1
|
Ashbrook DG, Arends D, Prins P, Mulligan MK, Roy S, Williams EG, Lutz CM, Valenzuela A, Bohl CJ, Ingels JF, McCarty MS, Centeno AG, Hager R, Auwerx J, Lu L, Williams RW. A platform for experimental precision medicine: The extended BXD mouse family. Cell Syst 2021; 12:235-247.e9. [PMID: 33472028 PMCID: PMC7979527 DOI: 10.1016/j.cels.2020.12.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The challenge of precision medicine is to model complex interactions among DNA variants, phenotypes, development, environments, and treatments. We address this challenge by expanding the BXD family of mice to 140 fully isogenic strains, creating a uniquely powerful model for precision medicine. This family segregates for 6 million common DNA variants-a level that exceeds many human populations. Because each member can be replicated, heritable traits can be mapped with high power and precision. Current BXD phenomes are unsurpassed in coverage and include much omics data and thousands of quantitative traits. BXDs can be extended by a single-generation cross to as many as 19,460 isogenic F1 progeny, and this extended BXD family is an effective platform for testing causal modeling and for predictive validation. BXDs are a unique core resource for the field of experimental precision medicine.
Collapse
Affiliation(s)
- David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Danny Arends
- Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Cathleen M Lutz
- Mouse Repository and the Rare and Orphan Disease Center, the Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Alicia Valenzuela
- Mouse Repository and the Rare and Orphan Disease Center, the Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Casey J Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jesse F Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Melinda S McCarty
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arthur G Centeno
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Reinmar Hager
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
2
|
Cerullo V, McCormack W, Seiler M, Mane V, Cela R, Clarke C, Rodgers JR, Lee B. Antigen-specific tolerance of human alpha1-antitrypsin induced by helper-dependent adenovirus. Hum Gene Ther 2008; 18:1215-24. [PMID: 18021020 DOI: 10.1089/hum.2006.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As efficient and less toxic virus-derived gene therapy vectors are developed, a pressing problem is to avoid immune response to the therapeutic gene product. Secreted therapeutic proteins potentially represent a special problem, as they are readily available to professional antigen-presenting cells throughout the body. Some studies suggest that immunity to serum proteins can be avoided in some mouse strains by using tissue-specific promoters. Here we show that expression of human alpha1-antitrypsin (AAT) was nonimmunogenic in the immune-responsive strain C3H/HeJ, when expressed from helper-dependent (HD) vectors using ubiquitous as well as tissue-specific promoters. Coadministration of less immunogenic HD vectors with an immunogenic first-generation vector failed to immunize, suggesting immune suppression rather than immune stealth. Indeed, mice primed with HD vectors were tolerant to immune challenge with hAAT emulsified in complete Freund's adjuvant. Such animals developed high-titer antibodies to coemulsified human serum albumin, showing that tolerance was antigen specific. AAT-specific T cell responses were depressed in tolerized animals, suggesting that tolerance affects both T and B cells. These results are consistent with models of high-dose tolerance of B cells and certain other suppressive mechanisms, and suggest that a high level of expression from HD vectors can be sufficient to induce specific immune tolerance to serum proteins.
Collapse
Affiliation(s)
- V Cerullo
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Jones BC, Beard JL, Gibson JN, Unger EL, Allen RP, McCarthy KA, Earley CJ. Systems genetic analysis of peripheral iron parameters in the mouse. Am J Physiol Regul Integr Comp Physiol 2007; 293:R116-24. [PMID: 17475678 DOI: 10.1152/ajpregu.00608.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Iron homeostasis is one of the most critical functions in living systems. Too little iron can lead to anemia and tissue-specific disorders, such as splenomegaly. Excessive systemic iron is characteristic of hemochromatosis and is implicated in the brain in Parkinson's disease. With the exception of some single gene diseases like hemochromatosis, we know little about genetic-based, individual differences in iron-related parameters and their impact on biology. To model genetic control of iron homeostasis, we measured liver, spleen, and plasma iron concentrations, hematocrit and hemoglobin, transferrin saturation, and total iron-binding capacity in several BXD/Ty recombinant inbred mouse strains derived from C57BL/6 and DBA/2 progenitors. At 120 days of age, the animals were killed for iron analysis. All measures showed genetic-based variability consistent with polygenic influence. Analysis of principal components of the seven measures revealed three factors that we named availability, transport, and storage. Quantitative trait loci (QTL) analysis revealed one suggestive QTL on chromosome 5 for availability, two suggestive QTL (one on chromosome 1 and the other on chromosome 7) for transport, and one weak QTL on chromosome 2 for storage. The results show that iron homeostasis is a complex trait and is influenced by multiple genes.
Collapse
Affiliation(s)
- Byron C Jones
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16827, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Musani SK, Zhang HG, Hsu HC, Yi N, Gorman BS, Allison DB, Mountz JD. Principal component analysis of quantitative trait loci for immune response to adenovirus in mice. Hereditas 2007; 143:189-97. [PMID: 17362354 DOI: 10.1111/j.2006.0018-0661.01925.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Data on the duration of transgene expression in the liver, the presence of cytotoxic T lymphocytes (CTLs) against adenovirus, and serum cytokines from 18 strains of C57BL/6 x DBA/2 (B x D) recombinant inbred mice were analyzed. Our aim was to detect quantitative trait loci (QTLs) that may have causal relationship with the duration of adenovirus-mediated transgene expression in the liver. Information from beta-galactosidase (LacZ) expression; CTL production; and serum levels of gamma interferon, tumor necrosis factor-alpha, and interleukin-6 30 days after intravenous injection of liver LacZ were summarized by principal component analysis and analyzed using maximum likelihood interval mapping implemented in the QTL cartographer software. Two principal component (PC) scores explained 82.5% of the phenotypic variance in the original variables and identified QTLs not identified by analysis of individual traits. The distribution of original variables among PCs was such that variables in PC1 were predominantly cytokines with little CTL response whereas LacZ and CTL were the predominant contributors to PC2 with practically no contribution from cytokines. PC1 was significantly associated with two QTLs on chromosomes 7 and 9 located at 57.5 cM and 41.01 cM, respectively. Five QTLs were significantly associated with PC2 on chromosomes 12 (23.01 and 31.01 cM) and 15 (29.21, 36.01, and 56.31 cM). These results illustrate the use of principal component analysis in mapping QTLs using multiple correlated traits.
Collapse
Affiliation(s)
- Solomon K Musani
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, AL 35294-0007, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhang HG, High KA, Wu Q, Yang P, Schlachterman A, Yu S, Yi N, Hsu HC, Mountz JD. Genetic analysis of the antibody response to AAV2 and factor IX. Mol Ther 2005; 11:866-74. [PMID: 15922957 DOI: 10.1016/j.ymthe.2005.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/22/2005] [Accepted: 02/23/2005] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the antibody response against either AAV2 or canine F.IX (cF.IX) in parental C57BL/6 (B6) and DBA/2 (D2) and 18 strains of B6 x D2 (BXD) recombinant inbred (RI) strains of mice after iv administration of AAV2-(ApoE)4/hAAT-cF.IX. There was a higher anti-AAV2 capsid response in B6 compared to D2 mice, with IgG2b being the major isotype separating the high and low responders in these two strains. In contrast, the antibody response to cF.IX was lower than the response to the AAV2 capsid and was limited to the IgG1 isotype in both strains. Genetic linkage analysis of the IgG2b anti-AAV2 antibody response in BXD RI strains revealed a significant locus at D4Mit164 (29 cM, LRS=15.3) and two suggestive loci at D6Mit16 (30.5 cM, LRS=11.2) and D17Mit187 (47.4 cM, LRS=13.1). Genetic linkage analysis of the IgG1 anti-cF.IX antibody response revealed a suggestive locus at D1Mit218 (67 cM, LRS=14.1). Significant epistatic interaction was found between two loci (D8Mit45 and D16Mit47; LOD=6.54) for anti-AAV2 and two other loci (D5Mit348 and D15Mit161; LOD=7.66) for anti-cF.IX. These results indicate that multiple genetic loci independently regulate the isotype-specific antibody response to the AAV2 capsid and the cF.IX transgene.
Collapse
Affiliation(s)
- Huang-Ge Zhang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, 701 South 19th Street, LHRB 473, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rawle FEM, Shi CX, Brown B, McKinven A, Tinlin S, Graham FL, Hough C, Lillicrap D. Heterogeneity of the immune response to adenovirus-mediated factor VIII gene therapy in different inbred hemophilic mouse strains. J Gene Med 2005; 6:1358-68. [PMID: 15493040 DOI: 10.1002/jgm.624] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The development of anti-factor VIII (FVIII) antibodies (inhibitors) is a critical concern when considering gene therapy as a potential treatment modality for hemophilia A. We used a hemophilia A mouse model bred on different genetic backgrounds to explore genetically controlled differences in the immune response to FVIII gene therapy. METHODS C57BL/6 FVIII knockout (C57-FVIIIKO) mice were bred with normal BALB/c (BAL) mice, to generate a recombinant congenic BAL-FVIIIKO model of hemophilia A. Early generation adenoviral (Ad) vectors containing the canine FVIII B-domain-deleted transgene under the control of either the CMV promoter or a tissue-restricted (TR) promoter were administered to C57-FVIIIKO, C57xBAL(F1)-FVIIIKO crosses, and BAL-FVIIIKO mice. FVIII expression, inhibitor development, inflammation, and vector-mediated toxicity were assessed. RESULTS In response to administration of Ad-CMV-cFVIII, C57-FVIIIKO mice attain 3-fold higher levels of FVIII expression than BAL-FVIIIKO. All strains injected with Ad-CMV-FVIII displayed FVIII expression lasting only 2 weeks, with associated inhibitor development. C57-FVIII-KO mice that received Ad-TR-FVIII expressed FVIII for 12 months post-injection, whereas FVIII expression was limited to 1 week in C57xBAL(F1)-FVIIIKO and BAL-FVIIIKO mice. This loss of expression was associated with anti-FVIII inhibitor development. BAL-FVIIIKO mice showed increased hepatotoxicity with alanine aminotransferase levels reaching 4-fold higher levels than C57-FVIIIKO mice. However, C57-FVIIIKO mice initiate a more rapid and effective cell-mediated clearance of virally transduced cells than BAL-FVIIIKO, as evidenced by real-time PCR analysis of transduced tissues. Overall, strain-dependent differences in the immune response to FVIII gene delivery were only noted in the adaptive response, and not in the innate response. CONCLUSIONS Our results indicate that the genetic background of the murine model of hemophilia A influences FVIII expression levels, the development of anti-FVIII inhibitors, clearance of transduced cells, and the severity of vector-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Fiona E M Rawle
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The choice of vectors, transgenes, regulatory elements, delivery approaches and the capacity to transduce the appropriate target cell type all influence the effectiveness of gene therapy for neurological diseases. Furthermore, even if many strategies are sound and effective in experimental animals, issues relating to side effects of gene therapy, longevity of therapeutic transgene expression and diffusion throughout the brain can limit the clinical potential of gene therapy. During the past 12-18 months, there have been significant advances in the following areas: the capacity to target vectors to predetermined cells types; the development of gene therapy approaches for the treatment of dominant inherited and neurodegenerative diseases; the capacity to achieve systemic delivery of viral vectors to the brain; and the development of viral vectors to model neurological diseases.
Collapse
Affiliation(s)
- Pedro Ricardo Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center and Department of Medicine, University of California, Los Angeles, USA.
| | | |
Collapse
|