1
|
Delvaux NA, Rice KG. The Reduced-Charge Melittin Analogue MelP5 Improves the Transfection of Non-Viral DNA Nanoparticles. J Pept Sci 2022; 28:e3404. [PMID: 35001445 PMCID: PMC10069327 DOI: 10.1002/psc.3404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/07/2022]
Abstract
Melittin is a 26 amino acid amphiphilic alpha-helical peptide derived from honeybee venom. Prior studies have incorporated melittin into non-viral delivery systems to effect endosomal escape of DNA nanoparticles and improve transfection efficiency. Recent advances have led to the development of two newer melittin analogues, MelP5 and Macrolittin 70, with improved pore formation in lipid bilayers while possessing fewer positive charges relative to natural melittin. Consequently, MelP5 and Macrolittin 70 were conjugated through a disulfide bond to a DNA binding polyacridine peptide. The resulting peptide conjugates were used to prepare DNA nanoparticles to compare their relative endosomolytic potency by transfection of HepG2 cells. Melittin and MelP5 conjugates were equally potent at mediating in vitro gene transfer, whereas PEGylation of DNA nanoparticles revealed improved transfection with MelP5 relative to melittin. The results demonstrate the ability to substitute a potent, reduced charge analogue of melittin to improve overall DNA nanoparticle biocompatibility needed for in vivo testing.
Collapse
Affiliation(s)
- Nathan A Delvaux
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
2
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
3
|
Conejos-Sánchez I, Gallon E, Niño-Pariente A, Smith JA, De la Fuente AG, Di Canio L, Pluchino S, Franklin RJM, Vicent MJ. Polyornithine-based polyplexes to boost effective gene silencing in CNS disorders. NANOSCALE 2020; 12:6285-6299. [PMID: 31840717 DOI: 10.1039/c9nr06187h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene silencing therapies have successfully suppressed the translation of target proteins, a strategy that holds great promise for the treatment of central nervous system (CNS) disorders. Advances in the current knowledge on multimolecular delivery vehicles are concentrated on overcoming the difficulties in delivery of small interfering (si)RNA to target tissues, which include anatomical accessibility, slow diffusion, safety concerns, and the requirement for specific cell uptake within the unique environment of the CNS. The present work addressed these challenges through the implementation of polyornithine derivatives in the construction of polyplexes used as non-viral siRNA delivery vectors. Physicochemical and biological characterization revealed biodegradability and biocompatibility of our polyornithine-based system and the ability to silence gene expression in primary oligodendrocyte progenitor cells (OPCs) effectively. In summary, the well-defined properties and neurological compatibility of this polypeptide-based platform highlight its potential utility in the treatment of CNS disorders.
Collapse
Affiliation(s)
- I Conejos-Sánchez
- Centro de Investigación Príncipe Felipe. Polymer Therapeutics Laboratory, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Youssef AEH, Dief AE, El Azhary NM, Abdelmonsif DA, El-fetiany OS. LINGO-1 siRNA nanoparticles promote central remyelination in ethidium bromide-induced demyelination in rats. J Physiol Biochem 2019; 75:89-99. [DOI: 10.1007/s13105-018-00660-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/13/2018] [Indexed: 12/20/2022]
|
5
|
Abstract
Glycans have been selected by nature for both structural and 'recognition' purposes. Taking inspiration from nature, nanomedicine exploits glycans not only as structural constituents of nanoparticles and nanostructured biomaterials but also as selective interactors of such glyco-nanotools. Surface glycosylation of nanoparticles finds application in targeting specific cells, whereas recent findings give evidence that the glycan content of cell microenvironment is able to induce the cell fate. This review will highlight the role of glycans in nanomedicine, schematizing the different uses and roles in drug-delivery systems and in biomaterials for regenerative medicine.
Collapse
|
6
|
Lin G, Li L, Panwar N, Wang J, Tjin SC, Wang X, Yong KT. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Metabolically stabilized double-stranded mRNA polyplexes. Gene Ther 2018; 25:473-484. [PMID: 30154525 DOI: 10.1038/s41434-018-0038-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The metabolic instability of mRNA currently limits its utility for gene therapy. Compared to plasmid DNA, mRNA is significantly more susceptible to digestion by RNase in the circulation following systemic dosing. To increase mRNA metabolic stability, we hybridized a complementary reverse mRNA with forward mRNA to generate double-stranded mRNA (dsmRNA). RNase A digestion of dsmRNA established a 3000-fold improved metabolic stability compared to single-stranded mRNA (ssmRNA). Formulation of a dsmRNA polyplex using a PEG-peptide further improved the stability by 3000-fold. Hydrodynamic dosing and quantitative bioluminescence imaging of luciferase expression in the liver of mice established the potent transfection efficiency of dsmRNA and dsmRNA polyplexes. However, hybridization of the reverse mRNA against the 5' and 3' UTR of forward mRNA resulted in UTR denaturation and a tenfold loss in expression. Repeat dosing of dsmRNA polyplexes produced an equivalent transient expression, suggesting the lack of an immune response in mice. Co-administration of excess uncapped dsmRNA with a dsmRNA polyplex failed to knock down expression, suggesting that dsmRNA is not a Dicer substrate. Maximal circulatory stability was achieved using a fully complementary dsmRNA polyplex. The results established dsmRNA as a novel metabolically stable and transfection-competent form of mRNA.
Collapse
|
8
|
Kommareddy S, Tiwari SB, Amiji MM. Long-Circulating Polymeric Nanovectors for Tumor-Selective Gene Delivery. Technol Cancer Res Treat 2016; 4:615-25. [PMID: 16292881 DOI: 10.1177/153303460500400605] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Significant advances in the understanding of the genetic abnormalities that lead to the development, progression, and metastasis of neoplastic diseases has raised the promise of gene therapy as an approach to medical intervention. Most of the clinical protocols that have been approved in the United States for gene therapy have used the viral vectors because of the high efficiency of gene transfer. Conventional means of gene delivery using viral vectors, however, has undesirable side effects such as insertion of mutational viral gene into the host genome and development of replication competent viruses. Among non-viral gene delivery methods, polymeric nanoparticles are increasingly becoming popular as vectors of choice. The major limitation of these nanoparticles is poor transfection efficiency at the target site after systemic administration due to uptake by the cells of reticuloendothelial system (RES). In order to reduce the uptake by the cells of the RES and improve blood circulation time, these nanoparticles are coated with hydrophilic polymers such as poly(ethylene glycol) (PEG). This article reviews the use of such hydrophilic polymers employed for improving the circulation time of the nanocarriers. The mechanism of polymer coating and factors affecting the circulation time of these nanocarriers will be discussed. In addition to the long circulating property, modifications to improve the target specificity of the particles and the limitations of steric protection will be analyzed.
Collapse
Affiliation(s)
- Sushma Kommareddy
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston MA 02115, USA
| | | | | |
Collapse
|
9
|
Gwak SJ, Yun Y, Yoon DH, Kim KN, Ha Y. Therapeutic Use of 3β-[N-(N',N'-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury. PLoS One 2016; 11:e0147389. [PMID: 26824765 PMCID: PMC4732605 DOI: 10.1371/journal.pone.0147389] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/04/2016] [Indexed: 01/19/2023] Open
Abstract
Gene delivery holds therapeutic promise for the treatment of neurological diseases and spinal cord injury. Although several studies have investigated the use of non-viral vectors, such as polyethylenimine (PEI), their clinical value is limited by their cytotoxicity. Recently, biodegradable poly (lactide-co-glycolide) (PLGA) nanospheres have been explored as non-viral vectors. Here, we show that modification of PLGA nanospheres with 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) enhances gene transfection efficiency. PLGA/DC-Chol nanospheres encapsulating DNA were prepared using a double emulsion-solvent evaporation method. PLGA/DC-Chol nanospheres were less cytotoxic than PEI both in vitro and in vivo. DC-Chol modification improved the uptake of nanospheres, thereby increasing their transfection efficiency in mouse neural stem cells in vitro and rat spinal cord in vivo. Also, transgene expression induced by PLGA nanospheres was higher and longer-lasting than that induced by PEI. In a rat model of spinal cord injury, PLGA/DC-Chol nanospheres loaded with vascular endothelial growth factor gene increased angiogenesis at the injury site, improved tissue regeneration, and resulted in better recovery of locomotor function. These results suggest that DC-Chol-modified PLGA nanospheres could serve as therapeutic gene delivery vehicles for spinal cord injury.
Collapse
Affiliation(s)
- So-Jung Gwak
- Spine & Spinal Cord Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Yeomin Yun
- Spine & Spinal Cord Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Do Heum Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Keung Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
10
|
|
11
|
|
12
|
Gwak SJ, Koo H, Yun Y, Yhee JY, Lee HY, Yoon DH, Kim K, Ha Y. Multifunctional nanoparticles for gene delivery and spinal cord injury. J Biomed Mater Res A 2015; 103:3474-82. [DOI: 10.1002/jbm.a.35489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 01/23/2023]
Affiliation(s)
- So-Jung Gwak
- Department of Neurosurgery; Spine and Spinal Cord Institute; Yonsei University College of Medicine; 134 Shinchon-dong Seodaemoon-gu Seoul South Korea
| | - Heebeom Koo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology; Hwarangno 14-Gil 6 Seongbuk-Gu Seoul 136-791 South Korea
| | - Yeomin Yun
- Department of Neurosurgery; Spine and Spinal Cord Institute; Yonsei University College of Medicine; 134 Shinchon-dong Seodaemoon-gu Seoul South Korea
| | - Ji Young Yhee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology; Hwarangno 14-Gil 6 Seongbuk-Gu Seoul 136-791 South Korea
| | - Hye Yeong Lee
- Department of Neurosurgery; Spine and Spinal Cord Institute; Yonsei University College of Medicine; 134 Shinchon-dong Seodaemoon-gu Seoul South Korea
| | - Do Heum Yoon
- Department of Neurosurgery; Spine and Spinal Cord Institute; Yonsei University College of Medicine; 134 Shinchon-dong Seodaemoon-gu Seoul South Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology; Hwarangno 14-Gil 6 Seongbuk-Gu Seoul 136-791 South Korea
| | - Yoon Ha
- Department of Neurosurgery; Spine and Spinal Cord Institute; Yonsei University College of Medicine; 134 Shinchon-dong Seodaemoon-gu Seoul South Korea
| |
Collapse
|
13
|
Multifunctional Polymeric Nano-Carriers in Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Glycosylation-mediated targeting of carriers. J Control Release 2014; 190:542-55. [DOI: 10.1016/j.jconrel.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/24/2022]
|
15
|
Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting. BIOMED RESEARCH INTERNATIONAL 2014; 2014:526391. [PMID: 25057492 PMCID: PMC4098891 DOI: 10.1155/2014/526391] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
The therapeutic potential of antisense oligonucleotides (ASODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study focuses on designing mannosylated low molecular weight (LMW) chitosan nanoconstructs for safe ODNs delivery by macrophage targeting. Mannose groups were coupled with LMW chitosan and characterized spectroscopically. Mannosylated chitosan ODN nanoparticles (MCHODN NPs) were formulated by self-assembled method using various N/P ratio (moles of amine groups of MCH to phosphate moieties of ODNs) and characterized for gel retardation assay, physicochemical characteristics, cytotoxicity and transfection efficiency, and antisense assay. Complete complexation of MCH/ODN was achieved at charge ratio of 1:1 and above. On increasing the N/P ratio of MCH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) increased. MCHODN NPs displayed much higher transfection efficiency into Raw 264.7 cells (bears mannose receptors) than Hela cells and no significant toxicity was observed at all MCH concentrations. Antisense assay revealed that reduction in lipopolysaccharide (LPS) induced serum TNF-α is due to antisense activity of TJU-2755 ODN (sequence complementary to 3′-UTR of TNF-α). These results suggest that MCHODN NPs are acceptable choice to improve transfection efficiency in vitro and in vivo.
Collapse
|
16
|
Kurosaki T, Kawakami S, Higuchi Y, Suzuki R, Maruyama K, Sasaki H, Yamashita F, Hashida M. Kidney-selective gene transfection using anionic bubble lipopolyplexes with renal ultrasound irradiation in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1829-38. [PMID: 24954382 DOI: 10.1016/j.nano.2014.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/08/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED This study assessed the ability of a new ultrasound (US) responsive gene delivery carrier, bubble lipopolyplexes, to deliver genes to the kidneys. The bubble lipopolyplexes showed highly selective gene expression in kidney tubules, but only after renal irradiation with US. These bubble lipopolyplexes, however, did not increase the expression of biomarkers of kidney injury, including blood urea nitrogen, serum creatinine, kidney injury molecule-1 mRNA, and clusterin mRNA, or induce any histopathological abnormalities in the kidney. Furthermore, pDNA containing CMV early enhancer/chicken beta-actin promoter prolonged gene expression by the bubble lipopolyplexes in the kidney for 42 days. This novel renal gene delivery method, in which transfection of bubble lipopolyplexes was followed by US irradiation of the kidneys, resulting in cell-selective, high, and long-term gene expression without renal injury in mice, may have future applications in patient treatment. FROM THE CLINICAL EDITOR This study demonstrates a novel gene delivery method to the kidneys, utilizing bubble resulting in highly selective gene expression in renal tubules after ultrasound irradiation. In the studied rodent model, there was no evidence for renal damage using this novel delivery system.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ryo Suzuki
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Institute of Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan.
| |
Collapse
|
17
|
Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, Hamblin MR. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 2014; 71:98-114. [PMID: 23751778 DOI: 10.1016/j.addr.2013.05.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/15/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
Techniques for controlling the rate and duration of drug delivery, while targeting specific locations of the body for treatment, to deliver the cargo (drugs or DNA) to particular parts of the body by what are becoming called "smart drug carriers" have gained increased attention during recent years. Using such smart carriers, researchers have also been investigating a number of physical energy forces including: magnetic fields, ultrasound, electric fields, temperature gradients, photoactivation or photorelease mechanisms, and mechanical forces to enhance drug delivery within the targeted cells or tissues and also to activate the drugs using a similar or a different type of external trigger. This review aims to cover a number of such physical energy modalities. Various advanced techniques such as magnetoporation, electroporation, iontophoresis, sonoporation/mechnoporation, phonophoresis, optoporation and thermoporation will be covered in the review. Special emphasis will be placed on photodynamic therapy owing to the experience of the authors' laboratory in this area, but other types of drug cargo and DNA vectors will also be covered. Photothermal therapy and theranostics will also be discussed.
Collapse
|
18
|
Development of anionic bubble lipopolyplexes for efficient and safe gene transfection with ultrasound exposure in mice. J Control Release 2014; 176:24-34. [DOI: 10.1016/j.jconrel.2013.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/06/2013] [Accepted: 12/19/2013] [Indexed: 02/02/2023]
|
19
|
Shi J, Schellinger JG, Pun SH. Engineering biodegradable and multifunctional peptide-based polymers for gene delivery. J Biol Eng 2013; 7:25. [PMID: 24156736 PMCID: PMC4015834 DOI: 10.1186/1754-1611-7-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023] Open
Abstract
The complex nature of in vivo gene transfer establishes the need for multifunctional delivery vectors capable of meeting these challenges. An additional consideration for clinical translation of synthetic delivery formulations is reproducibility and scale-up of materials. In this review, we summarize our work over the last five years in developing a modular approach for synthesizing peptide-based polymers. In these materials, bioactive peptides that address various barriers to gene delivery are copolymerized with a hydrophilic backbone of N-(2-hydroxypropyl)methacrylamide (HPMA) using reversible-addition fragmentation chain-transfer (RAFT) polymerization. We demonstrate that this synthetic approach results in well-defined, narrowly-disperse polymers with controllable composition and molecular weight. To date, we have investigated the effectiveness of various bioactive peptides for DNA condensation, endosomal escape, cell targeting, and degradability on gene transfer, as well as the impact of multivalency and polymer architecture on peptide bioactivity.
Collapse
Affiliation(s)
- Julie Shi
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Joan G Schellinger
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Takemoto N, Suehara T, Frisco HL, Sato SI, Sezaki T, Kusamori K, Kawazoe Y, Park SM, Yamazoe S, Mizuhata Y, Inoue R, Miller GJ, Hansen SU, Jayson GC, Gardiner JM, Kanaya T, Tokitoh N, Ueda K, Takakura Y, Kioka N, Nishikawa M, Uesugi M. Small-molecule-induced clustering of heparan sulfate promotes cell adhesion. J Am Chem Soc 2013; 135:11032-9. [PMID: 23822587 DOI: 10.1021/ja4018682] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adhesamine is an organic small molecule that promotes adhesion and growth of cultured human cells by binding selectively to heparan sulfate on the cell surface. The present study combined chemical, physicochemical, and cell biological experiments, using adhesamine and its analogues, to examine the mechanism by which this dumbbell-shaped, non-peptidic molecule induces physiologically relevant cell adhesion. The results suggest that multiple adhesamine molecules cooperatively bind to heparan sulfate and induce its assembly, promoting clustering of heparan sulfate-bound syndecan-4 on the cell surface. A pilot study showed that adhesamine improved the viability and attachment of transplanted cells in mice. Further studies of adhesamine and other small molecules could lead to the design of assembly-inducing molecules for use in cell biology and cell therapy.
Collapse
Affiliation(s)
- Naohiro Takemoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 2012; 64:1046-59. [PMID: 22329941 DOI: 10.1016/j.addr.2012.01.018] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 12/11/2022]
Abstract
Multiple extra- and intracellular obstacles, including low stability in blood, poor cellular uptake, and inefficient endosomal escape and disassembly in the cytoplasm, have to be overcome in order to deliver nucleic acids for gene therapy. This review introduces the recent advances in tackling the key challenges in achieving efficient, targeted, and safe nonviral gene delivery using various nucleic acid-containing nanomaterials that are designed to respond to various extra- and intracellular biological stimuli (e.g., pH, redox potential, and enzyme) as well as external artificial triggers (e.g., light and ultrasound). Gene delivery in combination with molecular imaging and targeting enables diagnostic assessment, treatment monitoring and quantification of efficiency, and confirmation of cure, thus fulfilling the great promise of efficient and personalized medicine. Nanomaterials platform for combined imaging and gene therapy, nanotheragnostics, using stimuli-responsive materials is also highlighted in this review. It is clear that developing novel multifunctional nonviral vectors, which transform their physico-chemical properties in response to various stimuli in a timely and spatially controlled manner, is highly desired to translate the promise of gene therapy for the clinical success.
Collapse
|
22
|
Jain K, Kesharwani P, Gupta U, Jain NK. A review of glycosylated carriers for drug delivery. Biomaterials 2012; 33:4166-86. [DOI: 10.1016/j.biomaterials.2012.02.033] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 02/03/2023]
|
23
|
Khalil IA, Hayashi Y, Mizuno R, Harashima H. Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. J Control Release 2011; 156:374-80. [DOI: 10.1016/j.jconrel.2011.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 06/27/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
|
24
|
Zhao Y, Zhang S, Cui S, Wang B, Zhang S. Peptide-based cationic liposome-mediated gene delivery. Expert Opin Drug Deliv 2011; 9:127-39. [DOI: 10.1517/17425247.2011.630387] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Fernandez CA, Baumhover NJ, Duskey JT, Khargharia S, Kizzire K, Ericson MD, Rice KG. Metabolically stabilized long-circulating PEGylated polyacridine peptide polyplexes mediate hydrodynamically stimulated gene expression in liver. Gene Ther 2011; 18:23-37. [PMID: 20720577 PMCID: PMC2990782 DOI: 10.1038/gt.2010.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/22/2022]
Abstract
A novel class of PEGylated polyacridine peptides was developed that mediate potent stimulated gene transfer in the liver of mice. Polyacridine peptides, (Acr-X)(n)-Cys-polyethylene glycol (PEG), possessing 2-6 repeats of Lys-acridine (Acr) spaced by either Lys, Arg, Leu or Glu, were Cys derivatized with PEG (PEG(5000 kDa)) and evaluated as in vivo gene transfer agents. An optimal peptide of (Acr-Lys)(6)-Cys-PEG was able to bind to plasmid DNA (pGL3) with high affinity by polyintercalation, stabilize DNA from metabolism by DNAse and extend the pharmacokinetic half-life of DNA in the circulation for up to 2 h. A tail vein dose of PEGylated polyacridine peptide pGL3 polyplexes (1 μg in 50 μl), followed by a stimulatory hydrodynamic dose of normal saline at times ranging from 5 to 60 min post-DNA administration, led to a high level of luciferase expression in the liver, equivalent to levels mediated by direct hydrodynamic dosing of 1 μg of pGL3. The results establish the unique properties of PEGylated polyacridine peptides as a new and promising class of gene delivery peptides that facilitate reversible binding to plasmid DNA, protecting it from DNase in vivo resulting in an extended circulatory half-life, and release of transfection-competent DNA into the liver to mediate a high-level of gene expression upon hydrodynamic boost.
Collapse
Affiliation(s)
- Christian A. Fernandez
- Divisions of Pharmaceutics and Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City IA 52242
| | - Nicholas J. Baumhover
- Divisions of Pharmaceutics and Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City IA 52242
| | - Jason T. Duskey
- Divisions of Pharmaceutics and Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City IA 52242
| | - Sanjib Khargharia
- Divisions of Pharmaceutics and Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City IA 52242
| | - Koby Kizzire
- Divisions of Pharmaceutics and Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City IA 52242
| | - Mark D. Ericson
- Divisions of Pharmaceutics and Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City IA 52242
| | - Kevin G. Rice
- Divisions of Pharmaceutics and Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City IA 52242
| |
Collapse
|
26
|
Functional Polymer Conjugates for Medicinal Nucleic Acid Delivery. POLYMERS IN NANOMEDICINE 2011. [DOI: 10.1007/12_2011_148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Lawson C, Collins L. Delivery Systems for Gene Transfer. Genomics 2010. [DOI: 10.1002/9780470711675.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Edinger D, Wagner E. Bioresponsive polymers for the delivery of therapeutic nucleic acids. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:33-46. [DOI: 10.1002/wnan.97] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Edinger
- Pharmaceutical Biotechnology, LMU University, Butenandtstrasse 5‐13, D‐81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, LMU University, Butenandtstrasse 5‐13, D‐81377 Munich, Germany
| |
Collapse
|
29
|
Baumhover NJ, Anderson K, Fernandez CA, Rice KG. Synthesis and in vitro testing of new potent polyacridine-melittin gene delivery peptides. Bioconjug Chem 2010; 21:74-83. [PMID: 19968269 DOI: 10.1021/bc9003124] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The combination of a polyacridine peptide modified with a melittin fusogenic peptide results in a potent gene transfer agent. Polyacridine peptides of the general formula (Acr-X)(n)-Cys were prepared by solid-phase peptide synthesis, where Acr is Lys modified on its epsilon-amine with acridine, X is Arg, Leu, or Lys and n is 2, 3, or 4 repeats. The Cys residue was modified by either a maleimide-melittin or a thiolpyridine-Cys-melittin fusogenic peptide resulting in reducible or non-reducible polyacridine-melittin peptides. Hemolysis assays established that polyacridine-melittin peptides retained their membrane lytic potency relative to melittin at pH 7.4 and 5. When combined with plasmid DNA, the membrane lytic potency of polyacridine-melittin peptides was neutralized. Gene transfer experiments in multiple cell lines established that polyacridine-melittin peptides mediate expression as efficiently as PEI. The expression was very dependent upon a disulfide bond linking polyacridine to melittin. The gene transfer was most efficient when X is Arg and n is 3 or 4 repeats. These studies establish polyacridine peptides as a novel DNA binding anchor peptide.
Collapse
|
30
|
Zhang S, Zhao Y, Zhao B, Wang B. Hybrids of Nonviral Vectors for Gene Delivery. Bioconjug Chem 2010; 21:1003-9. [DOI: 10.1021/bc900261c] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shubiao Zhang
- SEAC-ME Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Yinan Zhao
- SEAC-ME Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Budiao Zhao
- SEAC-ME Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Bing Wang
- SEAC-ME Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Nationalities University, Dalian 116600, Liaoning, China
| |
Collapse
|
31
|
Sizovs A, McLendon PM, Srinivasachari S, Reineke TM. Carbohydrate polymers for nonviral nucleic acid delivery. Top Curr Chem (Cham) 2010; 296:131-90. [PMID: 21504102 PMCID: PMC4096969 DOI: 10.1007/128_2010_68] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease.
Collapse
Affiliation(s)
- Antons Sizovs
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA24060, USA
| | - Patrick M. McLendon
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA24060, USA
- Department of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45228, USA
| | - Sathya Srinivasachari
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45229, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Theresa M. Reineke
- Department of Chemistry, Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA24060, USA
| |
Collapse
|
32
|
Trahtenherts A, Benhar I. An internalizing antibody specific for the human asialoglycoprotein receptor. Hybridoma (Larchmt) 2009; 28:225-33. [PMID: 19663694 DOI: 10.1089/hyb.2009.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The liver possesses a variety of characteristics that make this organ a very attractive target for gene and drug delivery. The asialoglycoprotein receptor (ASGPR) is a heterodimeric liver-specific C-type lectin that mediates endocytosis and degradation of desialylated glycoproteins and is considered a preferable target for liver-specific drug delivery. Asialoglycoprotein-coupled, galactosylated, or anti-ASGPR antibody-targeted molecules may be used to deliver pharmaceutical agents to the liver. Here we present a new anti-ASGPR single-chain antibody (scFv) that was isolated from the synthetic human "Ronit-1" antibody phage display library. This scFv (B11) was shown to bind the recombinant and native forms of the ASGPR and could also facilitate ASGPR specific internalization of a B11-PE38KDEL immunotoxin and cause cell death. Thus, this newly isolated antibody can serve as a targeting moiety for ASGPR-directed drug delivery.
Collapse
Affiliation(s)
- Alla Trahtenherts
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
33
|
Nuclear drug delivery to target tumour cells. Eur J Pharmacol 2009; 625:174-80. [DOI: 10.1016/j.ejphar.2009.06.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/05/2009] [Accepted: 06/22/2009] [Indexed: 01/12/2023]
|
34
|
Takahashi T, Yuba E, Kojima C, Harada A, Kono K. Synthesis of a polyamidoamine dendron-bearing lipid having sugar moieties and its use for preparation of nonviral gene vectors. RESEARCH ON CHEMICAL INTERMEDIATES 2009. [DOI: 10.1007/s11164-009-0083-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
El-Sayed A, Masuda T, Khalil I, Akita H, Harashima H. Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. J Control Release 2009; 138:160-7. [DOI: 10.1016/j.jconrel.2009.05.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/13/2009] [Accepted: 05/16/2009] [Indexed: 11/30/2022]
|
36
|
Nishikawa M, Nakayama A, Takahashi Y, Fukuhara Y, Takakura Y. Reactivation of silenced transgene expression in mouse liver by rapid, large-volume injection of isotonic solution. Hum Gene Ther 2009; 19:1009-20. [PMID: 18694297 DOI: 10.1089/hum.2008.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rapid, large-volume injection, or so-called hydrodynamic injection, of naked plasmid DNA gives high transgene expression in mouse liver, and this method has been applied to liver-directed gene transfer in humans with slight modifications. To prove that injection-induced biological changes are involved in hydrodynamic injection-induced, high-level transgene expression in mouse liver, isotonic solutions were injected into mice that had received a hydrodynamic injection of plasmid DNA. Transgene expression in the liver was increased by such injections irrespective of the cDNA, promoter, and type of solution. This reactivation was repeatable and detectable even 3 months after gene transfer. Parameters required for reactivation were similar to those required for the hydrodynamic injection of plasmid DNA. Plasmid DNA-polyethyleneimine complex-based transgene expression in mouse liver was also reactivated by the same treatment. DNA microarray and quantitative RT-PCR analyses revealed that the expression of immediate-early response genes c-fos and c-jun was increased 70 and 100-fold, respectively. Activator protein (AP)-1- or nuclear factor (NF)-kappa B-dependent transgene expression was increased by an injection of isotonic solutions. These findings indicate for the first time that a rapid, large-volume injection of isotonic solution activates the transcription factors AP-1 and NF-kappa B in the liver, which in turn increases the transcription of genes delivered by hydrodynamic injection or other methods.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
37
|
Kamimura K, Liu D. Physical approaches for nucleic acid delivery to liver. AAPS J 2008; 10:589-95. [PMID: 19083101 PMCID: PMC2628207 DOI: 10.1208/s12248-008-9067-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Accepted: 11/13/2008] [Indexed: 11/30/2022] Open
Abstract
The liver is a key organ for numerous metabolic pathways and involves many inherited diseases that, although being different in their pathology, are often caused by lack or overproduction of a critical gene product in the diseased cells. In principle, a straightforward method to fix such problem is to introduce into these cells with a gene-coding sequence to provide the missing gene product or with the nucleic acid sequence to inhibit production of the excessive gene product. Practically, however, success of nucleic acid-based pharmaceutics is dependent on the availability of a method capable of delivering nucleic acid sequence in the form of DNA or RNA to liver cells. In this review, we will summarize the progress toward the development of physical methods for nucleic acid delivery to the liver. Emphasis is placed on the mechanism of action, pros, and cons of each method developed so far. We hope the information provided will encourage new endeavor to improve the current methodologies or develop new strategies that will lead to safe and effective delivery of nucleic acids to the liver.
Collapse
Affiliation(s)
- Kenya Kamimura
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 527 Salk Hall, Pittsburgh, PA 15261 USA
| | - Dexi Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 527 Salk Hall, Pittsburgh, PA 15261 USA
| |
Collapse
|
38
|
Choi S, Lee KD. Enhanced gene delivery using disulfide-crosslinked low molecular weight polyethylenimine with listeriolysin o-polyethylenimine disulfide conjugate. J Control Release 2008; 131:70-6. [PMID: 18692533 PMCID: PMC2692728 DOI: 10.1016/j.jconrel.2008.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/23/2008] [Accepted: 07/08/2008] [Indexed: 11/29/2022]
Abstract
One of the most important requirements for non-viral gene delivery systems is the ability to mediate high levels of gene expression with low toxicity. After the DNA/vector complexes are taken up by cells through endocytosis, DNA is typically contained within the endocytic compartments and rapidly degraded due to the low pH and hydrolytic enzymes within endosomes and lysosomes, limiting its accessibility to the cytosol and ultimately to the nucleus. In this study, the endosomolytic protein listeriolysin O (LLO) from the intracellular pathogen Listeria monocytogenes was conjugated with polyethylenimine (PEI) of average molecular weight 25 kDa (PEI25) via a reversible disulfide bond (LLO-s-s-PEI), and incorporated into plasmid DNA condensed with disulfide-crosslinked low molecular weight PEI 1.8 kDa (PEI1.8). We have investigated and demonstrated that high gene transfection efficiency, which is comparable to that by the most commonly used PEI25, can be achieved by reversibly crosslinking low molecular weight PEI (PEI1.8) using disulfide bonds, with greatly reduced cytotoxicity of the PEI. The reversible incorporation of LLO into the DNA condensates of PEI, through the use of the synthesized LLO-s-s-PEI conjugate, further enhances the transfection efficiency beyond that of DNA condensates with disulfide-crosslinked PEI1.8 alone.
Collapse
Affiliation(s)
- Suna Choi
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | - Kyung-Dall Lee
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|
39
|
Nishikawa M, Takakura Y, Hashida M. Pharmacokinetic considerations regarding non-viral cancer gene therapy. Cancer Sci 2008; 99:856-62. [PMID: 18294288 PMCID: PMC11158855 DOI: 10.1111/j.1349-7006.2008.00774.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cancer gene therapy, in which pharmacologically active compounds are administered to cancer patients in a genetic form, has been examined not only in animals but also in cancer patients. Viral vector-induced severe side effects in patients have greatly underscored the importance of non-viral gene transfer methods. Even though the importance of pharmacokinetics is undoubtedly understood in the development of anticancer therapies, its importance has been less well recognized in non-viral cancer gene therapy. When transgene products express their activity within transduced cells, such as herpes simplex virus type 1 thymidine kinase and short hairpin RNA, the pharmacokinetics of the vectors and the expression profiles of the transgenes will determine the efficacy of gene transfer. The percentage of cells transduced is highly important if few by-stander effects are expected. If transgene products are secreted from cells into the blood circulation, such as interferons and interleukins, the pharmacokinetics of transgenes becomes a matter of significant importance. Then, any approach to increasing the level and duration of transgene expression will increase the therapeutic effects of cancer gene therapy. Here we review the pharmacokinetics of both non-viral vectors and transgene products, and discuss what should be done to achieve safer and more effective non-viral cancer gene therapy.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
40
|
Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 2008; 97:726-45. [PMID: 17823947 DOI: 10.1002/jps.21024] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Successful gene therapy depends on the development of efficient delivery systems. Although pDNA and ODN are novel candidates for nonviral gene therapy, their clinical applications are generally limited owing to their rapid degradation by nucleases in serum and rapid clearance. A great deal of effort had been devoted to developing gene delivery systems, including physical methods and carrier-mediated methods. Both methods could improve transfection efficacy and achieve high gene expression in vitro and in vivo. As for carrier-mediated delivery in vivo, since gene expression depends on the particle size, charge ratio, and interaction with blood components, these factors must be optimized. Furthermore, a lack of cell-selectivity limits the wide application to gene therapy; therefore, the use of ligand-modified carriers is a promising strategy to achieve well-controlled gene expression in target cells. In this review, we will focus on the in vivo targeted delivery of pDNA and ODN using nonviral carriers.
Collapse
Affiliation(s)
- Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
41
|
Jung J, Kasuya T, Tanizawa K, Kuroda S. Bio-nanocapsules for In vivo Pinpoint Drug Delivery. YAKUGAKU ZASSHI 2007; 127:797-805. [PMID: 17473521 DOI: 10.1248/yakushi.127.797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To maximize the beneficial effects and minimize the side effect of drugs, DDS (drug delivery system) has been attracted many researchers in the recent drug development. Especially, the in vivo pinpoint delivery system for drugs is very important and key technology for developing the next generations of anti-cancer drugs and gene therapies. Bio-nanocapsule (BNC) is recombinant yeast-derived hepatitis B virus surface antigen particle, which has been used as a recombinant hepatitis B vaccine for the last 20 years in the world. BNC can incorporate various materials (chemical compounds, proteins, genes, siRNA, etc) by the fusion with liposome, and deliver them to the organs and tissues in vivo specifically by the action of bio-recognition molecules on the BNC's surface. The transfection efficiency is significantly higher than that of liposome, because BNC harbors the complete set of hepatitis B virus infection machinery. Recently, we succeeded in the in vivo retargeting of BNC by displaying either antibody or homing peptide, less than 10 amino acid residues for in vivo targeting. BNC is a hybrid of liposome and virus, and very flexible system for in vivo retargeting. BNC might be very promising carriers in the next generation of DDS.
Collapse
Affiliation(s)
- Joohee Jung
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki City, Japan
| | | | | | | |
Collapse
|
42
|
Chen CP, Kim JS, Liu D, Rettig GR, McAnuff MA, Martin ME, Rice KG. Synthetic PEGylated glycoproteins and their utility in gene delivery. Bioconjug Chem 2007; 18:371-8. [PMID: 17373767 PMCID: PMC2653852 DOI: 10.1021/bc060229p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PEGylated glycoproteins (PGPs) were synthesized by copolymerizing a Cys-terminated PEG-peptide, glycopeptide, and melittin peptide. Compositionally unique PGPs were prepared by varying the ratio of PEG-peptide (20-90%) and melittin (0-70%) with a constant amount of glycopeptide (10%). The PGPs were purified by RP-HPLC, and characterized for molecular weight and polydispersity by GPC-HPLC and SDS-PAGE and for composition by RP-HPLC following reduction to form monomeric peptides. PGPs formed DNA condensates of 200-300 nm in diameter that were administered to mice via the tail vein. Biodistribution studies confirmed their primary targeting to liver hepatocytes with a DNA metabolic half-life of 1 h. Upon stimulation by hydrodynamic dosing with saline, PGP DNA (5 microg) mediated luciferase expression in the liver detected by bioluminescence imaging (BLI) after 24 h. The level of gene expression mediated by PGP DNA was 5000-fold less than direct hydrodynamic dosing of an equivalent amount of DNA and was independent of the mol percent of melittin incorporated into the polymer, but dependent on the presence of galactose on PGP. The results establish the ability to prepare three-component gene delivery polymers that function in vivo. Further design improvements in fusogenic peptides for gene delivery and for the simultaneous use of a nuclear targeting strategy will be necessary to approach levels of expression mediated by the direct hydrodynamic dosing of DNA.
Collapse
Affiliation(s)
- Chang-po Chen
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Ji-seon Kim
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Dijie Liu
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Garrett R. Rettig
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Marie A. McAnuff
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Molly E. Martin
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
43
|
Chiba N, Ueda M, Shimada T, Jinno H, Watanabe J, Ishihara K, Kitajima M. Development of Gene Vectors for Pinpoint Targeting to Human Hepatocytes by Cationically Modified Polymer Complexes. Eur Surg Res 2007; 39:23-34. [PMID: 17204835 DOI: 10.1159/000098437] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 09/13/2006] [Indexed: 02/05/2023]
Abstract
We developed a vector that might enable gene therapy of metabolic liver disease or hepatoma. Here we demonstrate the use of cationically modified biocompatible phospholipid polymer conjugated with hepatitis B surface (HBs) antigen for the specific transfer of genes into human hepatocytes. Poly(2-methacryloyloxyethyl phosphorylcholine (MPC)- co-N,N-dimethylaminoethyl methacrylate (DMAEMA)-co- p-nitrophenylcarbonyloxyethyl methacrylate(NPMA))(polyMDN) was prepared as a frame of vector. The specific expression of sFlt-1 or GFP by polyMDN conjugated with HBs containing plasmid (plasmid/polyMDN-HBs), polyMDN containing plasmid (plasmid/polyMDN), plasmid only and PBS were assessed in tumor cells (HepG2 or WiDr) in vitro and in vivo. The histological findings, organ weight changes, and degree of liver dysfunction were examined in the mice administered by several reagents. The sFlt-1 and GFP expression was observed only in the HepG2 cells transfected with sFlt-1 or GFP/polyMDN-HBs. None of the side effects mentioned above was observed. In conclusion, these results suggest that polyMDN-HBs is a human hepatocyte-specific gene delivery vector that might not have serious side effects.
Collapse
Affiliation(s)
- Naokazu Chiba
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Rong Qi X, Gao Y, Wei L, Maitani Y, Nagai T. Mechanisms of co-modified liver-targeting liposomes as gene delivery carriers based on cellular uptake and antigens inhibition effect. J Control Release 2006; 117:281-90. [PMID: 17196291 DOI: 10.1016/j.jconrel.2006.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Revised: 09/04/2006] [Accepted: 11/09/2006] [Indexed: 11/23/2022]
Abstract
In order to deliver antisense oligonucleotides (asODN) into hepatocytes orientedly in the treatment of hepatitis B virus (HBV) infection, the liver-targeting cationic liposomes was developed as a gene carrier, which was co-modified with the ligand of the asialoglycoprotein receptor (ASGPR), beta-sitosterol-beta-d-glucoside (sito-G) and the nonionic surfactant, Brij 35. Flow cytometry (FCM) analysis and enzyme-linked immunosorbent assay (ELISA) showed that the asODN-encapsulating cationic liposomes exhibited high transfection efficiency and strong antigens inhibition effect in primary rat hepatocytes and HepG2.2.15 cells, respectively. With the help of several inhibitors acting on different steps during the targeting lipofection, the cellular uptake mechanisms of the co-modified liver-targeting cationic liposomes were investigated through antigens inhibition effect assay and confocal laser scanning microscopy (CLSM) analysis. The cellular uptake with high transfection efficiency seemed to involve both endocytosis and membrane fusion. The ligand sito-G was confirmed to be able to enhance ASGPR-mediated endocytosis, the nonionic surfactant Brij 35 seemed to be able to facilitate membrane fusion, and the co-modification resulted in the most efficient transfection but no enhanced cytotoxicity. These results suggested that the co-modified liver-targeting cationic liposomes would be a specific and effective carrier to transfer asODN into hepatocytes infected with HBV orientedly.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
45
|
Hyoudou K, Nishikawa M, Kobayashi Y, Kuramoto Y, Yamashita F, Hashida M. Inhibition of adhesion and proliferation of peritoneally disseminated tumor cells by pegylated catalase. Clin Exp Metastasis 2006; 23:269-78. [PMID: 17086358 DOI: 10.1007/s10585-006-9036-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 09/08/2006] [Indexed: 01/01/2023]
Abstract
Hydrogen peroxide may aggravate the peritoneal dissemination of tumor cells by activating the expression of a variety of genes. In this study, we used pegylated catalase (PEG-catalase) to examine whether prolonged retention of catalase activity within the peritoneal cavity is effective in inhibiting peritoneal dissemination in mouse models. Murine B16-BL6 cells or colon 26 cells labeled with firefly luciferase gene were inoculated intraperitoneally into syngeneic mice. Compared with unmodified catalase, PEG-catalase was retained in the peritoneal cavity for a long period after intraperitoneal injection. A single injection of PEG-catalase just before tumor inoculation significantly reduced the number of the tumor cells at 1 and 7 days. The changes in the expression of molecules involved in the metastasis were evaluated by real time quantitative PCR analysis. Inoculation of the tumor cells increased the expression of intercellular adhesion molecule (ICAM)-1 in the greater omentum, which was inhibited by PEG-catalase. An injection of PEG-catalase at 3 days after tumor inoculation also reduced the number of the tumor cells, suggesting that processes other than the adhesion of tumor cells to peritoneal organs are also inhibited. Daily doses of PEG-catalase significantly prolonged the survival time of tumor-bearing mice. These results indicate that intraperitoneal injection of PEG-catalase inhibits the multiple processes of peritoneal dissemination of tumor cells by scavenging hydrogen peroxide in the peritoneal cavity.
Collapse
Affiliation(s)
- Kenji Hyoudou
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Hattori Y, Kawakami S, Lu Y, Nakamura K, Yamashita F, Hashida M. Enhanced DNA vaccine potency by mannosylated lipoplex after intraperitoneal administration. J Gene Med 2006; 8:824-34. [PMID: 16625665 DOI: 10.1002/jgm.910] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Here we describe a novel DNA vaccine formulation that can enhance cytotoxic T lymphocyte (CTL) activity through efficient gene delivery to dendritic cells (DCs) by mannose receptor-mediated endocytosis. METHODS Ovalbumin (OVA) was selected as a model antigen for vaccination; accordingly, OVA-encoding pDNA (pCMV-OVA) was constructed to evaluate DNA vaccination. Mannosylated cationic liposomes (Man-liposomes) were prepared using cholesten-5-yloxy-N-{4-[(1-imino-2-D-thiomannosylethyl)amino]butyl}formamide (Man-C4-Chol) with cationic lipid. The potency of the mannosylated liposome/pCMV-OVA complex (Man-lipoplex) was evaluated by measuring OVA mRNA in CD11c+ cells, CTL activity, and the OVA-specific anti-tumor effect after in vivo administration. RESULTS An in vitro study using DC2.4 cells demonstrated that Man-liposomes could transfect pCMV-OVA more efficiently than cationic liposomes via mannose receptor-mediated endocytosis. In vivo studies revealed that the Man-lipoplex exhibited higher OVA mRNA expression in CD11c+ cells in the spleen and peritoneal cavity and provided a stronger OVA-specific CTL response than intraperitoneal (i.p.) administration of the conventional lipoplex and intramuscular (i.m.) administration of naked pCMV-OVA, the standard protocol for DNA vaccination. Pre-immunization with the Man-lipoplex provided much better OVA-specific anti-tumor effect than naked pCMV-OVA via the i.m. route. CONCLUSIONS These results suggested that in vivo active targeting of DNA vaccine to DCs with Man-lipoplex might prove useful for the rational design of DNA vaccine.
Collapse
MESH Headings
- Animals
- Antigens/genetics
- Base Sequence
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cell Line
- Dendritic Cells/immunology
- Female
- Gene Expression
- Injections, Intraperitoneal
- Liposomes
- Mannose
- Membrane Potentials
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Neoplasm Transplantation
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- Ovalbumin/genetics
- Ovalbumin/immunology
- Particle Size
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K, Fritz EA, Jahrling PB, McClintock K, Phelps JR, Lee ACH, Judge A, Jeffs LB, MacLachlan I. Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 2006; 193:1650-7. [PMID: 16703508 PMCID: PMC7110204 DOI: 10.1086/504267] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 01/06/2006] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ebola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs). METHODS Four siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid-lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge. RESULTS Treatment of guinea pigs with a pool of the L gene-specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge. CONCLUSIONS Further development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats.
Collapse
Affiliation(s)
- Thomas W Geisbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Nonviral vectors continue to be attractive alternatives to viruses due to their low toxicity and immunogenicity, lack of pathogenicity, and ease of pharmacologic production. However, nonviral vectors also continue to suffer from relatively low levels of gene transfer compared to viruses, thus the drive to improve these vectors continues. Many studies on vector-cell interactions have reported that nonviral vectors bind and enter cells efficiently, but yield low gene expression, thus directing our attention to the intracellular trafficking of these vectors to understand where the obstacles occur. Here, we will review nonviral vector trafficking pathways, which will be considered here as the steps from cell binding to nuclear delivery. Studies on the intracellular trafficking of nonviral vectors has given us valuable insights into the barriers these vectors must overcome to mediate efficient gene transfer. Importantly, we will highlight the different approaches used by researchers to overcome certain trafficking barriers to gene transfer, many of which incorporate components from biological systems that have naturally evolved the capacity to overcome such obstacles. The tools used to study trafficking pathways will also be discussed.
Collapse
Affiliation(s)
- L K Medina-Kauwe
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
49
|
Boodhwani M, Ramlawi B, Laham RJ, Sellke FW. Targeting vascular endothelial growth factor in angina therapy. Expert Opin Ther Targets 2006; 10:5-14. [PMID: 16441224 DOI: 10.1517/14728222.10.1.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite tremendous success of growth factor therapy in animal models, clinical trials have demonstrated minimal success. Vascular endothelial growth factors are perhaps the most potent inducers of angiogenesis in these animal models. This review outlines the biology of vascular endothelial growth factors in the context of myocardial angiogenesis with an emphasis on its effects on the endothelium. It also provides an overview of delivery strategies and summarises the preclinical and clinical evidence relating to exogenous growth factor delivery for myocardial angiogenesis with an emphasis on the key future challenges.
Collapse
Affiliation(s)
- Munir Boodhwani
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
50
|
Hattori Y, Suzuki S, Kawakami S, Yamashita F, Hashida M. The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route. J Control Release 2005; 108:484-95. [PMID: 16181701 DOI: 10.1016/j.jconrel.2005.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 08/04/2005] [Accepted: 08/08/2005] [Indexed: 11/29/2022]
Abstract
We have previously reported that mannosylated cationic liposome consisting with the mannosylated cationic cholesterol derivative Man-C4-Chol (Man) and dioleoylphosphatidylethanolamine (DOPE) (Man/DOPE) could deliver DNA to the liver by intravenous administration via mannose receptor-mediated endocytosis, however, rapid degradation in lysosomes might be a rate-limiting step in its gene transfection. In this study, we tried to evaluate the role of DOPE in in vivo gene transfer by comparing its transfection efficacy with mannosylated liposomes composed of Man and dioleoylphosphatidylcholine (DOPC) (Man/DOPC). In vitro studies showed that the cellular association of both liposome/pCMV-Luc complexes was almost the same, although Man/DOPE complex showed about 10-fold higher transfection activity than Man/DOPC complex. After intraportal administration into mice, Man/DOPE complex showed higher gene expression than Man/DOPC complex, suggesting that DOPE improves intracellular trafficking in target cells under in vivo conditions. An intravenous administration study demonstrated that Man/DOPE complex was accumulated in the liver more efficiently and achieved a higher gene expression in the liver than Man/DOPC complex. Thus, we conclude that the property of DOPE in mannosylated liposomes contributes to the efficient gene expression in the target site through enhanced distribution to the target site and intracellular sorting in the target cells under in vivo conditions.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|