a novel TZDs-like PPARγ partial agonist, with those of rosiglitazone. A TR-FRET PPARγ competitive binding assay was used to compare the binding affinity between CMHX008 and rosiglitazone. Mice were administered vehicle, CMHX008 or rosiglitazone for 16 weeks. Mesenchymal stem cells (MSCs) were used to examine differences in differentiation into osteoblasts after compounds treatment. TR-FRET showed lower affinity to PPARγ by CMHX008 compared with rosiglitazone. Mice treated with CMHX008 showed insulin sensitization similar to that of mice treated with rosiglitazone, which was related to the significant inhibition of PPARγ Ser273 phosphorylation and improved insulin sensitivity by facilitating the phosphorylation of insulin receptor and Akt in adipose tissues. Micro-CT and histomorphometric analyses demonstrated that the degree of trabecular bone loss after treatment with CMHX008 was weaker than that observed with rosiglitazone, as evidenced by consistent changes in BV/TV, Tb.N, Tb.Th, Tb.Sp, and the mineral apposition rate. MSCs treated with CMHX008 showed higher ALP activity and mRNA levels of bone formation markers than did cells treated with rosiglitazone in the osteoblast differentiation test. Thus, CMHX008 showed insulin-sensitizing effects similar to those of rosiglitazone with a lower risk of bone loss, suggesting that PPARγ sparing eliminates the skeletal side effects of TZDs while maintaining their insulin-sensitizing properties.
Collapse
|
17
|
Abstract
Propose Obesity is a fast growing epidemic worldwide. During obesity, the increase in adipose tissue mass arise from two different mechanisms, namely, hyperplasia and hypertrophy. Hyperplasia which is the increase in adipocyte number is characteristic of severe obese patients. Recently, there has been much interest in targeting adipogenesis as therapeutic strategy against obesity. Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Methods Presently, we provide a review of key studies evaluating the effects of dietary flavonoids in different stages of adipocyte development with a particular emphasis on the investigations that explore the underlying mechanisms of action of these compounds in human or animal cell lines as well as animal models. Results Flavonoids have been shown to regulate several pathways and affect a number of molecular targets during specific stages of adipocyte development. Although most of the studies reveal anti-adipogenic effect of flavonoids, some flavonoids demonstrated proadipogenic effect in mesenchymal stem cells or preadipocytes. Conclusion The anti-adipogenic effect of flavonoids is mainly via their effect on regulation of several pathways such as induction of apoptosis, suppression of key adipogenic transcription factors, activation of AMPK and Wnt pathways, inhibition of clonal expansion, and cell-cycle arrest.
Collapse
|
18
|
Jahansouz C, Xu H, Hertzel AV, Kizy SS, Steen KA, Foncea R, Serrot FJ, Kvalheim N, Luthra G, Ewing K, Leslie DB, Ikramuddin S, Bernlohr DA. Partitioning of adipose lipid metabolism by altered expression and function of PPAR isoforms after bariatric surgery. Int J Obes (Lond) 2018; 42:139-146. [PMID: 28894292 PMCID: PMC5803459 DOI: 10.1038/ijo.2017.197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/10/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bariatric surgery remains the most effective treatment for reducing adiposity and eliminating type 2 diabetes; however, the mechanism(s) responsible have remained elusive. Peroxisome proliferator-activated receptors (PPAR) encompass a family of nuclear hormone receptors that upon activation exert control of lipid metabolism, glucose regulation and inflammation. Their role in adipose tissue following bariatric surgery remains undefined. MATERIALS AND METHODS Subcutaneous adipose tissue biopsies and serum were obtained and evaluated from time of surgery and on postoperative day 7 in patients randomized to Roux-en-Y gastric bypass (n=13) or matched caloric restriction (n=14), as well as patients undergoing vertical sleeve gastrectomy (n=33). Fat samples were evaluated for changes in gene expression, protein levels, β-oxidation, lipolysis and cysteine oxidation. RESULTS Within 7 days, bariatric surgery acutely drives a change in the activity and expression of PPARγ and PPARδ in subcutaneous adipose tissue thereby attenuating lipid storage, increasing lipolysis and potentiating lipid oxidation. This unique metabolic alteration leads to changes in downstream PPARγ/δ targets including decreased expression of fatty acid binding protein (FABP) 4 and stearoyl-CoA desaturase-1 (SCD1) with increased expression of carnitine palmitoyl transferase 1 (CPT1) and uncoupling protein 2 (UCP2). Increased expression of UCP2 not only facilitated fatty acid oxidation (increased 15-fold following surgery) but also regulated the subcutaneous adipose tissue redoxome by attenuating protein cysteine oxidation and reducing oxidative stress. The expression of UCP1, a mitochondrial protein responsible for the regulation of fatty acid oxidation and thermogenesis in beige and brown fat, was unaltered following surgery. CONCLUSIONS These results suggest that bariatric surgery initiates a novel metabolic shift in subcutaneous adipose tissue to oxidize fatty acids independently from the beiging process through regulation of PPAR isoforms. Further studies are required to understand the contribution of this shift in expression of PPAR isoforms to weight loss following bariatric surgery.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- Department of Surgery, University of Minnesota. Minneapolis, MN 55455
| | - Hongliang Xu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | - Scott S. Kizy
- Department of Surgery, University of Minnesota. Minneapolis, MN 55455
| | - Kaylee A. Steen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | - Rocio Foncea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | | | - Nicholas Kvalheim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| | - Girish Luthra
- Park Nicollet Bariatric Surgery Center, St. Louis Park, MN
| | | | - Daniel B. Leslie
- Department of Surgery, University of Minnesota. Minneapolis, MN 55455
| | - Sayeed Ikramuddin
- Department of Surgery, University of Minnesota. Minneapolis, MN 55455
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN, 55455
| |
Collapse
|
19
|
Sekulic-Jablanovic M, Petkovic V, Wright MB, Kucharava K, Huerzeler N, Levano S, Brand Y, Leitmeyer K, Glutz A, Bausch A, Bodmer D. Effects of peroxisome proliferator activated receptors (PPAR)-γ and -α agonists on cochlear protection from oxidative stress. PLoS One 2017; 12:e0188596. [PMID: 29182629 PMCID: PMC5705132 DOI: 10.1371/journal.pone.0188596] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
Various insults cause ototoxicity in mammals by increasing oxidative stress leading to apoptosis of auditory hair cells (HCs). The thiazolidinediones (TZDs; e.g., pioglitazone) and fibrate (e.g., fenofibrate) drugs are used for the treatment of diabetes and dyslipidemia. These agents target the peroxisome proliferator-activated receptors, PPARγ and PPARα, which are transcription factors that influence glucose and lipid metabolism, inflammation, and organ protection. In this study, we explored the effects of pioglitazone and other PPAR agonists to prevent gentamicin-induced oxidative stress and apoptosis in mouse organ of Corti (OC) explants. Western blots showed high levels of PPARγ and PPARα proteins in mouse OC lysates. Immunofluorescence assays indicated that PPARγ and PPARα proteins are present in auditory HCs and other cell types in the mouse cochlea. Gentamicin treatment induced production of reactive oxygen species (ROS), lipid peroxidation, caspase activation, PARP-1 cleavage, and HC apoptosis in cultured OCs. Pioglitazone mediated its anti-apoptotic effects by opposing the increase in ROS induced by gentamicin, which inhibited the subsequent formation of 4-hydroxy-2-nonenal (4-HNE) and activation of pro-apoptotic mediators. Pioglitazone mediated its effects by upregulating genes that control ROS production and detoxification pathways leading to restoration of the reduced:oxidized glutathione ratio. Structurally diverse PPAR agonists were protective of HCs. Pioglitazone (PPARγ-specific), tesaglitazar (PPARγ/α-specific), and fenofibric acid (PPARα-specific) all provided >90% protection from gentamicin toxicity by regulation of overlapping subsets of genes controlling ROS detoxification. This study revealed that PPARs play important roles in the cochlea, and that PPAR-targeting drugs possess therapeutic potential as treatment for hearing loss.
Collapse
Affiliation(s)
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Krystsina Kucharava
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nathan Huerzeler
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yves Brand
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - Katharina Leitmeyer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrea Glutz
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
20
|
Liu L, Zhou M, Lang H, Zhou Y, Mi M. Dihydromyricetin enhances glucose uptake by inhibition of MEK/ERK pathway and consequent down-regulation of phosphorylation of PPARγ in 3T3-L1 cells. J Cell Mol Med 2017; 22:1247-1256. [PMID: 29160030 PMCID: PMC5783835 DOI: 10.1111/jcmm.13403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence suggests that inhibition of mitogen-activated protein kinase signalling can reduce phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) at serine 273, which mitigates obesity-associated insulin resistance and might be a promising treatment for type 2 diabetes. Dihydromyricetin (DHM) is a flavonoid that has many beneficial pharmacological properties. In this study, mouse fibroblast 3T3-L1 cells were used to investigate whether DHM alleviates insulin resistance by inhibiting PPARγ phosphorylation at serine 273 via the MEK/ERK pathway. 3T3-L1 pre-adipocytes were differentiated, and the effects of DHM on adipogenesis and glucose uptake in the resulting adipocytes were examined. DHM was found to dose dependently increase glucose uptake and decrease adipogenesis. Insulin resistance was then induced in adipocytes using dexamethasone, and DHM was shown to dose and time dependently promote glucose uptake in the dexamethasone-treated adipocytes. DHM also inhibited phosphorylation of PPARγ and ERK. Inhibition of PPARγ activity with GW9662 potently blocked DHM-induced glucose uptake and adiponectin secretion. Interestingly, DHM showed similar effects to PD98059, an inhibitor of the MEK/ERK pathway. DHM acted synergistically with PD98059 to improve glucose uptake and adiponectin secretion in dexamethasone-treated adipocytes. In conclusion, our findings indicate that DHM improves glucose uptake in adipocytes by inhibiting ERK-induced phosphorylation of PPARγ at serine 273.
Collapse
Affiliation(s)
- Lei Liu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yong Zhou
- Department of Clinic Nutrition, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Nanoparticle mediated PPARγ gene delivery on dental implants improves osseointegration via mitochondrial biogenesis in diabetes mellitus rat model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1821-1832. [DOI: 10.1016/j.nano.2017.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/25/2017] [Indexed: 01/28/2023]
|
22
|
Antidiabetic effect of SN158 through PPARα/γ dual activation in ob / ob mice. Chem Biol Interact 2017; 268:24-30. [DOI: 10.1016/j.cbi.2017.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/30/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
|
23
|
Dong Y, Xu Z, Zhang Z, Yin X, Lin X, Li H, Zheng F. Impaired adipose expansion caused by liver X receptor activation is associated with insulin resistance in mice fed a high-fat diet. J Mol Endocrinol 2017; 58:141-154. [PMID: 28258092 DOI: 10.1530/jme-16-0196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/23/2022]
Abstract
Liver X receptors (LXR) are deemed as potential drug targets for atherosclerosis, whereas a role in adipose tissue expansion and its relation to insulin sensitivity remains unclear. To assess the metabolic effects of LXR activation by the dual LXRα/β agonist T0901317, C57BL/6 mice fed a high-fat diet (HFD) were treated with T0901317 (30 mg/kg once daily by intraperitoneal injection) for 3 weeks. Differentiated 3T3-L1 adipocytes were used for analysing the effect of T0901317 on glucose uptake. The following results were obtained from this study. T0901317 reduced fat mass, accompanied by a massive fatty liver and lower serum adipokine levels in HFD mice. Increased adipocyte apoptosis was found in epididymal fat of T0901317-treated HFD mice. In addition, T0901317 treatment promoted basal lipolysis, but blunted the anti-lipolytic action of insulin. Furthermore, LXR activation antagonised PPARγ target genes in epididymal fat and PPARγ-PPRE-binding activity in 3T3-L1 adipocytes. Although the glucose tolerance was comparable to that in HFD mice, the insulin response during IPGTT was significantly higher and the insulin tolerance was significantly impaired in T0901317-treated HFD mice, indicating decreased insulin sensitivity by T0901317 administration, and which was further supported by impaired insulin signalling found in epididymal fat and decreased insulin-induced glucose uptake in 3T3-L1 adipocytes by T0901317 administration. In conclusion, these findings reveal that LXR activation impairs adipose expansion by increasing adipocyte apoptosis, lipolysis and antagonising PPARγ-mediated transcriptional activity, which contributes to decreased insulin sensitivity in whole body. The potential of LXR activation being a therapeutic target for atherosclerosis might be limited by the possibility of exacerbating insulin resistance.
Collapse
Affiliation(s)
- Yueting Dong
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhiye Xu
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ziyi Zhang
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xueyao Yin
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xihua Lin
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang ProvinceSir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hong Li
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fenping Zheng
- Department of EndocrinologySir Run Run Shaw Hospital Affiliated with School of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Liu L, Wan J, Lang H, Si M, Zhu J, Zhou Y, Mi M. Dihydromyricetin delays the onset of hyperglycemia and ameliorates insulin resistance without excessive weight gain in Zucker diabetic fatty rats. Mol Cell Endocrinol 2017; 439:105-115. [PMID: 27984083 DOI: 10.1016/j.mce.2016.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
Abstract
Many flavonoids are reported to be partial agonists of PPARγ and exert antidiabetic effects with fewer side effects compared with full agonists. Here, we assessed the effects of flavonoid dihydromyricetin (DHM) on glucose homeostasis in male Zucker diabetic fatty rats. Animals were treated with DHM (50-200 mg kg-1) or rosiglitazone (4 mg kg-1) once a day for 8 weeks. We found that DHM reduced fasting blood glucose and delayed the onset of hyperglycemia by 4 weeks. Furthermore, DHM preserved pancreatic β-cell mass, elevated adiponectin and improved lipid profile more vigorously than rosiglitazone. Notably, DHM decreased body weight gain and fat accumulation in both liver and adipose tissue, while rosiglitazone caused a significant increase of body weight and fat accumulation. DHM inhibited phosphorylation of PPARγ at serine 273 more efficiently than rosiglitazone. These results suggest that DHM exerts antidiabetic effects without causing excessive body weight gain via inhibition of PPARγ phosphorylation.
Collapse
Affiliation(s)
- Lei Liu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Jing Wan
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Mingyu Si
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Yong Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
25
|
Obermoser V, Urban ME, Murgueitio MS, Wolber G, Kintscher U, Gust R. New telmisartan-derived PPARγ agonists: Impact of the 3D-binding mode on the pharmacological profile. Eur J Med Chem 2016; 124:138-152. [PMID: 27569195 DOI: 10.1016/j.ejmech.2016.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022]
Abstract
In previous studies, the 4'-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-carboxylic acid was identified as pharmacophoric core for PPARγ activation. In this structure-activity relationship study the C2-alkyl chain was elongated and the 2-COOH group was changed to a carbamide/carbonitrile or shifted to the 3- or 4-position. Furthermore, the benzo[d]imidazole was exchanged by 2,3-dihydrobenzo[d]thiazole or 1H-indole. C2-propyl derivatives showed the profile of partial agonists, while elongation of the C2-chain to that of an n-heptyl group or a 4-COOH shift changed the pharmacological profile to that of a potent full agonist. This finding can be explained by binding to the LBD in different ligand conformations. Two anchoring points (Tyr473 and Arg288) exist in the LBD, which have to be contacted to achieve receptor activation. In a crystal violet chemosensitivity assay using COS-7 cells and LNCaP cells expressing PPARγ only the carbamide derivatives influenced the cell growth, independently on the presence of the PPARγ. Therefore, receptor mediated cytotoxicity can be excluded.
Collapse
Affiliation(s)
- Victoria Obermoser
- Pharmaceutical Chemistry, Institute of Pharmacy, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Margarethe E Urban
- Pharmaceutical Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195, Berlin, Germany
| | - Manuela S Murgueitio
- Computer-Aided Drug Design, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195, Berlin, Germany
| | - Gerhard Wolber
- Computer-Aided Drug Design, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195, Berlin, Germany
| | - Ulrich Kintscher
- Institute of Pharmacology, Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Ronald Gust
- Pharmaceutical Chemistry, Institute of Pharmacy, Universität Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
26
|
Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab (Lond) 2016; 13:27. [PMID: 27069498 PMCID: PMC4827240 DOI: 10.1186/s12986-016-0080-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/02/2016] [Indexed: 01/21/2023] Open
Abstract
Hydroxycinnamic acid derivatives are important class of polyphenolic compounds originated from the Mavolanate-Shikimate biosynthesis pathways in plants. Several simple phenolic compounds such as cinnamic acid, p-coumaric acid, ferulic acid, caffeic acid, chlorgenic acid, and rosmarinic acid belong to this class. These phenolic compounds possess potent antioxidant and anti-inflammatory properties. These compounds were also showed potential therapeutic benefit in experimental diabetes and hyperlipidemia. Recent evidences also suggest that they may serve as valuable molecule for the treatment of obesity related health complications. In adipose tissues, hydroxycinnamic acid derivatives inhibit macrophage infiltration and nuclear factor κB (NF-κB) activation in obese animals. Hydroxycinnamic acid derivatives also reduce the expression of the potent proinflammatory adipokines tumor necrosis factor-α (TNFα), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor type-1 (PAI-1), and they increase the secretion of an anti-inflammatory agent adiponectin from adipocytes. Furthermore, hydroxycinnamic acid derivatives also prevent adipocyte differentiation and lower lipid profile in experimental animals. Through these diverse mechanisms hydroxycinnamic acid derivatives reduce obesity and curtail associated adverse health complications.
Collapse
Affiliation(s)
- Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Nusrat Subhan
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales Australia
| | - Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| | - M Obayed Ullah
- Department of Pharmaceutical Sciences, North South University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
27
|
Jung Y, Cao Y, Paudel S, Kim KH, Yoon G, Cheon SH, Lee JY, Kim SN, Kim YK. A Novel Partial PPARα/γ Dual Agonist SN159 Improves Insulin Sensitivity. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yujung Jung
- Natural Products Research Center; KIST Gangneung Institute; Gangneung 25451 Korea
| | - Yongkai Cao
- College of Pharmacy and Research, Institute of Drug Development; Chonnam National University; Gwangju 61186 Korea
| | - Suresh Paudel
- College of Pharmacy and Research, Institute of Drug Development; Chonnam National University; Gwangju 61186 Korea
| | - Ki Hyun Kim
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 Korea
| | - Goo Yoon
- College of Pharmacy; Mokpo National University; Muan 58554 Korea
| | - Seung Hoon Cheon
- College of Pharmacy and Research, Institute of Drug Development; Chonnam National University; Gwangju 61186 Korea
| | - Jee-Young Lee
- Department of In Silico Molecular Design; Chemical Occasion by Modeling Alchemy; Anyang 14128 Korea
| | - Su-Nam Kim
- Natural Products Research Center; KIST Gangneung Institute; Gangneung 25451 Korea
| | - Yong Kee Kim
- College of Pharmacy; Sookmyung Women's University; Seoul 04310 Korea
| |
Collapse
|
28
|
Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog Lipid Res 2016; 61:149-62. [DOI: 10.1016/j.plipres.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
|
29
|
Tsukahara T, Tsukahara R, Haniu H, Matsuda Y, Murakami-Murofushi K. Cyclic phosphatidic acid inhibits the secretion of vascular endothelial growth factor from diabetic human coronary artery endothelial cells through peroxisome proliferator-activated receptor gamma. Mol Cell Endocrinol 2015; 412:320-9. [PMID: 26007326 DOI: 10.1016/j.mce.2015.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022]
Abstract
Atherosclerosis is a disease characterized by building up plaques formation and leads to a potentially serious condition in which arteries are clogged by fatty substances such as cholesterol. Increasing evidence suggests that atherosclerosis is accelerated in type 2 diabetes. Recent study reported that high level of alkyl glycerophosphate (AGP) was accumulated in atherosclerotic lesions. The presence of this phospholipid in mildly oxidized low-density lipoprotein (LDL) is likely to be involved in atherogenesis. It has been reported that the activation of peroxisome proliferator-activated receptor gamma plays a key role in developing atherosclerosis. Our previous result indicates that cyclic phosphatidic acid (cPA), one of bioactive lipids, potently suppresses neointima formation by inhibiting the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, the detailed mechanism is still unclear. In this study, to elucidate the mechanism of the cPA-PPARγ axis in the coronary artery endothelium, especially in patients with type 2 diabetes, we investigated the proliferation, migration, and secretion of VEGF in human coronary artery endothelial cells from diabetes patients (D-HCAECs). AGP induced cell growth and migration; however, cPA suppressed the AGP-elicited growth and migration in D-HCAECs. Moreover, AGP increased VEGF secretion from D-HCAECs, and this event was attenuated by cPA. Taken together, these results suggest that cPA suppresses VEGF-stimulated growth and migration in D-HCAECs. These findings could be important for regulatory roles of PPARγ and VEGF in the vascular processes associated with diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Molecular Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Ryoko Tsukahara
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan; Science and Education Center, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-861, Japan
| | - Hisao Haniu
- Institue for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yoshikazu Matsuda
- Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806, Japan
| | | |
Collapse
|
30
|
Cao J, Ou G, Yang N, Ding K, Kream BE, Hamrick MW, Isales CM, Shi XM. Impact of targeted PPARγ disruption on bone remodeling. Mol Cell Endocrinol 2015; 410:27-34. [PMID: 25666993 PMCID: PMC4444378 DOI: 10.1016/j.mce.2015.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 01/21/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), known as the master regulator of adipogenesis, has been regarded as a promising target for new anti-osteoporosis therapy due to its role in regulating bone marrow mesenchymal stem/progenitor cell (BMSC) lineage commitment. However, the precise mechanism underlying PPARγ regulation of bone is not clear as a bone-specific PPARγ conditional knockout (cKO) study has not been conducted and evidence showed that deletion of PPARγ in other tissues also have profound effect on bone. In this study, we show that mice deficiency of PPARγ in cells expressing a 3.6 kb type I collagen promoter fragment (PPAR(fl/fl):Col3.6-Cre) exhibits a moderate, site-dependent bone mass phenotype. In vitro studies showed that adipogenesis is abolished completely and osteoblastogenesis increased significantly in both primary bone marrow culture and the BMSCs isolated from PPARγ cKO mice. Histology and histomorphometry studies revealed significant increases in the numbers of osteoblasts and surface in the PPARγ cKO mice. Finally, we found that neither the differentiation nor the function of osteoclasts was affected in the PPARγ cKO mice. Together, our studies indicate that PPARγ plays an important role in bone remodeling by increasing the abundance of osteoblasts for repair, but not during skeletal development.
Collapse
Affiliation(s)
- Jay Cao
- USDA ARS Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Guomin Ou
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Nianlan Yang
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Kehong Ding
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Barbara E Kream
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Mark W Hamrick
- Department of Cell Biology, Georgia Regents University, Augusta, GA, United States
| | - Carlos M Isales
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States
| | - Xing-Ming Shi
- Department of Neuroscience & Regenerative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States.
| |
Collapse
|
31
|
dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, Polikarpov I. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. J Struct Biol 2015; 191:332-40. [PMID: 26185032 DOI: 10.1016/j.jsb.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/30/2015] [Accepted: 07/13/2015] [Indexed: 01/06/2023]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-dependent transcription factors that control various functions in human organism, including the control of glucose and lipid metabolism. PPARγ is a target of TZD agonists, clinically used to improve insulin sensitivity whereas fibrates, PPARα ligands, lower serum triglyceride levels. We report here the structural studies of GL479, a synthetic dual PPARα/γ agonist, designed by a combination of clofibric acid skeleton and a phenyldiazenyl moiety, as bioisosteric replacement of stilbene group, in complex with both PPARα and PPARγ receptors. GL479 was previously reported as a partial agonist of PPARγ and a full agonist of PPARα with high affinity for both PPARs. Our structural studies reveal different binding modes of GL479 to PPARα and PPARγ, which may explain the distinct activation behaviors observed for each receptor. In both cases the ligand interacts with a Tyr located at helix 12 (H12), resulting in the receptor active conformation. In the complex with PPARα, GL479 occupies the same region of the ligand-binding pocket (LBP) observed for other full agonists, whereas GL479 bound to PPARγ displays a new binding mode. Our results indicate a novel region of PPARs LBP that may be explored for the design of partial agonists as well dual PPARα/γ agonists that combine, simultaneously, the therapeutic effects of the treatment of insulin resistance and dyslipidemia.
Collapse
Affiliation(s)
- Jademilson Celestino dos Santos
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Amanda Bernardes
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil
| | - Letizia Giampietro
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Barbara De Filippis
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Rosa Amoroso
- Dipartimento di Farmacia, Università degli Studi 'G. d'Annunzio', via dei Vestini 31, 66100 Chieti, Italy
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
32
|
den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, Bakker BM. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes 2015; 64:2398-408. [PMID: 25695945 DOI: 10.2337/db14-1213] [Citation(s) in RCA: 778] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022]
Abstract
Short-chain fatty acids (SCFAs) are the main products of dietary fiber fermentation and are believed to drive the fiber-related prevention of the metabolic syndrome. Here we show that dietary SCFAs induce a peroxisome proliferator-activated receptor-γ (PPARγ)-dependent switch from lipid synthesis to utilization. Dietary SCFA supplementation prevented and reversed high-fat diet-induced metabolic abnormalities in mice by decreasing PPARγ expression and activity. This increased the expression of mitochondrial uncoupling protein 2 and raised the AMP-to-ATP ratio, thereby stimulating oxidative metabolism in liver and adipose tissue via AMPK. The SCFA-induced reduction in body weight and stimulation of insulin sensitivity were absent in mice with adipose-specific disruption of PPARγ. Similarly, SCFA-induced reduction of hepatic steatosis was absent in mice lacking hepatic PPARγ. These results demonstrate that adipose and hepatic PPARγ are critical mediators of the beneficial effects of SCFAs on the metabolic syndrome, with clearly distinct and complementary roles. Our findings indicate that SCFAs may be used therapeutically as cheap and selective PPARγ modulators.
Collapse
Affiliation(s)
- Gijs den Besten
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands
| | - Aycha Bleeker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Top Institute Food and Nutrition, Wageningen, the Netherlands
| | - Albert Gerding
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Karen van Eunen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands Top Institute Food and Nutrition, Wageningen, the Netherlands
| | - Rick Havinga
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maaike H Oosterveer
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johan W Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert K Groen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands Top Institute Food and Nutrition, Wageningen, the Netherlands Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Barbara M Bakker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands
| |
Collapse
|
33
|
Shiomi Y, Yamauchi T, Iwabu M, Okada-Iwabu M, Nakayama R, Orikawa Y, Yoshioka Y, Tanaka K, Ueki K, Kadowaki T. A Novel Peroxisome Proliferator-activated Receptor (PPAR)α Agonist and PPARγ Antagonist, Z-551, Ameliorates High-fat Diet-induced Obesity and Metabolic Disorders in Mice. J Biol Chem 2015; 290:14567-81. [PMID: 25907553 DOI: 10.1074/jbc.m114.622191] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 12/30/2022] Open
Abstract
A novel peroxisome proliferator-activated receptor (PPAR) modulator, Z-551, having both PPARα agonistic and PPARγ antagonistic activities, has been developed for the treatment of obesity and obesity-related metabolic disorders. We examined the effects of Z-551 on obesity and the metabolic disorders in wild-type mice on the high-fat diet (HFD). In mice on the HFD, Z-551 significantly suppressed body weight gain and ameliorated insulin resistance and abnormal glucose and lipid metabolisms. Z-551 inhibited visceral fat mass gain and adipocyte hypertrophy, and reduced molecules involved in fatty acid uptake and synthesis, macrophage infiltration, and inflammation in adipose tissue. Z-551 increased molecules involved in fatty acid combustion, while reduced molecules associated with gluconeogenesis in the liver. Furthermore, Z-551 significantly reduced fasting plasma levels of glucose, triglyceride, free fatty acid, insulin, and leptin. To elucidate the significance of the PPAR combination, we examined the effects of Z-551 in PPARα-deficient mice and those of a synthetic PPARγ antagonist in wild-type mice on the HFD. Both drugs showed similar, but weaker effects on body weight, insulin resistance and specific events provoked in adipose tissue compared with those of Z-551 as described above, except for lack of effects on fasting plasma triglyceride and free fatty acid levels. These findings suggest that Z-551 ameliorates HFD-induced obesity, insulin resistance, and impairment of glucose and lipid metabolisms by PPARα agonistic and PPARγ antagonistic activities, and therefore, might be clinically useful for preventing or treating obesity and obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and dyslipidemia.
Collapse
Affiliation(s)
- Yoshihiro Shiomi
- From the Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine and
| | - Toshimasa Yamauchi
- From the Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine and Integrated Molecular Science on Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masato Iwabu
- From the Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine and
| | - Miki Okada-Iwabu
- From the Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine and
| | - Ryo Nakayama
- From the Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine and
| | - Yuki Orikawa
- Central Research Laboratories, Zeria Pharmaceutical Co., Ltd., Saitama 360-0111, Japan, and
| | - Yoshichika Yoshioka
- the Laboratory of Biofunctional Imaging, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Koichiro Tanaka
- Central Research Laboratories, Zeria Pharmaceutical Co., Ltd., Saitama 360-0111, Japan, and
| | - Kohjiro Ueki
- From the Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine and
| | - Takashi Kadowaki
- From the Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine and
| |
Collapse
|
34
|
Liu C, Feng T, Zhu N, Liu P, Han X, Chen M, Wang X, Li N, Li Y, Xu Y, Si S. Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Sci Rep 2015; 5:9530. [PMID: 25827822 PMCID: PMC4381330 DOI: 10.1038/srep09530] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in the regulation of glucose homeostasis and lipid metabolism. However, current PPARγ-targeting drugs such as thiazolidinediones (TZDs) are associated with undesirable side effects. We identified a small molecular compound, F12016, as a selective PPARγ agonist by virtual screening, which showed moderate PPARγ agonistic activity and binding ability for PPARγ. F12016 did not activate other PPAR subtypes at 30 μM and selectively modulated PPARγ target gene expression. In diabetic KKAy mice, F12016 had insulin-sensitizing and glucose-lowering properties, and suppressed weight gain. In vitro, F12016 effectively increased glucose uptake and blocked cyclin-dependent kinase 5-mediated phosphorylation of PPARγ at Ser273, but slightly triggered adipogenesis and less inhibited osteoblastogenesis than rosiglitazone. Moreover, compared with the full agonist rosiglitazone, F12016 had a distinct group of coregulators and a different predicted binding mode for the PPARγ ligand-binding domain. A site mutation assay confirmed the key epitopes, especially Tyr473 in AF-2. In summary, our study shows that F12016 is a non-TZD, novel selective PPARγ agonist without the classical lipogenic side effects, which may provide a new structural strategy for designing PPARγ ligands with advantages over TZDs.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tingting Feng
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ningyu Zhu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Peng Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiaowan Han
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiao Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ni Li
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yongzhen Li
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
35
|
Moreno-Indias I, Tinahones FJ. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. J Diabetes Res 2015; 2015:970375. [PMID: 25922847 PMCID: PMC4398959 DOI: 10.1155/2015/970375] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare.
Collapse
Affiliation(s)
- Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Universidad de Málaga, 29010 Málaga, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- *Isabel Moreno-Indias: and
| | - Francisco José Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria), Universidad de Málaga, 29010 Málaga, Spain
- Ciber Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- *Francisco José Tinahones:
| |
Collapse
|
36
|
CMHX008, a novel peroxisome proliferator-activated receptor γ partial agonist, enhances insulin sensitivity in vitro and in vivo. PLoS One 2014; 9:e102102. [PMID: 25004107 PMCID: PMC4087031 DOI: 10.1371/journal.pone.0102102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/14/2014] [Indexed: 12/15/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in adipocyte differentiation and insulin sensitivity. Its ligand rosiglitazone has anti-diabetic effect but is frequently accompanied with some severe unwanted effects. The aim of the current study was to compare the anti-diabetic effect of CMHX008, a novel thiazolidinedione-derivative, with rosiglitazone. A luciferase assay was used to evaluate in vitro PPARγ activation. 3T3-L1 cells were used to examine adipocyte differentiation. High fat diet (HFD) mice were used to examine in vivo insulin sensitivity. The mRNA levels were evaluated by real-time RT-PCR. Serum biochemical and hormonal variables were assessed using a clinical chemistry analyser. CMHX008 displayed a moderate PPARγ agonist activity, and promoted 3T3-L1 preadipocyte differentiation with lower activity than rosiglitazone. CMHX008 regulated the expression of PPARγ target genes in a different manner from rosiglitazone. CMHX008 increased the expression and secretion of adiponectin with the similar efficacy as rosiglitazone, but only 25% as potent as rosiglitazone for the induction of adipocyte fatty acid binding protein. Treatment of CMHX008 and rosiglitazone protected mice from high fat diet (HFD)-induced glucose intolerance, hyperinsulinemia and inflammation. CMHX008 reduced the mRNA expression of M1 macrophage markers, and significantly increased the expressions of M2 markers. In conclusion, CMHX008 shared the comparable insulin-sensitizing effects as rosiglitazone with lower adipogenic capacity and might potentially be developed into an effective agent for the treatment of diabetes and metabolic disorders.
Collapse
|
37
|
Imam MU, Ishaka A, Ooi DJ, Zamri NDM, Sarega N, Ismail M, Esa NM. Germinated brown rice regulates hepatic cholesterol metabolism and cardiovascular disease risk in hypercholesterolaemic rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Weidner C, Wowro SJ, Rousseau M, Freiwald A, Kodelja V, Abdel-Aziz H, Kelber O, Sauer S. Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the peroxisome proliferator-activated receptor (PPAR) family. PLoS One 2013; 8:e80335. [PMID: 24265809 PMCID: PMC3827197 DOI: 10.1371/journal.pone.0080335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/30/2013] [Indexed: 12/02/2022] Open
Abstract
Given the significant increases in the incidence of metabolic diseases, efficient strategies for preventing and treating of these common disorders are urgently needed. This includes the development of phytopharmaceutical products or functional foods to prevent or cure metabolic diseases. Plant extracts from edible biomaterial provide a potential resource of structurally diverse molecules that can synergistically interfere with complex disorders. In this study we describe the safe application of ethanolic chamomile (Matricaria recutita) flowers extract (CFE) for the treatment and prevention of type 2 diabetes and associated disorders. We show in vitro that this extract activates in particular nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) and its isotypes. In a cellular context, in human primary adipocytes CFE administration (300 µg/ml) led to specific expression of target genes of PPARγ, whereas in human hepatocytes CFE-induced we detected expression changes of genes that were regulated by PPARα. In vivo treatment of insulin-resistant high-fat diet (HFD)-fed C57BL/6 mice with CFE (200 mg/kg/d) for 6 weeks considerably reduced insulin resistance, glucose intolerance, plasma triacylglycerol, non-esterified fatty acids (NEFA) and LDL/VLDL cholesterol. Co-feeding of lean C57BL/6 mice a HFD with 200 mg/kg/d CFE for 20 weeks showed effective prevention of fatty liver formation and hepatic inflammation, indicating additionally hepatoprotective effects of the extract. Moreover, CFE treatment did not reveal side effects, which have otherwise been associated with strong synthetic PPAR-targeting molecules, such as weight gain, liver disorders, hemodilution or bone cell turnover. Taken together, modulation of PPARs and other factors by chamomile flowers extract has the potential to prevent or treat type 2 diabetes and related disorders.
Collapse
Affiliation(s)
- Christopher Weidner
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Sylvia J. Wowro
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Morten Rousseau
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anja Freiwald
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Vitam Kodelja
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Heba Abdel-Aziz
- Scientific Department, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Olaf Kelber
- Scientific Department, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Sascha Sauer
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| |
Collapse
|
39
|
Weidner C, Wowro SJ, Freiwald A, Kawamoto K, Witzke A, Kliem M, Siems K, Müller-Kuhrt L, Schroeder FC, Sauer S. Amorfrutin B is an efficient natural peroxisome proliferator-activated receptor gamma (PPARγ) agonist with potent glucose-lowering properties. Diabetologia 2013; 56:1802-12. [PMID: 23680913 DOI: 10.1007/s00125-013-2920-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/20/2013] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is an important gene regulator in glucose and lipid metabolism. Unfortunately, PPARγ-activating drugs of the thiazolidinedione class provoke adverse side effects. As recently shown, amorfrutin A1 is a natural glucose-lowering compound that selectively modulates PPARγ. In this study we aimed to characterise, in vitro, a large spectrum of the amorfrutins and similar molecules, which we isolated from various plants. We further studied in vivo the glucose-lowering effects of the so far undescribed amorfrutin B, which featured the most striking PPARγ-binding and pharmacological properties of this family of plant metabolites. METHODS Amorfrutins were investigated in vitro by binding and cofactor recruitment assays and by transcriptional activation assays in primary human adipocytes and murine preosteoblasts, as well as in vivo using insulin-resistant high-fat-diet-fed C57BL/6 mice treated for 27 days with 100 mg kg(-1) day(-1) amorfrutin B. RESULTS Amorfrutin B showed low nanomolar binding affinity to PPARγ, and micromolar binding to the isotypes PPARα and PPARβ/δ. Amorfrutin B selectively modulated PPARγ activity at low nanomolar concentrations. In insulin-resistant mice, amorfrutin B considerably improved insulin sensitivity, glucose tolerance and blood lipid variables after several days of treatment. Amorfrutin B treatment did not induce weight gain and furthermore showed liver-protecting properties. Additionally, amorfrutins had no adverse effects on osteoblastogenesis and fluid retention. CONCLUSIONS/INTERPRETATION The application of plant-derived amorfrutins or synthetic analogues thereof constitutes a promising approach to prevent or treat complex metabolic diseases such as insulin resistance or type 2 diabetes.
Collapse
Affiliation(s)
- C Weidner
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
PPAR γ Networks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid. J Lipids 2013; 2013:246597. [PMID: 23476786 PMCID: PMC3582055 DOI: 10.1155/2013/246597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/02/2013] [Accepted: 01/02/2013] [Indexed: 02/08/2023] Open
Abstract
Lysophospholipid (LPL) has long been recognized as a membrane phospholipid metabolite. Recently, however, the LPL has emerged as a candidate for diagnostic and pharmacological interest. LPLs include lysophosphatidic acid (LPA), alkyl glycerol phosphate (AGP), cyclic phosphatidic acid (cPA), and sphingosine-1-phosphate (S1P). These biologically active lipid mediators serve to promote a variety of responses that include cell proliferation, migration, and survival. These LPL-related responses are mediated by cell surface G-protein-coupled receptors and also intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). In this paper, we focus mainly on the most recent findings regarding the biological function of nuclear receptor-mediated lysophospholipid signaling in mammalian systems, specifically as they relate to health and diseases. Also, we will briefly review the biology of PPARγ and then provide an update of lysophospholipids PPARγ ligands that are under investigation as a therapeutic compound and which are targets of PPARγ relevant to diseases.
Collapse
|
41
|
Santin JR, Uchôa FDT, Lima MDCA, Rabello MM, Machado ID, Hernandes MZ, Amato AA, Milton FA, Webb P, Neves FDAR, Galdino SL, Pitta IR, Farsky SHP. Chemical synthesis, docking studies and biological effects of a pan peroxisome proliferator-activated receptor agonist and cyclooxygenase inhibitor. Eur J Pharm Sci 2013; 48:689-97. [PMID: 23305993 DOI: 10.1016/j.ejps.2012.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/10/2012] [Accepted: 12/21/2012] [Indexed: 12/18/2022]
Abstract
The compound (5Z)-5-[(5-bromo-1H-indol-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione (LYSO-7) was synthesised in order to obtain a new type of anti-inflammatory drug, designed with hybrid features to inhibit cyclooxygenase (COX) and also to activate peroxisome proliferator-activated receptor (PPAR). Results obtained from docking (in silico) studies corroborated with experimental data, showing the potential affinity between the studied ligand and targets. The specificity of LYSO-7 for COX-enzymes was detected by the inhibition of COX-1 and COX-2 activities by 30% and 20%, respectively. In transactivation reporter gene assays LYSO-07 showed a pan partial agonist effect on the three PPAR subtypes (PPARγ, PPARα and PPARβ/δ). The agonist action on PPARγ was also observed by a pharmacological approach, as the reduction in the Escherichia coli lipopolysaccharide (LPS)-induced interleukin 1 beta (IL-1β) secretion and nitric oxide (NO) production by mouse neutrophils was blocked by GW9962, a specific PPARγ antagonist. Additionally, the in vivo effect was measured by reduced carrageenan-induced neutrophil influx into the subcutaneous tissue of mice. Taken together, these data show that LYSO-7 displays a potent in vivo anti-inflammatory effect during the innate acute response, which is dependent on its associated COX inhibitory activities and PPAR activation.
Collapse
Affiliation(s)
- José Roberto Santin
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Freitas WM, Carvalho LSF, Moura FA, Sposito AC. Atherosclerotic disease in octogenarians: A challenge for science and clinical practice. Atherosclerosis 2012; 225:281-9. [DOI: 10.1016/j.atherosclerosis.2012.06.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/13/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
43
|
Furukawa A, Arita T, Fukuzaki T, Mori M, Honda T, Satoh S, Matsui Y, Wakabayashi K, Hayashi S, Nakamura K, Araki K, Kuroha M, Tanaka J, Wakimoto S, Suzuki O, Ohsumi J. Synthesis and biological evaluation of novel (−)-cercosporamide derivatives as potent selective PPARγ modulators. Eur J Med Chem 2012; 54:522-33. [DOI: 10.1016/j.ejmech.2012.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 11/28/2022]
|
44
|
Tan Y, Muise ES, Dai H, Raubertas R, Wong KK, Thompson GM, Wood HB, Meinke PT, Lum PY, Thompson JR, Berger JP. Novel transcriptome profiling analyses demonstrate that selective peroxisome proliferator-activated receptor γ (PPARγ) modulators display attenuated and selective gene regulatory activity in comparison with PPARγ full agonists. Mol Pharmacol 2012; 82:68-79. [PMID: 22496518 DOI: 10.1124/mol.111.076679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Selective peroxisome proliferator-activated receptor γ (PPARγ) modulators (SPPARγMs) have been actively pursued as the next generation of insulin-sensitizing antidiabetic drugs, because the currently marketed PPARγ full agonists, pioglitazone and rosiglitazone, have been reported to produce serious adverse effects among patients with type 2 diabetes mellitus. We conducted extensive transcriptome profiling studies to characterize and to contrast the activities of 70 SPPARγMs and seven PPARγ full agonists. In both 3T3-L1 adipocytes and adipose tissue from db/db mice, the SPPARγMs generated attenuated and selective gene-regulatory responses, in comparison with full agonists. More importantly, SPPARγMs regulated the expression of antidiabetic efficacy-associated genes to a greater extent than that of adverse effect-associated genes, whereas PPARγ full agonists regulated both gene sets proportionally. Such SPPARγM selectivity demonstrates that PPARγ ligand regulation of gene expression can be fine-tuned, and not just turned on and off, to achieve precise control of complex cellular and physiological functions. It also provides a potential molecular basis for the superior therapeutic window previously observed with SPPARγMs versus full agonists. On the basis of our profiling results, we introduce two novel, gene expression-based scores, the γ activation index and the selectivity index, to aid in the detection and characterization of novel SPPARγMs. These studies provide new insights into the gene-regulatory activity of SPPARγMs as well as novel quantitative indices to facilitate the identification of PPARγ ligands with robust insulin-sensitizing activity and improved tolerance among patients with type 2 diabetes, compared with presently available PPARγ agonist drugs.
Collapse
Affiliation(s)
- Yejun Tan
- Department of Informatics and Analysis, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Idealized PPARγ-Based Therapies: Lessons from Bench and Bedside. PPAR Res 2012; 2012:978687. [PMID: 22745632 PMCID: PMC3382399 DOI: 10.1155/2012/978687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/23/2012] [Indexed: 01/07/2023] Open
Abstract
The incidence of type 2 (T2D) diabetes and other chronic conditions associated with insulin resistance is increasing at an alarming rate, underscoring the need for effective and safe therapeutic strategies. Peroxisome-proliferator-activated receptor gamma (PPARγ) has emerged as a critical regulator of glucose homeostasis, lipid homeostasis, and vascular inflammation. Currently marketed drugs targeting this receptor, the thiazolidinediones (TZDs), have proven benefits on insulin resistance and hyperglycemia associated with T2D. Unfortunately, they have been associated with long-term unfavorable effects on health, such as weight gain, plasma volume expansion, bone loss, cardiovascular toxicity, and possibly cancer, and these safety concerns have led to reduced interest for many PPARγ ligands. However, over the last years, data from human genetic studies, animal models, and studies with ligands have increased our understanding of PPARγ's actions and provided important insights into how ligand development strategies could be optimized to increase effectiveness and safety of PPARγ-based therapies.
Collapse
|
46
|
Dietz M, Mohr P, Kuhn B, Maerki HP, Hartman P, Ruf A, Benz J, Grether U, Wright MB. Comparative molecular profiling of the PPARα/γ activator aleglitazar: PPAR selectivity, activity and interaction with cofactors. ChemMedChem 2012; 7:1101-11. [PMID: 22489042 PMCID: PMC3504387 DOI: 10.1002/cmdc.201100598] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/02/2012] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that control the expression of genes involved in a variety of physiologic processes, through heterodimerization with retinoid X receptor and complex formation with various cofactors. Drugs or treatment regimens that combine the beneficial effects of PPARα and γ agonism present an attractive therapeutic strategy to reduce cardiovascular risk factors. Aleglitazar is a dual PPARα/γ agonist currently in phase III clinical development for the treatment of patients with type 2 diabetes mellitus who recently experienced an acute coronary event. The potency and efficacy of aleglitazar was evaluated in a head-to-head comparison with other PPARα, γ and δ ligands. A comprehensive, 12-concentration dose-response analysis using a cell-based assay showed aleglitazar to be highly potent, with EC(50) values of 5 nM and 9 nM for PPARα and PPARγ, respectively. Cofactor recruitment profiles confirmed that aleglitazar is a potent and balanced activator of PPARα and γ. The efficacy and potency of aleglitazar are discussed in relation to other dual PPARα/γ agonists, in context with the published X-ray crystal structures of both PPARα and γ.
Collapse
Affiliation(s)
- Michel Dietz
- Discovery TechnologiesF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Peter Mohr
- Discovery ChemistryF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Bernd Kuhn
- Discovery ChemistryF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Hans Peter Maerki
- Discovery ChemistryF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Peter Hartman
- DTA CVM, F. Hoffmann-La Roche AGGrenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Armin Ruf
- Discovery TechnologiesF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Jörg Benz
- Discovery TechnologiesF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Uwe Grether
- Discovery ChemistryF. Hoffmann-La Roche AG, Grenzacherstrasse 124, Basel 4070 (Switzerland)
| | - Matthew B Wright
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche AGGrenzacherstrasse 124, Basel 4070 (Switzerland)
| |
Collapse
|
47
|
Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martínez L, Souza PCT, Saidemberg D, Deng T, Amato AA, Togashi M, Hsueh WA, Phillips K, Palma MS, Neves FAR, Skaf MS, Webb P, Polikarpov I. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One 2012; 7:e36297. [PMID: 22649490 PMCID: PMC3359336 DOI: 10.1371/journal.pone.0036297] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/30/2012] [Indexed: 12/21/2022] Open
Abstract
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.
Collapse
Affiliation(s)
| | | | - Steven D. Ayers
- Diabetes Research, Methodist Hospital, Houston, Texas, United States of America
| | - Jean Z. Lin
- Diabetes Research, Methodist Hospital, Houston, Texas, United States of America
| | - Aleksandra Cvoro
- Diabetes Research, Methodist Hospital, Houston, Texas, United States of America
| | - Rodrigo L. Silveira
- Chemistry Institute, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Leandro Martínez
- Chemistry Institute, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Paulo C. T. Souza
- Chemistry Institute, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Daniel Saidemberg
- Institute of Biosciences, São Paulo State University, Rio Claro, Sao Paulo, Brazil
| | - Tuo Deng
- Diabetes Research, Methodist Hospital, Houston, Texas, United States of America
| | | | - Marie Togashi
- Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Willa A. Hsueh
- Diabetes Research, Methodist Hospital, Houston, Texas, United States of America
| | - Kevin Phillips
- Diabetes Research, Methodist Hospital, Houston, Texas, United States of America
| | - Mário Sérgio Palma
- Institute of Biosciences, São Paulo State University, Rio Claro, Sao Paulo, Brazil
| | | | - Munir S. Skaf
- Chemistry Institute, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Paul Webb
- Diabetes Research, Methodist Hospital, Houston, Texas, United States of America
- * E-mail: (IP); (PW)
| | - Igor Polikarpov
- São Carlos Physics Institute, University of São Paulo, São Carlos, Sao Paulo, Brazil
- * E-mail: (IP); (PW)
| |
Collapse
|
48
|
Abstract
Given worldwide increases in the incidence of obesity and type 2 diabetes, new strategies for preventing and treating metabolic diseases are needed. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a central role in lipid and glucose metabolism; however, current PPARγ-targeting drugs are characterized by undesirable side effects. Natural products from edible biomaterial provide a structurally diverse resource to alleviate complex disorders via tailored nutritional intervention. We identified a family of natural products, the amorfrutins, from edible parts of two legumes, Glycyrrhiza foetida and Amorpha fruticosa, as structurally new and powerful antidiabetics with unprecedented effects for a dietary molecule. Amorfrutins bind to and activate PPARγ, which results in selective gene expression and physiological profiles markedly different from activation by current synthetic PPARγ drugs. In diet-induced obese and db/db mice, amorfrutin treatment strongly improves insulin resistance and other metabolic and inflammatory parameters without concomitant increase of fat storage or other unwanted side effects such as hepatoxicity. These results show that selective PPARγ-activation by diet-derived ligands may constitute a promising approach to combat metabolic disease.
Collapse
|
49
|
Furukawa A, Arita T, Fukuzaki T, Satoh S, Mori M, Honda T, Matsui Y, Wakabayashi K, Hayashi S, Araki K, Ohsumi J. Substituents at the naphthalene C3 position of (−)-Cercosporamide derivatives significantly affect the maximal efficacy as PPARγ partial agonists. Bioorg Med Chem Lett 2012; 22:1348-51. [DOI: 10.1016/j.bmcl.2011.12.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/11/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
50
|
Tickner J, Fan LM, Du J, Meijles D, Li JM. Nox2-derived ROS in PPARγ signaling and cell-cycle progression of lung alveolar epithelial cells. Free Radic Biol Med 2011; 51:763-72. [PMID: 21664456 PMCID: PMC3157571 DOI: 10.1016/j.freeradbiomed.2011.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/05/2011] [Accepted: 05/23/2011] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) play important roles in peroxisome proliferator-activated receptor γ (PPARγ) signaling and cell-cycle regulation. However, the PPARγ redox-signaling pathways in lung alveolar epithelial cells remain unclear. In this study, we investigated the in vivo and in vitro effects of PPARγ activation on the levels of lung ROS production and cell-cycle progression using C57BL/6J wild-type and Nox2 knockout mice (n=10) after intraperitoneal injection of a selective PPARγ agonist (GW1929, 5 mg/kg body wt, daily) for 14 days. Compared to vehicle-treated mice, GW1929 increased significantly the levels of ROS production in wild-type lungs, and this was accompanied by significant up-regulation of PPARγ, Nox2, PCNA, and cyclin D1 and phosphorylation of ERK1/2 and p38MAPK. These effects were absent in Nox2 knockout mice. In cultured alveolar epithelial cells, GW1929 (5 μM for 24 h) increased ROS production and promoted cell-cycle progression from G0/G1 into S and G2/M phases, and these effects were abolished by (1) adding a PPARγ antagonist (BADGE, 1 μM), (2) knockdown of PPARγ using siRNA, or (3) knockout of Nox2. In conclusion, PPARγ activation through Nox2-derived ROS promotes cell-cycle progression in normal mouse lungs and in cultured normal alveolar epithelial cells.
Collapse
Key Words
- ros, reactive oxygen species
- pparγ, peroxisome proliferator-activated receptor γ
- ko, knockout
- dhe, dihydroethidium
- badge, bisphenol a diglycidyl ether
- l-name, nω-nitro-l-arginine methyl ester
- dpi, diphenyleneiodonium
- sod, superoxide dismutase
- ddc, diethyldithiocarbamate
- mapk, mitogen-activated protein kinase
- nadph, nicotinamide adenine dinucleotide phosphate
- nox, nadph oxidase
- pcna, proliferating cell nuclear antigen
- dmem, dulbecco's modified eagle medium
- redox signaling
- lung
- pparγ
- nox2
- mapk
- cell cycle
- free radicals
Collapse
|