1
|
Chen KH, Pannell JR. Mapping fitness landscapes to interpret sex allocation in hermaphrodites. Curr Biol 2025; 35:2354-2364.e3. [PMID: 40318636 DOI: 10.1016/j.cub.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/20/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Sex-allocation theory predicts sex ratios of dioecious organisms, but it has been poor at explaining sex allocation in hermaphrodites in which the assumed trade-off between male and female functions is often obscure. Here, we apply sex-allocation theory to hermaphrodites by mapping components of seasonal reproductive success onto a fitness landscape defined by potentially independent measures of allocation to male and female functions on orthogonal axes. We find that peaks of reproductive success in a perennial hermaphroditic plant reflect the interactive effect of both male and female allocations on self-fertilization and the effects of inbreeding depression. The rugged landscape corresponds well to the complex pattern of sex allocation observed in natural populations in which individuals produce a mix of male and bisexual flowers and express a type of gender diphasy. Our approach may help to interpret common complexities of sex allocation in hermaphroditic plants and animals.
Collapse
Affiliation(s)
- Kai-Hsiu Chen
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne 1015, Switzerland.
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Jian J, Chai X, Zhao X, Yang Z. Self-Pollinated Types and Ecological Adaptations of the Desert Plant Gymnocarpos przewalskii. PLANTS (BASEL, SWITZERLAND) 2025; 14:1410. [PMID: 40430976 PMCID: PMC12114905 DOI: 10.3390/plants14101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
In desert plants, outcrossing is frequently limited by pollinator scarcity, leading to a certain percentage of self-fertilization. However, research on the ecological adaptations of self-fertilized seeds remains limited. Gymnocarpos przewalskii Maxim, a Tertiary relict plant in the arid deserts of Northwest China, exhibits pronounced self-pollination. In this study, the population of G. przewalskii from the fifth regiment of Alar City was selected to explore its self-pollination types, self-pollination percentages, and ecological adaptations. We found that artificially cross-pollinated G. przewalskii produced heavier seeds, faster germination, seedlings with greater biomass, and stronger environmental adaptability than self-pollination. However, the frequency of insect visits per flower was less than one. The fruit setting rate of natural pollination was 6.90%, while that of self-pollination was 4.43%, accounting for 64.20% of the natural fruit setting rate. Additionally, G. pzewalskii's filaments elongated rapidly to make the anthers and stigma at the same height before flowering. These characteristics suggest that G. przewalskii is capable of autonomous self-pollination and is prior selfing. Gymnocarpos przewalskii likely produces a high proportion of the selfing merely to ensure population survival. These findings offer valuable insights into the adaptation of desert plants to the scarcity of pollinators.
Collapse
Affiliation(s)
- Jiaxin Jian
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (J.J.); (X.Z.)
- State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Tarim University, Alar 843300, China
| | - Xueping Chai
- College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China;
| | - Xiaonan Zhao
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (J.J.); (X.Z.)
| | - Zhaoping Yang
- College of Life Sciences and Technology, Tarim University, Alar 843300, China; (J.J.); (X.Z.)
- State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Tarim University, Alar 843300, China
| |
Collapse
|
3
|
Robertson C, Xue H, Saltini M, Fairnie ALM, Lang D, Kerstens MHL, Willemsen V, Ingle RA, Barrett SCH, Deinum EE, Illing N, Lenhard M. Spiral phyllotaxis predicts left-right asymmetric growth and style deflection in mirror-image flowers of Cyanella alba. Nat Commun 2025; 16:3695. [PMID: 40251172 PMCID: PMC12008388 DOI: 10.1038/s41467-025-58803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/28/2025] [Indexed: 04/20/2025] Open
Abstract
Many animals and plants show left-right (LR) asymmetry. The LR asymmetry of mirror-image flowers has clear functional significance, with the reciprocal placement of male and female organs in left- versus right-handed flowers promoting cross-pollination. Here, we study how handedness of mirror-image flowers is determined and elaborated during development in the South African geophyte Cyanella alba. Inflorescences of C. alba produce flowers with a largely consistent handedness. However, this handedness has no simple genetic basis and individual plants can switch their predominant handedness between years. Rather, it is the direction of the phyllotactic spiral that predicts floral handedness. Style deflection is driven by increased cell expansion in the adaxial carpel facing the next oldest flower compared to the other adaxial carpel. The more expanding carpel shows transcriptional signatures of increased auxin signaling and auxin application can reverse the orientation of style deflection. We propose that a recently described inherent LR auxin asymmetry in the initiating organs of spiral phyllotaxis determines handedness in C. alba, creating a stable yet non-genetic floral polymorphism. This mechanism links chirality across different levels of plant development and exploits a developmental constraint in a core patterning process to produce morphological variation of ecological relevance.
Collapse
Affiliation(s)
- Caroline Robertson
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Haoran Xue
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Marco Saltini
- Mathematical and Statistical Methods (Biometris), Plant Science Group, 6708 PB, Wageningen, The Netherlands
| | - Alice L M Fairnie
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Dirk Lang
- University of Cape Town, Department of Human Biology, Observatory, 7925, South Africa
| | - Merijn H L Kerstens
- Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Robert A Ingle
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, 6708 PB, Wageningen, The Netherlands
| | - Nicola Illing
- University of Cape Town, Department of Molecular and Cell Biology, Rondebosch, 7701, South Africa
| | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Groh JS, Vik DC, Davis M, Monroe JG, Stevens KA, Brown PJ, Langley CH, Coop G. Ancient structural variants control sex-specific flowering time morphs in walnuts and hickories. Science 2025; 387:eado5578. [PMID: 39745948 DOI: 10.1126/science.ado5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Balanced mating type polymorphisms offer a distinct window into the forces shaping sexual reproduction strategies. Multiple hermaphroditic genera in Juglandaceae, including walnuts (Juglans) and hickories (Carya), show a 1:1 genetic dimorphism for male versus female flowering order (heterodichogamy). We map two distinct Mendelian inheritance mechanisms to ancient (>37 million years old) genus-wide structural DNA polymorphisms. The dominant haplotype for female-first flowering in Juglans contains tandem repeats of the 3' untranslated region of a gene putatively involved in trehalose-6-phosphate metabolism and is associated with increased cis gene expression in developing male flowers, possibly mediated by small RNAs. The Carya locus contains ~20 syntenic genes and shows molecular signatures of sex chromosome-like evolution. Inheritance mechanisms for heterodichogamy are deeply conserved, yet may occasionally turn over, as in sex determination.
Collapse
Affiliation(s)
- Jeffrey S Groh
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| | - Diane C Vik
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Matthew Davis
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Kristian A Stevens
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Department of Computer Science, University of California, Davis, CA, USA
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles H Langley
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| | - Graham Coop
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Liu B, Wu H, Cao Y, Ma G, Zheng X, Zhu H, Song X, Sui S. Metabolomic and transcriptomic analyses jointly reveal the mechanism underlying the reddening of Chimonanthus praecox stamens. FRONTIERS IN PLANT SCIENCE 2024; 15:1491246. [PMID: 39640987 PMCID: PMC11618622 DOI: 10.3389/fpls.2024.1491246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Introduction Flower characteristics are crucial ornamental and reproductive traits in Chimonanthus praecox. Over its long cultivation history, variations have been observed in the floral organs, primarily in the petals, with limited reports on stamen traits. Stamen variation, integral to the mating system, can enhance the plant's ornamental value and directly impact its reproductive success. Methods This study is the first to report the phenomenon of red coloration in C. praecox stamens. Using UPLC-MS/MS, we analyzed the types and quantities of major metabolites in stamens of different colors. Results Our results indicated that the red coloration was primarily due to the accumulation 42 on of high levels of anthocyanins, specifically cyanidin 3-O-rutinoside and cyanidin 3-O-glucoside. Transcriptomic sequencing identified 63 differentially expressed genes (DEGs) related to the anthocyanin biosynthetic pathway, most showing peak expression during the bud stage. The results of the metabolite analysis and transcriptomic sequencing were similar to those of previous studies on petal reddening, suggesting a close relationship between the mechanisms of stamen and petal reddening. Discussion This study elucidated the mechanism of stamen reddening in C. praecox, expanding the species' genetic resources and offering insights into color changes across floral tissue..
Collapse
Affiliation(s)
- Bin Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Huafeng Wu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yinzhu Cao
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guanpeng Ma
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Xiaowen Zheng
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Haoxiang Zhu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xingrong Song
- Garden and Flower Research Center, Horticultural Research Institute of Sichuan Academy of Agricultural Science, Chengdu, Sichuan, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Gray HL, Ivers NA, Richardson LI, López-Uribe MM, Jha S. Simulation of early season herbivory via mechanical damage affects flower production in pumpkin (Cucurbita pepo ssp. pepo). ANNALS OF BOTANY 2024; 134:815-826. [PMID: 39093025 PMCID: PMC11979761 DOI: 10.1093/aob/mcae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Damage from insect herbivores can elicit a wide range of plant responses, including reduced or compensatory growth, altered volatile profiles, or increased production of defence compounds. Specifically, herbivory can alter floral development as plants reallocate resources towards defence and regrowth functions. For pollinator-dependent species, floral quantity and quality are critical for attracting floral visitors; thus, herbivore-induced developmental effects that alter either floral abundance or attractiveness may have critical implications for plant reproductive success. Based on past work on resource trade-offs, we hypothesize that herbivore damage-induced effects are stronger in structural floral traits that require significant resource investment (e.g. flower quantity), as plants reallocate resources towards defence and regrowth, and weaker in secondary floral traits that require less structural investment (e.g. nectar rewards). METHODS In this study, we simulated early-season herbivore mechanical damage in the domesticated jack-o-lantern pumpkin Cucurbita pepo ssp. pepo and measured a diverse suite of floral traits over a 60-d greenhouse experiment. KEY RESULTS We found that mechanical damage delayed the onset of male anthesis and reduced the total quantity of flowers produced. Additionally, permutational multivariate analysis of variance (PERMANOVA) indicated that mechanical damage significantly impacts overall floral volatile profile, though not output of sesquiterpenoids, a class of compounds known to recruit specialized cucumber beetle herbivores and squash bee pollinators. CONCLUSIONS We show that C. pepo spp. pepo reduces investment in male flower production following mechanical damage, and that floral volatiles do exhibit shifts in production, indicative of damage-induced trait plasticity. Such reductions in male flower production could reduce the relative attractiveness of damaged plants to foraging pollinators in this globally relevant cultivated species.
Collapse
Affiliation(s)
- Hannah L Gray
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A Ivers
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Leeah I Richardson
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- Lady Bird Johnson Wildflower Center, University of Texas, Austin, TX 78739, USA
| |
Collapse
|
7
|
Lyu ST, Zou TT, Jiang QL, Wang XF. Maintenance of andromonoecy in an autogamous species: Superior male function in male flowers of the endangered Sagittaria guayanensis. PLANT DIVERSITY 2024; 46:783-790. [PMID: 39811814 PMCID: PMC11725975 DOI: 10.1016/j.pld.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 01/16/2025]
Abstract
Andromonoecy is a rare sexual system in plants. The function of additional male flowers in andromonoecious species has been widely discussed; however, few studies have taken offspring fitness into account. In addition, little is known about the mechanisms that maintain andromonoecy in autogamous species. In this study, we compared morphology, pollinator preference, pollen production and export, siring ability, natural siring success, hundred seed dry weight, and seed germination rates between male and hermaphroditic flowers in an endangered autogamous andromonoecious species, Sagittaria guayanensis. Male flowers, which are larger than hermaphroditic flowers, required fewer resources to produce. Pollinators visited male flowers more frequently than they visited hermaphroditic flowers. In addition, pollen production and export were higher in male flowers. Hand pollination demonstrated that siring ability did not differ between flower type. However, the natural siring success of male flowers was triple that of hermaphroditic flowers. The seeds sired by male flowers performed better than those sired by hermaphroditic flowers, with greater dry weight and higher germination rate. In conclusion, male flowers may be superior pollen donors for outcrossing. The maintenance of andromonoecy in S. guayanensis may result from the better performance of male flowers in male function compared to that of hermaphroditic flowers.
Collapse
Affiliation(s)
- Sen-Tao Lyu
- Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Zou
- Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi-Lin Jiang
- Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Fan Wang
- Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Yamamoto M, Ohtake S, Shinozawa A, Shirota M, Mitsui Y, Kitashiba H. Analysis of randomly mutated AlSRKb genes reveals that most loss-of-function mutations cause defects in plasma membrane localization. THE NEW PHYTOLOGIST 2024; 244:1644-1657. [PMID: 39279039 DOI: 10.1111/nph.20111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024]
Abstract
Only very limited information is available on why some nonsynonymous variants severely alter gene function while others have no effect. To identify the characteristic features of mutations that strongly influence gene function, this study focused on SRK which encodes a highly polymorphic receptor kinase expressed in stigma papillary cells that underlies a female determinant of self-incompatibility in Brassicaceae. A set of 300 Arabidopsis thaliana transformants expressing mutated SRKb from A. lyrata was constructed using error-prone PCR and the genotype and self-incompatibility phenotype of each transformant were determined. Almost all the transformants showing the self-incompatibility defect contained mutations in AlSRKb that altered localization to the plasma membrane. The observed mutations occurred in amino acid residues that were highly conserved across S haplotypes and whose predicted locations were in the interior of the protein. Our findings suggested that mutations causing the self-incompatibility defect were more likely to result from changes to AlSRKb biosynthesis than from loss of AlSRKb function. In addition, we examined whether the RandomForest and Extreme Gradient Boosting methods could predict the self-incompatibility phenotypes of SRK mutants.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Shotaro Ohtake
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Akihisa Shinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Matsuyuki Shirota
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Mitsui
- Graduate School of Agricultural Science, Tokyo University of Agriculture, 1237 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
9
|
Buonaiuto DM. How Climate Change May Impact Plant Reproduction and Fitness by Altering the Temporal Separation of Male and Female Flowering. GLOBAL CHANGE BIOLOGY 2024; 30:e17533. [PMID: 39400973 DOI: 10.1111/gcb.17533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
The temporal separation of male and female flowering-known as dichogamy-is a widespread adaptation across the plant kingdom that increases reproductive success and enhances plant fitness. Differences in timing between male and female flowering can be highly sensitive to environmental variation-and with widespread evidence of shifts in seasonal timing of flowering (i.e., phenology) due to anthropogenic warming-climate change may alter the sequences of male and female flowering for a diversity of taxa around the globe. However, we currently lack a broad understanding of both the extent to which climate change may alter patterns of dichogamy and the potential implications of these shifts for plant reproduction. Here I present evidence that links variation in dichogamy to variation in temperature for a variety of plant taxa. I synthesize the limited number of studies that have investigated shifts in dichogamy specifically in the context of climate change, and detail the physiological, genetic, and developmental factors that control the relative timing of male and female flowering. The literature indicates that dichogamy is highly plastic and sensitive to temperature variation. Plasticity in dichogamy is observed across species with different sexual systems and growth habits, and in both female-first and male-first flowering taxa, but at present, no clear patterns of dichogamy shifts related to these associated traits are discernible. Together, these lines of evidence suggest that sequences of male and female flowering are likely to shift with climate change. However, more research is needed to better understand and predict the ecological consequences of shifting patterns of dichogamy in the context of global change.
Collapse
Affiliation(s)
- D M Buonaiuto
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
- Northeast Climate Adaptation Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
10
|
Rosenberger NM, Hemberger JA, Williams NM. Heatwaves exacerbate pollen limitation through reductions in pollen production and pollen vigour. AOB PLANTS 2024; 16:plae045. [PMID: 39363930 PMCID: PMC11447236 DOI: 10.1093/aobpla/plae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Increasingly frequent heat waves threaten the reproduction of flowering plants; compromising the future persistence, adaptive capacity, and dispersal of wild plant populations, and also the yield of fruit-bearing crop plants. Heat damages the development of sensitive floral organs and gametes, which inhibits pollen germination, pollen tube growth, and fertilization. However, the role of heat has not been integrated into the framework of pollen quantity and quality limitation and how heat influences the success of cross and self-pollination. We exposed developing flowers to either controlled temperature (25 °C:20 °C) or extreme heat (35 °C:20 °C) over 72 h. We then hand-pollinated them with either crossed or self-derived pollen from the same temperature treatment to determine the direct and interactive effects of simulated heatwaves on pollen tube growth and resulting seed set. We also collected anthers from virgin flowers to measure heat impacts on pollen production. Under cooler control temperatures pollen tube survival of self-derived pollen was approximately 27% lower than that of crossed pollen. Pollen tube survival in heat-treated cross-pollinated and heat-treated self-pollinated flowers were 71% and 77% lower compared to flowers cross-pollinated at control temperatures. These differences in pollen tube survival rate between heat-treated cross-pollinated and heat-treated self-pollinated flowers were insignificant. Furthermore, extreme heat reduced seed set by 87%, regardless of pollen origin, and also reduced pollen production during flower development by approximately 20%. Our results suggest flowers that develop during heatwaves are likely to experience exacerbated pollen quantity and quality limitation driven by changes in pollen production and pollen vigour. Heatwave-induced pollen limitation will likely reduce crop yields in agricultural systems, and depress mating and reproduction in wild plant species, the latter of which may hinder the adaptive capacity of plants to a rapidly changing world.
Collapse
Affiliation(s)
- Nick M Rosenberger
- Graduate Group in Ecology, University of California – Davis, 1 Shields Ave, Davis, CA 95616, USA
- Department of Entomology and Nematology, University of California – Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jeremy A Hemberger
- Department of Entomology and Nematology, University of California – Davis, 1 Shields Ave, Davis, CA 95616, USA
- Department of Entomology, University of Wisconsin – Madison, 1630 Linden Dr, Madison, WI 53706, USA
| | - Neal M Williams
- Department of Entomology and Nematology, University of California – Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
11
|
Matallana-Puerto CA, Duarte MO, Aguilar Fachin D, Poloni Guilherme C, Oliveira PE, Cardoso JCF. First evidence of late-acting self-incompatibility in the Aristolochiaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:612-620. [PMID: 38634401 DOI: 10.1111/plb.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Most Aristolochiaceae species studied so far are from temperate regions, bearing self-compatible protogynous trap flowers. Although self-incompatibility has been suggested for tropical species, the causes of self-sterility in this family remain unknown. To fill this gap, we studied the pollination of the tropical Aristolochia esperanzae, including the physical and physiological anti-selfing mechanisms. Floral visitors trapped inside flowers were collected to determine the pollinators. Protogyny was characterized by observing the temporal expression of sexual phases and stigmatic receptivity tests. The breeding system was investigated using hand-pollination treatments. Pollen tube growth was observed using epifluorescence to identify the self-incompatibility mechanism. Flies were the most frequent visitors found inside A. esperanzae trap flowers, with individuals from the family Ulidiidae being potential pollinators since they carried pollen. The characteristic flower odour and presence of larvae indicate that A. esperanzae deceives flies through oviposition-site mimicry. Although this species showed incomplete protogyny, stigmatic receptivity decreased during the male phase, avoiding self-pollination. Fruits developed only after cross- and open pollination, indicating that the population is non-autonomous, non-apomictic, and self-sterile. This occurred through a delay in the growth of geitonogamous pollen tubes to the ovary and lower ovule penetration, indicating a late-acting self-incompatibility mechanism. Our findings expand the number of families in which late-acting self-incompatibility has been reported, demonstrating that it is more widespread than previously thought, especially when considering less-studied tropical species among the basal angiosperms.
Collapse
Affiliation(s)
- C A Matallana-Puerto
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - M O Duarte
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - D Aguilar Fachin
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, Brazil
| | - C Poloni Guilherme
- Laboratório de Evolução e Morfologia de Diptera, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - P E Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - J C F Cardoso
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
12
|
Larue C, Petit RJ. Harmful self-pollination drives gynodioecy in European chestnut, a self-incompatible tree. AMERICAN JOURNAL OF BOTANY 2024; 111:e16329. [PMID: 38708705 DOI: 10.1002/ajb2.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024]
Abstract
PREMISE Gynodioecy is a rare sexual system in which two genders (sensu Lloyd, 1980), cosexuals and females, coexist. To survive, female plants must compensate for their lack of siring capacity and male attractiveness. In European chestnut (Castanea sativa), an outcrossing tree, self-pollination reduces fruit set in cosexual individuals because of late-acting self-incompatibility and early inbreeding depression. Could this negative sexual interaction explain the presence of females in this species? METHODS We studied gender variation in wild populations of European chestnut. In addition, we compared fruit set (the proportion of flowers giving fruits) and other key female fitness components as well as reproductive allocation between genders. We then performed emasculation experiments in cosexual trees, by removing nectar-producing fertile male inflorescences. We also removed sterile but nectar-producing male inflorescences from female trees, as a control. RESULTS We found a highly variable proportion of male-sterile individuals in the wild in European chestnut. In the experimental plot, trees from each gender had similar size, flower density, and burr set, but different fruit set. Removing nectar-producing male inflorescences from branches or entire trees increased fruit set in cosexual but not in female trees. CONCLUSIONS These results show that self-pollination impairs fruit set in cosexual trees. Female trees avoid these problems as they do not produce pollen but continue to attract pollinators thanks to their rewarding male-sterile inflorescences, resulting in a much higher fruit set than in cosexuals. This demonstrates that even outcrossed plants can benefit from the cessation of self-pollination, to the point that unisexuality can evolve.
Collapse
Affiliation(s)
- Clément Larue
- Univ. Bordeaux, INRAE, Biogeco, Cestas, 33610, France
- INVENIO, Maison Jeannette, Douville, 24140, France
| | - Rémy J Petit
- Univ. Bordeaux, INRAE, Biogeco, Cestas, 33610, France
| |
Collapse
|
13
|
Yamamoto M, Ohtake S, Shinosawa A, Shirota M, Mitsui Y, Kitashiba H. Self-incompatibility phenotypes of SRK mutants can be predicted with high accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588956. [PMID: 38645205 PMCID: PMC11030437 DOI: 10.1101/2024.04.10.588956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Only very limited information is available on why some non-synonymous variants severely alter gene function while others have no effect. To identify the characteristic features of mutations that strongly influence gene function, this study focused on S-locus receptor kinase, SRK, which encodes a highly polymorphic receptor kinase expressed in stigma papillary cells that underlies a female determinant of self-incompatibility in Brassicaceae. A set of 299 Arabidopsis thaliana transformants expressing mutated SRKb from A. lyrata was constructed and analyzed to determine the genotype and self-incompatibility phenotype of each transformant. Almost all the transformants showing the self-incompatibility defect contained mutations in AlSRKb that altered localization to the plasma membrane. The observed mutations occurred in amino acid residues that were highly conserved across S haplotypes and whose predicted locations were in the interior of the protein. These mutations were likely to underlie the self-incompatibility defect as they caused significant changes to amino acid properties. Such findings suggested that mutations causing the self-incompatibility defect were more likely to result from changes to AlSRKb biosynthesis than from loss of function. In addition, this study showed the RandomForest and Extreme Gradient Boosting methods could predict self-incompatibility phenotypes of SRK mutants with high accuracy.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Shotaro Ohtake
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Akihisa Shinosawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Matsuyuki Shirota
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuki Mitsui
- Graduate School of Agricultural Science, Tokyo University of Agriculture, 1237 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
14
|
Martínez-Ramos LM, Vázquez-Santana S, García-Franco J, Mandujano MC. Is self-incompatibility a reproductive barrier for hybridization in a sympatric species? AMERICAN JOURNAL OF BOTANY 2024; 111:e16309. [PMID: 38584339 DOI: 10.1002/ajb2.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
PREMISE Barriers at different reproductive stages contribute to reproductive isolation. Self-incompatibility (SI) systems that prevent self-pollination could also act to control interspecific pollination and contribute to reproductive isolation, preventing hybridization. Here we evaluated whether SI contributes to reproductive isolation among four co-occurring Opuntia species that flower at similar times and may hybridize with each other. METHODS We assessed whether Opuntia cantabrigiensis, O. robusta, O. streptacantha, and O. tomentosa, were self-compatible and formed hybrid seeds in five manipulation treatments to achieve self-pollination, intraspecific cross-pollination, open pollination (control), interspecific crosses or apomixis, then recorded flowering phenology and synchrony. RESULTS All species flowered in the spring with a degree of synchrony, so that two pairs of species were predisposed to interspecific pollination (O. cantabrigiensis with O. robusta, O. streptacantha with O. tomentosa). All species had distinct reproductive systems: Opuntia cantabrigiensis is self-incompatible and did not produce hybrid seeds as an interspecific pollen recipient; O. robusta is a dioecious species, which formed a low proportion of hybrid seeds; O. streptacantha and O. tomentosa are self-compatible and produced hybrid seeds. CONCLUSIONS Opuntia cantabrigiensis had a strong pollen-pistil barrier, likely due to its self-incompatibility. Opuntia robusta, the dioecious species, is an obligate outcrosser and probably partially lost its ability to prevent interspecific pollen germination. Given that the self-compatible species can set hybrid seeds, we conclude that pollen-pistil interaction and high flowering synchrony represent weak barriers; whether reproductive isolation occurs later in their life cycle (e.g., germination or seedling survival) needs to be determined.
Collapse
Affiliation(s)
- Linda M Martínez-Ramos
- Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México, México
| | - Sonia Vázquez-Santana
- Laboratorio de Desarrollo en Plantas, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - José García-Franco
- Instituto de Ecología A. C. Red de Ecología Funcional, Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México
| | - María C Mandujano
- Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
15
|
Boucher JJ, Ireland HS, Wang R, David KM, Schaffer RJ. The genetic control of herkogamy. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23315. [PMID: 38687848 DOI: 10.1071/fp23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.
Collapse
Affiliation(s)
- Jacques-Joseph Boucher
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
16
|
Ren D, Jiao F, Zhang A, Zhao J, Zhang J. Floral morph variation mediated by clonal growth and pollinator functional groups of Limonium otolepis in a heterostylous fragmented population. AOB PLANTS 2024; 16:plae020. [PMID: 38660050 PMCID: PMC11041057 DOI: 10.1093/aobpla/plae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Abstract. Heterostyly, a genetic style polymorphism, is linked to symmetric pollen transfer, vital for its maintenance. Clonal growth typically impacts sexual reproduction by influencing pollen transfer. However, the floral morph variation remains poorly understood under the combined effects of pollinators and clonal growth in heterostyly characterized by negative frequency-dependent selection and disassortative mating. We estimated morph ratios, ramets per genet and heterostylous syndrome and quantified legitimate pollen transfer via clonal growth, pollinators and reciprocal herkogamy between floral morphs in Limonium otolepis, a fragmented population composed of five subpopulations in the desert environment of northwestern China, with small flower and large floral morph variation. All subpopulations but one exhibited pollen-stigma morphology dimorphism. The compatibility between mating types with different pollen-stigma morphologies remained consistent regardless of reciprocal herkogamy. Biased ratios and ramets per genet of the two mating types with distinct pollen-stigma morphologies caused asymmetric pollen flow and varying fruit sets in all subpopulations. Short-tongued insects were the primary pollinators due to small flower sizes. However, pollen-feeding Syrphidae sp. triggered asymmetry in pollen flow between high and low sex organs, with short-styled morphs having lower stigma pollen depositions and greater variation. Clonal growth amplified this variation by reducing intermorph pollen transfer. All in all, pollinators and clonal growth jointly drive floral morph variation. H-morphs with the same stigma-anther position and self-incompatibility, which mitigate the disadvantages of sunken low sex organs with differing from the classical homostyly, might arise from long- and short-styled morphs through a 'relaxed selection'. This study is the first to uncover the occurrence of the H-morph and its associated influencing factors in a distylous plant featuring clonal growth, small flowers and a fragmented population.
Collapse
Affiliation(s)
- Dengfu Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Fangfang Jiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Aiqin Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Jing Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| |
Collapse
|
17
|
Hou M, Opedal ØH, Zhao ZG. Sexually concordant selection on floral traits despite greater opportunity for selection through male fitness. THE NEW PHYTOLOGIST 2024; 241:926-936. [PMID: 37899633 DOI: 10.1111/nph.19370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Pollinators are important drivers of floral trait evolution, yet plant populations are not always perfectly adapted to their pollinators. Such apparent maladaptation may result from conflicting selection through male and female sexual functions in hermaphrodites. We studied sex-specific mating patterns and phenotypic selection on floral traits in Aconitum gymnandrum. After genotyping 1786 offspring, we partitioned individual fitness into sex-specific selfed and outcrossed components and estimated phenotypic selection acting through each. Relative fitness increased with increasing mate number, and more so for male function. This led to greater opportunity for selection through outcrossed male fitness, though patterns of phenotypic selection on floral traits tended to be similar, and with better support for selection through female rather than male fitness components. We detected directional selection through one or more fitness component for larger flower number, larger flowers, and more negative nectar gradients within inflorescences. Our results are consistent with Bateman's principles for sex-specific mating patterns and illustrate that, despite the expected difference in opportunity for selection, patterns of variation in selection across traits can be rather similar for the male and female sexual functions. These results shed new light on the effect of sexual selection on the evolution of floral traits.
Collapse
Affiliation(s)
- Meng Hou
- College of Ecology, Lanzhou University, 730000, Lanzhou, China
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | | | - Zhi-Gang Zhao
- College of Ecology, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
18
|
Chen KH, Pannell JR. Unisexual flowers as a resolution to intralocus sexual conflict in hermaphrodites. Proc Biol Sci 2023; 290:20232137. [PMID: 38018108 PMCID: PMC10685137 DOI: 10.1098/rspb.2023.2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
In dioecious populations, males and females may evolve different trait values to increase fitness through their respective sexual functions. Because hermaphrodites express both sexual functions, resolving sexual conflict is potentially more difficult for them. Here, we show that hermaphrodite plants can partially resolve sexual conflict by expressing different trait values in different male and female modules (e.g. different flowers, inflorescences, branches etc.). We analysed the flowering phenology, sex allocation and selection gradients on floral traits of flowers of the andromonoecious plant Pulsatilla alpina, which produces both bisexual and male flowers. Our results indicate that strong protogyny prevents early bisexual flowers from profiting from high siring opportunities early in the reproductive season at a time when male flowers could achieve high siring success. The production of unisexual male flowers thus resolves this sexual conflict because it allows the flowers to express their male function without waiting until after the female function has been performed. Our study illustrates the resolution of sexual conflict arising from phenological constraints via modular divergence in sex allocation. We discuss the extent to which modular variation in sex allocation in the context of other sexual systems may be similarly explained.
Collapse
Affiliation(s)
- Kai-Hsiu Chen
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - John R. Pannell
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Wu BX, Ma LN, Xia N, Wang H, Cao GX. Pollinator probing preference and switching mode-mediated self-interference within a monoecious plant significantly reduced reproductive fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1243764. [PMID: 37881614 PMCID: PMC10597638 DOI: 10.3389/fpls.2023.1243764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Introduction Monoecy is usually interpreted as an important evolutionary route of the plant sexual system from hermaphroditism to dioecy. This floral mechanism can effectively reduce self-interference during the reproductive process, and the services provided by pollinators may play an essential role in monoecious species; however, relevant research is still lacking. Thus, we aimed to determine whether monoecious plants could effectively avoid self-interference and promote the evolution of monoecy under the service of pollinators. Methods Here, we successfully performed manipulation experiments to test self-compatibility, pollinator behavior, and self-interference between male and female functions in Akebia trifoliata, a typical monoecious species. Results We demonstrated that experimental self-pollination did not yield any fruit, and supplemental pollination significantly increased fruit set and fruit weight compared to natural pollination, suggesting that this species is completely self-incompatible and experiences strong pollen limitation. Simultaneous self- and cross-pollination and self-pollination prior to cross-pollination significantly reduced reproductive fitness, but self-pollination after cross-pollination did not, indicating self-interference in this plant. Moreover, both male flower probing preference and switching modes within inflorescences by pollinators successfully reinforced self-interference and were also responsible for decreasing reproductive fitness in A. trifoliata. Discussion In summary, pollinator-mediated self-interference significantly reduced selfing, providing potential dynamics for the maintenance and evolution of monoecy.
Collapse
Affiliation(s)
- Bi-Xian Wu
- Key Laboratory of National Forestry and Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Li-Na Ma
- Langzhong Natural Resources and Planning Bureau, Langzhong, China
| | - Nan Xia
- Langzhong Agricultural Bureau, Langzhong, China
| | - Hao Wang
- College of Life Science, Yan’an University, Yan’an, China
| | - Guo-Xing Cao
- Key Laboratory of National Forestry and Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Kwok A, Stephens S, Dorken M. Male reproductive success is not strongly affected by phenological changes in mate availability in monoecious Sagittaria latifolia. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231117. [PMID: 37771970 PMCID: PMC10523072 DOI: 10.1098/rsos.231117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Many plants express their female and male sex roles at different times (dichogamy), with important consequences for mating. Dichogamy can yield mate limitation via biased floral sex ratios, particularly at the beginning and end of the flowering season when many plants simultaneously function as the same sex. This form of mate limitation should be reduced if plants adjust their allocations to female versus male sex functions in a manner that tracks seasonal variability in mating opportunities. For example, under protogyny (i.e. dichogamy with female function expressed first) plants with male-biased sex expression should have enhanced mating opportunities early in the flowering season as other plants begin to flower (in female sex phase). We quantified seasonal changes in sex allocation, patterns of mate availability and realized siring success in a population of protogynous Sagittaria latifolia. Our results were consistent with previous findings that seasonal changes in sex allocation should compensate for lost mating opportunities under the temporally variable mating environments caused by dichogamy. However, patterns of siring success in the population were inconsistent with this interpretation. We suggest that realized siring success might depend more strongly on spatial than on temporal aspects of mate availability.
Collapse
Affiliation(s)
- Allison Kwok
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Samantha Stephens
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Marcel Dorken
- Department of Biology, Trent University, Peterborough, Ontario, Canada K9J 7B8
| |
Collapse
|
21
|
Sanuki A, Itagaki T, Sakai S. Effect of temporal changes in stamen position on reproductive success in flowers with many stamens: Manipulations of stamen position. AMERICAN JOURNAL OF BOTANY 2023; 110:e16209. [PMID: 37401171 DOI: 10.1002/ajb2.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
PREMISE Male and female reproductive success is enhanced (increased outcrossing and seed production, respectively) by stamen movement in species that have few stamens per flower. Does such enhancement also occur in species that have many stamens per flower? METHODS We examined the effects of stamen movement on male and female reproductive success in Anemone flaccida, which has many stamens per flower. We measured stamen movement, including temporal changes in anther-stigma and anther-anther distances. We experimentally fixed stamens in their pre- or post-movement positions. RESULTS The anthers moved horizontally away from the stigmas with increasing flower age, thus reducing female-male interference. The dehisced anthers tended to move farther from the stigmas, while the undehisced or dehiscing anthers remained closer to them. The number of anthers touched per flower visit was higher in flowers whose stamens were fixed in the pre-movement position than in flowers whose stamens were fixed in the post-movement position or in flowers that were not manipulated. Thus, this position may promote male reproductive success. Seed production was lower for the untreated flowers than for those with stamens fixed in the post-movement position, suggesting that the post-movement stamen position is advantageous and stamen movement is suboptimal for female reproductive success. CONCLUSIONS Stamen movement promotes male reproductive success in the early flowering stage and female reproductive success in the late flowering stage. In species having many stamens per flower, female-male interference can be reduced, but not eliminated, by stamen movement due to the conflict between female and male reproductive successes.
Collapse
Affiliation(s)
- Arisa Sanuki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Itagaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Satoki Sakai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
da Cunha NL, Aizen MA. Pollen production per flower increases with floral display size across animal-pollinated flowering plants. AMERICAN JOURNAL OF BOTANY 2023:e16180. [PMID: 37243835 DOI: 10.1002/ajb2.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 05/29/2023]
Abstract
PREMISE The number of open flowers on a plant (i.e., floral display size) can influence plant fitness by increasing pollinator attraction. However, diminishing marginal fitness returns with increasing floral display are expected as pollinators tend to visit more flowers per plant consecutively. An extended flower visitation sequence increases the fraction of ovules disabled by self-pollination (ovule discounting) and reduces the fraction of a plant's own pollen that is exported to sire seeds in other plants (pollen discounting). Hermaphroditic species with a genetic system that prevents self-fertilization (self-incompatibility) would avoid ovule discounting and its fitness cost, whereas species without such a genetically based barrier would not. Contrarily, pollen discounting would be an unavoidable consequence of a large floral display irrespective of selfing barriers. Nevertheless, the increasing fitness costs of ovule and pollen discounting could be offset by respectively increasing ovule and pollen production per flower. METHODS We compiled data on floral display size and pollen and ovule production per flower for 1241 animal-pollinated, hermaphroditic angiosperm species, including data on the compatibility system for 779 species. We used phylogenetic general linear mixed models to assess the relations of pollen and ovule production to floral display size. RESULTS Our findings provide evidence of increasing pollen production, but not of ovule production, with increasing display size irrespective of compatibility system and even after accounting for potentially confounding effects like flower size and growth form. CONCLUSIONS Our comparative study supports the pollen-discount expectation of an adaptive link between per-flower pollen production and floral display across animal-pollinated angiosperms.
Collapse
Affiliation(s)
- Nicolay Leme da Cunha
- Grupo de Ecología de la Polinización, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, 8400, San Carlos de Bariloche, Argentina
| | - Marcelo Adrián Aizen
- Grupo de Ecología de la Polinización, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, 8400, San Carlos de Bariloche, Argentina
| |
Collapse
|
23
|
Larue C, Klein EK, Petit RJ. Sexual interference revealed by joint study of male and female pollination success in chestnut. Mol Ecol 2023; 32:1211-1228. [PMID: 36484548 DOI: 10.1111/mec.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Most seed plants produce both pollen and ovules. In principle, pollen export could interfere with pollen import through self-pollination, resulting in ovule usurpation and reduced fruit set. Evidence for such interference exists under experimental settings but its importance under natural conditions is unknown. To test for sexual interference in nature, it is necessary to study together mating system, through paternity analyses, and fruit set, the proportion of flowers giving seeds or fruits. We developed a new model combining both processes, using chestnut (Castanea) as case study. We carried out a paternity analysis in an intensively studied plot of 273 trees belonging to three interfertile chestnut species and including a range of individuals with more or less functional stamens, resulting in a large data set of 1924 mating events. We then measured fruit set on 216 of these trees. Fruit set of male-fertile trees was much lower than that of male-sterile trees. Our process-based model shows that pollen is not limiting in the study site and hence cannot account for reduced fruit set. It also indicates that self-pollination is high (74%) but selfing rate is low (4%). Self-pollen is less competitive than cross-pollen, reducing sexual interference, but not sufficiently, as many ovules end up being self-fertilized, 95% of which abort before fruit formation, resulting in the loss of 46% of the fruit crop. These results suggest that the main cause of reduced reproductive potential in chestnut is sexual interference by self-pollen, raising questions on its evolutionary origins.
Collapse
Affiliation(s)
- Clément Larue
- University of Bordeaux, INRAE, BIOGECO, Cestas, France.,INVENIO, Maison Jeannette, Douville, France
| | | | - Rémy J Petit
- University of Bordeaux, INRAE, BIOGECO, Cestas, France
| |
Collapse
|
24
|
Zhao X, Yang G, Hou Q, Min W, Wang T, Bao X. Effects of continuous variation in vertical and lateral herkogamy on reproductive success in Euphorbia fischeriana (Euphorbiaceae). Ecol Evol 2023; 13:e9836. [PMID: 36818532 PMCID: PMC9929625 DOI: 10.1002/ece3.9836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Continuous variation in herkogamy has been well reported, however, less attention has been paid to the phenomena that the consecutive expression of two types of herkogamy in the same flower. Euphorbia fischeriana, which have both vertical and lateral herkogamy, show vertical herkogamy during the female phase. However, their gynophores bend to one side with the male phase and show lateral herkogamy. In this study, we observed the effect of successive sexual organs movement on variation in herkogamy traits. By artificially manipulating the flower to present gynophore straightened in the floral center or bend to one side, we attempted to investigate whether herkogamy movement affects pollinator access efficiency, pollen removal and deposition, and seed set ratio. Furthermore, we conducted artificial pollination in the female phase to evaluate the effect of changes in pollination environment on the variations in herkogamy traits. The results showed that gynophore straightened in female phase favors pollen deposition, whereas gynophore bending in male phase was conducive to the removal of pollen. Visitation frequency, pollen deposition and removal, and seed set ratio decreased significantly when the gynophore movement was manipulated. Finally, the bending of gynophore was obviously promoted by pollination. Therefore, the continuous variation of herkogamy in the same flower of E. fischeriana caused by the bending of the gynophore could improve the accuracy of pollination and avoid the interference of the ovary with access efficiency. That may be an adaptive strategy when pollinators are scarce. Furthermore, our study also provides good support for the hypothesis that variations in herkogamy traits are strongly selected by differences in pollination environments.
Collapse
Affiliation(s)
- Xiang Zhao
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Guang Yang
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Qinzheng Hou
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Wenrui Min
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Taihong Wang
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Xiaoyan Bao
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| |
Collapse
|
25
|
Mukhopadhyay A, Quader S. Pollination inaccuracy: estimating male fitness in the movement-assisted dichogamous species Clerodendrum infortunatum. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Soininen JOS, Kytöviita M. Geranium sylvaticum increases pollination probability by sexually dimorphic flowers. Ecol Evol 2022; 12:e9670. [PMID: 36590340 PMCID: PMC9797467 DOI: 10.1002/ece3.9670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022] Open
Abstract
Sexual dimorphism is expressed as different morphologies between the sexes of a species. Dimorphism is pronounced in gynodioecious populations which consist of female and hermaphrodite individuals. The small size of female flowers in gynodioecious species is often explained by resource re-allocation to seed production instead of large flowers. However, pollinator attraction is critical to female fitness, and factors other than resource savings are needed to explain the small size of female flowers. We hypothesized that the floral size dimorphism in the perennial gynodioecious Geranium sylvaticum (L.) is adaptive in terms of pollination. To test this "pollination hypothesis," we video recorded the small female and large hermaphrodite G. sylvaticum flowers. We parameterized floral visitor behavior when visiting a flower and calculated pollination probabilities by a floral visitor as the probability of touching anther and stigma with the same body part. Pollination probability differed in terms of flower sex and pollinator species. Bumblebees had the highest pollination probability. The small female flowers were more likely to receive pollen via several pollinator groups than the large hermaphrodite flowers. The pollen display of hermaphrodites matched poorly with the stigma display of hermaphrodites, but well with that of females. Although the small size of female flowers is commonly explained by resource re-allocation, we show that sexual dimorphism in flower size may increase the main reproductive functions of the females and hermaphrodites. Dimorphism increases pollination probability in females and fathering probability of the hermaphrodites likely driving G. sylvaticum populations towards dioecy.
Collapse
Affiliation(s)
- Jaakko O. S. Soininen
- Department of Biological and Environmental Sciences, Faculty of Mathematics and ScienceUniversity of JyväskyläJyväskyläFinland
| | - Minna‐Maarit Kytöviita
- Department of Biological and Environmental Sciences, Faculty of Mathematics and ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
27
|
Kwok A, Dorken ME. Sexual selection on male but not female function in monoecious and dioecious populations of broadleaf arrowhead ( Sagittaria latifolia). Proc Biol Sci 2022; 289:20220919. [PMID: 36350202 PMCID: PMC9653219 DOI: 10.1098/rspb.2022.0919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/12/2022] [Indexed: 09/30/2023] Open
Abstract
Direct measures of sexual selection in plants are rare and complicated by immobility and modular growth. For plants, instantaneous measures of fitness typically scale with size, but covariances between size and mating success could obscure the detection of sexual selection. We measured the magnitude of sexual selection in a monoecious and a dioecious population of the clonal plant Sagittaria latifolia using Bateman gradients (ßss). These gradients were calculated using parentage analysis and residual regression to account for the effects of shoot and clone size on mating and reproductive success. In both populations, (i) there was greater promiscuity via male function than via female function and (ii) ßss were positive, with significant associations between mating and reproductive success for male but not female function. Moreover, estimated βss were similar for the monoecious and dioecious populations, possibly because non-overlapping female and male sex phases in hermaphroditic S. latifolia reduced the scope for interference between sex functions during mating. This study builds on previous studies of selection on plant mating traits, and of sexual selection under experimental conditions, by showing that sexual selection can operate in natural populations of plants, including populations of hermaphrodites.
Collapse
Affiliation(s)
- Allison Kwok
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada K9J 0G2
| | - Marcel E. Dorken
- Department of Biology, Trent University, Peterborough, ON, Canada K9J 0G2
| |
Collapse
|
28
|
Silva DM, Luna ALL, Souza CS, Nunes YRF, Fonseca RS, Azevedo IFPD. Sexual and reproductive systems of woody species in
vereda
are distributed according to the life form and habitat occurrence. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Danila Moreira Silva
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
| | - Andressa Laís Lacerda Luna
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
| | - Camila Silveira Souza
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| | - Yule Roberta Ferreira Nunes
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| | - Rúbia Santos Fonseca
- Instituto de Ciências Agrárias Universidade Federal de Minas Gerais, Bairro Universitário Montes Claros Brazil
| | - Islaine Franciely Pinheiro de Azevedo
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| |
Collapse
|
29
|
Genomic analyses of the Linum distyly supergene reveal convergent evolution at the molecular level. Curr Biol 2022; 32:4360-4371.e6. [PMID: 36087578 DOI: 10.1016/j.cub.2022.08.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Supergenes govern multi-trait-balanced polymorphisms in a wide range of systems; however, our understanding of their origins and evolution remains incomplete. The reciprocal placement of stigmas and anthers in pin and thrum floral morphs of distylous species constitutes an iconic example of a balanced polymorphism governed by a supergene, the distyly S-locus. Recent studies have shown that the Primula and Turnera distyly supergenes are both hemizygous in thrums, but it remains unknown whether hemizygosity is pervasive among distyly S-loci. As hemizygosity has major consequences for supergene evolution and loss, clarifying whether this genetic architecture is shared among distylous species is critical. Here, we have characterized the genetic architecture and evolution of the distyly supergene in Linum by generating a chromosome-level genome assembly of Linum tenue, followed by the identification of the S-locus using population genomic data. We show that hemizygosity and thrum-specific expression of S-linked genes, including a pistil-expressed candidate gene for style length, are major features of the Linum S-locus. Structural variation is likely instrumental for recombination suppression, and although the non-recombining dominant haplotype has accumulated transposable elements, S-linked genes are not under relaxed purifying selection. Our findings reveal remarkable convergence in the genetic architecture and evolution of independently derived distyly supergenes, provide a counterexample to classic inversion-based supergenes, and shed new light on the origin and maintenance of an iconic floral polymorphism.
Collapse
|
30
|
Spigler RB, Maguiña R. Changes in female function and autonomous selfing across floral lifespan interact to drive variation in the cost of selfing. AMERICAN JOURNAL OF BOTANY 2022; 109:616-627. [PMID: 35075632 PMCID: PMC9315013 DOI: 10.1002/ajb2.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Morphological and developmental changes as flowers age can impact patterns of mating. At the same time, direct or indirect costs of floral longevity can alter their fitness outcomes. This influence has been less appreciated, particularly with respect to the timing of selfing. We investigated changes in stigma events, autonomous selfing, outcross seed set capacity, and autofertility-a measure representing the potential for reproductive assurance-across floral lifespan in the mixed-mating biennial Sabatia angularis. METHODS We examined stigma morphology and receptivity, autonomous self-pollen deposition, and seed number and size under autonomous self-pollination and hand outcross-pollination for flowers of different ages, from 1 d of female phase until 14 d. We compared autonomous seed production to maximal outcross seed production at each flower age to calculate an index of autofertility. RESULTS The stigmatic lobes begin to untwist 1 d post anthesis. They progressively open, sextend, coil, and increase in receptivity, peaking or saturating at 8-11 d, depending on the measure. Autonomous seed production can occur early, but on average remains low until 6 d, when it doubles. In contrast, outcross seed number and size start out high, then decline precipitously. Consequently, autofertility increases steeply across floral lifespan. CONCLUSIONS Changes in stigma morphology and receptivity, timing of autonomous self-pollen deposition, and floral senescence can interact to influence the relative benefit of autonomous selfing across floral lifespan. Our work highlights the interplay between evolution of floral longevity and the mating system, with implications for the maintenance of mixed mating in S. angularis.
Collapse
Affiliation(s)
- Rachel B. Spigler
- Department of BiologyTemple University1900 N 12th St.PhiladelphiaPA19122USA
| | - Rossana Maguiña
- Department of BiologyTemple University1900 N 12th St.PhiladelphiaPA19122USA
- Present address:
Rossana Maguiña, Ecology and Evolutionary Biology DepartmentUniversity of California Santa Cruz130 McAllister WaySanta CruzCA95060USA
| |
Collapse
|
31
|
Murakami K, Katsuhara KR, Ushimaru A. Intersexual flower differences in an andromonoecious species: small pollen-rich staminate flowers under resource limitation. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:259-265. [PMID: 34990065 DOI: 10.1111/plb.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Andromonoecy, the presence of perfect and staminate flowers in the same individual, has evolved repeatedly in angiosperms. The staminate flowers are generally smaller than the perfect flowers in species that produce staminate flowers plastically when resources are limited. The smaller staminate flowers are expected to be less attractive to pollinators and have reduced size-matching with pollinators than perfect flowers. We hypothesized that these potential disadvantages of staminate versus perfect flowers facilitate the evolution of sex-specific floral morphology, such as allometric relationship between flower size and male reproductive organ. We compared six floral morphology traits, pollen production, pollinator visits and pollen removal from anthers between staminate and perfect flowers in several natural Commelina communis populations. Nectarless and zygomorphic C. communis flowers have polymorphic stamens with attracting, feeding and pollinating anthers and were visited by diverse pollinators. Staminate flowers were significantly smaller than perfect flowers, despite a large overlap in size between sexes. The lengths of pollinating stamens did not differ between staminate and perfect flowers, and staminate flowers produced significantly more pollen. We observed significantly more pollinator visits to perfect flowers than to staminate flowers. By contrast, pollen removal from pollinating stamens was significantly higher in staminate flowers than in perfect flowers. There is sexual dimorphism in flower morphology in C. communis. Staminate flowers with smaller attraction organs, similar pollinating stamens and higher pollen production assure higher pollen donor success relative to perfect flowers. Our results suggest that the morphological changes in staminate flowers enhance pollination success, even with limited resources.
Collapse
Affiliation(s)
- K Murakami
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - K R Katsuhara
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - A Ushimaru
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
32
|
Ganguly S, Barua D. Inter-morph pollen flow and reproductive success in a self-compatible species with stigma-height dimorphism: the influence of herkogamy and reciprocity. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:939-946. [PMID: 34396659 DOI: 10.1111/plb.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Inter-morph pollen transfer and its dependence on herkogamy and reciprocity are not completely understood in species with stigma-height dimorphism. We asked whether total stigmatic pollen loads, inter-morph fraction of pollen load and reproductive success differed between morphs in Jasminum malabaricum, a species exhibiting stigma-height dimorphism. We tested whether higher herkogamy and reciprocity resulted in higher inter-morph pollen deposition and reproductive success. We quantified individual-level estimates of herkogamy, reciprocity, total stigmatic pollen load, inter-morph stigmatic pollen fraction and fruit set for both morphs in naturally occurring populations of J. malabaricum. Total pollen load was higher in the long-styled morph, inter-morph pollen fraction was higher in the short-styled morph, but fruit set did not differ between morphs. Higher herkogamy resulted in a higher inter-morph fraction of pollen load and fruit set in the long-styled morph of one population. In the other population, only reciprocity was found to be related to inter-morph pollen deposition. This study is the first to quantify and report natural inter-morph stigmatic pollen load in a species with stigma-height dimorphism. Morph-specific differences in pollen load were similar to patterns commonly observed in heterostylous species. The results highlight the importance of both herkogamy and reciprocity in facilitating inter-morph pollen transfer. Population-specific patterns indicate that local environmental factors determine the relative functional importance of herkogamy and reciprocity.
Collapse
Affiliation(s)
- S Ganguly
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - D Barua
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
33
|
Ranavat S, Becher H, Newman MF, Gowda V, Twyford AD. A Draft Genome of the Ginger Species Alpinia nigra and New Insights into the Genetic Basis of Flexistyly. Genes (Basel) 2021; 12:1297. [PMID: 34573279 PMCID: PMC8468202 DOI: 10.3390/genes12091297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Angiosperms possess various strategies to ensure reproductive success, such as stylar polymorphisms that encourage outcrossing. Here, we investigate the genetic basis of one such dimorphism that combines both temporal and spatial separation of sexual function, termed flexistyly. It is a floral strategy characterised by the presence of two morphs that differ in the timing of stylar movement. We performed a de novo assembly of the genome of Alpinia nigra using high-depth genomic sequencing. We then used Pool-seq to identify candidate regions for flexistyly based on allele frequency or coverage differences between pools of anaflexistylous and cataflexistylous morphs. The final genome assembly size was 2 Gb, and showed no evidence of recent polyploidy. The Pool-seq did not reveal large regions with high FST values, suggesting large structural chromosomal polymorphisms are unlikely to underlie differences between morphs. Similarly, no region had a 1:2 mapping depth ratio which would be indicative of hemizygosity. We propose that flexistyly is governed by a small genomic region that might be difficult to detect with Pool-seq, or a complex genomic region that proved difficult to assemble. Our genome will be a valuable resource for future studies of gingers, and provides the first steps towards characterising this complex floral phenotype.
Collapse
Affiliation(s)
- Surabhi Ranavat
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Hannes Becher
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
| | - Mark F. Newman
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Vinita Gowda
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India;
| | - Alex D. Twyford
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| |
Collapse
|
34
|
Abdusalam A, Maimaitituerxun R, Hashan H, Abdukirim G. Pollination adaptations of group-by-group stamen movement in a meadow plant with temporal floral closure. PLANT DIVERSITY 2021; 43:308-316. [PMID: 34485773 PMCID: PMC8390918 DOI: 10.1016/j.pld.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Floral sexual organ (stamen and pistil) movements are selective adaptations that have different functions in male-female reproduction and the evolution of flowering plants. However, the significance of stamen movements in the spatial-temporal function and separation of male and female organs has not been experimentally determined in species exhibiting floral temporal closure. The current study investigated the role of slow stamen (group-by-group) movement in male-female sexual function, and the effect of stamen movement on pollen removal, male-male and male-female interference, and mating patterns of Geranium pratense, a plant with temporal floral closure. This species uses stamen group-by-group movement and therefore anther-stigma spatial-temporal separation. Spatial separation (two whorls of stamen and pistil length) was shown to be stronger than temporal separation. We found that stamen movements to the center of the flower increase pollen removal, and the most common pollinators visited more frequently and for longer durations during the male floral stage than during the female floral stage. Petal movements increased both self-pollen deposition rate and sexual interference in G. pratense. The fruit and seed set of naturally and outcrossed pollinated flowers were more prolific than those of self-pollinated flowers. Group-by-group stamen movement, dehiscence of stamens, pistil movement, and male-female spatial-temporal functional separation of G. pratense before floral temporal closure may prevent male-female and stamen-stamen interference and pollen discounting, and may increase pollen removal and cross-pollination.
Collapse
Affiliation(s)
- Aysajan Abdusalam
- College of Life and Geographic Sciences, Kashi University, Kashi, Xinjiang, 844000, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, Xinjiang, 844000, China
| | | | - Halibinuer Hashan
- College of Life and Geographic Sciences, Kashi University, Kashi, Xinjiang, 844000, China
| | - Gulzar Abdukirim
- College of Life and Geographic Sciences, Kashi University, Kashi, Xinjiang, 844000, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, Xinjiang, 844000, China
| |
Collapse
|
35
|
A combination of pollen mosaics on pollinators and floral handedness facilitates the increase of outcross pollen movement. Curr Biol 2021; 31:3180-3184.e3. [PMID: 34043951 DOI: 10.1016/j.cub.2021.04.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022]
Abstract
Darwin devoted an entire book to style and stamen polymorphisms, exemplifying the importance of pollen movement efficiency as a selective agent on floral form.1 However, after its publication, his interest was piqued by a description of floral handedness2 or enantiostyly.3 Todd2 described how left- and right-handed Solanum rostratum flowers have styles deflected to the left and right, respectively. Darwin4 wrote to Todd for seeds so that he could "…have the pleasure of seeing the flowers and experimenting on them," but he died just days later on 19 April 1882. More than a century elapsed before the first experiments demonstrated that handedness leads to high rates of outcrossing.5,6 By attaching quantum dots to pollen grains, we tracked pollen movement in Wachendorfia paniculata, which has one stamen on the same side of the style and two deflected in the opposite direction. We found that handedness leads to outcrossing because left- and right-handed morphs place most of their pollen on different sides of the pollinators. However, the partial separation of stamens and style also results in two-dimensional pollen quality mosaics on each side of carpenter bee pollinators, generating hotspots and coldspots of outcrossed pollen. Similar mosaics were not found on honeybee pollinators. Outcrossed pollen receipt was much higher than expected because stigmatic positions are fine-tuned to match the outcross pollen hotspots on carpenter bees. Exploitation of these pollen mosaics enables plants to increase the probability of between-morph (i.e., disassortative), outcross pollen movement beyond the expectations of enantiostyly.
Collapse
|
36
|
Wang F, Sun X, Dong J, Cui R, Liu X, Li X, Wang H, He T, Zheng P, Wang R. A primary study of breeding system of Ziziphus jujuba var. spinosa. Sci Rep 2021; 11:10318. [PMID: 33990668 PMCID: PMC8121906 DOI: 10.1038/s41598-021-89696-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Ziziphus jujuba var. spinosa has been used as a windbreak and for soil conservation and water retention. Previous studies focused on pharmacological effects and extraction of chemical components in this species, and very few explored the breeding system. The present study combined the analysis of floral morphology, behavior of flower visitors, and artificial pollination to reveal reproductive characteristics of the species. Its flowers are characterized by dichogamy, herkogamy, and stamen movement, which are evolutionary adaptations to its breeding system. There were more than 40 species of visiting insects, mainly Hymenoptera and Diptera, and the characteristics of dichogamous and herkogamous flower adapted to the visiting insects. The breeding system is outcrossing, partially self-compatible, and demand for pollinators. The fruit setting rate after natural pollination was 2%. Geitonogamy and xenogamy did not significantly increase the fruit setting rate, indicating that the low fruit setting rate was not due to pollen limitation by likely caused by resource limitation or fruit consumption. The fruit setting rate of zero in emasculated and in naturally and hand self-pollinated individuals suggested the absence of apomixis and spontaneous self-pollination. The above results can be utilized in studies on evolution and cultivation of Z. jujuba var. spinosa.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiaohan Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Jibin Dong
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Rong Cui
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiangxiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Tongli He
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China.
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China.
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
37
|
Jiménez-Lobato V, Núñez-Farfán J. Mating system of Datura inoxia: association between selfing rates and herkogamy within populations. PeerJ 2021; 9:e10698. [PMID: 33777507 PMCID: PMC7983856 DOI: 10.7717/peerj.10698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/13/2020] [Indexed: 11/20/2022] Open
Abstract
Plant mating system determines, to a great extent, the demographic and genetic properties of populations, hence their potential for adaptive evolution. Variation in plant mating system has been documented between phylogenetically related species as well between populations of a species. A common evolutionary transition, from outcrossing to selfing, is likely to occur under environmental spatial variation in the service of pollinators. Here, we studied two phenotypically (in floral traits) and genetically (in neutral molecular markers) differentiated populations of the annual, insect-pollinated, plant Datura inoxia in Mexico, that differ in the service of pollinators (Mapimí and Cañada Moreno). First, we determined the populations’ parameters of phenotypic in herkogamy, outcrossing and selfing rates with microsatellite loci, and assessed between generation (adults and seedlings) inbreeding, and inbreeding depression. Second, we compared the relationships between parameters in each population. Results point strong differences between populations: plants in Mapimí have, on average, approach herkogamy, higher outcrossing rate (tm = 0.68), lower primary selfing rate (r = 0.35), and lower inbreeding at equilibrium (Fe = 0.24) and higher inbreeding depression (δ = 0.25), than the populations of Cañada. Outcrossing seems to be favored in Mapimí while selfing in Cañada. The relationship between r and Fe were negatively associated with herkogamy in Mapimí; here, progenies derived from plants with no herkogamy or reverse herkogamy had higher selfing rate and inbreeding coefficient than plants with approach herkogamy. The difference Fe–F is positively related to primary selfing rate (r) only in Cañada Moreno which suggests inbreeding depression in selfing individuals and then genetic purging. In conclusion, mating system evolution may occur differentially among maternal lineages within populations of Datura inoxia, in which approach herkogamy favors higher outcrossing rates and low levels of inbreeding and inbreeding depression, while no herkogamy or reverse herkogamy lead to the evolution of the “selfing syndrome” following the purge of deleterious alleles despite high inbreeding among individuals.
Collapse
Affiliation(s)
- Vania Jiménez-Lobato
- Escuela Superior de Desarrollo Sustentable, Universidad Autónoma de Guerrero, Cátedras CONACYT, México.,Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Distrito Federal, Mexico
| |
Collapse
|
38
|
Navarro L, Ayensa G, Sánchez JM. Efficiency of Herkogamy in Narcissus bulbocodium (Amaryllidaceae). PLANTS 2021; 10:plants10040648. [PMID: 33805464 PMCID: PMC8065898 DOI: 10.3390/plants10040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022]
Abstract
Within the theoretical framework of the correlation pleiades, floral phenotypic integration has been proposed as a consequence of selection mediated by pollinators acting on floral characters. Here, we analyzed that assumption by studying the floral biology and pollination of the late-winter species Narcissus bulbocodium L. We found that the flowers of N. bulbocodium are pollinator-dependent (mainly on Bombus terrestris) in terms of achieving optimal levels of seed production (xenogamy mean seed-to-ovule ratio 64%). Flowers are phenotypically integrated, and only the inclusion of the stigma within the corona seems to have a positive and significant influence on the deposition of the pollen. It has been hypothesized that by including the stigma within the corolla, the flower has some control over the contact between stigma and pollinators that could lead to an “ordered herkogamy” as a way to promote outcross and avoid self-interference. Therefore, herkogamy was also studied, and while most previous studies have assessed the evolutionary significance of herkogamy by considering its relationship with outcrossing rates, we approach this phenomenon from a novel direction assessing the relationship between a proxy for herkogamy and the precision of the pollination process. Our results seem to support the existence of an optimal herkogamy distance that could maintain maximum levels of both pollen export and (cross) pollen capture. On the basis of the broad variability of herkogamy that we have found in N. bulbocodium and other data in the literature, we discuss the universality of the adaptive origin of herkogamy.
Collapse
|
39
|
Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biol Evol 2021; 13:6178796. [PMID: 33739390 PMCID: PMC8160319 DOI: 10.1093/gbe/evab057] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
40
|
Macrì C, Dagnino D, Guerrina M, Médail F, Minuto L, Thompson JD, Casazza G. Effects of environmental heterogeneity on phenotypic variation of the endemic plant Lilium pomponium in the Maritime and Ligurian Alps. Oecologia 2020; 195:93-103. [PMID: 33269409 PMCID: PMC7882563 DOI: 10.1007/s00442-020-04806-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/12/2020] [Indexed: 11/29/2022]
Abstract
Geographical limits of species’ distributions are assumed to be coincident with ecological margins, although this assumption might not always be true. Indeed, harsh environments such as Alpine and Mediterranean ecosystems may favour high phenotypic variability among populations, especially those in peripheral sites. Floral traits are often found to be less variable and less affected by environmental heterogeneity than vegetative traits because variation in the former may have negative effects on fitness. For this reason, it is important to quantify variation in floral traits and plant fecundity in study range limits. The objective of the study is to examine phenotypic variation and differences in reproduction in endemic Lilium pomponium in the Maritime and Ligurian Alps in relation to environmental variation across its distribution range. In this species, marginal climatic populations occur both in the peripheral and central geographical locations of the distribution range; hence, geographical and ecological gradients are not concordant. Floral trait variation is related to local environmental conditions with an array of interactions among resource availability, potential pollen limitation and population size that are differentially related to floral traits. Contrary to the general expectation, all central and peripheral populations had similar, moderate seed production with each group limited by different factors acting on different stages of the life-history strategy. Our results are in line with the idea that general expectations are confirmed only when its assumptions are met and that the differences in pollination environment along an environmental gradient may not be the main determinant of the distribution limit.
Collapse
Affiliation(s)
- Carmelo Macrì
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Davide Dagnino
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Maria Guerrina
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Frédéric Médail
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, Avignon Université, CNRS, IRD, Technopôle de l'Arbois-Méditerranée, BP 80, 13545, Aix-en-Provence Cedex 4, France
| | - Luigi Minuto
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), University of Genoa, Corso Europa 26, 16132, Genoa, Italy.
| | - John D Thompson
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Gabriele Casazza
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille Université, Avignon Université, CNRS, IRD, Technopôle de l'Arbois-Méditerranée, BP 80, 13545, Aix-en-Provence Cedex 4, France
| |
Collapse
|
41
|
Wang H, Barrett SCH, Li XY, Niu Y, Duan YW, Zhang ZQ, Li QJ. Sexual conflict in protandrous flowers and the evolution of gynodioecy. Evolution 2020; 75:278-293. [PMID: 33080057 DOI: 10.1111/evo.14113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022]
Abstract
Sexual interference between male and female function in hermaphrodite plants is reduced by protandry. In environments with insufficient pollinator service, prolongation of male function owing to limited pollen removal could restrict the duration of female function and lower seed production. We provide evidence that this form of sexual conflict has played a role in the spread of females in gynodioecious populations of Cyananthus delavayi in the pollen-limited environments in which this subalpine species occurs. Using field experiments involving artificial pollen removal from the strongly protandrous flowers of hermaphrodites, we demonstrated a trade-off between male- and female-phase duration with no influence on overall floral longevity. Pollen removal at the beginning of anthesis resulted in hermaphrodite seed production matching that of females. In contrast, restricted pollen removal increased the duration of male function at the expense of female function lowering maternal fertility compared to females. This pattern was evident in five populations with females experiencing a twofold average seed fertility advantage compared to hermaphrodites. Gynodioecy often appears to evolve from protandrous ancestors and pollen limitation is widespread in flowering plants suggesting that sexual conflict may play an unappreciated role in the evolution of this form of sexual dimorphism.
Collapse
Affiliation(s)
- Hao Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.,Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | - Xue-Yan Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.,Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| | - Yang Niu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuan-Wen Duan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhi-Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.,Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| | - Qing-Jun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.,Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
| |
Collapse
|
42
|
Morais JM, Consolaro HN, Bergamini LL, Ferrero V. Reproductive biology and pollinators in two enantiostylous Qualea species (Vochysiaceae) in the Brazilian Cerrado. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:872-880. [PMID: 31984595 DOI: 10.1111/plb.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Enantiostyly is a floral polymorphism in which two floral forms in the same species differ in deflection of the stigma to right or left position. In monomorphic enantiostylous plants, flowers of the two morphs occur within the same individual, usually in the same proportion. In self-compatible species the function of monomorphic enantiostyly is proposed to increase outcrossing rates and offer a reproductive advantage under pollination limitation. Enantiostylous species are usually self-compatible and show heteranthery, with poricide anthers and pollen as pollinator reward; however, there are families, such as Vochysiaceae, that have different characteristics. We analysed the reproductive system and pollination biology of Qualea parviflora and Q. multiflora, two enantiostylous species from the Brazilian Cerrado that have specific morphological and physiological traits. For this, we characterized flower traits, performed hand pollinations and studied floral visitors. We found no differences between morphs in the proportion of flowers, nectar produced or its concentration, pollen quantity and fruit set. Both species were self-incompatible and quite generalist regarding floral visitors. Enantiostyly in self-incompatible plants seems to confer a reproductive advantage by reducing self-interference resulting from stigma clogging. This novel result helps to expand our knowledge on this complex floral polymorphism and opens new avenues for future research on this topic.
Collapse
Affiliation(s)
- J M Morais
- Departament of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - H N Consolaro
- Departament of Biological Sciences, Institute of Biotecnology, Federal University of Catalão, Catalão, GO, Brazil
| | - L L Bergamini
- Centro de Estudos Ambientais do Cerrado, IBGE Ecological Reserve, Brasília, DF, Brazil
| | - V Ferrero
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Toji T, Ishimoto N, Itino T. Seasonal change of flower sex ratio and pollinator dynamics in three reproductive ecotypes of protandrous plant. Ecosphere 2020. [DOI: 10.1002/ecs2.3251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tsubasa Toji
- Department of Science and Technology Graduate School of Medicine, Science and Technology Shinshu University Matsumoto3‐1‐1 AsahiNagano390‐8621Japan
| | - Natsumi Ishimoto
- Faculty of Science Shinshu University Matsumoto3‐1‐1 AsahiNagano390‐8621Japan
| | - Takao Itino
- Faculty of Science Shinshu University Matsumoto3‐1‐1 AsahiNagano390‐8621Japan
- Institute of Mountain Science Shinshu University Matsumoto3‐1‐1 AsahiNagano390‐8621Japan
| |
Collapse
|
44
|
Daniels RJ, Johnson SD, Peter CI. Flower orientation in Gloriosa superba (Colchicaceae) promotes cross-pollination via butterfly wings. ANNALS OF BOTANY 2020; 125:1137-1149. [PMID: 32188969 PMCID: PMC7262471 DOI: 10.1093/aob/mcaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Complex modifications of angiosperm flowers often function for precise pollen placement on pollinators and to promote cross-pollination. We explore the functional significance of the unusually elaborate morphology of Gloriosa superba flowers, which are divided into one hermaphrodite meranthium and five male meranthia (functional pollination units of a single flower). METHODS We used controlled pollination experiments, floral measurements, pollen load analyses and visitor observations in four populations of G. superba in South Africa to determine the breeding system, mechanism of pollination and role of flower in the promotion of cross-pollination. KEY RESULTS We established that G. superba is self-compatible, but reliant on pollinators for seed production. Butterflies, in particular the pierid Eronia cleodora, were the primary pollinators (>90 % of visitors). Butterflies brush against the anthers and stigma during nectar feeding and pollen is carried on their ventral wing surfaces. Butterfly scales were positively correlated with the number of pollen grains on stigmas. We demonstrate that the styles were orientated towards clearings in the vegetation and we confirm that the highest proportion of initial visits was to hermaphrodite meranthia pointing towards clearings. CONCLUSIONS The flower morphology of G. superba results in effective pollen transfer on the wings of butterfly visitors. The style-bearing hermaphrodite meranthium of the flowers orientates towards open spaces in the vegetation, thus increasing the probability that butterflies land first on the hermaphrodite meranthium. This novel aspect of flower orientation is interpreted as a mechanism that promotes cross-pollination.
Collapse
Affiliation(s)
- Ryan J Daniels
- Department of Botany, Rhodes University, Grahamstown, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, South Africa
| | - Craig I Peter
- Department of Botany, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
45
|
Lázaro A, Seguí J, Santamaría L. Continuous variation in herkogamy enhances the reproductive response of Lonicera implexa to spatial variation in pollinator assemblages. AOB PLANTS 2020; 12:plz078. [PMID: 31976054 PMCID: PMC6969618 DOI: 10.1093/aobpla/plz078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/03/2019] [Indexed: 05/14/2023]
Abstract
Herkogamy, the spatial separation of sex organs in hermaphroditic plants, has been proposed as a mechanism to reduce self-pollination and the associated processes of inbreeding and gamete wastage. Longitudinal herkogamy is the most frequent type, with two subtypes: approach herkogamy (anthers below the stigma), which is associated with diverse pollinator arrays, and reverse herkogamy (anthers above the stigma), associated with specialized, long-tongued pollinators. By using a herkogamy index that varied continuously from negative (reverse herkogamy) to positive (approach herkogamy) values, we studied the effect of continuous variation in herkogamy on pollinator attraction, selfing capability and plant fitness across three populations of Lonicera implexa differing in the relative abundance of long-tongued vs. short-tongued pollinators. Reverse herkogamy was significantly more frequent in the population where long-tongued pollinators were dominant than in the other two populations. Agreeing with this, the main floral visitors of L. implexa individuals with small and large herkogamy index were, respectively, long-tongued and short-tongued pollinators. Spontaneous selfing was low and increased with increasing herkogamy index (i.e. with approach herkogamy), although most of it occurred when there was close distance between anthers and stigma. Fruit production was unrelated to the herkogamy index in the population with long-tongued pollinators, but it increased with approach herkogamy (higher herkogamy index) in the other two populations. In contrast, seeds of individuals with reverse herkogamy (smaller herkogamy indices) germinated better. In this species, continuous variation in herkogamy might function as a reproductive strategy, as different morphotypes might be favoured by different pollinator assemblages.
Collapse
Affiliation(s)
- Amparo Lázaro
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), Esporles, Balearic Islands, Spain
| | - Jaume Seguí
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), Esporles, Balearic Islands, Spain
| | | |
Collapse
|
46
|
Babiychuk E, Teixeira JG, Tyski L, Guimaraes JTF, Romeiro LA, da Silva EF, Dos Santos JF, Vasconcelos S, da Silva DF, Castilho A, Siqueira JO, Fonseca VLI, Kushnir S. Geography is essential for reproductive isolation between florally diversified morning glory species from Amazon canga savannahs. Sci Rep 2019; 9:18052. [PMID: 31792228 PMCID: PMC6889514 DOI: 10.1038/s41598-019-53853-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
The variety, relative importance and eco-evolutionary stability of reproductive barriers are critical to understanding the processes of speciation and species persistence. Here we evaluated the strength of the biotic prezygotic and postzygotic isolation barriers between closely related morning glory species from Amazon canga savannahs. The flower geometry and flower visitor assemblage analyses supported pollination by the bees in lavender-flowered Ipomoea marabaensis and recruitment of hummingbirds as pollinators in red-flowered Ipomoea cavalcantei. Nevertheless, native bee species and alien honeybees foraged on flowers of both species. Real-time interspecific hybridization underscored functionality of the overlap in flower visitor assemblages, questioning the strength of prezygotic isolation underpinned by diversification in flower colour and geometry. Interspecific hybrids were fertile and produced offspring in nature. No significant asymmetry in interspecific hybridization and hybrid incompatibilities among offspring were found, indicating weak postmating and postzygotic isolation. The results suggested that despite floral diversification, the insular-type geographic isolation remains a major barrier to gene flow. Findings set a framework for the future analysis of contemporary evolution of plant-pollinator networks at the population, community, and ecosystem levels in tropical ecosystems that are known to be distinct from the more familiar temperate climate models.
Collapse
Affiliation(s)
- Elena Babiychuk
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, CEP 66055-090, Belém, Pará, Brazil.
| | | | - Lourival Tyski
- Parque Zoobotânico Vale, VALE S.A., Rod. Raimundo Mascarenhas, Km 26, S/N., Núcleo Urbano de Carajás, CEP 68516-000, Parauapebas, Pará, Brazil
| | | | - Luiza Araújo Romeiro
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, CEP 66055-090, Belém, Pará, Brazil
| | | | | | - Santelmo Vasconcelos
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, CEP 66055-090, Belém, Pará, Brazil
| | - Delmo Fonseca da Silva
- Parque Zoobotânico Vale, VALE S.A., Rod. Raimundo Mascarenhas, Km 26, S/N., Núcleo Urbano de Carajás, CEP 68516-000, Parauapebas, Pará, Brazil
| | - Alexandre Castilho
- Gerência de Meio Ambiente, Departamento de Ferrosos Corredor Norte, Vale S.A., Rua Guamá n 60, Núcleo Urbano, CEP 68516-000, Parauapebas, Pará, Brazil
| | - José Oswaldo Siqueira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, CEP 66055-090, Belém, Pará, Brazil
| | | | - Sergei Kushnir
- Unaffiliated, Belém, Pará, Brazil.,Teagasc, Crop Science Department, Oak Park, Carlow, R93 XE12, Ireland
| |
Collapse
|
47
|
Cutter AD. Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. THE NEW PHYTOLOGIST 2019; 224:1080-1094. [PMID: 31336389 DOI: 10.1111/nph.16075] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/17/2019] [Indexed: 05/23/2023]
Abstract
The evolution of predominant self-fertilisation frequently coincides with the evolution of a collection of phenotypes that comprise the 'selfing syndrome', in both plants and animals. Genomic features also display a selfing syndrome. Selfing syndrome traits often involve changes to male and female reproductive characters that were subject to sexual selection and sexual conflict in the obligatorily outcrossing ancestor, including the gametic phase for both plants and animals. Rapid evolution of reproductive traits, due to both relaxed selection and directional selection under the new status of predominant selfing, lays the genetic groundwork for reproductive isolation. Consequently, shifts in sexual selection pressures coupled to transitions to selfing provide a powerful paradigm for investigating the speciation process. Plant and animal studies, however, emphasise distinct selective forces influencing reproductive-mode transitions: genetic transmission advantage to selfing or reproductive assurance outweighing the costs of inbreeding depression vs the costs of males and meiosis. Here, I synthesise links between sexual selection, evolution of selfing and speciation, with particular focus on identifying commonalities and differences between plant and animal systems and pointing to areas warranting further synergy.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
48
|
Ye ZM, Jin XF, Yang J, Wang QF, Yang CF. Accurate position exchange of stamen and stigma by movement in opposite direction resolves the herkogamy dilemma in a protandrous plant, Ajuga decumbens (Labiatae). AOB PLANTS 2019; 11:plz052. [PMID: 31579102 PMCID: PMC6757348 DOI: 10.1093/aobpla/plz052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/13/2019] [Indexed: 06/01/2023]
Abstract
Herkogamy is an effective way to reduce sexual interference. However, the separation of stigma and anther potentially leads to a conflict because the pollen may be placed in a location on the pollinator different from the point of stigma contact, which can reduce pollination accuracy. Floral mechanisms aiming to resolve this conflict have seldom been explored. The floral biology of protandrous Ajuga decumbens was studied to uncover how the herkogamy dilemma can be resolved. Flower anthesis was divided into male, middle, female and wilting phases. The positions of stigma and stamen were dissimilar in different flower development stages. We measured the distance of the stamen and stigma to the lower corolla lip at different floral phases, which was the pollinators' approaching way. The pollen viability, stigma receptivity, pollen removal and pollen deposition on stigma were investigated at different phases. During the male phase, the dehisced anthers were lower than the stigma, located at the pollinators' approaching way, and dispersed most pollen with high viability. As the flower developed, the anthers moved upwards, making way for pollen deposition during the female phase. Meanwhile, the stigma becomes receptive by moving into the way and consequently was deposited with sufficient pollen. The position exchange of the stamen and stigma created a dynamic herkogamy at the floral phase with different sexual functions. This floral mechanism effectively avoided sexual interference and maintained pollination accuracy. In Ajuga, the movement herkogamy might be of adaptive significance in response to the changes in the pollination environment.
Collapse
Affiliation(s)
- Zhong-Ming Ye
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Fang Jin
- Institute of Ecology and Environmental Science, Nanchang Institute of Technology, Nanchang, China
| | - Jian Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Qing-Feng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Chun-Feng Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
49
|
A comparison of coffee floral traits under two different agricultural practices. Sci Rep 2019; 9:7331. [PMID: 31089179 PMCID: PMC6517588 DOI: 10.1038/s41598-019-43753-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/26/2019] [Indexed: 01/09/2023] Open
Abstract
Floral traits and rewards are important in mediating interactions between plants and pollinators. Agricultural management practices can affect abiotic factors known to influence floral traits; however, our understanding of the links between agricultural practices and floral trait expression is still poorly understood. Variation in floral morphological, nectar, and pollen traits of two important agricultural species, Coffea arabica and C. canephora, was assessed under different agricultural practices (sun and shade). Corolla diameter and corolla tube length were larger and pollen total nitrogen content greater in shade plantations of C. canephora than sun plantations. Corolla tube length and anther filament length were larger in shade plantations of C. arabica. No effect of agricultural practice was found on nectar volume, sugar or caffeine concentrations, or pollen production. Pollen total nitrogen content was lower in sun than shade plantations of C. canephora, but no difference was found between sun and shade for C. arabica. This study provides baseline data on the influence of agronomic practices on C. arabica and C. canephora floral traits and also helps fill a gap in knowledge about the effects of shade trees on floral traits, which can be pertinent to other agroforestry systems.
Collapse
|
50
|
Spigler RB, Woodard AJ. Context-dependency of resource allocation trade-offs highlights constraints to the evolution of floral longevity in a monocarpic herb. THE NEW PHYTOLOGIST 2019; 221:2298-2307. [PMID: 30256414 DOI: 10.1111/nph.15498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Floral longevity is a critical component of floral display, yet there is a conspicuous paucity of empirical research on its evolution within species. Evolutionary models of floral longevity are grounded in resource allocation theory and propose that selection acts on heritable variation to optimize longevity in light of competing floral construction and maintenance costs. Key assumptions remain untested within wild species. We measured maximum floral longevity alongside protandry, flower size, flower number and flowering rate across families of the monocarpic herb Sabatia angularis grown under high and low resources. We evaluated genetic variation, plasticity and correlations between display traits, including fundamental resource-allocation trade-offs and their interactions with resource availability. All display traits showed significant genetic variation. Resource availability influenced mean floral longevity and flower number, with genetic variation in these responses. Importantly, both floral longevity-flower number and flower number-size trade-offs were significant and stronger under low resources. This study reinforces the application of resource allocation theory to floral display trait evolution. Our work highlights the context-dependency of trade-offs and the potential importance of plasticity in resource allocation, with plants investing in the construction of new flowers at faster rates when resources are high rather than in the maintenance of longer-lived flowers.
Collapse
Affiliation(s)
- Rachel B Spigler
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Alyssa J Woodard
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|