1
|
Sun W, Han C, Ge R, Jiang X, Wang Y, Han Y, Wang N, Song Y, Yang M, Chen G, Deng Y. Sialic Acid Conjugate-Modified Cationic Liposomal Paclitaxel for Targeted Therapy of Lung Metastasis in Breast Cancer: What a Difference the Cation Content Makes. Mol Pharm 2024; 21:1625-1638. [PMID: 38403951 DOI: 10.1021/acs.molpharmaceut.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.
Collapse
Affiliation(s)
- Wenliang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chao Han
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruirui Ge
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaotong Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingchao Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Ning Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Balgobind A, Daniels A, Ariatti M, Singh M. HER2/neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041190. [PMID: 37111675 PMCID: PMC10142055 DOI: 10.3390/pharmaceutics15041190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The overexpression of the human epidermal growth factor 2 (HER2/neu) oncogene is predictive of adverse breast cancer prognosis. Silencing the HER2/neu overexpression using siRNA may be an effective treatment strategy. Major requirements for siRNA-based therapy are safe, stable, and efficient delivery systems to channel siRNA into target cells. This study assessed the efficacy of cationic lipid-based systems for the delivery of siRNA. Cationic liposomes were formulated with equimolar ratios of the respective cholesteryl cytofectins, 3β-N-(N', N'-dimethylaminopropyl)-carbamoyl cholesterol (Chol-T) or N, N-dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09), with the neutral helper lipid, dioleoylphosphatidylethanolamine (DOPE), with and without a polyethylene glycol stabilizer. All cationic liposomes efficiently bound, compacted, and protected the therapeutic siRNA against nuclease degradation. Liposomes and siRNA lipoplexes were spherical, <200 nm in size, with moderate particle size distributions (PDI < 0.4). The siRNA lipoplexes exhibited minimal dose-dependent cytotoxicity and effective HER2/neu siRNA transfection in the HER2/neu overexpressing SKBR-3 cells. The non-PEGylated Chol-T-siRNA lipoplexes induced the highest HER2/neu silencing at the mRNA (10000-fold decrease) and protein levels (>111.6-fold decrease), surpassing that of commercially available Lipofectamine 3000 (4.1-fold reduction in mRNA expression). These cationic liposomes are suitable carriers of HER2/neu siRNA for gene silencing in breast cancer.
Collapse
Affiliation(s)
- Adhika Balgobind
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mario Ariatti
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
3
|
Manturthi S, Bhattacharya D, Sakhare KR, Narayan KP, Patri SV. Cimetidine-Based Cationic Amphiphiles for In Vitro Gene Delivery Targetable to Colon Cancer. ACS OMEGA 2022; 7:31388-31402. [PMID: 36092589 PMCID: PMC9453813 DOI: 10.1021/acsomega.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Cimetidine, a histamine-2 (H2) receptor antagonist, has been found to have anticancer properties against a number of cancer-type cells. In this report, we have demonstrated that cimetidine can acts as a hydrophilic domain in cationic lipids and targetable to the gastric system by carrying reporter genes and therapeutic genes through in vitro transfection. Two lipids, namely, Toc-Cim and Chol-Cim consisting cimetidine as the main head group and hydrophobic moieties as alpha-tocopherol or cholesterol, respectively, were designed and synthesized. 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) is a well-known co-lipid employed to produce liposomes as uniform vesicles. The liposomes and lipoplexes were structurally and functionally evaluated for global surface charges and hydrodynamic diameters, and results found that both liposome and lipoplex size and surface charges are optimal to screen the transfection potentials. DNA-binding studies were analyzed as complete binding at all formulated N/P ratios. The liposomes and lipoplexes of both the lipids Toc-Cim and Chol-Cim show minimal cytotoxicity even though at higher concentrations. The results of the transfection experiments revealed that tocopherol-based cationic lipids (Toc-Cim) show finer transfection efficacy with optimized N/P ratios (2:1 and 4:1) in the colon cancer cell line. Toc-Cim lipoplexes show higher cellular uptake compare to Chol-Cim in the colon cancer cell line at 2:1 and 4:1 N/P ratios. Toc-Cim and Chol-Cim lipids showed highly compatible serum, examined up to 50% of the serum concentration. To evaluate the apoptotic cell death in CT-26 cells, exposed to Toc-Cim:p53 and Chol-Cim:p53 lipoplexes at 2:1 N/P ratios, superior results showed with Toc-Cim:p53. An effect of TP53 protein expression in CT-26 cell lines assayed by western blot, transfected with Toc-Cim:p53 and Chol-Cim:p53 lipoplexes, demonstrated the superior efficacy of Toc-Cim. All of the findings suggest that Toc-Cim lipid is relatively secure and is an effective transfection agent to colon cancer gene delivery.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department
of Chemistry, National Institute of Technology
Warangal, Hanamkonda, Telangana 506004, India
| | - Dwaipayan Bhattacharya
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Kalyani Rajesh Sakhare
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Kumar Pranav Narayan
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Srilakshmi V. Patri
- Department
of Chemistry, National Institute of Technology
Warangal, Hanamkonda, Telangana 506004, India
| |
Collapse
|
4
|
Rapaka H, Manturthi S, Gosangi M, Lohchania B, Marepally S, Patri SV. Effect of Methylation of the Hydrophilic Domain of Tocopheryl Ammonium-Based Lipids on their Nucleic Acid Delivery Properties. ACS OMEGA 2022; 7:15396-15403. [PMID: 35571792 PMCID: PMC9096827 DOI: 10.1021/acsomega.1c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Lipid-enabled nucleic acid delivery has garnered tremendous attention in recent times. Tocopherol among the cationic lipids, 3b-[N-(N',N'-dimethylamino-ethane)carbamoyl]-cholesterol hydrochloride (DC-Chol) with a headgroup of dimethylammonium, and cholesterol as a hydrophobic moiety are found to be some of the most successful lipids and are being used in clinical trials. However, limited efficacy is a major limitation for their broader therapeutic application. In our prior studies, we demonstrated tocopherol to be a potential alternative hydrophobic moiety having additional antioxidant properties to develop efficient and safer liposomal formulations. Inspired by DC-Chol applications and taking cues from our own prior findings, herein, we report the design and synthesis of four alpha-tocopherol-based cationic derivatives with varying degrees of methylation, AC-Toc (no methylation), MC-Toc (monomethylation derivative), DC-Toc (dimethylation derivative), and TC-Toc (trimethylation derivative) and the evaluation of their gene delivery properties. The transfection studies showed that AC-Toc liposomes exhibited superior transfection compared to MC-Toc, DC-Toc, TC-Toc, and control DC-Chol, indicating that methylation in the hydrophilic moiety of Toc-lipids reduced their transfection properties. Cellular internalization studies in the presence of different endocytosis blockers revealed that all four tocopherol lipids were internalized through clathrin-mediated endocytosis, whereas control DC-Chol was found to be internalized through both macropinocytosis and clathrin-mediated endocytosis. These novel Toc-lipids exhibited higher antioxidant properties than DC-Chol by generating less reactive oxygen species, indicating lower cytotoxicity. Our present findings suggest that AC-Toc may be considered as an alternative to DC-Chol in liposomal transfections.
Collapse
Affiliation(s)
- Hithavani Rapaka
- National
Institute of Technology, Warangal 506004, Telangana, India
| | | | | | - Brijesh Lohchania
- Centre
for Stem Cell Research, Christian Medical
College, Vellore 632004, Tamil Nadu, India
| | - Srujan Marepally
- Centre
for Stem Cell Research, Christian Medical
College, Vellore 632004, Tamil Nadu, India
| | | |
Collapse
|
5
|
Luiz MT, Dutra JAP, Tofani LB, de Araújo JTC, Di Filippo LD, Marchetti JM, Chorilli M. Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14040821. [PMID: 35456655 PMCID: PMC9030342 DOI: 10.3390/pharmaceutics14040821] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second most frequent cause of death worldwide, with 28.4 million new cases expected for 2040. Despite de advances in the treatment, it remains a challenge because of the tumor heterogenicity and the increase in multidrug resistance mechanisms. Thus, gene therapy has been a potential therapeutic approach owing to its ability to introduce, silence, or change the content of the human genetic code for inhibiting tumor progression, angiogenesis, and metastasis. For the proper delivery of genes to tumor cells, it requires the use of gene vectors for protecting the therapeutic gene and transporting it into cells. Among these vectors, liposomes have been the nonviral vector most used because of their low immunogenicity and low toxicity. Furthermore, this nanosystem can have its surface modified with ligands (e.g., antibodies, peptides, aptamers, folic acid, carbohydrates, and others) that can be recognized with high specificity and affinity by receptor overexpressed in tumor cells, increasing the selective delivery of genes to tumors. In this context, the present review address and discuss the main targeting ligands used to functionalize liposomes for improving gene delivery with potential application in cancer treatment.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14040-900, Brazil; (M.T.L.); (J.M.M.)
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | - Larissa Bueno Tofani
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | | | - Leonardo Delello Di Filippo
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | - Juliana Maldonado Marchetti
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14040-900, Brazil; (M.T.L.); (J.M.M.)
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
- Correspondence: ; Tel./Fax: +55-16-3301-6998
| |
Collapse
|
6
|
Manturthi S, Narayan KP, Patri SV. Dicationic amphiphiles bearing an amino acid head group with a long-chain hydrophobic tail for in vitro gene delivery applications. RSC Adv 2022; 12:33264-33275. [DOI: 10.1039/d2ra05959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
C14-P, C14-M, and C14-S lipids formed lipoplexes using pDNA. The lipoplex cellular uptake into the cells resulted in the release of nucleic acids. C14-P lipid showed superior eGFP transfection in non-cancer cell line and more apoptosis cell death in cancer cell line.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| | - Kumar Pranav Narayan
- Department of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana-500078, India
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana-506004, India
| |
Collapse
|
7
|
Maiti B, Bhattacharya S. Liposomal nanoparticles based on steroids and isoprenoids for nonviral gene delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1759. [PMID: 34729941 DOI: 10.1002/wnan.1759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Natural lipid molecules are an essential part of life as they constitute the membrane of cells and organelle. In most of these cases, the hydrophobicity of natural lipids is contributed by alkyl chains. Although natural lipids with a nonfatty acid hydrophobic backbone are quite rare, steroids and isoprenoids have been strong candidates as part of a lipid. Over the years, these natural molecules (steroid and isoprenoids) have been used to make either lipid-based nanoparticle or functionalize in such a way that it could form nano assembly alone for therapeutic delivery. Here we mainly focus on the synthetic functionalized version of these natural molecules which forms cationic liposomal nanoparticles (LipoNPs). These cationic LipoNPs were further used to deliver various negatively charged genetic materials in the form of pDNA, siRNA, mRNA (nucleic acids), and so on. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Bappa Maiti
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, India
| | - Santanu Bhattacharya
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, India.,School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Filipczak N, Yalamarty SSK, Li X, Khan MM, Parveen F, Torchilin V. Lipid-Based Drug Delivery Systems in Regenerative Medicine. MATERIALS 2021; 14:ma14185371. [PMID: 34576594 PMCID: PMC8467523 DOI: 10.3390/ma14185371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
The most important goal of regenerative medicine is to repair, restore, and regenerate tissues and organs that have been damaged as a result of an injury, congenital defect or disease, as well as reversing the aging process of the body by utilizing its natural healing potential. Regenerative medicine utilizes products of cell therapy, as well as biomedical or tissue engineering, and is a huge field for development. In regenerative medicine, stem cells and growth factor are mainly used; thus, innovative drug delivery technologies are being studied for improved delivery. Drug delivery systems offer the protection of therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. Similarly, the delivery systems in combination with stem cells offer improvement of cell survival, differentiation, and engraftment. The present review summarizes the significance of biomaterials in tissue engineering and the importance of colloidal drug delivery systems in providing cells with a local environment that enables them to proliferate and differentiate efficiently, resulting in successful tissue regeneration.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Muhammad Muzamil Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Gantenbein B, Tang S, Guerrero J, Higuita-Castro N, Salazar-Puerta AI, Croft AS, Gazdhar A, Purmessur D. Non-viral Gene Delivery Methods for Bone and Joints. Front Bioeng Biotechnol 2020; 8:598466. [PMID: 33330428 PMCID: PMC7711090 DOI: 10.3389/fbioe.2020.598466] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shirley Tang
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Julien Guerrero
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ana I Salazar-Puerta
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Andreas S Croft
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Devina Purmessur
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Role of Lipid-Based and Polymer-Based Non-Viral Vectors in Nucleic Acid Delivery for Next-Generation Gene Therapy. Molecules 2020; 25:molecules25122866. [PMID: 32580326 PMCID: PMC7356024 DOI: 10.3390/molecules25122866] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
The field of gene therapy has experienced an insurgence of attention for its widespread ability to regulate gene expression by targeting genomic DNA, messenger RNA, microRNA, and short-interfering RNA for treating malignant and non-malignant disorders. Numerous nucleic acid analogs have been developed to target coding or non-coding sequences of the human genome for gene regulation. However, broader clinical applications of nucleic acid analogs have been limited due to their poor cell or organ-specific delivery. To resolve these issues, non-viral vectors based on nanoparticles, liposomes, and polyplexes have been developed to date. This review is centered on non-viral vectors mainly comprising of cationic lipids and polymers for nucleic acid-based delivery for numerous gene therapy-based applications.
Collapse
|
11
|
Akbarzadeh M, Oskuee RK, Gholami L, Mahmoudi A, Malaekeh-Nikouei B. BR2 cell penetrating peptide improved the transfection efficiency of modified polyethyleneimine. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Moss KH, Popova P, Hadrup SR, Astakhova K, Taskova M. Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides. Mol Pharm 2019; 16:2265-2277. [PMID: 31063396 DOI: 10.1021/acs.molpharmaceut.8b01290] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene therapy is an exciting field that has the potential to address emerging scientific and therapeutic tasks. RNA-based gene therapy has made remarkable progress in recent decades. Nevertheless, efficient targeted delivery of RNA therapeutics is still a prerequisite for entering the clinics. In this review, we introduce current delivery methods for RNA gene therapeutics based on lipid nanoparticles (LNPs). We focus on the clinical appeal of recent RNA NPs and discuss existing challenges of fabrication and screening LNP candidates for effective translation into drugs of human metabolic diseases and cancer.
Collapse
Affiliation(s)
- Keith Henry Moss
- DTU Health Technology , 202 Kemitorvet , 2800 Kongens Lyngby , Denmark
| | - Petya Popova
- DTU Chemistry , 206-207 Kemitorvet , 2800 Kongens Lyngby , Denmark
| | - Sine R Hadrup
- DTU Health Technology , 202 Kemitorvet , 2800 Kongens Lyngby , Denmark
| | - Kira Astakhova
- DTU Chemistry , 206-207 Kemitorvet , 2800 Kongens Lyngby , Denmark
| | - Maria Taskova
- DTU Chemistry , 206-207 Kemitorvet , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
13
|
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, Xu H, Yang L, Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomater 2019; 86:15-40. [PMID: 30590184 DOI: 10.1016/j.actbio.2018.12.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.
Collapse
Affiliation(s)
- Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
14
|
Abstract
RNA is emerging as a potential therapeutic modality for the treatment of incurable diseases. Despite intense research, the advent to clinical utility remains compromised by numerous biological barriers, hence, there is a need for sophisticated delivery vehicles. In this aspect, lipid nanoparticles (LNPs) are the most advanced platform among nonviral vectors for gene delivery. In this review, we critically review the literature and the reasons for ineffective delivery beyond the liver. We discuss the toxicity issues associated with permanently charged cationic lipids and then turn our attention to next-generation ionizable cationic lipids. These lipids exhibit reduced toxicity and immunogenicity and undergo ionization under the acidic environment of the endosome to release the encapsulated payload to their site of action in the cytosol. Finally, we summarize recent achievements in therapeutic nucleic acid delivery and report on the current status of clinical trials using LNP and the obstacles to clinical translation.
Collapse
Affiliation(s)
- Stephanie Rietwyk
- Laboratory of Precision NanoMedicine, Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, ‡Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, §Center for Nanoscience and Nanotechnology, and ∥Cancer Biology Research Center, Tel Aviv University , Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, ‡Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, §Center for Nanoscience and Nanotechnology, and ∥Cancer Biology Research Center, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Evaluation of Maltose-Based Cationic Liposomes with Different Hydrophobic Tails for Plasmid DNA Delivery. Molecules 2017; 22:molecules22030406. [PMID: 28287501 PMCID: PMC6155304 DOI: 10.3390/molecules22030406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
In this paper, three cationic glycolipids with different hydrophobic chains Malt-DiC12MA (IX a), Malt-DiC14MA (IX b) and Malt-DiC16MA (IX c) were constructed by using maltose as starting material via peracetylation, selective 1-O-deacetylation, trichloroacetimidation, glycosylation, azidation, deacetylation, Staudinger reaction, tertiary amination and quaternization. Target compounds and some intermediates were characterized by 1H-NMR, 13C-NMR, 1H-1H COSY and 1H-13C HSQC. The results of gel electrophoresis assay, atomic force microscopy images (AFM) and dynamic light scattering (DLS) demonstrate that all the liposomes could efficiently bind and compact DNA (N/P ratio less than 2) into nanoparticles with proper size (88 nm–146 nm, PDI < 0.4) and zeta potential (+15 mV–+26 mV). The transfection efficiency and cellular uptake of glycolipids in HEK293 cell were evaluated through the enhanced green fluorescent protein (EGFP) expression and Cy3-labeled pEGFP-C1 (Enhanced Green Fluorescent Protein plasmid) images, respectively. Importantly, it indicated that Malt-DiC14MA exhibited high gene transfer efficiency and better uptake capability at N/P ratios of 8:1. Additionally, the result of cell viability showed glycolipids exhibited low biotoxicity and good biocompatibility by thiazolyl blue tetrazolium bromide (MTT) assay.
Collapse
|
16
|
Shi J, Yu S, Zhu J, Zhi D, Zhao Y, Cui S, Zhang S. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery. Colloids Surf B Biointerfaces 2016; 141:417-422. [DOI: 10.1016/j.colsurfb.2016.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
17
|
Salmasi Z, Shier WT, Hashemi M, Mahdipour E, Parhiz H, Abnous K, Ramezani M. Heterocyclic amine-modified polyethylenimine as gene carriers for transfection of mammalian cells. Eur J Pharm Biopharm 2015. [PMID: 26209125 DOI: 10.1016/j.ejpb.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Branched polyethylenimine (PEI) is extensively used as a polycationic non-viral vector for gene delivery. Polyplexes formed with PEI are believed to be released from endocytotic vesicles by the osmotic burst mechanism in the rate-limiting step in transfection. Increasing the buffering capacity of PEI derivatives in the endosomal pH range of 4.5-7.5 should enhance transfection efficiency. In this study, PEI was derivatized by covalently attaching heterocyclic amine moieties (piperazine, pyridine and imidazole rings with pKa values from 5.23 to 6.04) through amide bonds. PEI derivatives with 50% of the primary amines on PEI exhibited increased buffering capacity, increased transfection activity and decreased cytotoxicity in murine neuroblastoma (Neuro-2a) cells. The relative effectiveness in enhancing transfection efficiency was piperazine>pyridine>histidine, but each type of amine was the most effective under a particular set of conditions. Modified vectors could significantly improve transfection efficiency in murine mesenchymal stem cells. PEI25 derivatized at 50% with histidine administered as polyplexes in the tail veins of mice resulted in remarkably enhanced luciferase gene expression in the expected organ distribution and much lower toxicity than underivatized PEI25.
Collapse
Affiliation(s)
- Zahra Salmasi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Wayne Thomas Shier
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, P.O. Box 917794-8564, Iran
| | - Hamideh Parhiz
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, P.O. Box 91775-1365, Iran.
| |
Collapse
|
18
|
Hosseinkhani H, Abedini F, Ou KL, Domb AJ. Polymers in gene therapy technology. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3432] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Center of Excellence in Nanomedicine; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute; Karaj Alborz IRAN
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Abraham J. Domb
- Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
19
|
Efficient delivery of plasmid DNA using cholesterol-based cationic lipids containing polyamines and ether linkages. Int J Mol Sci 2014; 15:7293-312. [PMID: 24786091 PMCID: PMC4057673 DOI: 10.3390/ijms15057293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/24/2014] [Accepted: 04/10/2014] [Indexed: 12/24/2022] Open
Abstract
Cationic liposomes are broadly used as non-viral vectors to deliver genetic materials that can be used to treat various diseases including cancer. To circumvent problems associated with cationic liposome-mediated delivery systems such as low transfection efficiency and serum-induced inhibition, cholesterol-based cationic lipids have been synthesized that resist the effects of serum. The introduction of an ether-type linkage and extension of the aminopropyl head group on the cholesterol backbone increased the transfection efficiency and DNA binding affinity compared to a carbamoyl-type linkage and a mono aminopropyl head group, respectively. Under optimal conditions, each liposome formulation showed higher transfection efficiency in AGS and Huh-7 cells than commercially available cationic liposomes, particularly in the presence of serum. The following molecular structures were found to have a positive effect on transfection properties: (i) extended aminopropyl head groups for a strong binding affinity to plasmid DNA; (ii) an ether linkage that favors electrostatic binding to plasmid DNA; and (iii) a cholesterol backbone for serum resistance.
Collapse
|
20
|
Gene therapy and DNA delivery systems. Int J Pharm 2013; 459:70-83. [PMID: 24286924 DOI: 10.1016/j.ijpharm.2013.11.041] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Gene therapy is a promising new technique for treating many serious incurable diseases, such as cancer and genetic disorders. The main problem limiting the application of this strategy in vivo is the difficulty of transporting large, fragile and negatively charged molecules like DNA into the nucleus of the cell without degradation. The key to success of gene therapy is to create safe and efficient gene delivery vehicles. Ideally, the vehicle must be able to remain in the bloodstream for a long time and avoid uptake by the mononuclear phagocyte system, in order to ensure its arrival at the desired targets. Moreover, this carrier must also be able to transport the DNA efficiently into the cell cytoplasm, avoiding lysosomal degradation. Viral vehicles are the most commonly used carriers for delivering DNA and have long been used for their high efficiency. However, these vehicles can trigger dangerous immunological responses. Scientists need to find safer and cheaper alternatives. Consequently, the non-viral carriers are being prepared and developed until techniques for encapsulating DNA can be found. This review highlights gene therapy as a new promising technique used to treat many incurable diseases and the different strategies used to transfer DNA, taking into account that introducing DNA into the cell nucleus without degradation is essential for the success of this therapeutic technique.
Collapse
|
21
|
Zhi D, Zhang S, Cui S, Zhao Y, Wang Y, Zhao D. The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjug Chem 2013; 24:487-519. [DOI: 10.1021/bc300381s] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Defu Zhi
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shubiao Zhang
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shaohui Cui
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Yinan Zhao
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | | | - Defeng Zhao
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
22
|
Qiao W, Zhou M. Hydroxyl-modified cationic lipids with a carbamate linkage as gene delivery vehicles. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Weihong Qiao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian; P. R.; China
| | - Min Zhou
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian; P. R.; China
| |
Collapse
|
23
|
Pozzi D, Marchini C, Cardarelli F, Amenitsch H, Garulli C, Bifone A, Caracciolo G. Transfection efficiency boost of cholesterol-containing lipoplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2335-43. [DOI: 10.1016/j.bbamem.2012.05.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
24
|
Novel cholesterol spermine conjugates provide efficient cellular delivery of plasmid DNA and small interfering RNA. J Control Release 2012; 160:182-93. [DOI: 10.1016/j.jconrel.2011.11.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022]
|
25
|
|
26
|
Biswas J, Bajaj A, Bhattacharya S. Membranes of Cationic Gemini Lipids based on Cholesterol with Hydroxyl Headgroups and their Interactions with DNA and Phospholipid. J Phys Chem B 2010; 115:478-86. [DOI: 10.1021/jp108372z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joydeep Biswas
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India, Chemical Biology Unit of JNCASR, Bangalore 560 064, India, and J. C. Bose Fellow, DST, New Delhi, India
| | - Avinash Bajaj
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India, Chemical Biology Unit of JNCASR, Bangalore 560 064, India, and J. C. Bose Fellow, DST, New Delhi, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India, Chemical Biology Unit of JNCASR, Bangalore 560 064, India, and J. C. Bose Fellow, DST, New Delhi, India
| |
Collapse
|
27
|
Park SM, Nam SJ, Jeong HS, Kim WJ, Kim BH. The effects of the 4-(4-Methylpiperazine)phenyl group on nucleosides and oligonucleotides: cellular delivery, detection, and stability. Chem Asian J 2010; 6:487-92. [PMID: 21254426 DOI: 10.1002/asia.201000574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Indexed: 11/11/2022]
Abstract
As drug candidates, one promising way to improve the cellular delivery efficacy of oligonucleotides is to introduce a cationic group. By introducing a cationic moiety into the oligonucleotide structure, they become capable of approaching the cell surface and also of crossing the cellular membrane. In an effort to develop cell-permeable oligonucleotides, we examined the piperazinephenyl-bearing 2'-deoxyuridine ((PP)U), which can be not only cationic but also fluorescent as a cationic monomer for cationic oligonucleotides. Several modified DNA oligonucleotides with different numbers of (PP)U building blocks were synthesized and evaluated for the effect on thermal stability and conformation by the introduction of (PP)U. The cellular delivery of modified oligonucleotides was different depending on the number of (PP)U building blocks. Furthermore, these (PP)U-modified oligonucleotides had sufficient fluorescence that we were able to identify the delivery results without the use of conventional fluorescent tags. They were predominantly localized in the cell cytoplasm. In addition, they were stable enough after 3 hours in the presence of nuclease. These results showed that a piperazinephenyl moiety that is conjugated with nucleobase is able to deliver and detect the oligonucleotides, which suggests that this concept of 'dual-function oligonucleotides' might be utilized in diagnostics, therapeutics, and as a convenient biological tool for probing the activity of oligonucleotides inside cells.
Collapse
Affiliation(s)
- Sun Min Park
- Department of Chemistry, BK School of Molecular Science, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
|
29
|
|
30
|
Zhi D, Zhang S, Wang B, Zhao Y, Yang B, Yu S. Transfection Efficiency of Cationic Lipids with Different Hydrophobic Domains in Gene Delivery. Bioconjug Chem 2010; 21:563-77. [DOI: 10.1021/bc900393r] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- DeFu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - ShuBiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - Bing Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - YiNan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - BaoLing Yang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - ShiJun Yu
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| |
Collapse
|
31
|
Preparation, characterization, transfection efficiency, and cytotoxicity of liposomes containing oligoamine-modified cholesterols as nanocarriers to Neuro2A cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:457-62. [DOI: 10.1016/j.nano.2009.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 01/12/2009] [Accepted: 02/11/2009] [Indexed: 11/20/2022]
|
32
|
Liu J, Guo S, Li Z, Liu L, Gu J. Synthesis and characterization of stearyl protamine and investigation of their complexes with DNA for gene delivery. Colloids Surf B Biointerfaces 2009; 73:36-41. [DOI: 10.1016/j.colsurfb.2009.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 01/21/2023]
|
33
|
Kim BK, Doh KO, Nam JH, Kang H, Park JG, Moon IJ, Seu YB. Synthesis of novel cholesterol-based cationic lipids for gene delivery. Bioorg Med Chem Lett 2009; 19:2986-9. [DOI: 10.1016/j.bmcl.2009.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
|
34
|
Lipid-based emulsion system as non-viral gene carriers. Arch Pharm Res 2009; 32:639-46. [DOI: 10.1007/s12272-009-1500-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/26/2022]
|
35
|
Islam RU, Hean J, van Otterlo WA, de Koning CB, Arbuthnot P. Efficient nucleic acid transduction with lipoplexes containing novel piperazine- and polyamine-conjugated cholesterol derivatives. Bioorg Med Chem Lett 2009; 19:100-3. [DOI: 10.1016/j.bmcl.2008.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
|
36
|
Bhattacharya S, Bajaj A. Advances in gene delivery through molecular design of cationic lipids. Chem Commun (Camb) 2009:4632-56. [DOI: 10.1039/b900666b] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Zhu L, Lu Y, Miller DD, Mahato RI. Structural and formulation factors influencing pyridinium lipid-based gene transfer. Bioconjug Chem 2008; 19:2499-512. [PMID: 19053309 PMCID: PMC2681295 DOI: 10.1021/bc8004039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of pyridinium lipids containing a heterocyclic ring and a nitrogen atom were synthesized to determine the structure-activity relationship for gene delivery. Pyrylium chloroaluminate was synthesized by monoacylation of mesityl oxide and converted into pyrylium hexafluorophosphate, which was used as the key intermediate for reaction with different primary amines, to yield hydroxyethylpyridinium hexafluorophosphate and aminoethylpyridinium hexafluorophosphate. Acylation of these pyridinium salts with different types of fatty acid chlorides afforded the final pyridinium lipids, which were mixed with a co-lipid, such as L-alpha-dioleoylphosphatidylethanolamine (DOPE) and cholesterol (Chol) to prepare cationic liposomes by sonication. These liposomes were mixed with plasmid DNA encoding enhanced green fluorescent protein (pCMS-EGFP) or luciferase (pcDNA3-Luc) and transfected into Chinese hamster ovary (CHO) cells. Several factors including hydrophobic anchor chain length, anchor chain type, configuration of double bond, linker type, co-lipid type, cationic lipid/co-lipid molar ratio, charge ratio (N/P), and cell type had significant influence on transfection efficiency and cytotoxicity. Pyridinium lipids with amide linker showed significantly higher transfection efficiency compared to their ester counterparts. Liposomes prepared at a 1:1 molar ratio of pyridinium lipid and co-lipid showed higher transfection efficiency when either DOPE or cholesterol was used as a co-lipid to prepare cationic liposomes for complex formation with plasmid DNA at 3:1(+/-) charge ratio. Pyridinium liposomes based on a hydrophobic anchor chain length of 16 showed higher transfection efficiency and lower cytotoxicity. The pyridinium lipid with a trans-configuration of the double bond in the fatty acid chain showed higher transfection efficiency than its counterpart with cis-configuration at the same fatty acid chain length. In the presence of serum, C16:0 and Lipofectamine significantly decreased their transfection efficiencies, which were completely lost at a serum concentration of 30% and higher, while C16:1 trans-isomer still had high transfection efficiency under these conditions. In conclusion, pyridinium lipids showed high transfection efficiency and have the potential to be used as transfection reagents in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yan Lu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
38
|
Bajaj A, Mishra SK, Kondaiah P, Bhattacharya S. Effect of the headgroup variation on the gene transfer properties of cholesterol based cationic lipids possessing ether linkage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1222-36. [DOI: 10.1016/j.bbamem.2007.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 12/01/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
|
39
|
Karmali PP, Chaudhuri A. Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Med Res Rev 2007; 27:696-722. [PMID: 17022036 DOI: 10.1002/med.20090] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The clinical success of gene therapy is critically dependent on the development of efficient and safe gene delivery reagents, popularly known as "transfection vectors." The transfection vectors commonly used in gene therapy are mainly of two types: viral and non-viral. The efficiencies of viral transfection vectors are, in general, superior to their non-viral counterparts. However, the myriads of potentially adverse immunogenic aftermaths associated with the use of viral vectors are increasingly making the non-viral gene delivery reagents as the vectors of choice. Among the existing arsenal of non-viral gene delivery reagents, the distinct advantages associated with the use of cationic transfection lipids include their: (a) robust manufacture; (b) ease in handling and preparation techniques; (c) ability to inject large lipid:DNA complexes; and (d) low immunogenic response. The present review highlights the major achievements in the area of designing efficacious cationic transfection lipids, some of the more recent advances in the field of cationic liposomes-mediated gene transfer and targeted gene delivery, some unresolved issues and challenges in liposomal gene delivery, and future promises of cationic liposomes as gene-carriers in non-viral gene therapy.
Collapse
Affiliation(s)
- Priya Prakash Karmali
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | | |
Collapse
|
40
|
Ma B, Zhang S, Jiang H, Zhao B, Lv H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 2007; 123:184-94. [PMID: 17913276 DOI: 10.1016/j.jconrel.2007.08.022] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 08/09/2007] [Indexed: 01/05/2023]
Abstract
Cationic lipid-mediated gene transfer is widely used for their advantages over viral gene transfer because it is non-immunogenic, easy to produce and not oncogenic. The main drawback of the application of cationic lipids is their low transfection efficiency. Many reports about transfection efficiency of cationic lipids have been published in recent years. In this review, the current status and prospects for transfection efficiency of different morphologies of lipoplexes are discussed. High transfection activity will be acquired for H(C)(II) structure when membrane fusion is dominant, but when serum is present L(C)(alpha) lipoplexes show great superiority for their inhibition dissociation by serum during lipoplexes transporting. Increasing DOPE often gains high activity for the H(C)(II) structure promoted by DOPE. High lipofection will be gained from large lipoplexes when endocytosis is dominant, because large particles facilitate membrane contact and fusion. We suggest morphologies of lipoplex should be characterized at two levels, lipoplex size and self-assemble structures of lipoplexes, and understanding these would be very important for scientists to prepare novel cationic lipids and design novel formulations with high transfection efficiency.
Collapse
Affiliation(s)
- Baichao Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | | | | | | | | |
Collapse
|
41
|
Abstract
Cationic lipids are conceptually and methodologically simple tools to deliver nucleic acids into the cells. Strategies based on cationic lipids are viable alternatives to viral vectors and are becoming increasingly popular owing to their minimal toxicity. The first-generation cationic lipids were built around the quaternary nitrogen primarily for binding and condensing DNA. A large number of lipids with variations in the hydrophobic and hydrophilic region were generated with excellent transfection efficiencies in vitro. These cationic lipids had reduced efficiencies when tested for gene delivery in vivo. Efforts in the last decade delineated the cell biological basis of the cationic lipid gene delivery to a significant detail. The application of techniques such as small angle X-ray spectroscopy (SAXS) and fluorescence microscopy, helped in linking the physical properties of lipid:DNA complex (lipoplex) with its intracellular fate. This biological knowledge has been incorporated in the design of the second-generation cationic lipids. Lipid-peptide conjugates (peptoids) are effective strategies to overcome the various cellular barriers along with the lipoplex formulations methodologies. In this context, cationic lipid-mediated gene delivery is considerably benefited by the methodologies of liposome-mediated drug delivery. Lipid mediated gene delivery has an intrinsic advantage of being a biomimetic platform on which considerable variations could be built to develop efficient in vivo gene delivery protocols.
Collapse
Affiliation(s)
- N Madhusudhana Rao
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
42
|
Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23:1417-50. [PMID: 16779701 DOI: 10.1007/s11095-006-0284-8] [Citation(s) in RCA: 524] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 03/01/2006] [Indexed: 01/19/2023]
Abstract
The purpose of this expert review is to discuss the impact of nanotechnology in the treatment of the major health threats including cancer, infections, metabolic diseases, autoimmune diseases, and inflammations. Indeed, during the past 30 years, the explosive growth of nanotechnology has burst into challenging innovations in pharmacology, the main input being the ability to perform temporal and spatial site-specific delivery. This has led to some marketed compounds through the last decade. Although the introduction of nanotechnology obviously permitted to step over numerous milestones toward the development of the "magic bullet" proposed a century ago by the immunologist Paul Ehrlich, there are, however, unresolved delivery problems to be still addressed. These scientific and technological locks are discussed along this review together with an analysis of the current situation concerning the industrial development.
Collapse
Affiliation(s)
- Patrick Couvreur
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Université de Paris Sud, 5 Rue J.B. Clément, 92 296, Chatenay-Malabry Cedex, France
| | | |
Collapse
|
43
|
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006; 114:100-9. [PMID: 16831482 DOI: 10.1016/j.jconrel.2006.04.014] [Citation(s) in RCA: 1679] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 04/26/2006] [Indexed: 12/16/2022]
Abstract
Gene therapy, as a promising therapeutics to treat genetic or acquired diseases, has achieved exciting development in the past two decades. Appropriate gene vectors can be crucial for gene transfer. Cationic lipids and polymers, the most important non-viral vectors, have many advantages over viral ones as non-immunogenic, easy to produce and not oncogenic. They hold the promise to replace viral vectors to be used in clinic. However, the toxicity is still an obstacle to the application of non-viral vectors to gene therapy. For overcoming the problem, many new cationic compounds have been developed. This article provides a review with respect to toxicity of cationic lipids and polymers in gene delivery. We evaluate the structural features of cationic compounds and summarize the relationship of toxicity and structure and hope to provide available suggestions on the development of these cationic compounds.
Collapse
Affiliation(s)
- Hongtao Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | | | | | | | | |
Collapse
|
44
|
Sen J, Chaudhuri A. Gene Transfer Efficacies of Novel Cationic Amphiphiles with Alanine, β-Alanine, and Serine Headgroups: A Structure−Activity Investigation. Bioconjug Chem 2005; 16:903-12. [PMID: 16029031 DOI: 10.1021/bc0500443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report on the relative in vitro efficacies of nine novel non-glycerol based cationic amphiphiles with increasing hydrophobic tails and the amino acids serine, alanine and beta-alanine as the headgroup functionalities (lipids 1-9, Scheme 1) in transfecting multiple cultured cells including CHO, COS-1, MCF-7, and HepG2. The gene transfer efficiencies of lipids 1-9 were evaluated using the reporter gene assays in all the four cell lines and the whole cell histochemical X-gal staining assays in representative CHO cells. In CHO, HepG2, and MCF-7 cells, cationic lipids with alanine (4-6) and beta-alanine (7-9) headgroups were found to be remarkably more transfection efficient than their serine headgroup counterparts (1-3). Most notably, in CHO, HepG2, and MCF-7 cells, in combination with cholesterol as auxiliary lipid, the transfection efficiencies of the cationic lipids with alanine and beta-alanine headgroups and myristyl and palmityl tails (lipids 4, 5, 7 and 8) were significantly higher (2-3-fold) than that of LipofectAmine-2000, a widely used commercially available liposomal tranfection vectors. Surprisingly, in COS-1 cells, although cationic lipids with beta-alanine headgroups (7-9) were strikingly transfection efficient (3-4-fold more efficacious than LipofectAmine-2000), the gene transfer properties of both their structural isomers (4-6) and their serine headgroup counterparts (1-3) were adversely affected. In summary, the present structure-activity investigation demonstrate that high gene delivery efficacies of cationic amphiphiles containing alanine or beta-alanine headgroups can get seriously compromised by substituting the alanine or beta-alanine with serine presumably due to the enhanced sensitivity of DNA associated with such serine-head-containing cationic lipids.
Collapse
Affiliation(s)
- Joyeeta Sen
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | | |
Collapse
|
45
|
Wu X, Hui KM. Induction of potent TRAIL-mediated tumoricidal activity by hFLEX/Furin/TRAIL recombinant DNA construct. Mol Ther 2004; 9:674-81. [PMID: 15120328 DOI: 10.1016/j.ymthe.2004.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/29/2004] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to exert selectively cytotoxic activity against many tumor cells but not normal cells. On the other hand, the ligand for the receptor tyrosine kinase Fms-like tyrosine kinase 3 (Flt3L) is a growth factor for hematopoietic progenitors and is a potent stimulating factor for dendritic and NK cells. Previously, we have demonstrated that it is possible to inhibit the outgrowth of primary tumors by the administration of an hFlex (the extracellular domain of the Flt3L) and TRAIL (amino acid residues 95-281) secreted fusion protein. Here, we report that by the insertion of a linker sequence encoding the cleavage site for the Golgi-expressed endoprotease furin between the DNA sequences encoding hFlex and TRAIL, the tumoricidal activity of the cleaved TRAIL protein generated was greatly enhanced in comparison to the hFlex/TRAIL fusion protein. Furthermore, we demonstrate that intratumoral injection of the hFlex/furin/TRAIL DNA, in conjunction with cationic liposomes, significantly suppressed the outgrowth of the human CNE-2 nasopharyngeal tumor xenografts in SCID mice. In situ histological examinations confirmed the expression of TRAIL in the treated tumor nodules and the induction of apoptosis was also evidenced by the presence of numerous pyknotic nuclei.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Gene Vector Laboratory, Division of Cellular and Molecular Research, National Cancer Center, 11 Hospital Drive, Singapore 169610, Singapore
| | | |
Collapse
|
46
|
Choi WJ, Kim JK, Choi SH, Park JS, Ahn WS, Kim CK. Low toxicity of cationic lipid-based emulsion for gene transfer. Biomaterials 2004; 25:5893-903. [PMID: 15172502 DOI: 10.1016/j.biomaterials.2004.01.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Cationic liposome has been studied as one of the most promising non-viral gene delivery systems. However, it has major drawbacks such as the formation of large aggregates at higher concentrations and the instability in the serum due to cationic lipid. As an alternative gene delivery system, cationic emulsion was formulated and transfection efficiency was evaluated in vitro and in vivo, in comparison with cationic liposome. Cationic emulsion was prepared with varying compositions of 3 beta [N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol), dioleoylphosphatidyl ethanolamine (DOPE), caster oil and Tween 80. Cationic liposome was prepared with DC-Chol and DOPE. The particle size of all the DNA/lipid complexes varied from 150 to 230 nm. The in vitro transfection efficiency of plasmid DNA was assessed by the expression of green fluorescent protein as a reporter. Of various formulations, cationic emulsion E2 (DC-Chol/DOPE/Castor Oil/Tween 80 = 0.3:0.3:0.3:0.15) and cationic liposome L3 (DC-Chol/DOPE = 0.6:0.3) showed improved transfection. DNA/E2 complexes exhibited higher transfection efficiencies (17.39+/-0.58%) in comparison with DNA/L3 complexes (11.47+/-0.59%). DNA/E2 complexes also showed a better physical stability and a stronger serum resistance than DNA/L3 complexes. Moreover, the cytotoxicity of DNA/E2 complexes was comparable to that of DNA/L3 complexes. When DNA/lipid complexes were intravenously administered, DNA/E2 complexes showed a prolonged circulation in blood and mRNA expression in various tissues compared with DNA/L3 complexes. These results suggest that cationic emulsion E2 could be a potential gene delivery system in clinical approaches because of enhanced in vivo gene transfer with low toxicity.
Collapse
Affiliation(s)
- Woo-Jeong Choi
- National Research Lab for Drug and Gene Delivery, College of Pharmacy, Seoul National University, San 56-1 Shillim-dong Kwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
47
|
Ho IAW, Hui KM, Lam PYP. Glioma-specific and cell cycle-regulated herpes simplex virus type 1 amplicon viral vector. Hum Gene Ther 2004; 15:495-508. [PMID: 15144579 DOI: 10.1089/10430340460745810] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have engineered a novel herpes simplex virus type 1 (HSV-1)-based amplicon viral vector, whereby gene expression is controlled by cell cycle events. In nondividing cells, trans-activation of the cyclin A promoter via interaction of the Gal4/NF-YA fusion protein with the Gal4-binding sites is prevented by the presence of a repressor protein, cell cycle-dependent factor 1 (CDF-1). CDF-1 is specifically expressed during the G(0)/G(1) phase of the cell cycle and its binding site is located within the cyclin A promoter. In actively proliferating cells, trans-activation could take place because of the absence of CDF-1. Our results showed that when all these cell cycle-specific regulatory elements are incorporated in cis into a single HSV-1 amplicon plasmid vector backbone (pC8-36), reporter luciferase activity is greatly enhanced. Transgene expression mediated by this series of HSV-1 amplicon plasmid vectors and amplicon viral vectors could be regulated in a cell cycle-dependent manner in a variety of cell lines. In a further attempt to target transgene expression to a selected group of actively proliferating cells such as glial cells, we have replaced the cytomegalovirus promoter of the pC8-36 amplicon plasmid with the glial cell-specific GFAP enhancer element. With this latter viral construct, cell type-specific and cell cycle-dependent transgene expression could subsequently be demonstrated specifically in glioma-bearing animals. Taken together, our results suggest that this series of cell cycle-regulatable HSV-1 amplicon viral vectors could potentially be adapted as useful tools for the treatment of human cancers.
Collapse
Affiliation(s)
- Ivy A W Ho
- Gene Vector Laboratory, Division of Cellular and Molecular Research, National Cancer Center, Singapore 169610
| | | | | |
Collapse
|
48
|
Abstract
The main objective in gene therapy is the development of efficient, non-toxic gene carriers that can encapsulate and deliver foreign genetic materials into specific cell types such as cancerous cells. During the past two decades, enormous research in the area of gene delivery has been conducted worldwide, in particular for cancer gene therapy application. Viral vectors are biological systems derived from naturally evolved viruses capable of transferring their genetic materials into the host cells. Many viruses including retrovirus, adenovirus, herpes simplex virus (HSV), adeno-associated virus (AAV) and pox virus have been modified to eliminate their toxicity and maintain their high gene transfer capability. The limitations associated with viral vectors, however, in terms of their safety, particularly immunogenicity, and in terms of their limited capacity of transgenic materials, have encouraged researchers to increasingly focus on non-viral vectors as an alternative to viral vectors. Non-viral vectors are generally cationic in nature. They include cationic polymers such as poly(ethylenimine) (PEI) and poly(L-lysine) (PLL), cationic peptides and cationic liposomes. The newly described liposomal preparation LPD (liposomes/protamine/DNA), for example, has shown superiority over conventional liposomes/DNA complexes (lipoplexes). Although non-viral vectors are less efficient than viral ones, they have the advantages of safety, simplicity of preparation and high gene encapsulation capability. This article reviews the most recent studies highlighting the advantages and the limitations of various types of gene delivery systems used in cancer gene therapy.
Collapse
Affiliation(s)
- Anas El-Aneed
- School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr, St. John's, NL, Canada A1B 3V6.
| |
Collapse
|
49
|
Kumar VV, Chaudhuri A. On the disulfide-linker strategy for designing efficacious cationic transfection lipids: an unexpected transfection profile. FEBS Lett 2004; 571:205-11. [PMID: 15280043 DOI: 10.1016/j.febslet.2004.06.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
Herein, employing a previously reported disulfide-linker strategy, we have designed and synthesized a novel cationic lipid 2 with a disulfide-linker and its non-disulfide control analog lipid 1. The relative efficacies of lipids 1 and 2 in transfecting CHO, COS-1 and MCF-7 cells were measured using both reporter gene and whole cell histochemical staining assays. In stark contrast to the expectation based on the disulfide-linker strategy, the control non-disulfide cationic lipid 1 showed phenomenally superior in vitro transfection efficacies to its essentially transfection incompetent disulfide counterpart lipid 2. Results in DNase I protection experiments and the electrophoretic gel patterns in the presence of glutathione, taken together, are consistent with the notion that the success of the disulfide-linker strategy may depend more critically on the DNase I sensitivity of the lipoplexes than on the efficient DNA release induced by intracellular glutathione pool.
Collapse
Affiliation(s)
- Valluripalli Vinod Kumar
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | | |
Collapse
|
50
|
Zhang Y, Anchordoquy TJ. The role of lipid charge density in the serum stability of cationic lipid/DNA complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:143-57. [PMID: 15157617 DOI: 10.1016/j.bbamem.2004.03.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/26/2004] [Accepted: 03/05/2004] [Indexed: 11/18/2022]
Abstract
To evaluate the role of lipid charge density in the serum stability of DOTAP-Chol/DNA complexes (lipoplexes), lipid-DNA interactions, extent of aggregation, supercoil content, and in vitro transfection efficiency of lipoplexes were investigated. In general, higher serum concentration destabilized, and increasing molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP(+)/DNA(-)) stabilized lipoplexes in serum as assessed by the criteria used in this study. The increase of cholesterol content led to increased serum stability, and DOTAP:Chol (mol/mol 1:4)/DNA lipoplex with DOTAP(+)/DNA(-) ratio 4 was the most serum stable formulation of all the formulations examined, and maintained lipid-DNA interactions, did not aggregate and exhibited high in vitro transfection efficiency in 50% (v/v) serum. The increased stability of this formulation could not be explained by the decreased charge density of the lipid component. Furthermore, no single parameter examined in the study could be used to consistently predict the in vitro transfection efficiency of lipoplexes in serum. Surprisingly, no correlation between the maintenance of supercoiled DNA content and in vitro transfection efficiency was found in the study.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, C238, University of Colorado, 4200 E Ninth Ave., Denver, CO 80262, USA.
| | | |
Collapse
|