1
|
Soliani C, Sekely J, Zamora‐Ballesteros C, Heer K, Lepais O, Mondino V, Opgenoorth L, Pastorino M, Marchelli P. Restricted Dispersal in the Late Successional Forest Tree Species Nothofagus Pumilio: Consequences Under Global Change. Ecol Evol 2025; 15:e71002. [PMID: 40416772 PMCID: PMC12100765 DOI: 10.1002/ece3.71002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 05/27/2025] Open
Abstract
Plants rely on gamete dispersal to ensure the inheritance of their genes. Gene flow, mediated by pollen and seed dispersal, also fosters species' cohesion across space, facilitates population migration, and influences local adaptation. Nothofagus pumilio is an ecologically important wind-dispersed tree species of the Patagonian Andes. We aim to uncover its current and historic effective dispersal distances and characterize its fine-scale genetic structure. In a naturally monospecific stand of N. pumilio, we sampled 200 adults and 400 seedlings. Using a modern sequencing approach (SSRseq), we developed 15 nuclear microsatellite markers for genotyping and used them to characterize genetic diversity and fine-scale genetic structure. We estimated dispersal distances using direct methods (i.e., neighborhood models) and indirect (i.e., inferred from fine-scale spatial genetic structure). Short average seed and pollen dispersal distances were estimated (δs = 13.33 m and δp = 24.08 m respectively), but the fat-tailed distribution of dispersal kernels also suggests some immigration and long-distance dispersal events. Indirect estimates (σ 2 g = 21.62) are closely aligned with direct estimates. The majority of seedlings (84%) could be assigned to at least one sampled adult within the plot, and these seedlings were produced by just 43% of sampled adults. Reproductive success was significantly associated with seed donors' diameters at breast height. N. pumilio's distribution expansion capacity may be limited by short seed dispersal distances, especially in the context of global change. Natural and assisted migration actions should be prioritized to mitigate future change effects.
Collapse
Affiliation(s)
- C. Soliani
- INTA Bariloche, Instituto de Investigaciones Forestales y Agropecuarias Bariloche IFAB (INTA‐CONICET)BarilocheArgentina
| | - J. Sekely
- Eva Mayr Stihl Professorship for Forest GeneticsAlbert‐Ludwigs Universität FreiburgFreiburgGermany
- Plant Ecology and GeobotanyPhilipps‐Universität MarburgMarburgGermany
| | - C. Zamora‐Ballesteros
- Eva Mayr Stihl Professorship for Forest GeneticsAlbert‐Ludwigs Universität FreiburgFreiburgGermany
| | - K. Heer
- Eva Mayr Stihl Professorship for Forest GeneticsAlbert‐Ludwigs Universität FreiburgFreiburgGermany
| | - O. Lepais
- Univ. Bordeaux, INRAE, BIOGECOCestasFrance
| | | | - L. Opgenoorth
- Plant Ecology and GeobotanyPhilipps‐Universität MarburgMarburgGermany
| | - M. Pastorino
- INTA Bariloche, Instituto de Investigaciones Forestales y Agropecuarias Bariloche IFAB (INTA‐CONICET)BarilocheArgentina
| | - P. Marchelli
- INTA Bariloche, Instituto de Investigaciones Forestales y Agropecuarias Bariloche IFAB (INTA‐CONICET)BarilocheArgentina
| |
Collapse
|
2
|
Chevy ET, Min J, Caudill V, Champer SE, Haller BC, Rehmann CT, Smith CCR, Tittes S, Messer PW, Kern AD, Ramachandran S, Ralph PL. Population Genetics Meets Ecology: A Guide to Individual-Based Simulations in Continuous Landscapes. Ecol Evol 2025; 15:e71098. [PMID: 40235724 PMCID: PMC11997375 DOI: 10.1002/ece3.71098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Individual-based simulation has become an increasingly crucial tool for many fields of population biology. However, continuous geography is important to many applications, and implementing realistic and stable simulations in continuous space presents a variety of difficulties, from modeling choices to computational efficiency. This paper aims to be a practical guide to spatial simulation, helping researchers to implement individual-based simulations and avoid common pitfalls. To do this, we delve into mechanisms of mating, reproduction, density-dependent feedback, and dispersal, all of which may vary across the landscape, discuss how these affect population dynamics, and describe how to parameterize simulations in convenient ways (for instance, to achieve a desired population density). We also demonstrate how to implement these models using the current version of the individual-based simulator, SLiM. We additionally discuss natural selection-in particular, how genetic variation can affect demographic processes. Finally, we provide four short vignettes: simulations of pikas that shift their range up a mountain as temperatures rise; mosquitoes that live in rivers as juveniles and experience seasonally changing habitat; cane toads that expand across Australia, reaching 120 million individuals; and monarch butterflies whose populations are regulated by an explicitly modeled resource (milkweed).
Collapse
Affiliation(s)
- Elizabeth T. Chevy
- Center for Computational Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - Jiseon Min
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Victoria Caudill
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Samuel E. Champer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| | | | - Clara T. Rehmann
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Chris C. R. Smith
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Silas Tittes
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Philipp W. Messer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| | - Andrew D. Kern
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
- Department of BiologyUniversity of OregonEugeneOregonUSA
| | - Sohini Ramachandran
- Center for Computational Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - Peter L. Ralph
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
- Department of Data ScienceUniversity of OregonEugeneOregonUSA
| |
Collapse
|
3
|
Abe H, Gan L, Murata M, Nara K. Habitat fragmentation strongly restricts gene flow in endangered ectomycorrhizal fungal populations: Evidence from Rhizopogon togasawarius, specific to Pseudotsuga japonica, across the entire distribution range. Mol Ecol 2024; 33:e17533. [PMID: 39262289 DOI: 10.1111/mec.17533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Habitat fragmentation reduces gene flow, causing genetic differentiation and diversity loss in endangered species through genetic drift and inbreeding. However, the impact of habitat fragmentation on ectomycorrhizal (ECM) fungi remains unexplored, despite their critical roles in forest ecosystems. Here, we investigated the population genetic structure and the demographic history of Rhizopogon togasawarius, the ECM fungus specifically colonizing the host tree Pseudotsuga japonica, across its entire distribution range (>200 km). These two species are designated as endangered species on the IUCN Red List since they are found only in small, fragmented forests in Japan. We analysed 236 R. togasawarius individuals from five remaining populations across the Kii Peninsula and the Shikoku Island, separated by a sea channel. Simple sequence repeat analyses using 20 loci revealed strong genetic differentiation among populations (FST = 0.255), even significant in the nearest population pair separated by a distance of only 8 km (FST = 0.075), indicating extremely limited gene flow between populations. DIYABC-RF analyses implied that population divergence occurred approximately 6000 generations ago between the two regions, and nearly 1500 generations ago between the nearest populations within Shikoku Island, related to past climate events. Because of prolonged genetic isolation, significant inbreeding was confirmed in four of five populations, where effective population sizes became very small (Ne = 9.0-58.0). Although evaluation of extinction risks for microorganisms is challenging, our conservation genetic results indicated that habitat fragmentation increases extinction risk through population genetic mechanisms, and therefore should not be overlooked in biodiversity conservation efforts.
Collapse
Affiliation(s)
- Hiroshi Abe
- Evaluation of Natural Environment Laboratory, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Lu Gan
- Evaluation of Natural Environment Laboratory, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masao Murata
- Akita Forestry Research and Training Center, Akita, Japan
| | - Kazuhide Nara
- Evaluation of Natural Environment Laboratory, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
4
|
Bruxaux J, Zhao W, Hall D, Curtu AL, Androsiuk P, Drouzas AD, Gailing O, Konrad H, Sullivan AR, Semerikov V, Wang XR. Scots pine - panmixia and the elusive signal of genetic adaptation. THE NEW PHYTOLOGIST 2024; 243:1231-1246. [PMID: 38308133 DOI: 10.1111/nph.19563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
Collapse
Affiliation(s)
- Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
- Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden
| | | | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Heino Konrad
- Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
5
|
Bashir MA, Bertamini M, Gottardini E, Grando MS, Faralli M. Olive reproductive biology: implications for yield, compatibility conundrum, and environmental constraints. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4300-4313. [PMID: 38660967 DOI: 10.1093/jxb/erae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Olive (Olea europaea L.) is an important Mediterranean tree species with a longstanding history of cultivation, boasting a diverse array of local cultivars. While traditional olive orchards are valued for their cultural and aesthetic significance, they often face economic sustainability challenges in the modern context. The success of both traditional and newly introduced cultivars (e.g. those obtained by cross-breeding) is hindered by self-incompatibility, a prevalent issue for this species that results in low fruit set when limited genetic diversity is present. Further, biological, environmental, and agronomic factors have been shown to interlink in shaping fertilization patterns, hence impacting on the final yield. Climatic conditions during pollination, such as excessive rainfall or high temperatures, can further exacerbate the problem. In this work, we provide an overview of the various factors that trigger the phenomenon of suboptimal fruit set in olive trees. This work provides a comprehensive understanding of the interplay among these factors, shedding light on potential mechanisms and pathways that contribute to the observed outcomes in the context of self-incompatibility in olive.
Collapse
Affiliation(s)
- Muhammad Ajmal Bashir
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Massimo Bertamini
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Elena Gottardini
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Maria Stella Grando
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| | - Michele Faralli
- Centre of Agriculture Food and Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
- Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38098 San Michele All'Adige, (TN), Italy
| |
Collapse
|
6
|
Houminer N, Osem Y, Riov J, Sherman A, Rozen A, Sela H, David-Schwartz R. Exploring interspecific hybridization dynamics in artificial forests of Pinus brutia and P. halepensis: Implications for sustainable afforestation. Mol Ecol 2024; 33:e17413. [PMID: 38771006 DOI: 10.1111/mec.17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Interspecific hybridization increases genetic diversity, which is essential for coping with changing environments. Hybrid zones, occurring naturally in overlapping habitats of closely related species, can be artificially established during afforestation. The resulting interspecific hybridization may promote sustainability in artificial forests, particularly in regions facing degradation due to climate change. Currently, there is limited evidence of hybridization during regeneration of artificial forests. Here, we studied the frequency of Pinus brutia Ten. × P. halepensis Mill. hybridization in five planted forests in Israel in three stages of forest regeneration: seeds before dispersal, emerged seedlings and recruited seedlings at the end of the dry season. We found hybrids on P. brutia, but not on P. halepensis trees due to asynchronous cone production phenology. Using 94 single-nucleotide polymorphism (SNP) markers, we found hybrids at all stages, most of which were hybrids of advanced generations. The hybrid proportions increased from 4.7 ± 2.1 to 8.2 ± 1.4 and 21.6 ± 6.4 per cent, from seeds to emerged seedlings and to recruited seedlings stages, respectively. The increased hybrid ratio implies an advantage of hybrids over P. brutia during forest regeneration. To test this hypothesis, we measured seedling growth rate and morphological traits under controlled conditions and found that the hybrid seedlings exhibited selected traits of the two parental species, which likely contributed to the fitness and survival of the hybrids during the dry season. This study highlights the potential contribution of hybrids to sustainable-planted forests and contributes to the understanding of genetic changes that occur during the regeneration of artificial forests.
Collapse
Affiliation(s)
- Naomi Houminer
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yagil Osem
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
| | - Joseph Riov
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
| | - Ada Rozen
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
| | - Hanan Sela
- Institute Institute of Evolution, University of Haifa, Haifa, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon Le-Zion, Israel
| |
Collapse
|
7
|
Wang J, Bourke AFG. Parentage exclusion of close relatives in haplodiploid species. Theor Popul Biol 2023; 154:40-50. [PMID: 37640113 DOI: 10.1016/j.tpb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Parentage exclusion probability is usually calculated to evaluate the informativeness of a set of markers for, and the statistical power of, a parentage analysis. Equations for parentage exclusion probability have been derived in various scenarios such as paternity exclusion when maternity is known or unknown or when candidate males are unrelated or loosely related (being from the same subpopulation) to the father. All previous work assumes a diploid species. Although marker-based parentage analyses have been conducted in haploidiploid species (such as ants, bees and wasps) for diploid offspring at the individual level or haploid offspring at the class level, rigorously derived formulations of parentage exclusion probability for haploid offspring at the individual level are lacking, which prevents the precise evaluation of the informativeness for and the statistical power of a parentage analysis. In this study we derive equations for the exclusion probability of maternity of a haploid male when multiple mother candidates (workers or queens) are unrelated or fullsibs to the mother. The usefulness of the equations is exemplified by numerical examples, and the results are discussed in the context of the study of worker reproductivity in eusocial haplodiploid species. The results are especially valuable for an optimal experimental design in determining sampling intensities (e.g. number of markers and number of individuals) to achieve satisfactory statistical power of a parentage analysis in investigating workers' reproductivity in eusocial haplodiploid species.
Collapse
Affiliation(s)
- Jinliang Wang
- Institute of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom.
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
8
|
Archambeau J, Benito Garzón M, de Miguel M, Brachi B, Barraquand F, González-Martínez SC. Reduced within-population quantitative genetic variation is associated with climate harshness in maritime pine. Heredity (Edinb) 2023; 131:68-78. [PMID: 37221230 PMCID: PMC10313832 DOI: 10.1038/s41437-023-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.
Collapse
Affiliation(s)
- Juliette Archambeau
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| | | | - Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
9
|
Bajgain P, Brandvain Y, Anderson JA. Influence of Pollen Dispersal and Mating Pattern in Domestication of Intermediate Wheatgrass, a Novel Perennial Food Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:871130. [PMID: 35574146 PMCID: PMC9096613 DOI: 10.3389/fpls.2022.871130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Intermediate wheatgrass (IWG) is a perennial forage grass that is currently being domesticated as a grain crop. It is a primarily wind-pollinated outcrossing species and expresses severe inbreeding depression when self-pollinated. Characterization of pollen dispersal, mating parameters, and change in genetic diversity due to pollen movement is currently lacking in IWG. In this study, we examined pollen dispersal in an IWG selection nursery by evaluating 846 progeny from 15 mother plants and traced their parentage to 374 fathers. A set of 2,500 genomic loci was used to characterize the population. We assigned paternity to 769 (91%) progeny and the average number of fathers per mother plant was 37, from an average of 56 progeny examined per mother. An extensive number (80%) of pollination events occurred within 10 m of the mother plants. Pollination success was not correlated with trait attributes of the paternal genotypes. Mating system analysis confirmed that IWG is highly outcrossing and inbreeding was virtually absent. Neither genetic diversity nor the genome-estimated trait values of progeny were significantly affected by pollinator distance. The distance of pollinator in an IWG breeding nursery therefore was not found to be a major contributor in maintaining genetic diversity. These findings reveal the pollen dispersal model in IWG for the first time and its effect on genetic diversity, which will be valuable in designing future IWG breeding populations. Information generated and discussed in this study could be applied in understanding gene flow and genetic diversity of other open-pollinated species.
Collapse
Affiliation(s)
- Prabin Bajgain
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| | - Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, United States
| | - James A. Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
10
|
Aranda-Rickert A, Torréns J, Yela NI, Brizuela MM, Di Stilio VS. Distance Dependent Contribution of Ants to Pollination but Not Defense in a Dioecious, Ambophilous Gymnosperm. FRONTIERS IN PLANT SCIENCE 2021; 12:722405. [PMID: 34567036 PMCID: PMC8459830 DOI: 10.3389/fpls.2021.722405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Dioecious plants are obligate outcrossers with separate male and female individuals, which can result in decreased seed set with increasing distance between the sexes. Wind pollination is a common correlate of dioecy, yet combined wind and insect pollination (ambophily) could be advantageous in compensating for decreased pollen flow to isolated females. Dioecious, ambophilous gymnosperms Ephedra (Gnetales) secrete pollination drops (PDs) in female cones that capture airborne pollen and attract ants that feed on them. Plant sugary secretions commonly reward ants in exchange for indirect plant defense against herbivores, and more rarely for pollination. We conducted field experiments to investigate whether ants are pollinators and/or plant defenders of South American Ephedra triandra, and whether their contribution to seed set and seed cone protection varies with distance between female and male plants. We quantified pollen flow in the wind and assessed the effectiveness of ants as pollinators by investigating their relative contribution to seed set, and their visitation rate in female plants at increasing distance from the nearest male. Ants accounted for most insect visits to female cones of E. triandra, where they consumed PDs, and pollen load was larger on bigger ants without reduction in pollen viability. While wind pollination was the main contributor to seed set overall, the relative contribution of ants was distance dependent. Ant contribution to seed set was not significant at shorter distances, yet at the farthest distance from the nearest male (23 m), where 20 times less pollen reached females, ants enhanced seed set by 30% compared to plants depending solely on wind pollination. We found no evidence that ants contribute to plant defense by preventing seed cone damage. Our results suggest that, despite their short-range movements, ants can offset pollen limitation in isolated females of wind-pollinated plants with separate sexes. We propose that ants enhance plant reproductive success via targeted delivery of airborne pollen, through frequent contact with ovule tips while consuming PDs. Our study constitutes the first experimental quantification of distance-dependent contribution of ants to pollination and provides a working hypothesis for ambophily in other dioecious plants lacking pollinator reward in male plants.
Collapse
Affiliation(s)
- Adriana Aranda-Rickert
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Anillaco, Argentina
| | - Javier Torréns
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Anillaco, Argentina
- Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Natalia I. Yela
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Anillaco, Argentina
| | - María Magdalena Brizuela
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Anillaco, Argentina
- Universidad Nacional de La Rioja, La Rioja, Argentina
| | | |
Collapse
|
11
|
Jiménez-Ramírez A, Grivet D, Robledo-Arnuncio JJ. Measuring recent effective gene flow among large populations in Pinus sylvestris: Local pollen shedding does not preclude substantial long-distance pollen immigration. PLoS One 2021; 16:e0255776. [PMID: 34388195 PMCID: PMC8362938 DOI: 10.1371/journal.pone.0255776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
The estimation of recent gene flow rates among vast and often weakly genetically differentiated tree populations remains a great challenge. Yet, empirical information would help understanding the interaction between gene flow and local adaptation in present-day non-equilibrium forests. We investigate here recent gene flow rates between two large native Scots pine (Pinus sylvestris L.) populations in central Iberian Peninsula (Spain), which grow on contrasting edaphic conditions six kilometers apart from each other and show substantial quantitative trait divergence in common garden experiments. Using a sample of 1,200 adult and offspring chloroplast-microsatellite haplotypes and a Bayesian inference model, we estimated substantial male gametic gene flow rates (8 and 21%) between the two natural populations, and even greater estimated immigration rates (42 and 64%) from nearby plantations into the two natural populations. Our results suggest that local pollen shedding within large tree populations does not preclude long-distance pollen immigration from large external sources, supporting the role of gene flow as a homogenizing evolutionary force contributing to low molecular genetic differentiation among populations of widely distributed wind-pollinated species. Our results also indicate the high potential for reproductive connectivity in large fragmented populations of wind-pollinated trees, and draw attention to a potential scenario of adaptive genetic divergence in quantitative traits under high gene flow.
Collapse
Affiliation(s)
- Azucena Jiménez-Ramírez
- Department of Forest Ecology & Genetics, Forest Research Center (INIA, CSIC), Madrid, Spain
- Department of Genetics, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- * E-mail: (JJRA); (AJR)
| | - Delphine Grivet
- Department of Forest Ecology & Genetics, Forest Research Center (INIA, CSIC), Madrid, Spain
| | - Juan José Robledo-Arnuncio
- Department of Forest Ecology & Genetics, Forest Research Center (INIA, CSIC), Madrid, Spain
- * E-mail: (JJRA); (AJR)
| |
Collapse
|
12
|
González-Robles A, García C, Salido T, Manzaneda AJ, Rey PJ. Extensive pollen-mediated gene flow across intensively managed landscapes in an insect-pollinated shrub native to semiarid habitats. Mol Ecol 2021; 30:3408-3421. [PMID: 33966307 DOI: 10.1111/mec.15950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Our knowledge of the impact of landscape fragmentation on gene flow patterns is mainly drawn from tropical and temperate ecosystems, where landscape features, such as the distance of a tree to the forest edge, drive connectivity and mating patterns. Yet, the structure of arid and semiarid plant communities - with open canopies and a scattered distribution of trees - differs greatly from those that are well-characterized in the literature. As a result, we ignore whether the documented consequences of landscape fragmentation on plant mating and gene flow patterns also hold for native plant communities in arid and semiarid regions. We investigated the relative contribution of plant traits, pollinator activity, and individual neighbourhood in explaining variation in mating and gene flow patterns of an insect-pollinated semiarid arborescent shrub, Ziziphus lotus, at three sites embedded in highly altered agriculture landscapes. We used 14 SSRs, seed paternity analyses, and individual mixed effect mating models (MEMMi) to estimate the individual mating variables and the pollen dispersal kernel at each site. Individual spatial location, flower density, and floral visitation rate explained most of the variation of mating variables. Unexpectedly, individual correlated paternity was very low and shrubs surrounded by the most degraded matrix exhibited an increased fraction of pollen immigration and a high effective number of pollen donors per mother shrub. Overall, our results reveal that an active pollinator assemblage ensures highly efficient mating, and maintains pollen-mediated gene flow and notable connectivity levels, even in highly altered landscapes, potentially halting genetic isolation within and between distant sites.
Collapse
Affiliation(s)
- Ana González-Robles
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Cristina García
- Department of Evolution, Ecology, and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Plant Biology, CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Teresa Salido
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain.,Instituto Interuniversitario del Sistema Tierra en Andalucía (IISTA-UJA), Jaén, Spain
| | - Antonio J Manzaneda
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain.,Instituto Interuniversitario del Sistema Tierra en Andalucía (IISTA-UJA), Jaén, Spain
| | - Pedro J Rey
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain.,Instituto Interuniversitario del Sistema Tierra en Andalucía (IISTA-UJA), Jaén, Spain
| |
Collapse
|
13
|
Stacy EA, Sakishima T, Tharp H, Snow N. Isolation of Metrosideros ('Ohi'a) Taxa on O'ahu Increases with Elevation and Extreme Environments. J Hered 2021; 111:103-118. [PMID: 31844884 DOI: 10.1093/jhered/esz069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
Species radiations should be facilitated by short generation times and limited dispersal among discontinuous populations. Hawaii's hyper-diverse, landscape-dominant tree, Metrosideros, is unique among the islands' radiations for its massive populations that occur continuously over space and time within islands, its exceptional capacity for gene flow by both pollen and seed, and its extended life span (ca. >650 years). Metrosideros shows the greatest phenotypic and microsatellite DNA diversity on O'ahu, where taxa occur in tight sympatry or parapatry in mesic and montane wet forest on 2 volcanoes. We document the nonrandom distributions of 12 taxa (including unnamed morphotypes) along elevation gradients, measure phenotypes of ~6-year-old common-garden plants of 8 taxa to verify heritability of phenotypes, and examine genotypes of 476 wild adults at 9 microsatellite loci to compare the strengths of isolation across taxa, volcanoes, and distance. All 8 taxa retained their diagnostic phenotypes in the common garden. Populations were isolated by taxon to a range of degrees (pairwise FST between taxa: 0.004-0.267), and there was no pattern of isolation by distance or by elevation; however, significant isolation between volcanoes was observed within monotypic species, suggesting limited gene flow between volcanoes. Among the infraspecific taxa of Metrosideros polymorpha, genetic diversity and isolation significantly decreased and increased, respectively, with elevation. Overall, 5 of the 6 most isolated taxa were associated with highest elevations or otherwise extreme environments. These findings suggest a principal role for selection in the origin and maintenance of the exceptional diversity that occurs within continuous Metrosideros stands on O'ahu.
Collapse
Affiliation(s)
- Elizabeth A Stacy
- Department of Biology, University of Hawai'i Hilo, Hilo, HI.,Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i Hilo, Hilo, HI
| | - Tomoko Sakishima
- Department of Biology, University of Hawai'i Hilo, Hilo, HI.,Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i Hilo, Hilo, HI
| | - Heaven Tharp
- Department of Biology, University of Hawai'i Hilo, Hilo, HI
| | - Neil Snow
- Department of Biology, Pittsburg State University, Pittsburg, KS
| |
Collapse
|
14
|
SNP-based analysis reveals unexpected features of genetic diversity, parental contributions and pollen contamination in a white spruce breeding program. Sci Rep 2021; 11:4990. [PMID: 33654140 PMCID: PMC7925517 DOI: 10.1038/s41598-021-84566-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Accurate monitoring of genetic diversity levels of seedlots and mating patterns of parents from seed orchards are crucial to ensure that tree breeding programs are long-lasting and will deliver anticipated genetic gains. We used SNP genotyping to characterize founder trees, five bulk seed orchard seedlots, and trees from progeny trials to assess pollen contamination and the impact of severe roguing on genetic diversity and parental contributions in a first-generation open-pollinated white spruce clonal seed orchard. After severe roguing (eliminating 65% of the seed orchard trees), we found a slight reduction in the Shannon Index and a slightly negative inbreeding coefficient, but a sharp decrease in effective population size (eightfold) concomitant with sharp increase in coancestry (eightfold). Pedigree reconstruction showed unequal parental contributions across years with pollen contamination levels between 12 and 51% (average 27%) among seedlots, and 7-68% (average 30%) among individual genotypes within a seedlot. These contamination levels were not correlated with estimates obtained using pollen flight traps. Levels of pollen contamination also showed a Pearson's correlation of 0.92 with wind direction, likely from a pollen source 1 km away from the orchard under study. The achievement of 5% genetic gain in height at rotation through eliminating two-thirds of the orchard thus generated a loss in genetic diversity as determined by the reduction in effective population size. The use of genomic profiles revealed the considerable impact of roguing on genetic diversity, and pedigree reconstruction of full-sib families showed the unanticipated impact of pollen contamination from a previously unconsidered source.
Collapse
|
15
|
Huang R, Zhang ZD, Wang Y, Wang YQ. Genetic variation and genetic structure within metapopulations of two closely related selfing and outcrossing Zingiber species (Zingiberaceae). AOB PLANTS 2021; 13:plaa065. [PMID: 33442464 PMCID: PMC7788390 DOI: 10.1093/aobpla/plaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/30/2020] [Indexed: 05/31/2023]
Abstract
Habitat fragmentation strongly affects the genetic diversity of plant populations, and this has always attracted much research interest. Although numerous studies have investigated the effects of habitat fragmentation on the genetic diversity of plant populations, fewer studies have compared species with contrasting breeding systems while accounting for phylogenetic distance. Here, we compare the levels of genetic diversity and differentiation within and among subpopulations in metapopulations (at fine-scale level) of two closely related Zingiber species, selfing Zingiber corallinum and outcrossing Zingiber nudicarpum. Comparisons of the genetic structure of species from unrelated taxa may be confounded by the effects of correlated ecological traits or/and phylogeny. Thus, we possibly reveal the differences in genetic diversity and spatial distribution of genetic variation within metapopulations that relate to mating systems. Compared to outcrossing Z. nudicarpum, the subpopulation genetic diversity in selfing Z. corallinum was significantly lower, but the metapopulation genetic diversity was not different. Most genetic variation resided among subpopulations in selfing Z. corallinum metapopulations, while a significant portion of variation resided either within or among subpopulations in outcrossing Z. nudicarpum, depending on whether the degree of subpopulation isolation surpasses the dispersal ability of pollen and seed. A stronger spatial genetic structure appeared within subpopulations of selfing Z. corallinum potentially due to restricted pollen flow and seed dispersal. In contrast, a weaker genetic structure was apparent in subpopulations of outcrossing Z. nudicarpum most likely caused by extensive pollen movement. Our study shows that high genetic variation can be maintained within metapopulations of selfing Zingiber species, due to increased genetic differentiation intensified primarily by the stochastic force of genetic drift among subpopulations. Therefore, maintenance of natural variability among subpopulations in fragmented areas is key to conserve the full range of genetic diversity of selfing Zingiber species. For outcrossing Zingiber species, maintenance of large populations is an important factor to enhance genetic diversity. Compared to outcrossing Z. nudicarpum, the subpopulation genetic diversity in selfing Z. corallinum was significantly lower, but the metapopulation genetic diversity did not differ. Most genetic variation resided among subpopulations in selfing Z. corallinum metapopulations, while a significant portion of variation resided either within or among subpopulations in outcrossing Z. nudicarpum, depending on whether the degree of subpopulation isolation surpasses the dispersal ability of pollen and seed. Our study shows that selfing Z. corallinum could maintain high genetic diversity through differentiation intensified primarily by the stochastic force of genetic drift among subpopulations at fine-scale level, but not local adaptation.
Collapse
Affiliation(s)
- Rong Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zong-Dian Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ying-Qiang Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Seed Sourcing Strategies Considering Climate Change Forecasts: A Practical Test in Scots Pine. FORESTS 2020. [DOI: 10.3390/f11111222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: We experimentally tested different seed sourcing strategies (local, predictive, climate-predictive, climate-adjusted, composite and admixture) under a climate change high emissions scenario using a Scots pine multi-site provenance test. Background and Objectives: There is an urgent need to conserve genetic resources and to support resilience of conifer species facing expected changes and threats. Seed sourcing strategies have been proposed to maximize the future adaptation and resilience of our forests. However, these proposals are yet to be tested, especially in long-lived organisms as forest trees, due to methodological constraints. In addition, some methods rely on the transfer of material from populations matching the future conditions of the sites. However, at the rear edge of the species, some specific problems (high fragmentation, high genetic differentiation, role of genetic drift) challenge the theoretical expectations of some of these methods. Materials and Methods: We used a Scots pine multi-site provenance test, consisting of seventeen provenances covering the distribution range of the species in Spain tested in five representative sites. We measured height, diameter and survival at 5, 10 and 15 years after planting. We simulated populations of 50 trees by bootstrapping material of the provenance test after removing the intra-site environmental effects, simulating different seed sourcing strategies. Results: We found that local and predictive methods behaved better than methods based on the selection of future climate-matching strategies (predictive-climate and climate-adjusted) and those combining several seed sources (composite and admixture seed sourcing strategies). Conclusions: Despite the theoretical expectations, for Scots pine, a forest tree species at its rear edge of its distribution, seed-sourcing methods based on climate matching or a combination of seed sources do not perform better than traditional local or predictive methods or they are not feasible because of the lack of future climate-matching populations.
Collapse
|
17
|
Farhat P, Siljak-Yakovlev S, Valentin N, Fabregat C, Lopez-Udias S, Salazar-Mendias C, Altarejos J, Adams RP. Gene flow between diploid and tetraploid junipers - two contrasting evolutionary pathways in two Juniperus populations. BMC Evol Biol 2020; 20:148. [PMID: 33167862 PMCID: PMC7650182 DOI: 10.1186/s12862-020-01688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene flow and polyploidy have been found to be important in Juniperus evolution. However, little evidence has been published elucidating the association of both phenomena in juniper taxa in the wild. Two main areas were studied in Spain (Eastern Iberian Range and Sierra de Baza) with both diploid and tetraploid taxa present in sympatry. Gene flow and ploidy level were assessed for these taxa and the resulted offspring. RESULTS Twenty-two allo-triploid hybrids between J. sabina var. sabina and J. thurifera were found in the Eastern Iberian Range population. However, in the Sierra de Baza population no triploids were found. Instead, 18 allo-tetraploid hybrids between two tetraploid taxa: J. sabina var. balkanensis and J. thurifera were discovered. High genetic diversity was exhibited among the tetraploid hybrids at Sierra de Baza, in contrast to the genetically identical triploid hybrids at the Eastern Iberian Range; this suggests meiotic difficulties within the triploid hybrids. In addition, unidirectional gene flow was observed in both studied areas. CONCLUSION Polyploidy and hybridization can be complementary partners in the evolution of Juniperus taxa in sympatric occurrences. Juniperus was shown to be an ideal coniferous model to study these two phenomena, independently or in concert.
Collapse
Affiliation(s)
- Perla Farhat
- Biology Department, Baylor University, Waco, TX, 76798, USA.
- Present address: Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Sonja Siljak-Yakovlev
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Nicolas Valentin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Carlos Fabregat
- Jardí Botànic de la Universitat de València, 46008, València, Spain
| | | | - Carlos Salazar-Mendias
- Departamento de Biología Animal, Biología Vegetal y Ecología. Universidad de Jaén, 23071, Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071, Jaén, Spain
| | - Robert P Adams
- Biology Department, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
18
|
Butcher CL, Rubin BY, Anderson SL, Lewis JD. Pollen dispersal patterns differ among sites for a wind-pollinated species and an insect-pollinated species. AMERICAN JOURNAL OF BOTANY 2020; 107:1504-1517. [PMID: 33108685 DOI: 10.1002/ajb2.1554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Pollen dispersal, the main component of overall plant gene flow, generally decreases with increasing distance from the pollen source, but the pattern of this relationship may differ among sites. Although site-based differences in pollen dispersal may lead to over- or underestimation of gene flow, no studies have investigated pollen dispersal patterns among differing urban site types, despite the incongruent range of habitats in urban areas. METHODS We used paternity assignment to assess pollen dispersal patterns in a wind-pollinated species (waterhemp; Amaranthus tuberculatus) and in an insect-pollinated species (tomato; Solanum lycopersicum) in experimental arrays at four disparate sites (two roof-level sites, two ground-level sites) in the New York (New York, USA) metropolitan area. RESULTS The number of seeds or fruits, a proxy for the number of flowers pollinated, decreased with increasing distance from the pollen donors at all sites for both species. However, the mean number of Amaranthus tuberculatusseeds produced at a given distance differed two-fold among sites, while the slope of the relationship between Solanum lycopersicumfruit production and distance differed by a factor of four among sites. CONCLUSIONS Pollen dispersal patterns may differ substantially among sites, both in the amount of pollen dispersed at a given distance and in the proportional decrease in pollen dispersal with increasing distance, and these effects may act independently. Accordingly, the capacity of plant species to adapt to climate change and other selection pressures may be different from predictions based on pollen dispersal patterns at a single location.
Collapse
Affiliation(s)
- Chelsea L Butcher
- Louis Calder Center - Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, New York, 10504, USA
- Center for Urban Ecology, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
- Department of Mathematics and Natural Sciences, Northwood University, 4000 Whiting Drive, Midland, Michigan, 48640, USA
| | - Berish Y Rubin
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
| | - Sylvia L Anderson
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
| | - James D Lewis
- Louis Calder Center - Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, New York, 10504, USA
- Center for Urban Ecology, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, New York, 10458, USA
| |
Collapse
|
19
|
Genetic Consequences of Hybridization in Relict Isolated Trees Pinus sylvestris and the Pinus mugo Complex. FORESTS 2020. [DOI: 10.3390/f11101086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scots pine (Pinus sylvestris L.) and the taxa from the P. mugo complex can hybridize in the contact zones and produce fertile hybrids. A unique example of an early Holocene relict population of P. sylvestris and P. uliginosa (a taxon from the P. mugo complex) growing on the tops of Jurassic sandstone rocks is located in Błędne Skały (Sudetes). Phenotypically, there are trees resembling P. sylvestris, P. uliginosa and intermediate forms between them. We expected that some of P. sylvestris and/or P. uliginosa-like trees could be in fact cryptic hybrids resembling one of the parental phenotypes. To address this question, we examined randomly sampled individuals, using a set of plastid (cpDNA), nuclear (nDNA) and mitochondrial (mtDNA) markers as well as biometric characteristics of needles and cones. The results were compared to the same measurements of allopatric reference populations of the P. sylvestris and the P. mugo complex (Pinus mugo s.s, P. uncinata and P. uliginosa). We detected cpDNA barcodes of the P. mugo complex in most individuals with the P. sylvestris phenotype, while we did not detect cpDNA diagnostic of P. sylvestris within P. uliginosa-like trees. These results indicate the presence of cryptic hybrids of the P. sylvestris phenotype. We found only three typical P. sylvestris individuals that were clustered with the species reference populations based on needle and cone characteristics. Most trees showed intermediate characteristics between P. sylvestris and P. uliginosa-like trees, indicating intensive and probably long-lasting hybridization of the taxa at this area and subsequent gene erosion of parental species.
Collapse
|
20
|
He S, Yang Y, Li Z, Wang X, Guo Y, Wu H. Comparative analysis of four Zantedeschia chloroplast genomes: expansion and contraction of the IR region, phylogenetic analyses and SSR genetic diversity assessment. PeerJ 2020; 8:e9132. [PMID: 32509453 PMCID: PMC7247528 DOI: 10.7717/peerj.9132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
The horticulturally important genus Zantedeschia (Araceae) comprises eight species of herbaceous perennials. We sequenced, assembled and analyzed the chloroplast (cp) genomes of four species of Zantedeschia (Z. aethiopica, Z. odorata, Z. elliottiana, and Z. rehmannii) to investigate the structure of the cp genome in the genus. According to our results, the cp genome of Zantedeschia ranges in size from 169,065 bp (Z. aethiopica) to 175,906 bp (Z. elliottiana). We identified a total of 112 unique genes, including 78 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. Comparison of our results with cp genomes from other species in the Araceae suggests that the relatively large sizes of the Zantedeschia cp genomes may result from inverted repeats (IR) region expansion. The sampled Zantedeschia species formed a monophylogenetic clade in our phylogenetic analysis. Furthermore, the long single copy (LSC) and short single copy (SSC) regions in Zantedeschia are more divergent than the IR regions in the same genus, and non-coding regions showed generally higher divergence than coding regions. We identified a total of 410 cpSSR sites from the four Zantedeschia species studied. Genetic diversity analyses based on four polymorphic SSR markers from 134 cultivars of Zantedeschia suggested that high genetic diversity (I = 0.934; Ne = 2.371) is present in the Zantedeschia cultivars. High genetic polymorphism from the cpSSR region suggests that cpSSR could be an effective tool for genetic diversity assessment and identification of Zantedeschia varieties.
Collapse
Affiliation(s)
- Shuilian He
- College of Horticulture and Landscape, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Yang Yang
- College of Science, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Ziwei Li
- College of Horticulture and Landscape, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Xuejiao Wang
- College of Horticulture and Landscape, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Yanbing Guo
- College of Horticulture and Landscape, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Hongzhi Wu
- College of horticulture and landscape, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Pyhäjärvi T, Kujala ST, Savolainen O. 275 years of forestry meets genomics in Pinus sylvestris. Evol Appl 2020; 13:11-30. [PMID: 31988655 PMCID: PMC6966708 DOI: 10.1111/eva.12809] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Pinus sylvestris has a long history of basic and applied research that is relevant for both forestry and evolutionary studies. Its patterns of adaptive variation and role in forest economic and ecological systems have been studied extensively for nearly 275 years, detailed demography for a 100 years and mating system more than 50 years. However, its reference genome sequence is not yet available and genomic studies have been lagging compared to, for example, Pinus taeda and Picea abies, two other economically important conifers. Despite the lack of reference genome, many modern genomic methods are applicable for a more detailed look at its biological characteristics. For example, RNA-seq has revealed a complex transcriptional landscape and targeted DNA sequencing displays an excess of rare variants and geographically homogenously distributed molecular genetic diversity. Current DNA and RNA resources can be used as a reference for gene expression studies, SNP discovery, and further targeted sequencing. In the future, specific consequences of the large genome size, such as functional effects of regulatory open chromatin regions and transposable elements, should be investigated more carefully. For forest breeding and long-term management purposes, genomic data can help in assessing the genetic basis of inbreeding depression and the application of genomic tools for genomic prediction and relatedness estimates. Given the challenges of breeding (long generation time, no easy vegetative propagation) and the economic importance, application of genomic tools has a potential to have a considerable impact. Here, we explore how genomic characteristics of P. sylvestris, such as rare alleles and the low extent of linkage disequilibrium, impact the applicability and power of the tools.
Collapse
Affiliation(s)
- Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| | | | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
22
|
Zhang LJ, Lou AR. Patterns of Pollen Dispersal in an Invasive Population of Solanum rostratum (Solanaceae) in China. RUSS J ECOL+ 2019. [DOI: 10.1134/s1067413618660050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Pollen flow and paternity in an isolated and non-isolated black walnut (Juglans nigra L.) timber seed orchard. PLoS One 2018; 13:e0207861. [PMID: 30513103 PMCID: PMC6279045 DOI: 10.1371/journal.pone.0207861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022] Open
Abstract
Artificial pollination of black walnut (Juglans nigra L.) is not practical and timber breeders have historically utilized only open-pollinated half-sib families. An alternate approach called “breeding without breeding,” consists of genotyping open-pollinated progeny using DNA markers to identify paternal parents and then constructing full-sib families. In 2014, we used 12 SSR markers to genotype 884 open-pollinated half-sib progeny harvested from two clonal orchards containing 206 trees, comprised of 52 elite timber selections. Seed was harvested in 2011 from each of two ramets of 23 clones, one upwind and one downwind, based on prevailing wind direction from the west—southwest. One orchard was isolated from wild black walnut and composed of forward selections while the other orchard was adjacent to a natural forest containing mature black walnut composed of backward selections. Isolation significantly increased within-orchard pollination (85%) of the progeny from the isolated orchard compared to 42% from the non-isolated orchard. Neither prevailing wind direction nor seed tree position in the orchard affected paternity patterns or wild pollen contamination. Genetic diversity indices revealed that progeny from both orchards were in Hardy–Weinberg equilibrium with very little inbreeding and no selfing. A significant level of inbreeding was present among the forward selected parents, but not the first generation (backward selected) parents. Some orchard clones failed to sire any progeny while other clones pollinated upwards of 20% of progeny.
Collapse
|
24
|
Chybicki IJ, Oleksa A. Seed and pollen gene dispersal in Taxus baccata, a dioecious conifer in the face of strong population fragmentation. ANNALS OF BOTANY 2018; 122:409-421. [PMID: 29873697 PMCID: PMC6311948 DOI: 10.1093/aob/mcy081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/08/2018] [Indexed: 05/22/2023]
Abstract
Background and Aims Dispersal is crucial due to its direct impact on dynamics of a species' distribution as well as having a role in shaping adaptive potential through gene flow. In plants forming scarce and small populations, knowledge about the dispersal process is required to assess the potential for colonizing new habitats and connectivity of present and future populations. This study aimed to assess dispersal potential in Taxus baccata, a dioecious gymnosperm tree with a wide but highly fragmented distribution. Methods Seed and pollen dispersal kernels were estimated directly in the framework of the spatially explicit mating model, where genealogies of naturally established seedlings were reconstructed with the help of microsatellite markers. In this way, six differently shaped dispersal functions were compared. Key Results Seed dispersal followed a leptokurtic distribution, with the Exponential-Power, the Power-law and Weibull being almost equally best-fitting models. The pollen dispersal kernel appeared to be more fat-tailed than the seed dispersal kernel, and the Lognormal and the Exponential-Power function showed the best fit. The rate of seed immigration from the background sources was not significantly different from the rate of pollen immigration (13.1 % vs. 19.7 %) and immigration rates were in agreement with or below maximum predictions based on the estimated dispersal kernels. Based on the multimodel approach, 95 % of seeds travel <109 m, while 95 % of pollen travels <704 m from the source. Conclusions The results showed that, at a local spatial scale, yew seeds travel shorter distances than pollen, facilitating a rapid development of a kinship structure. At the landscape level, however, although yew exhibits some potential to colonize new habitats through seed dispersal, genetic connectivity between different yew remnants is strongly limited. Taking into account strong population fragmentation, the study suggests that gene dispersal may be a limiting factor of the adaptability of the species.
Collapse
Affiliation(s)
- Igor J Chybicki
- Department of Genetics, Institute of Experimental Biology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andrzej Oleksa
- Department of Genetics, Institute of Experimental Biology, Kazimierz Wielki University, Bydgoszcz, Poland
| |
Collapse
|
25
|
Chen X, Sun X, Dong L, Zhang S. Mating patterns and pollen dispersal in a Japanese larch (Larix kaempferi) clonal seed orchard: a case study. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1011-1023. [PMID: 29882115 DOI: 10.1007/s11427-018-9305-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 11/25/2022]
Abstract
Pollination dynamics highly determines the genetic quality of seed orchard crops. However, there is less research about the effect of mating patterns on seed productivity of orchard crops. So far, clonal seed orchards have been producing genetically improved seedlings used for most Japanese larch (Larix kaempferi (Lamb.) Carr.) plantations in China. In the present study, a total of 17 highly variable simple sequence repeat (SSR) markers were used for genotyping a progeny trial population consisting of 647 open-pollinated progenies germinated from seeds which were collected from 63 maternal clones with 140 potential paternal clones in a Japanese larch clonal seed orchard in China. Paternity analysis was used in the present case study in order to evaluate the level of paternal gametic contribution, estimate pollen contamination and selfing rates, and investigate pollination patterns, pollen dispersal patterns and the impact of mating patterns on seed productivity of orchard crops. We observed 93.7% of the success rate of the parental assignment, unequal paternal gametic contribution (0-12.4%) with 6.3% of the progenies derived from pollen contamination or unsampled pollen donors, and absence of evidence for selfing. We also found that pollination rate highly depended on the distance between pollen donors and maternal parents, the majority of the identified crossing (65.7%) occurred between clones within a 150-m radius, and large variations in growth performance existed among the paternal half-siblings. Progeny growth performance (diameter at breast (DBH) and height (HGT)) was measured at Age-20 in order to investigate the impact of mating patterns on timber production of orchard crops. As either the paternal or maternal, two clones (i. e., clones Z38 and Z62) were identified to have produced progenies with higher average stem volume breeding values than that of all of the progenies. Specifically, the genetic gains for volume were 3.53% for the two clones as paternal parents, and 8.26% as the maternal parents at Age-20. Thus, both elite clones were ideal candidates for the construction of next-generation clonal seed orchards due to their synchronous reproductive phenology with greater crossing rate and higher genetic gain. These results improved the pedigree information to provide solid evidence of mating patterns for future design and effective management of seed orchards and for the development of viable long-term breeding strategies for other coniferous species.
Collapse
Affiliation(s)
- Xingbin Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Jiangxi Provincial Key Lab for Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, 330013, China
| | - Xiaomei Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Leiming Dong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
26
|
Flores-Rentería L, Whipple AV, Benally GJ, Patterson A, Canyon B, Gehring CA. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:536. [PMID: 29760715 PMCID: PMC5936790 DOI: 10.3389/fpls.2018.00536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/06/2018] [Indexed: 05/27/2023]
Abstract
High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.
Collapse
Affiliation(s)
| | - Amy V. Whipple
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Gilbert J. Benally
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Adair Patterson
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Brandon Canyon
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Catherine A. Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
27
|
Zanon M, Davis BAS, Marquer L, Brewer S, Kaplan JO. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing. FRONTIERS IN PLANT SCIENCE 2018; 9:253. [PMID: 29568303 PMCID: PMC5852684 DOI: 10.3389/fpls.2018.00253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
Characterization of land cover change in the past is fundamental to understand the evolution and present state of the Earth system, the amount of carbon and nutrient stocks in terrestrial ecosystems, and the role played by land-atmosphere interactions in influencing climate. The estimation of land cover changes using palynology is a mature field, as thousands of sites in Europe have been investigated over the last century. Nonetheless, a quantitative land cover reconstruction at a continental scale has been largely missing. Here, we present a series of maps detailing the evolution of European forest cover during last 12,000 years. Our reconstructions are based on the Modern Analog Technique (MAT): a calibration dataset is built by coupling modern pollen samples with the corresponding satellite-based forest-cover data. Fossil reconstructions are then performed by assigning to every fossil sample the average forest cover of its closest modern analogs. The occurrence of fossil pollen assemblages with no counterparts in modern vegetation represents a known limit of analog-based methods. To lessen the influence of no-analog situations, pollen taxa were converted into plant functional types prior to running the MAT algorithm. We then interpolate site-specific reconstructions for each timeslice using a four-dimensional gridding procedure to create continuous gridded maps at a continental scale. The performance of the MAT is compared against methodologically independent forest-cover reconstructions produced using the REVEALS method. MAT and REVEALS estimates are most of the time in good agreement at a trend level, yet MAT regularly underestimates the occurrence of densely forested situations, requiring the application of a bias correction procedure. The calibrated MAT-based maps draw a coherent picture of the establishment of forests in Europe in the Early Holocene with the greatest forest-cover fractions reconstructed between ∼8,500 and 6,000 calibrated years BP. This forest maximum is followed by a general decline in all parts of the continent, likely as a result of anthropogenic deforestation. The continuous spatial and temporal nature of our reconstruction, its continental coverage, and gridded format make it suitable for climate, hydrological, and biogeochemical modeling, among other uses.
Collapse
Affiliation(s)
- Marco Zanon
- Institute of Pre- and Protohistoric Archaeology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Graduate School “Human Development in Landscapes”, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- *Correspondence: Marco Zanon,
| | - Basil A. S. Davis
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Laurent Marquer
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- GEODE, UMR-CNRS 5602, Université de Toulouse-Jean Jaurès, Toulouse, France
- Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, Mainz, Germany
| | - Simon Brewer
- Department of Geography, University of Utah, Salt Lake City, UT, United States
| | - Jed O. Kaplan
- ARVE Research SARL, Pully, Switzerland
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
28
|
Flores-Rentería L, Whipple AV, Benally GJ, Patterson A, Canyon B, Gehring CA. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29760715 DOI: 10.3389/fpls.2018.00536/full] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis, a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.
Collapse
Affiliation(s)
| | - Amy V Whipple
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Gilbert J Benally
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Adair Patterson
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Brandon Canyon
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| | - Catherine A Gehring
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
29
|
Kramer AT, Wood TE, Frischie S, Havens K. Considering ploidy when producing and using mixed-source native plant materials for restoration. Restor Ecol 2017. [DOI: 10.1111/rec.12636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea T. Kramer
- Plant Science and Conservation; Chicago Botanic Garden, 1000 Lake Cook Road; Glencoe IL 60022 U.S.A
- Program in Plant Biology and Conservation; Northwestern University, 633 Clark Street; Evanston IL 60208 U.S.A
| | | | - Stephanie Frischie
- Plant Science and Conservation; Chicago Botanic Garden, 1000 Lake Cook Road; Glencoe IL 60022 U.S.A
- Program in Plant Biology and Conservation; Northwestern University, 633 Clark Street; Evanston IL 60208 U.S.A
- 1 Semillas Silvestres, S.L., Calle Aulaga 24, 14012 Córdoba Spain
- Department of Earth and Environmental Sciences; University of Pavia; Corso Strada Nuova 65, 27100 Pavia Italy
| | - Kayri Havens
- Plant Science and Conservation; Chicago Botanic Garden, 1000 Lake Cook Road; Glencoe IL 60022 U.S.A
- Program in Plant Biology and Conservation; Northwestern University, 633 Clark Street; Evanston IL 60208 U.S.A
| |
Collapse
|
30
|
Semizer-Cuming D, Kjær ED, Finkeldey R. Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape. PLoS One 2017; 12:e0186757. [PMID: 29053740 PMCID: PMC5650178 DOI: 10.1371/journal.pone.0186757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022] Open
Abstract
Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64%) and seedlings (75-98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback.
Collapse
Affiliation(s)
- Devrim Semizer-Cuming
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Erik Dahl Kjær
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Reiner Finkeldey
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Whittet R, Cavers S, Cottrell J, Rosique‐Esplugas C, Ennos R. Substantial variation in the timing of pollen production reduces reproductive synchrony between distant populations of Pinus sylvestris L. in Scotland. Ecol Evol 2017; 7:5754-5765. [PMID: 28894569 PMCID: PMC5586338 DOI: 10.1002/ece3.3154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
Abstract
The ability of a population to genetically adapt to a changing environment is contingent not only on the level of existing genetic variation within that population, but also on the gene flow received from differently adapted populations. Effective pollen-mediated gene flow among plant populations requires synchrony of flowering. Therefore differences in timing of flowering among genetically divergent populations may reduce their ability to adapt to environmental change. To determine whether gene flow among differently adapted populations of native Scots pine (Pinus sylvestris) in Scotland was restricted by differences in their flowering phenology, we measured timing of pollen release among populations spanning a steep environmental gradient over three consecutive seasons (2014-2016). Results showed that, over a distance of 137 km, there were as many as 15.8 days' difference among populations for the predicted timing of peak pollen shedding, with the earliest development in the warmer west of the country. There was much variation between years, with the earliest development and least synchrony in the warmest year (2014) and latest development and greatest synchrony in the coolest year (2015). Timing was negatively correlated with results from a common-garden experiment, indicative of a pattern of countergradient variation. We conclude that the observed differences in reproductive synchrony were sufficient to limit gene flow via pollen between populations of P. sylvestris at opposite ends of the environmental gradient across Scotland. We also hypothesize that continually warming, or asymmetrically warming spring temperatures will decrease reproductive synchrony among pine populations.
Collapse
Affiliation(s)
- Richard Whittet
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
- NERC Centre for Ecology and HydrologyPenicuikUK
| | | | | | - Cristina Rosique‐Esplugas
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
- Forest ResearchNorthern Research StationRoslinUK
| | - Richard Ennos
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
32
|
Maharramova E, Huseynova I, Kolbaia S, Gruenstaeudl M, Borsch T, Muller LAH. Phylogeography and population genetics of the riparian relict tree Pterocarya fraxinifolia (Juglandaceae) in the South Caucasus. SYST BIODIVERS 2017. [DOI: 10.1080/14772000.2017.1333540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Elmira Maharramova
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, Germany
- Institute of Botany, Azerbaijan National Academy of Sciences, Badamdar Highway 40, AZ1073 Baku, Azerbaijan
| | - Irada Huseynova
- Institute of Botany, Azerbaijan National Academy of Sciences, Badamdar Highway 40, AZ1073 Baku, Azerbaijan
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Ave. 2A, AZ1073 Baku, Azerbaijan
| | - Sandro Kolbaia
- National Botanical Garden of Georgia, Botanikuri Str. 1, 0105 Tbilisi, Georgia
| | - Michael Gruenstaeudl
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
| | - Ludo A. H. Muller
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
| |
Collapse
|
33
|
Beghè D, Piotti A, Satovic Z, de la Rosa R, Belaj A. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris. ANNALS OF BOTANY 2017; 119:671-679. [PMID: 28028015 PMCID: PMC5571374 DOI: 10.1093/aob/mcw246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/26/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Wild olive ( Olea europaea subsp. europaea var. sylvestris ) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. METHODS The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. KEY RESULTS The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. CONCLUSIONS Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources.
Collapse
Affiliation(s)
- D. Beghè
- Department of Food Science, Parco Area delle Scienze, 95/a, 43124 Parma, Italy
- Institute of Tree and Timber (IVALSA), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - A. Piotti
- Institute of Biosciences and BioResources (IBBR), Italian National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Z. Satovic
- University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - R. de la Rosa
- Andalusian Institute of Agricultural Research and Training (IFAPA), Centro ‘Alameda del Obispo’, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - A. Belaj
- Andalusian Institute of Agricultural Research and Training (IFAPA), Centro ‘Alameda del Obispo’, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
34
|
Potential Population Genetic Consequences of Habitat Fragmentation in Central European Forest Trees and Associated Understorey Species—An Introductory Survey. DIVERSITY 2017. [DOI: 10.3390/d9010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Johnson JS, Gaddis KD, Cairns DM, Krutovsky KV. Seed dispersal at alpine treeline: an assessment of seed movement within the alpine treeline ecotone. Ecosphere 2017. [DOI: 10.1002/ecs2.1649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jeremy S. Johnson
- Department of Geography Texas A&M University 810 Eller O&M Building, MS 3147 TAMU College Station Texas 77843 USA
| | - Keith D. Gaddis
- Department of Geography Texas A&M University 810 Eller O&M Building, MS 3147 TAMU College Station Texas 77843 USA
| | - David M. Cairns
- Department of Geography Texas A&M University 810 Eller O&M Building, MS 3147 TAMU College Station Texas 77843 USA
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Tree Breeding Georg‐August University of Göttingen Büsgenweg 2 D‐37077 Göttingen Germany
- Department of Ecosystem Science & Management Texas A&M University 305 Horticulture and Forest Science Building, MS 2138 TAMU College Station Texas 77843 USA
- N. I. Vavilov Institute of General Genetics Russian Academy of Sciences 3 Gubkina Street Moscow 119333 Russia
- Genome Research and Education Center Siberian Federal University 50a/2 Akademgorodok Krasnoyarsk 660036 Russia
| |
Collapse
|
36
|
Perry A, Brown AV, Cavers S, Cottrell JE, Ennos RA. Has Scots pine (Pinus sylvestris) co-evolved with Dothistroma septosporum in Scotland? Evidence for spatial heterogeneity in the susceptibility of native provenances. Evol Appl 2016; 9:982-93. [PMID: 27606006 PMCID: PMC4999528 DOI: 10.1111/eva.12395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/14/2016] [Indexed: 11/29/2022] Open
Abstract
Spatial heterogeneity in pathogen pressure leads to genetic variation in, and evolution of, disease-related traits among host populations. In contrast, hosts are expected to be highly susceptible to exotic pathogens as there has been no evolution of defence responses. Host response to pathogens can therefore be an indicator of a novel or endemic pathosystem. Currently, the most significant threat to native British Scots pine (Pinus sylvestris) forests is Dothistroma needle blight (DNB) caused by the foliar pathogen Dothistroma septosporum which is presumed to be exotic. A progeny-provenance trial of 6-year-old Scots pine, comprising eight native provenances each with four families in six blocks, was translocated in April 2013 to a clear-fell site in Galloway adjacent to a DNB-infected forest. Susceptibility to D. septosporum, measured as DNB severity (estimated percentage nongreen current-year needles), was assessed visually over 2 years (2013-2014 and 2014-2015; two assessments per year). There were highly significant differences in susceptibility among provenances but not among families for each annual assessment. Provenance mean susceptibility to D. septosporum was negatively and significantly associated with water-related variables at site of origin, potentially due to the evolution of low susceptibility in the host in response to high historical pathogen pressure.
Collapse
Affiliation(s)
| | | | | | | | - Richard A. Ennos
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
37
|
Sampson JF, Byrne M, Gibson N, Yates C. Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecol Evol 2016; 6:5867-80. [PMID: 27547361 PMCID: PMC4983598 DOI: 10.1002/ece3.2322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 02/02/2023] Open
Abstract
Pollen movements and mating patterns are key features that influence population genetic structure. When gene flow is low, small populations are prone to increased genetic drift and inbreeding, but naturally disjunct species may have features that reduce inbreeding and contribute to their persistence despite genetic isolation. Using microsatellite loci, we investigated outcrossing levels, family mating parameters, pollen dispersal, and spatial genetic structure in three populations of Hakea oldfieldii, a fire-sensitive shrub with naturally disjunct, isolated populations prone to reduction in size and extinction following fires. We mapped and genotyped a sample of 102 plants from a large population, and all plants from two smaller populations (28 and 20 individuals), and genotyped 158-210 progeny from each population. We found high outcrossing despite the possibility of geitonogamous pollination, small amounts of biparental inbreeding, a limited number of successful pollen parents within populations, and significant correlated paternity. The number of pollen parents for each seed parent was moderate. There was low but significant spatial genetic structure up to 10 m around plants, but the majority of successful pollen came from outside this area including substantial proportions from distant plants within populations. Seed production varied among seven populations investigated but was not correlated with census population size. We suggest there may be a mechanism to prevent self-pollination in H. oldfieldii and that high outcrossing and pollen dispersal within populations would promote genetic diversity among the relatively small amount of seed stored in the canopy. These features of the mating system would contribute to the persistence of genetically isolated populations prone to fluctuations in size.
Collapse
Affiliation(s)
- Jane F Sampson
- Science and Conservation Division Department of Parks and Wildlife Locked Bag 104 Bentley Delivery Centre Perth Western Australia 6983 Australia
| | - Margaret Byrne
- Science and Conservation Division Department of Parks and Wildlife Locked Bag 104 Bentley Delivery Centre Perth Western Australia 6983 Australia
| | - Neil Gibson
- Science and Conservation Division Department of Parks and Wildlife Locked Bag 104 Bentley Delivery Centre Perth Western Australia 6983 Australia
| | - Colin Yates
- Science and Conservation Division Department of Parks and Wildlife Locked Bag 104 Bentley Delivery Centre Perth Western Australia 6983 Australia
| |
Collapse
|
38
|
Moracho E, Moreno G, Jordano P, Hampe A. Unusually limited pollen dispersal and connectivity of Pedunculate oak (Quercus robur) refugial populations at the species' southern range margin. Mol Ecol 2016; 25:3319-31. [DOI: 10.1111/mec.13692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 01/15/2023]
Affiliation(s)
- E. Moracho
- Integrative Ecology Group; Estación Biológica de Doñana; Consejo Superior de Investigaciones Científicas (CSIC); Avenida Americo Vespucio s/n Sevilla E-41092 Spain
| | - G. Moreno
- Forest Research Group; Universidad de Extremadura; Plasencia 10600 Spain
| | - P. Jordano
- Integrative Ecology Group; Estación Biológica de Doñana; Consejo Superior de Investigaciones Científicas (CSIC); Avenida Americo Vespucio s/n Sevilla E-41092 Spain
| | - A. Hampe
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33615 France
| |
Collapse
|
39
|
Reim S, Lochschmidt F, Proft A, Tröber U, Wolf H. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany. BIODIVERSITY: RESEARCH AND CONSERVATION 2016. [DOI: 10.1515/biorc-2016-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract
In recent years, land use changes led to a rapid decline and fragmentation of J. communis populations in Germany. Population isolation may lead to a restricted gene flow and, further, to negative effects on genetic variation. In this study, genetic diversity and population structure in seven fragmented J. communis populations in Saxony, Germany, were investigated using nuclear microsatellites (nSSR) and chloroplast single nucleotide polymorphism (cpSNP). In all Saxony J. communis populations, a high genetic diversity was determined but no population differentiation could be detected whatever method was applied (Bayesian cluster analysis, F-statistics, AMOVA). The same was true for three J. communis out-group samples originating from Italy, Slovakia and Norway, which also showed high genetic diversity and low genetic differences regarding other J. communis populations. Low genetic differentiation among the J. communis populations ascertained with nuclear and chloroplast markers indicated high levels of gene flow by pollen and also by seeds between the sampled locations. Low genetic differentiation may also provide an indicator of Juniper survival during the last glacial maximum (LGM) in Europe. The results of this study serve as a basis for the implementation of appropriate conservation measures in Saxony.
Collapse
|
40
|
García C, Escribano-Ávila G. An optimised protocol to isolate high-quality genomic DNA from seed tissues streamlines the workflow to obtain direct estimates of seed dispersal distances in gymnosperms. JOURNAL OF PLANT RESEARCH 2016; 129:559-563. [PMID: 26943162 DOI: 10.1007/s10265-016-0806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Genotyping of maternally derived seed tissues from georefered seeds that moved away from their source tree yield direct estimates of seed dispersal distances when the location and the genotype of the fruiting tree are available. These estimates are instrumental in forecasting the response of plant communities to drivers of global change, such as fragmentation or the expansion of invasive species. Obtaining robust assessments of seed dispersal distances requires comparing reliable multilocus genotypes of maternally derived seed tissues and fruiting trees, as previously shown for angiosperm species. However, robust estimates of seed dispersal distances based on direct methods are rare in non-model gymnosperms due to the difficulty in isolating high quality DNA from inconspicuous maternally derived seed tissues. These tissues tend to yield low DNA quantities that increase the frequency of genotyping errors. Here, we deliver a step-by-step visual protocol used to identify and isolate different seed tissues of interest for dispersal studies: embryos (2n, bi-parentally derived), seed coats (2n, maternally derived), and megagametophytes (n, maternally derived). We also provide an optimised lab protocol used to obtain multilocus genotypes from the target seed tissue. These broadly applicable protocols proved successful both in avoiding contamination among different seed tissues and providing reliable multilocus genotypes.
Collapse
Affiliation(s)
- C García
- Plant Biology, CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| | - G Escribano-Ávila
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933, Móstoles, Spain
| |
Collapse
|
41
|
Gene flow and fine-scale spatial genetic structure in Cabralea canjerana (Meliaceae), a common tree species from the Brazilian Atlantic forest. JOURNAL OF TROPICAL ECOLOGY 2016. [DOI: 10.1017/s0266467416000067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:The Atlantic forest is the biome most severely affected by deforestation in Brazil. Cabralea canjerana spp. canjerana is a dioecious tree species with widespread distribution in the Neotropical region. This species is considered a model to ascertain population ecology parameters for endangered plant species from the Atlantic forest. Fine-scale spatial genetic structure and pollen-mediated gene flow are crucial information in landscape genetics and evolutionary ecology. A total of 192 adults and 121 offspring were sampled in seven C. canjerana populations in the Southern Minas Gerais State, Brazil, to assess whether pollen-mediated gene flow is able to prevent spatial genetic structure within and among Atlantic forest fragments. Several molecular ecology parameters were estimated using microsatellite loci. High levels of genetic diversity (HE = 0.732) and moderate population structure (θ = 0.133) were recorded. No significant association between kinship and spatial distance amongst individuals within each population (Sp = 0.000109) was detected. Current pollen-mediated gene flow occurs mainly within forest fragments, probably due to short-distance flights of the pollinator of C. canjerana, and also the forest fragmentation may have restricted flight distance. The high levels of genetic differentiation found amongst the seven sites sampled demonstrated how habitat fragmentation affects the gene flow process in natural areas.
Collapse
|
42
|
Warner PA, Willis BL, Oppen MJH. Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral. Mol Ecol 2016; 25:1398-415. [DOI: 10.1111/mec.13553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Patricia A. Warner
- AIMS@JCU and Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Qld 4811 Australia
| | - Bette L. Willis
- AIMS@JCU and Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Qld 4811 Australia
| | - Madeleine J. H. Oppen
- AIMS@JCU and Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- Australian Institute of Marine Science PMB3, Townsville MC Townsville Qld 4810 Australia
- School of BioSciences The University of Melbourne Parkville Vic. 23010 Australia
| |
Collapse
|
43
|
Sork VL. Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications. Evol Appl 2016; 9:291-310. [PMID: 27087853 PMCID: PMC4780383 DOI: 10.1111/eva.12316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/02/2015] [Indexed: 02/03/2023] Open
Abstract
A central question in evolutionary biology is how gene flow and natural selection shape geographic patterns of genotypic and phenotypic variation. My overall research program has pursued this question in tree populations through complementary lines of inquiry. First, through studies of contemporary pollen and seed movement, I have studied how limited gene movement creates fine-scale genetic structure, while long-distance gene flow promotes connectivity. My collaborators and I have provided new tools to study these processes at a landscape scale as well as statistical tests to determine whether changes in landscape conditions or dispersal vectors affect gene movement. Second, my research on spatial patterns of genetic variation has investigated the interacting impacts of geography and climate on gene flow and selection. Third, using next-generation genomic tools, I am now studying genetic variation on the landscape to find initial evidence of climate-associated local adaptation and epigenetic variation to explore its role in plant response to the climate. By integrating these separate lines of inquiry, this research provides specific insight into real-world mechanisms shaping evolution in tree populations and potential impacts of landscape transformation and climate change on these populations, with the prospective goal of contributing to their management and conservation.
Collapse
Affiliation(s)
- Victoria L. Sork
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
- Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
44
|
Myczko Ł, Skórka P, Dylewski Ł, Sparks TH, Tryjanowski P. Color mimicry of empty seeds influences the probability of predation by birds. Ecosphere 2015. [DOI: 10.1890/es15-00055.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Bağcıoğlu M, Zimmermann B, Kohler A. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen. PLoS One 2015; 10:e0137899. [PMID: 26376486 PMCID: PMC4574200 DOI: 10.1371/journal.pone.0137899] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/22/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques. METHODOLOGY Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques. RESULTS The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of pollen. Out of the seven tested methodologies, the best taxonomical differentiation of pollen was obtained by infrared measurements on bulk samples, as well as by Raman microspectroscopy measurements of the corpus region of the pollen grain. Raman microspectroscopy measurements indicate that measurement area, as well as the depth of focus, can have crucial influence on the obtained data.
Collapse
Affiliation(s)
- Murat Bağcıoğlu
- Department of Mathematical Sciences and Technology, Faculty of Environmental Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| | - Boris Zimmermann
- Department of Mathematical Sciences and Technology, Faculty of Environmental Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Achim Kohler
- Department of Mathematical Sciences and Technology, Faculty of Environmental Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Nofima AS, Ås, Norway
| |
Collapse
|
46
|
Yang L, Liu ZL, Li J, Dyer RJ. Genetic structure of Pinus henryi and Pinus tabuliformis: Natural landscapes as significant barriers to gene flow among populations. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Oteros J, García-Mozo H, Alcázar P, Belmonte J, Bermejo D, Boi M, Cariñanos P, Díaz de la Guardia C, Fernández-González D, González-Minero F, Gutiérrez-Bustillo AM, Moreno-Grau S, Pérez-Badía R, Rodríguez-Rajo FJ, Ruíz-Valenzuela L, Suárez-Pérez J, Trigo MM, Domínguez-Vilches E, Galán C. A new method for determining the sources of airborne particles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 155:212-218. [PMID: 25837296 DOI: 10.1016/j.jenvman.2015.03.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/21/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
Air quality is a major issue for humans owing to the fact that the content of particles in the atmosphere has multiple implications for life quality, ecosystem dynamics and environment. Scientists are therefore particularly interested in discovering the origin of airborne particles. A new method has been developed to model the relationship between the emission surface and the total amount of airborne particles at a given distance, employing olive pollen and olive groves as examples. A third-degree polynomial relationship between the air particles at a particular point and the distance from the source was observed, signifying that the nearest area to a point is not that which is most correlated with its air features. This work allows the origin of airborne particles to be discovered and could be implemented in different disciplines related to atmospheric aerosol, thus providing a new approach with which to discover the dynamics of airborne particles.
Collapse
Affiliation(s)
- J Oteros
- Department of Botany, Ecology and Plant Physiology, University of Córdoba, Spain; Center of Allergy & Environment (ZAUM), Helmholtz Zentrum München, Technische Universität München, Germany.
| | - H García-Mozo
- Department of Botany, Ecology and Plant Physiology, University of Córdoba, Spain
| | - P Alcázar
- Department of Botany, Ecology and Plant Physiology, University of Córdoba, Spain
| | - J Belmonte
- Department of Botany, Autonomous University of Barcelona, Spain
| | - D Bermejo
- College of Pharmacists of Zaragoza, Spain
| | - M Boi
- Department of Biology-Botany, University of the Balearic Islands, Spain
| | - P Cariñanos
- Department of Botany, University of Granada, Spain
| | | | - D Fernández-González
- Department of Biodiversity and Environmental Management (Botany), University of León, Spain; Institute of Atmospheric Sciences and Climate, Italian National Research Country, Bologna, Italy
| | | | | | - S Moreno-Grau
- Department of Chemical and Environmental Engineering, Polytechnic University of Cartagena, Spain
| | - R Pérez-Badía
- Department of Environmental Sciences, University of Castilla la Mancha, Spain
| | - F J Rodríguez-Rajo
- Department of Plant Biology and Soil Sciences, University of Vigo, Spain
| | - L Ruíz-Valenzuela
- Department of Animal Biology, Plant Biology and Ecology, University of Jaén, Spain
| | - J Suárez-Pérez
- Department of Organisms and Systems Biology, University of Oviedo, Spain
| | - M M Trigo
- Department of Plant Biology, University of Malaga, Spain
| | - E Domínguez-Vilches
- Department of Botany, Ecology and Plant Physiology, University of Córdoba, Spain
| | - C Galán
- Department of Botany, Ecology and Plant Physiology, University of Córdoba, Spain
| |
Collapse
|
48
|
Sun AQ, Zhang CQ, Wu CL, Gao QR. Pollen flow of wheat under natural conditions in the Huanghuai River Wheat Region, China. GM CROPS & FOOD 2015; 6:135-49. [PMID: 25658025 DOI: 10.1080/21645698.2015.1006072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The transgenic pollen spread is the main pathway of transgenic plant gene flow. The maximum distance of pollen dispersal (horizontal), the spatial dynamics of pollen movement (vertical), and the patterns of pollen dispersal are important considerations in biosafety assessments of genetically modified crops. To evaluate wheat (Triticum aestivum) pollen dispersal, we measured the pollen suspension velocity and analyzed pollen dispersal patterns under natural conditions in the Huanghuai River wheat-growing region in 2009. The pollen suspension velocity was 0.3-0.4 m/s. The highest pollen densities were detected in the north, northwest, and south of the pollen source. Pollen was dispersed over distances greater than 245 m in the northwest and northeast directions. At the pollen source center, pollen density decreased with increasing vertical height. In the north of the pollen source, the pollen density from 65 m to 225 m showed a wave-mode decrease with increasing height. The horizontal transport of pollen over longer distances fitted polynomial equations. In the north, the pollen density was highest at 45 m from the pollen source, and decreased with increasing distance. In the northwest, the pollen density showed a double-peak trend. In the northeast, pollen density was highest from 45 m to 125 m from the source. Wind speeds greater than the pollen suspension velocity and the duration of continuous gusts were the main factors affecting pollen dispersal. This information will be useful for determining the spatial isolation distances for hybrid seed production and for the commercial production of transgenic wheat.
Collapse
Affiliation(s)
- Ai-Qing Sun
- a College of Agronomy; State Key Laboratory of Crop Biology; Shandong Key Laboratory of Crop Biology ; Shandong Agricultural University ; Taian , China
| | | | | | | |
Collapse
|
49
|
Kikuchi S, Shibata M, Tanaka H. Effects of forest fragmentation on the mating system of a cool-temperate heterodichogamous tree Acer mono. Glob Ecol Conserv 2015. [DOI: 10.1016/j.gecco.2015.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Sánchez-Robles JM, García-Castaño JL, Balao F, Terrab A, Navarro-Sampedro L, Tremetsberger K, Talavera S. Effects of tree architecture on pollen dispersal and mating patterns in Abies pinsapo Boiss. (Pinaceae). Mol Ecol 2014; 23:6165-78. [PMID: 25355046 DOI: 10.1111/mec.12983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022]
Abstract
Plant architecture is crucial to pollination and mating in wind-pollinated species. We investigated the effect of crown architecture on pollen dispersal, mating system and offspring quality, combining phenotypic and genotypic analyses in a low-density population of the endangered species Abies pinsapo. A total of 598 embryos from three relative crown height levels (bottom, middle and top) in five mother plants were genotyped using eleven nuclear microsatellite markers (nSSRs). Paternity analysis and mating system models were used to infer mating and pollen dispersal parameters. In addition, seeds were weighed (N = 16 110) and germinated (N = 736), and seedling vigour was measured to assess inbreeding depression. Overall, A. pinsapo shows a fat-tailed dispersal kernel, with an average pollen dispersal distance of 113-227 m, an immigration rate of 0.84-26.92%, and a number of effective pollen donors (Nep ) ranging between 3.5 and 11.9. We found an effect of tree height and relative crown height levels on mating parameters. A higher proportion of seeds with embryo (about 50%) and a higher rate of self-fertilization (about 60%) were found at the bottom level in comparison with the top level. Seed weight and seedling vigour are positively related. Nevertheless, no differences were found in seed weight or in seedling-related variables such as weight and length of aerial and subterranean parts among the different relative crown height levels, suggesting that seeds from the more strongly inbred bottom level are not affected by inbreeding depression. Our results point to vertical isotropy for outcross-pollen and they suggest that self-pollen may ensure fertilization when outcross-pollen is not available in low-density population.
Collapse
Affiliation(s)
- Jose M Sánchez-Robles
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apdo. 1095, E-41080, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|