1
|
Torres L, Jonsson CA, Eliasson B, Forsblad-d'Elia H, Landgren AJ, Bilberg A, Gjertsson I, Larsson I, Klingberg E. A six-month weight loss intervention is associated with significant changes in serum biomarkers related to inflammation, bone and cartilage metabolism in obese patients with psoriatic arthritis and matched controls. BMC Rheumatol 2025; 9:58. [PMID: 40410839 PMCID: PMC12100911 DOI: 10.1186/s41927-025-00511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 05/09/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Obesity is highly overrepresented in patients with psoriatic arthritis (PsA) and associated with increased disease activity and inferior treatment outcome. We have previously reported in 41 patients with PsA and body mass index (BMI) ≥ 33 kg/m2 that weight loss treatment with Very Low Energy Diet (VLED) resulted in a median weight loss of 18,6% and concomitantly a significant improvement in C-reactive protein (CRP) and disease activity at six months (M6). This sub-study analyzes the effects on serum biomarkers associated with inflammation, bone and cartilage metabolism in the same PsA patients and matched controls. METHODS Patients and controls received VLED treatment (640 kcal/day) during 12-16 weeks depending on baseline (BL) BMI < 40 or ≥ 40 kg/m2, followed by an energy restricted diet. Serum was collected at BL and M6, and biomarkers were measured with Magnetic Luminex® Assays and enzyme-linked immunosorbent assay (ELISA). Nonparametric statistics and paired comparison tests were used. RESULTS In the PsA patients, the following proteins were significantly reduced at M6 as compared to BL: hepatocyte growth factor (HGF) (median (first-third quartile) 327.9 (250.3-413.6) pg/mL vs. 271.3 (206.9-331.0) pg/mL, p < 0.01), vascular endothelial growth factor (VEGF) (79.6 (55.9-113.5) pg/mL vs. 69.6 (53.1-105.3) pg/mL, p = 0.01), B-cell activating factor (BAFF) (794.4 (716.4-868.3) pg/mL vs. 674.6 (613.2-790.5) pg/mL, p = 0.01) and cartilage oligomeric matrix protein (COMP) (266.1 (209.9-366.0) ng/mL vs. 217.0 (156.0-272.0) ng/mL, p < 0.01), whereas carboxyterminal telopeptide of type-1 collagen (CTX-1) was significantly increased (268.0 (196.0-378.5) pg/mL vs. 508.0 (350.0-640.0) pg/mL, p < 0.01). Similar results were found in the control group. CONCLUSIONS Weight loss was associated with reduced levels of serum biomarkers related to inflammation and cartilage degradation, and increased biomarkers for bone resorption. The study supports the strong relationship between obesity, inflammation, bone and cartilage metabolism, identifying BMI as a possible confounder for biomarker levels. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02917434, registered on September 21, 2016, retrospectively registered.
Collapse
Affiliation(s)
- Linda Torres
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Rheumatology, Sahlgrenska University Hospital, Gröna stråket 16, Gothenburg, 413 45, Sweden.
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Eliasson
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Forsblad-d'Elia
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gröna stråket 16, Gothenburg, 413 45, Sweden
| | - Anton J Landgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Research and Development Primary Health Care, Gothenburg, Södra Bohuslän, Sweden
| | - Annelie Bilberg
- Institute of Neuroscience and Physiology, Department of Health and Rehabilitation, Physiotherapy, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Occupational and Physiotherapy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gröna stråket 16, Gothenburg, 413 45, Sweden
| | - Ingrid Larsson
- Department of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Klingberg
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gröna stråket 16, Gothenburg, 413 45, Sweden
| |
Collapse
|
2
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
3
|
Lee YH, Kang SH, Kim DK, Kim JS, Jeong KH, Kim YG, Lee DY, Ahn SY, Chung S, Sun IO, Lee MJ, Hwang HS. Cardiovascular risk prediction in hemodialysis patients using the triglyceride-glucose index: a multicenter prospective cohort study. Clin Kidney J 2025; 18:sfaf016. [PMID: 40052161 PMCID: PMC11883225 DOI: 10.1093/ckj/sfaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 03/09/2025] Open
Abstract
Background Triglyceride-glucose (TyG) index has recently been established as an indicator of insulin resistance and has predictive value for cardiovascular (CV) disease. However, the clinical significance of the TyG index in patients undergoing hemodialysis remains unknown. Methods We prospectively enrolled 759 patients undergoing maintenance hemodialysis. The participants were divided into tertiles based on their baseline TyG index. Echocardiographic parameters, vascular calcification scores, and several plasma biomarkers were obtained and compared using the TyG index. Results The TyG index was positively correlated with levels of circulating vascular pathologic markers, endostatin (ρ = 0.134, P = .025) and vascular adhesion protein-1 (ρ = 0.130, P = .012), but not with vascular calcification score. The TyG index was not correlated with any echocardiographic parameters. Patients in tertile 3 showed the highest cumulative event rates of CV and cardiac events (P < .001 and P = .001, respectively). In the multivariable Cox regression analysis, patients in the TyG index tertile 3 had a significantly increased risk of CV and cardiac events compared to those in the TyG index tertile 1 [adjusted hazard ratio (HR): 1.89, 95% confidence interval (CI): 1.08-3.30, and adjusted HR: 2.01, 95% CI: 1.05-3.82, respectively]. A 1 standard deviation increase in the TyG index was also associated with significantly higher risks of CV and cardiac events. Conclusions The TyG index was associated with vascular pathology markers and an increased risk of adverse CV outcomes in patients undergoing hemodialysis. Our study suggests that the TyG index has the potential to assist clinicians in identifying a high CV risk in hemodialysis patients.
Collapse
Affiliation(s)
- Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Seok Hui Kang
- Department of Nephrology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Dae Kyu Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Dong-Young Lee
- Division of Nephrology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Shin Young Ahn
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sungjin Chung
- Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Min-Jeong Lee
- Department of Nephrology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
4
|
Li H, Song Q, Su X, Shen Y, Yan H, Yu Z, Li Z, Yuan J, Huang J, Ni Z, Gu L, Fang W. Serum angiopoietin-2/angiopoietin-1 ratio is associated with cardiovascular and all-cause mortality in peritoneal dialysis patients: a prospective cohort study. Ren Fail 2024; 46:2380037. [PMID: 39082686 PMCID: PMC11293270 DOI: 10.1080/0886022x.2024.2380037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024] Open
Abstract
INTRODUCTION Our objective was to examine the factors associated with the serum angiopoietin-2/angiopoietin-1 (Angpt-2/Angpt-1) ratio in peritoneal dialysis (PD) patients and to investigate the association between Angpt-2/Angpt-1 ratio and cardiovascular and all-cause mortality. METHODS Patients on PD who were prevalent between January 2014 and April 2015 in the center of Renji Hospital were enrolled. At the time of enrollment, serum and dialysate samples were collected to detect biochemical parameters, serum angiopoietin-2 and angiopoietin-1 levels. Patients were dichotomized into two groups according to a median of Angpt-2/Angpt-1 ratio and followed up prospectively until the end of the study. RESULTS A total of 325 patients were enrolled, including 168 males (51.7%) with a mean age of 56.9 ± 14.2 years and a median PD duration of 32.4 (9.8-55.9) months. Multiple linear regression showed pulse pressure (β = 0.206, p < .001) and high-sensitivity C-reactive protein (hs-CRP) (β = 0.149, p = .011) were positively correlated with serum Angpt-2/Angpt-1 ratio, while residual renal function (RRF) (β= -0.219, p < .001) was negatively correlated with serum Angpt-2/Angpt-1 ratio. Multivariate Cox regression analysis showed the high serum Angpt-2/Angpt-1 ratio was an independent predictor of cardiovascular mortality (hazard ratio (HR)=2.467, 95% confidence interval (CI) 1.243-4.895, p = .010) and all-cause mortality (HR = 1.486, 95%CI 1.038-2.127, p = .031). In further subgroup analysis by gender, a significant association was shown in high Angpt-2/Angpt-1 ratio with all-cause mortality in male (p < .05), but not in female patients (p>.05). CONCLUSIONS High Angpt-2/Angpt-1 ratio is an independent risk factor for cardiovascular and all-cause mortality in PD patients.
Collapse
Affiliation(s)
- Han Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Qianhui Song
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Xinyu Su
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Yiwei Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Hao Yan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zhenyuan Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Jiangzi Yuan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Jiaying Huang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Wei Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| |
Collapse
|
5
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
6
|
Cazeneuve N, Bouché O, Leger J, Borg C, Labbe-Devilliers C, Lucidarme O, Tasu JP, Manfredi S, Aubé C, Trillaud H, Manzoni P, Marcus C, Terrebonne E, Douillard JY, Chautard R, Lobet S, Scotto B, Bleuzen A, Lecomte T. Visceral fat and clinical outcome in patients receiving first-line chemotherapy with bevacizumab for metastatic colorectal cancer. Clin Res Hepatol Gastroenterol 2024; 48:102380. [PMID: 38788975 DOI: 10.1016/j.clinre.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Visceral fat produces angiogenic factors such as vascular endothelial growth factor that promote tumoral growth. However, its influence on outcome for patients with advanced cancer treated with anti-angiogenic agents is controversial. AIMS The aim of this study was to determine whether visceral fat volume, visceral fat area and body mass index are associated with outcome in patients receiving first-line bevacizumab-based treatment for metastatic colorectal cancer. METHODS This multicenter prospective study included 103 patients with metastatic colorectal cancer who received first-line bevacizumab-based chemotherapy. Computed tomography was used to measure visceral fat volume and visceral fat area. Endpoints were tumoral response at 2 months, progression free survival and overall survival. RESULTS Visceral fat volume and visceral fat area, but not body mass index, were significantly associated with better outcome. Using sex-specific median values progression free survival was significantly longer in patients with high visceral fat volume (13.2 versus 9.4 months; p = 0.0043). In the same way, high visceral fat volume and visceral fat area were associated with a significantly better overall survival: 31.3 versus 20.5 months (p = 0.0072) and 29.3 versus 20.5 months (p = 0.0078), respectively. By multivariate analysis, visceral fat volume was associated with longer progression free survival and overall survival. CONCLUSION This study demonstrates that a high visceral fat volume is associated with better outcome in patients receiving first-line bevacizumab-based chemotherapy for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Nicolas Cazeneuve
- Department of Radiology, Hôpital Trousseau, CHRU de Tours, 37044 Tours Cedex 09, France
| | - Olivier Bouché
- Department of Hepatogastroenterology, Hôpital Robert Debré, CHU de Reims, avenue Général Koenig, 51092 Reims Cedex, France
| | - Julie Leger
- INSERM CIC 1415, CHRU de Tours, CHRU de Tours, 37044 Tours Cedex 09, France
| | - Christophe Borg
- Department of Medical Oncology, Hôpital Jean Minjoz, CHRU de Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | | | - Olivier Lucidarme
- Department of Radiology, Hôpital Pitié-Salpétrière, APHP, 47, Boulevard de l'Hôpital, 75013 Paris, France
| | - Jean-Pierre Tasu
- Department of Radiology, CHU de Poitiers, 2 rue Milétrie, 86021 Poitiers Cedex, France
| | - Sylvain Manfredi
- Department of Hepatogastroenterology and Digestive Oncology, CHU de Rennes, Hôpital Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
| | - Christophe Aubé
- Department of Radiology, CHU d'Angers, 4 rue Larrey 49100 Angers, France
| | - Hervé Trillaud
- Department of Diagnostic and Interventional Imaging, Hôpital Saint-André, CHU de Bordeaux, 1 rue Jean Burguet, 33000 Bordeaux, France
| | - Philippe Manzoni
- Department of Radiology, Hôpital Jean Minjoz, CHRU de Besançon, Hôpital Jean Minjoz, CHRU de Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Claude Marcus
- Department of Radiology, Hôpital Robert Debré, CHU de Reims, avenue Général Koenig, 51092 Reims Cedex, France
| | - Eric Terrebonne
- Department of Hepatogastroenterology and Digestive Oncology, Hôpital du Haut Lêvèque, CHU de Bordeaux, avenue Magellan, 33604 Pessac Cedex, France
| | - Jean-Yves Douillard
- Department of Medical Oncology, ICO René Gauducheau, 44805 Saint-Herblain, France
| | - Romain Chautard
- Department of Hepatogastroenterology and Digestive Oncology, Hôpital Trousseau, CHRU de Tours, 37044 Tours Cedex 09, France; UMR INSERM U 1069, Université de Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Sarah Lobet
- UMR INSERM U 1069, Université de Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Béatrice Scotto
- Department of Radiology, Hôpital Trousseau, CHRU de Tours, 37044 Tours Cedex 09, France
| | - Aurore Bleuzen
- Department of Radiology, Hôpital Bretonneau, CHRU de Tours, CHRU de Tours, 37044 Tours Cedex 09, France
| | - Thierry Lecomte
- Department of Hepatogastroenterology and Digestive Oncology, Hôpital Trousseau, CHRU de Tours, 37044 Tours Cedex 09, France; UMR INSERM U 1069, Université de Tours, 10 Boulevard Tonnellé, 37000 Tours, France.
| |
Collapse
|
7
|
Lu Z, Ding L, Jiang X, Zhang S, Yan M, Yang G, Tian X, Wang Q. Single-nucleus RNA transcriptome profiling reveals murine adipose tissue endothelial cell proliferation gene networks involved in obesity development. Arch Biochem Biophys 2024; 757:110029. [PMID: 38729594 DOI: 10.1016/j.abb.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Endothelial cells play an important role in the metabolism of adipose tissue (AT). This study aimed to analyze the changes that adipose tissue in AT endothelial cells undergo during the development of obesity, using single-nucleus RNA sequence (snRNA-seq). Mouse paraepididymal AT cells were subjected to snRNA-seq with the 10X Genomics platform. The cell types were then clustered using t-distributed stochastic neighbor embedding and unbiased computational informatics analyses. Protein-protein interactions network was established using the STRING database and visualized using Cytoscape. The dataset was subjected to differential gene enrichment analysis. In total, 21,333 cells acquired from 24 mouse paraepididymal AT samples were analyzed using snRNA-seq. This study identified 18 distinct clusters and annotated macrophages, fibroblasts, epithelial cells, T cells, endothelial cells, stem cells, neutrophil cells, and neutrophil cell types based on representative markers. Cluster 12 was defined as endothelial cells. The proportion of endothelial cells decreased with the development of obesity. Inflammatory factors, such as Vegfa and Prdm16 were upregulated in the medium obesity group but downregulated in the obesity group. Genes, such as Prox1, Erg, Flt4, Kdr, Flt1, and Pecam1 promoted the proliferation of AT endothelial cells and maintained the internal environment of AT. This study established a reference model and general framework for studying the mechanisms, biomarkers, and therapeutic targets of endothelial cell dysfunction-related diseases at the single-cell level.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Ling Ding
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xing Jiang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Sen Zhang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Min Yan
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Guangxin Yang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| |
Collapse
|
8
|
Aliyu U, Umlai UKI, Toor SM, Elashi AA, Al-Sarraj YA, Abou−Samra AB, Suhre K, Albagha OME. Genome-wide association study and polygenic score assessment of insulin resistance. Front Endocrinol (Lausanne) 2024; 15:1384103. [PMID: 38938516 PMCID: PMC11208314 DOI: 10.3389/fendo.2024.1384103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Insulin resistance (IR) and beta cell dysfunction are the major drivers of type 2 diabetes (T2D). Genome-Wide Association Studies (GWAS) on IR have been predominantly conducted in European populations, while Middle Eastern populations remain largely underrepresented. We conducted a GWAS on the indices of IR (HOMA2-IR) and beta cell function (HOMA2-%B) in 6,217 non-diabetic individuals from the Qatar Biobank (QBB; Discovery cohort; n = 2170, Replication cohort; n = 4047) with and without body mass index (BMI) adjustment. We also developed polygenic scores (PGS) for HOMA2-IR and compared their performance with a previously derived PGS for HOMA-IR (PGS003470). We replicated 11 loci that have been previously associated with HOMA-IR and 24 loci that have been associated with HOMA-%B, at nominal statistical significance. We also identified a novel locus associated with beta cell function near VEGFC gene, tagged by rs61552983 (P = 4.38 × 10-8). Moreover, our best performing PGS (Q-PGS4; Adj R2 = 0.233 ± 0.014; P = 1.55 x 10-3) performed better than PGS003470 (Adj R2 = 0.194 ± 0.014; P = 5.45 x 10-2) in predicting HOMA2-IR in our dataset. This is the first GWAS on HOMA2 and the first GWAS conducted in the Middle East focusing on IR and beta cell function. Herein, we report a novel locus in VEGFC that is implicated in beta cell dysfunction. Inclusion of under-represented populations in GWAS has potentials to provide important insights into the genetic architecture of IR and beta cell function.
Collapse
Affiliation(s)
- Usama Aliyu
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Umm-Kulthum Ismail Umlai
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M. Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Asma A. Elashi
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Yasser A. Al-Sarraj
- Qatar Genome Program (QGP), Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), Doha, Qatar
| | | | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Biophysics and Physiology, Weill Cornell Medicine, New York, NY, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
9
|
Wu L, Liao F, Guo X, Li N. The causal effect of adipose tissue on Hodgkin's lymphoma: two-sample Mendelian randomization study and validation. Front Immunol 2024; 15:1400756. [PMID: 38873599 PMCID: PMC11169626 DOI: 10.3389/fimmu.2024.1400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Background Extensive research has been conducted on the correlation between adipose tissue and the risk of malignant lymphoma. Despite numerous observational studies exploring this connection, uncertainty remains regarding a causal relationship between adipose tissue and malignant lymphoma. Methods The increase or decrease in adipose tissue was represented by the height of BMI. The BMI and malignant lymphoma genome-wide association studies (GWAS) used a summary dataset from the OPEN GWAS website. Single-nucleotide polymorphisms (SNPs) that met the criteria of P <5e-8 and LD of r2 = 0.001 in the BMI GWAS were chosen as genetic instrumental variants (IVs). Proxy SNPs with LD of r2 > 0.8 were identified, while palindromic and outlier SNPs were excluded. Mendelian randomization (MR) analysis used five methods, including inverse-variance weighted (IVW) model, weighted median (WM), MR-Egger, simple mode, and weighted mode. Sensitivity assessments included Cochran's Q test, MR-Egger intercept test, and leave-one-out analysis. Participants randomly selected by the National Center for Health Statistics (NHANSE) and newly diagnosed HL patients at Fujian Medical University Union Hospital were used for external validation. Results The results of the MR analysis strongly supported the causal link between BMI and Hodgkin's lymphoma (HL). The research demonstrated that individuals with lower BMI face a significantly increased risk of developing HL, with a 91.65% higher risk (ORIVW = 0.0835, 95% CI 0.0147 - 0.4733, P = 0.005). No signs of horizontal or directional pleiotropy were observed in the MR studies. The validation results aligned with the results from the MR analysis (OR = 0.871, 95% CI 0.826 - 0.918, P< 0.001). And there was no causal relationship between BMI and non-Hodgkin's lymphoma (NHL). Conclusions The MR analysis study demonstrated a direct correlation between lower BMI and HL. This suggested that a decrease in adipose tissue increases the risk of developing HL. Nevertheless, further research is essential to grasp the underlying mechanism of this causal association comprehensively.
Collapse
Affiliation(s)
- Lihua Wu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Translational Medicine Center on Hematology, Fujian Medical University, Fuzhou, China
| | - Fei Liao
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiangli Guo
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Translational Medicine Center on Hematology, Fujian Medical University, Fuzhou, China
| | - Nainong Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Translational Medicine Center on Hematology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Bartkowiak K, Bartkowiak M, Jankowska-Steifer E, Ratajska A, Kujawa M, Aniołek O, Niderla-Bielińska J. Metabolic Syndrome and Cardiac Vessel Remodeling Associated with Vessel Rarefaction: A Possible Underlying Mechanism May Result from a Poor Angiogenic Response to Altered VEGF Signaling Pathways. J Vasc Res 2024; 61:151-159. [PMID: 38615659 DOI: 10.1159/000538361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/09/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Elevated mortality rates in patients with metabolic syndrome (MetS) are partly due to adverse remodeling of multiple organs, which may lead to cardiovascular disease, nonalcoholic fatty liver disease, kidney failure, or other conditions. MetS symptoms, such as obesity, hypertension, hyperglycemia, dyslipidemia, associated with insulin and leptin resistance, are recognized as major cardiovascular risk factors that adversely affect the heart. SUMMARY Pathological cardiac remodeling is accompanied by endothelial cell dysfunction which may result in diminished coronary flow, dysregulated oxygen demand/supply balance, as well as vessel rarefaction. The reduced number of vessels and delayed or inhibited formation of collaterals after myocardial infarction in MetS heart may be due to unfavorable changes in endothelial cell metabolism but also to altered expression of vascular endothelial growth factor molecules, their receptors, and changes in signal transduction from the cell membrane, which severely affect angiogenesis. KEY MESSAGES Given the established role of cardiac vessel endothelial cells in maintaining tissue homeostasis, defining the molecular background underlying vessel dysfunction associated with impaired angiogenesis is of great importance for future therapeutic purposes. Therefore, the aim of this paper was to present current information regarding vascular endothelial growth factor signaling in the myocardium of MetS individuals.
Collapse
Affiliation(s)
- Krzysztof Bartkowiak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kujawa
- Department of Histology and Embryology, Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Olga Aniołek
- Department of Histology and Embryology, Faculty of Medicine, Lazarski University, Warsaw, Poland
| | | |
Collapse
|
11
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
12
|
Song HC, Zhou HC, Gu P, Bao B, Sun Q, Mei TM, Cui W, Yao K, Yao HZ, Zhang SY, Wang YS, Song RP, Wang JZ. Tumour response following preoperative chemotherapy is affected by body mass index in patients with colorectal liver metastases. World J Gastrointest Oncol 2024; 16:331-342. [PMID: 38425385 PMCID: PMC10900158 DOI: 10.4251/wjgo.v16.i2.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Colorectal cancer is the third most prevalent malignancy globally and ranks second in cancer-related mortality, with the liver being the primary organ of metastasis. Preoperative chemotherapy is widely recommended for initially or potentially resectable colorectal liver metastases (CRLMs). Tumour pathological response serves as the most important and intuitive indicator for assessing the efficacy of chemotherapy. However, the postoperative pathological results reveal that a considerable number of patients exhibit a poor response to preoperative chemotherapy. Body mass index (BMI) is one of the factors affecting the tumorigenesis and progression of colorectal cancer as well as prognosis after various antitumour therapies. Several studies have indicated that overweight and obese patients with metastatic colorectal cancer experience worse prognoses than those with normal weight, particularly when receiving first-line chemotherapy regimens in combination with bevacizumab. AIM To explore the predictive value of BMI regarding the pathologic response following preoperative chemotherapy for CRLMs. METHODS A retrospective analysis was performed in 126 consecutive patients with CRLM who underwent hepatectomy following preoperative chemotherapy at four different hospitals from October 2019 to July 2023. Univariate and multivariate logistic regression models were applied to analyse potential predictors of tumour pathological response. The Kaplan-Meier method with log rank test was used to compare progression-free survival (PFS) between patients with high and low BMI. BMI < 24.0 kg/m2 was defined as low BMI, and tumour regression grade 1-2 was defined as complete tumour response. RESULTS Low BMI was observed in 74 (58.7%) patients and complete tumour response was found in 27 (21.4%) patients. The rate of complete tumour response was significantly higher in patients with low BMI (29.7% vs 9.6%, P = 0.007). Multivariate analysis revealed that low BMI [odds ratio (OR) = 4.56, 95% confidence interval (CI): 1.42-14.63, P = 0.011], targeted therapy with bevacizumab (OR = 3.02, 95%CI: 1.10-8.33, P = 0.033), preoperative carcinoembryonic antigen level < 10 ng/mL (OR = 3.84, 95%CI: 1.19-12.44, P = 0.025) and severe sinusoidal dilatation (OR = 0.17, 95%CI: 0.03-0.90, P = 0.037) were independent predictive factors for complete tumour response. The low BMI group exhibited a significantly longer median PFS than the high BMI group (10.7 mo vs 4.7 mo, P = 0.011). CONCLUSION In CRLM patients receiving preoperative chemotherapy, a low BMI may be associated with better tumour response and longer PFS.
Collapse
Affiliation(s)
- Hua-Chuan Song
- Department of General Surgery, Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Hang-Cheng Zhou
- Department of Pathology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Ping Gu
- Department of Pathology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Bing Bao
- Department of Gastrointestinal Surgery, Tongcheng People’s Hospital, Tongcheng 231400, Anhui Province, China
| | - Quan Sun
- Department of Gastrointestinal Surgery, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou 234000, Anhui Province, China
| | - Tian-Ming Mei
- Department of Gastrointestinal Surgery, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou 234000, Anhui Province, China
| | - Wei Cui
- Department of General Surgery, Xuancheng People’s Hospital, Xuancheng 242000, Anhui Province, China
| | - Kang Yao
- Department of General Surgery, Xuancheng People’s Hospital, Xuancheng 242000, Anhui Province, China
| | - Huan-Zhang Yao
- Department of General Surgery, Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Shen-Yu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Yong-Shuai Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Rui-Peng Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Ji-Zhou Wang
- Department of General Surgery, Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
13
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
14
|
Son WH, Park HT, Jeon BH, Ha MS. Moderate intensity walking exercises reduce the body mass index and vascular inflammatory factors in postmenopausal women with obesity: a randomized controlled trial. Sci Rep 2023; 13:20172. [PMID: 37978254 PMCID: PMC10656478 DOI: 10.1038/s41598-023-47403-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Postmenopause, the secretion of female hormones changes, causing excessive fat accumulation in the body and leading to chronic inflammation, which increases the incidence of cardiovascular diseases (CVD). Walking is an easily accessible daily exercise and effective non-pharmacological treatment for reducing obesity and the incidence of CVD. The aim of this study was to investigate the effect of moderate intensity walking exercises on body composition, vascular inflammatory factors, and vascular endothelial growth factor (VEGF) in postmenopausal women with obesity. Twenty-six older postmenopausal women with obesity (ages 68-72) were randomly assigned to control (n = 12, BMI 26.06 ± 1.37) or exercise (n = 14, BMI 26.04 ± 1.94) groups. Following a 12-week moderate intensity walking exercise program, we measured the participants' body composition with an InBody S10 analyzer and assessed blood sera using enzyme-linked immunosorbent assays. There was a significant clustering by weight (p < 0.01), body mass index (p < 0.01), percentage body fat (p < 0.001), high-sensitivity C-reactive protein (p < 0.05), interleukin-6, and tumor necrosis factor-α (p < 0.05) being significantly decreased in the exercise group. Although VEGF levels did not change significantly, a tendency to increase was observed in participants that exercised. Our results indicate that walking exercise may help prevent CVD in postmenopausal women with obesity by reducing obesity and vascular inflammatory factors.
Collapse
Affiliation(s)
- Woo-Hyeon Son
- Institute of Convergence Bio-Health, Dong-A University, 26 Daesingongwon-ro, Seo-gu, Busan, 49201, Republic of Korea
| | - Hyun-Tae Park
- Graduate School of Health Care and Sciences, College of Health Science, Dong-A University, 37, Nakdong-daero 550beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Byeong Hwan Jeon
- Department of Sports and Health Science, College of Arts, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Republic of Korea
| | - Min-Seong Ha
- Laboratory of Sports Conditioning: Nutrition Biochemistry and Neuroscience, Department of Sports Science, College of Arts and Sports, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
15
|
Vlachovsky SG, Di Ciano LA, Oddo EM, Azurmendi PJ, Silberstein C, Ibarra FR. Role of Female Sex Hormones and Immune Response in Salt-Sensitive Hypertension Development: Evidence from Experimental Models. Curr Hypertens Rep 2023; 25:405-419. [PMID: 37676461 DOI: 10.1007/s11906-023-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
PURPOSEOF REVIEW Female sex hormones have systemic effects unrelated to their reproductive function. We describe experiences of different research groups and our own, on aspects related to the importance of female sex hormones on blood pressure (BP) regulation and salt-sensitivity-mediated BP response and salt sensitivity without alterations in BP, as well as renal sodium handling and interactions with the immune system. RECENT FINDINGS Changes in sodium intake in normotensive premenopausal women cause more BP variations than in men. After menopause, women often develop arterial hypertension (HT) with a profile of sodium sensitivity. Besides, experimental results have shown that in adult rat models resembling the postmenopausal hormonal state induced by ovariectomy, controlling BP is not enough to avoid renal and other tissue infiltration with immune cells, which does not occur when sodium intake is low or normal. Therefore, excess sodium promotes an inflammatory state with the involvement of immune cells. The evidence of activation of adaptive immunity, besides changes in T cell subpopulations, includes changes in sodium transporters and receptors. More studies are needed to evaluate the particular sodium sensitivity of women and its meaning. Changes in lifestyle and sodium intake reduction are the main therapeutic steps. However, to face the actual burden of salt-sensitive HT in postmenopausal women and its associated inflammatory/immune changes, it seems reasonable to work on immune cell activity by considering the peripheral blood mononuclear cell phenotypes of molecules and transport proteins related to sodium handle, both to screen for and treat cell activation.
Collapse
Affiliation(s)
- Sandra G Vlachovsky
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Luis A Di Ciano
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
| | - Elisabet M Oddo
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Pablo J Azurmendi
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina
| | - Claudia Silberstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| | - Fernando R Ibarra
- Universidad de Buenos Aires, Instituto de Investigaciones Medicas A. Lanari, Laboratorio de Nefrología Experimental y Bioquímica Molecular, Combatientes de Malvinas 3150, Buenos Aires, 1427, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Instituto de Fisiología y Biofísica B. Houssay (IFIBIO-Houssay), Laboratorio de Fisiología Renal, Paraguay 2155, piso 4, Buenos Aires, 1121, Argentina.
| |
Collapse
|
16
|
Mela V, Agüera Z, Alvarez-Bermudez MD, Martín-Reyes F, Granero R, Sánchez-García A, Oliva-Olivera W, Tomé M, Moreno-Ruiz FJ, Soler-Humanes R, Fernández-Serrano JL, Sánchez-Gallegos P, Martínez-Moreno JM, Sancho-Marín R, Fernández-Aranda F, García-Fuentes E, Tinahones FJ, Garrido-Sánchez L. The Relationship between Depressive Symptoms, Quality of Life and miRNAs 8 Years after Bariatric Surgery. Nutrients 2023; 15:4109. [PMID: 37836393 PMCID: PMC10574314 DOI: 10.3390/nu15194109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: There are conflicting results on whether weight loss after bariatric surgery (BS) might be associated with quality of life (QoL)/depressive symptomatology. We aim to determine whether BS outcomes are associated with QoL/depressive symptomatology in studied patients at the 8-year follow-up after BS, as well as their relationship with different serum proteins and miRNAs. (2) Methods: A total of 53 patients with class III obesity who underwent BS, and then classified into "good responders" and "non-responders" depending on the percentage of excess weight lost (%EWL) 8 years after BS (%EWL ≥ 50% and %EWL < 50%, respectively), were included. Basal serum miRNAs and different proteins were analysed, and patients completed tests to evaluate QoL/depressive symptomatology at 8 years after BS. (3) Results: The good responders group showed higher scores on SF-36 scales of physical functioning, role functioning-physical, role functioning-emotional, body pain and global general health compared with the non-responders. The expression of hsa-miR-101-3p, hsa-miR-15a-5p, hsa-miR-29c-3p, hsa-miR-144-3p and hsa-miR-19b-3p were lower in non-responders. Hsa-miR-19b-3p was the variable associated with the response to BS in a logistic regression model. (4) Conclusions: The mental health of patients after BS is limited by the success of the intervention. In addition, the expression of basal serum miRNAs related to depression/anxiety could predict the success of BS.
Collapse
Affiliation(s)
- Virginia Mela
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Zaida Agüera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Departament d’Infermeria de Salut Pública, Salut Mental i Maternoinfantil, Escola d’Infermeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Maria D. Alvarez-Bermudez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Roser Granero
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Ana Sánchez-García
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Wilfredo Oliva-Olivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Monica Tomé
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain;
| | - Francisco J. Moreno-Ruiz
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain;
| | - Rocío Soler-Humanes
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; (R.S.-H.); (J.L.F.-S.)
| | - Jose L. Fernández-Serrano
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; (R.S.-H.); (J.L.F.-S.)
| | - Pilar Sánchez-Gallegos
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Jose M. Martínez-Moreno
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Raquel Sancho-Marín
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Fernando Fernández-Aranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Psychiatry, University Hospital of Bellvitge, 08907 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Lourdes Garrido-Sánchez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| |
Collapse
|
17
|
Bilgihan MT, Ciftciler R. The Effect of Obesity and Body Mass Index on Hematologic Malignancies. Metab Syndr Relat Disord 2023; 21:353-361. [PMID: 37410513 DOI: 10.1089/met.2023.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
A thorough examination of the available literature has revealed a well-established association of obesity and high body mass index (BMI) with an increased risk of various types of cancers, including hematologic malignancies. Specifically, the studies reviewed indicate a clear correlation between obesity and an increased risk of leukemias, lymphomas, multiple myeloma, myelodysplastic syndrome, and myeloproliferative diseases. Despite the established association of obesity and high BMI with hematologic malignancies, the underlying mechanisms remain largely undetermined. The development of hematologic malignancies may be influenced by several mechanisms associated with obesity and high BMI, including chronic inflammation, hormonal imbalances, adiposopathies, and metabolic dysregulation. Furthermore, there is mounting evidence indicating that obesity and high BMI may have a negative impact on the response to treatment and overall survival in patients with hematologic malignancies. This article aims to increase awareness and summarize the current state of research on the impact of obesity on hematologic malignancies, including the mechanisms by which obesity may influence the development and progression of these diseases. In addition, the current review highlights the need for effective weight management strategies in patients with hematologic malignancies to improve outcomes and mitigate the risk of complications.
Collapse
Affiliation(s)
| | - Rafiye Ciftciler
- Department of Hematology, Selcuk University, Faculty of Medicine, Konya, Turkey
| |
Collapse
|
18
|
Yoshida H, Fujiwara K. Adipose tissue area is a predictive biomarker for the efficacy of pegylated liposomal doxorubicin in platinum-refractory/resistant ovarian cancer. Cancer Med 2023. [PMID: 37184128 PMCID: PMC10358198 DOI: 10.1002/cam4.6086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Pegylated liposomal doxorubicin (PLD), an anthracycline agent, is widely used as a treatment option for platinum-refractory/resistant epithelial ovarian cancer (EOC). Although only a subset of patients with platinum-refractory/resistant EOC derive benefit from PLD, predictive biomarkers for patients who will respond to the drug have not yet been established. Here, we evaluated the relationship between adipose tissue status and PLD efficacy in patients with platinum-refractory/resistant EOC. METHODS Patients with platinum-refractory/resistant EOC who were treated with single-agent PLD were included in this retrospective cohort study. Adipose tissue areas including visceral adipose tissue area (VATA), subcutaneous adipose tissue area (SATA), and visceral to subcutaneous adipose tissue area ratio (VSR) were calculated prior to the initiation of PLD using computed tomography images. The associations of adipose tissue areas with objective response rate (ORR) and patient survival were evaluated. RESULTS Forty-four patients with platinum-refractory/resistant EOC who received single-agent PLD were included. Subjects were categorized into high and low groups according to the median VATA, SATA, and VSR values, and body mass index (BMI). The ORR of PLD was significantly lower in the VSR-high group than in the VSR-low group (p = 0.0089). Patients in the high VSR group showed significantly shorter progression-free survival (PFS) compared with patients in the low VSR group (median, 4.0 vs. 8.5 months; p = 0.020). In the multivariable analysis, high VSR was a significant prognostic factor for shorter PFS (hazard ratio, 2.07; 95% confidence interval, 1.05-4.19; p = 0.035). VATA, SATA, and BMI showed no significant association with ORR and survival of patients who received PLD. CONCLUSIONS High VSR is associated with lower ORR and shorter PFS in patients with platinum-refractory/resistant EOC who received single-agent PLD. VSR is a robust predictive biomarker for the efficacy of PLD.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| |
Collapse
|
19
|
Manell H, Shen Q, Chowdhury A, Roomp K, Ciba I, Weghuber D, Kamali-Moghaddam M, Bergsten P, Forslund A. Biomarker screening in children and adolescents reveals that CUB domain-containing protein 1 is associated with obesity and that hepatocyte growth factor is associated with weight gain. OBESITY MEDICINE 2023; 39:100481. [DOI: 10.1016/j.obmed.2023.100481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
21
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
22
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Hueso L, Marques P, Morant B, Gonzalez-Navarro H, Ortega J, Real JT, Sanz MJ, Piqueras L. CCL17 and CCL22 chemokines are upregulated in human obesity and play a role in vascular dysfunction. Front Endocrinol (Lausanne) 2023; 14:1154158. [PMID: 37124725 PMCID: PMC10130371 DOI: 10.3389/fendo.2023.1154158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background/Aims Chemokines are known to play critical roles mediating inflammation in many pathophysiological processes. The aim of this study was to investigate the role of chemokine receptor CCR4 and its ligands CCL17 and CCL22 in human morbid obesity. Methods Circulating levels of CCL17 and CCL22 were measured in 60 morbidly obese patients (mean age, 45 ± 1 years; body mass index/BMI, 44 ± 1 kg/m2) who had undergone bariatric bypass surgery, and 20 control subjects. Paired subcutaneous (SCAT) and visceral adipose tissue (VCAT) from patients were analysed to measure expression of CCR4 and its ligands by RT-PCR, western blot and immunohistochemical analysis. The effects of CCR4 neutralization ex vivo on leukocyte-endothelial cells were also evaluated. Results Compared with controls, morbidly obese patients presented higher circulating levels of CCL17 (p=0.029) and CCL22 (p<0.001) and this increase was positively correlated with BMI (p=0.013 and p=0.0016), and HOMA-IR Index (p=0.042 and p< 0.001). Upregulation of CCR4, CCL17 and CCL22 expression was detected in VCAT in comparison with SCAT (p<0.05). Using the parallel-plate flow chamber model, blockade of endothelial CCR4 function with the neutralizing antibody anti-CCR4 in morbidly obese patients significantly reduced leucocyte adhesiveness to dysfunctional endothelium, a key event in atherogenesis. Additionally, CCL17 and CCL22 increased activation of the ERK1/2 mitogen-activated protein kinase signalling pathway in human aortic endothelial cells, which was significantly reduced by CCR4 inhibition (p=0.016 and p<0.05). Conclusion Based on these findings, pharmacological modulation of the CCR4 axis could represent a new therapeutic approach to prevent adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Luisa Hueso
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | - Brenda Morant
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Herminia Gonzalez-Navarro
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Biochemistry, University of Valencia, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquin Ortega
- Surgery Service, University Clinic Hospital of Valencia, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
| | - José T. Real
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| | - María J Sanz
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Pharmacology, University of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| | - Laura Piqueras
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Pharmacology, University of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| |
Collapse
|
24
|
Patil D, Sumathy T, Shyamprasad A. Relevance of serum vascular endothelial growth factor (VEGF) and serum interleukin-10 in the severity of psoriasis in South Indian patients: A case–control study. TURKISH JOURNAL OF DERMATOLOGY 2023. [DOI: 10.4103/tjd.tjd_46_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
25
|
Wahb AMSE, Elsaid NBA, Abouzouna ZS, Habieb MSE, Arafat ESE. Vascular endothelial growth factor C gene expression and its serum level as potential biomarkers for obesity in Egyptian children. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Louis F, Sowa Y, Irie S, Higuchi Y, Kitano S, Mazda O, Matsusaki M. Injectable Prevascularized Mature Adipose Tissues (iPAT) to Achieve Long-Term Survival in Soft Tissue Regeneration. Adv Healthc Mater 2022; 11:e2201440. [PMID: 36103662 DOI: 10.1002/adhm.202201440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 09/01/2022] [Indexed: 01/28/2023]
Abstract
Soft tissue regeneration remains a challenge in reconstructive surgery. So far, both autologous fat implantations and artificial implants methods used in clinical applications lead to various disadvantages and limited lifespan. To overcome these limitations and improve the graft volume maintenance, reproducing a mature adipose tissue already including vasculature structure before implantation can be the solution. Therefore, injectable prevascularized adipose tissues (iPAT) are made from physiological collagen microfibers mixed with human mature adipocytes, adipose-derived stem cells, and human umbilical vein endothelial cells, embedded in fibrin gel. Following murine subcutaneous implantation, the iPAT show a higher cell survival (84% ± 6% viability) and volume maintenance after 3 months (up to twice heavier) when compared to non-prevascularized balls and liposuctioned fat implanted controls. This higher survival can be explained by the greater amount of blood vessels found (up to 1.6-fold increase), with balanced host anastomosis (51% ± 1% of human/mouse lumens), also involving infiltration by the lymphatic and neural vasculature networks. Furthermore, with the cryopreservation possibility enabling their later reinjection, the iPAT technology has the merit to allow noninvasive soft tissue regeneration for long-term outcomes.
Collapse
Affiliation(s)
- Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,TOPPAN INC, Taito, Tokyo, 110-0016, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,TOPPAN INC, Taito, Tokyo, 110-0016, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
27
|
Wang Y, Hu C. Leptin and Asthma: What Are the Interactive Correlations? Biomolecules 2022; 12:biom12121780. [PMID: 36551211 PMCID: PMC9775505 DOI: 10.3390/biom12121780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Leptin is an adipokine directly correlated with the proinflammatory obese-associated phenotype. Leptin has been demonstrated to inhibit adipogenesis, promote fat demarcation, promote a chronic inflammatory state, increase insulin sensitivity, and promote angiogenesis. Leptin, a regulator of the immune response, is implicated in the pathology of asthma. Studies involved in the key cell reaction and animal models of asthma have provided vital insights into the proinflammatory role of leptin in asthma. Many studies described the immune cell and related cellular pathways activated by leptin, which are beneficial in asthma development and increasing exacerbations. Subsequent studies relating to animal models support the role of leptin in increasing inflammatory cell infiltration, airway hyperresponsiveness, and inflammatory responses. However, the conclusive effects of leptin in asthma are not well elaborated. In the present study, we explored the general functions and the clinical cohort study supporting the association between leptin and asthma. The main objective of our review is to address the knowns and unknowns of leptin on asthma. In this perspective, the arguments about the different faces of leptin in asthma are provided to picture the potential directions, thus yielding a better understanding of asthma development.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
28
|
Selected Factors of Vascular Changes: The Potential Pathological Processes Underlying Primary Headaches in Children. CHILDREN 2022; 9:children9111660. [DOI: 10.3390/children9111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Background: The prevalence, social consequences and complicated pathogenesis make headaches in children a significant clinical issue. Studies in adults suggest that primary headaches could be the first sign of atherosclerosis and platelet aggregation. Aim: To analyze the blood levels of selected biomarkers of vascular changes potentially associated with a higher risk of atherosclerosis in children with primary headaches. Methods: The medical family history, brain-derived neurotrophic factor (BDNF), soluble CD40 ligands (sCD40L), endothelial plasminogen activator inhibitor (PAI I), vascular endothelial growth factor (VEGF) and intima-media thickness (IMT) measurements were performed in the 83 children (52 with primary headaches, 31 controls). Selected factors were compared with basic laboratory parameters that are potentially related to atherosclerosis: C-reactive protein (CRP) and lipid concentration. Results: There were no significant differences in biomarkers of vascular changes in the study group and controls in general. In the study group, boys had a higher BDNF level than girls (p = 0.046). Normal-weight migraine patients had significantly higher PAI-I levels than controls (p = 0.034). A positive correlation between PAI-1 and triglycerides (TG) was observed. IMT did not differ between children with primary headaches and controls; however, IMT showed a positive correlation with BMI z-score and TG. Children with headaches had, more often, a positive family history of cardiovascular disease (p = 0.049). Conclusions: There were no clear clinical changes indicative of atherosclerosis in the study population. However, some trends are visible. Primary headaches are more often related to a family history of cardiovascular diseases. IMT is associated with TG levels and BMI z-score. The measured biomarkers of vascular changes show mutual relations.
Collapse
|
29
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
30
|
Cominetti O, Núñez Galindo A, Corthésy J, Carayol J, Germain N, Galusca B, Estour B, Hager J, Gheldof N, Dayon L. Proteomics reveals unique plasma signatures in constitutional thinness. Proteomics Clin Appl 2022; 16:e2100114. [PMID: 35579096 PMCID: PMC9787820 DOI: 10.1002/prca.202100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Studying the plasma proteome of control versus constitutionally thin (CT) individuals, exposed to overfeeding, may give insights into weight-gain management, providing relevant information to the clinical entity of weight-gain resistant CT, and discovering new markers for the condition. EXPERIMENTAL DESIGN Untargeted protein relative quantification of 63 CT and normal-weight individuals was obtained in blood plasma at baseline, during and after an overfeeding challenge using mass spectrometry-based proteomics. RESULTS The plasma proteome of CT subjects presented limited specificity with respect to controls at baseline. Yet, CT showed lower levels of inflammatory C-reactive protein and larger levels of protective insulin-like growth factor-binding protein 2. Differences were more marked during and after overfeeding. CT plasma proteome showed larger magnitude and significance in response, suggesting enhanced "resilience" and more rapid adaptation to changes. Four proteins behaved similarly between CT and controls, while five were regulated in opposite fashion. Ten proteins were differential during overfeeding in CT only (including increased fatty acid-binding protein and glyceraldehyde-3-phosphate dehydrogenase, and decreased apolipoprotein C-II and transferrin receptor protein 1). CONCLUSIONS AND CLINICAL RELEVANCE This first proteomic profiling of a CT cohort reveals different plasma proteomes between CT subjects and controls in a longitudinal clinical trial. Our molecular observations further support that the resistance to weight gain in CT subjects appears predominantly biological. CLINICALTRIALS gov Identifier: NCT02004821.
Collapse
Affiliation(s)
- Ornella Cominetti
- Nestlé Institute of Food Safety & Analytical SciencesNestlé ResearchLausanneSwitzerland
| | - Antonio Núñez Galindo
- Nestlé Institute of Food Safety & Analytical SciencesNestlé ResearchLausanneSwitzerland
| | - John Corthésy
- Nestlé Institute of Food Safety & Analytical SciencesNestlé ResearchLausanneSwitzerland
| | - Jérôme Carayol
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland,Present address:
Playtika Switzerland SARue du Port‐Franc 2ALausanne1003Switzerland
| | - Natacha Germain
- Division of EndocrinologyDiabetes, Metabolism and Eating Disorders, CHU St‐EtienneFrance
| | - Bogdan Galusca
- Division of EndocrinologyDiabetes, Metabolism and Eating Disorders, CHU St‐EtienneFrance
| | - Bruno Estour
- Division of EndocrinologyDiabetes, Metabolism and Eating Disorders, CHU St‐EtienneFrance
| | - Jörg Hager
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland
| | - Nele Gheldof
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland,Present address:
VPA ‐ AVP‐R‐Administration, EPFLBI A2 483, Station 7Lausanne1015Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety & Analytical SciencesNestlé ResearchLausanneSwitzerland,Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
31
|
Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V, Rajasekaran K. Colon Cancer and Obesity: A Narrative Review. Cureus 2022; 14:e27589. [PMID: 36059323 PMCID: PMC9433794 DOI: 10.7759/cureus.27589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 11/05/2022] Open
Abstract
Obesity has played a crucial role in the pathogenesis of various cancers, including colorectal cancer (CRC). Obesity has shown to increase the blood levels of insulin, insulin-like growth factor-1 (IGF-1), leptin, resistin, inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) which in turn acts via various signaling pathways to induce colonic cell proliferation and in turn CRC development. It has been shown that estrogen can prevent and cause CRC based on which receptor it acts. Obese patients have relatively low levels of ghrelin and adiponectin that inhibit cell proliferation which further adds to their risk of developing CRC. Obesity can alter the microbial flora of the gut in such a way as to favor carcinogenesis. Weight loss and good physical activity have been related to a reduced incidence of CRC; obese individuals should be screened for CRC and counseled about the importance of weight reduction, diet, and exercise. The best way of screening is using BMI and waist circumference (WC) to calculate the CRC risk in obese people. This study has reviewed the association between obesity and its pathophysiological association with CRC development.
Collapse
|
32
|
Duansak N, Schmid-Schönbein GW, Srisawat U. Anti-Obesity Effect of Rice Bran Extract on High-Fat Diet-Induced Obese Mice. Prev Nutr Food Sci 2022; 27:172-179. [PMID: 35919566 PMCID: PMC9309069 DOI: 10.3746/pnf.2022.27.2.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity involving adipose tissue growth and development are associated with angiogenesis and extracellular matrix remodeling. Rice bran has antioxidant and cardioprotective properties, and can act as a food supplement with potential health benefits, such as lowering blood pressure, hepatic steatosis, and inflammation. Therefore, we hypothesized that rice bran extract (RBE) can regulate adipose tissue growth and obesity. Male Institute of Cancer Research mice were fed with a high-fat diet (HFD) for 8 weeks and then supplemented with 220 and 1,100 mg/kg/d RBE while the low-fat diet group (control) were not. In addition to body weight, adipose tissue mass, and vessel density, we evaluated the mRNA expression of angiogenic factors such as matrix metalloproteinases, Mmp-2, Mmp-9, and the vascular endothelial growth factor (Vegf) in visceral and subcutaneous adipose tissues using real-time polymerase chain reaction. Administration of RBE to HFD-induced obese mice reduced the body weight and adipose tissue mass compared with untreated mice. It also decreased blood vessel density in the adipose tissue. Furthermore, RBE downregulated Vegf and Mmp-2 mRNA levels in visceral fat tissue. These results demonstrate that RBE, at high concentrations, significantly reduces adipose tissue mass and prevents obesity development in HFD-induced obese mice, which might be partly mediated via an anti-angiogenic mechanism.
Collapse
Affiliation(s)
- Naphatsanan Duansak
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Klong Luang, Pathumthani 12120, Thailand
| | - Geert W. Schmid-Schönbein
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-04121, USA
| | - Umarat Srisawat
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
33
|
Duhon BH, Phan TT, Taylor SL, Crescenzi RL, Rutkowski JM. Current Mechanistic Understandings of Lymphedema and Lipedema: Tales of Fluid, Fat, and Fibrosis. Int J Mol Sci 2022; 23:6621. [PMID: 35743063 PMCID: PMC9223758 DOI: 10.3390/ijms23126621] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Lymphedema and lipedema are complex diseases. While the external presentation of swollen legs in lower-extremity lymphedema and lipedema appear similar, current mechanistic understandings of these diseases indicate unique aspects of their underlying pathophysiology. They share certain clinical features, such as fluid (edema), fat (adipose expansion), and fibrosis (extracellular matrix remodeling). Yet, these diverge on their time course and known molecular regulators of pathophysiology and genetics. This divergence likely indicates a unique route leading to interstitial fluid accumulation and subsequent inflammation in lymphedema versus lipedema. Identifying disease mechanisms that are causal and which are merely indicative of the condition is far more explored in lymphedema than in lipedema. In primary lymphedema, discoveries of genetic mutations link molecular markers to mechanisms of lymphatic disease. Much work remains in this area towards better risk assessment of secondary lymphedema and the hopeful discovery of validated genetic diagnostics for lipedema. The purpose of this review is to expose the distinct and shared (i) clinical criteria and symptomatology, (ii) molecular regulators and pathophysiology, and (iii) genetic markers of lymphedema and lipedema to help inform future research in this field.
Collapse
Affiliation(s)
- Bailey H. Duhon
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| | - Thien T. Phan
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| | - Shannon L. Taylor
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA;
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle L. Crescenzi
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA;
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A & M University College of Medicine, Bryan, TX 77807, USA; (B.H.D.); (T.T.P.)
| |
Collapse
|
34
|
Błaszczyk E, Gawlik J, Gieburowska J, Tokarska A, Kimsa-Furdzik M, Hibner G, Francuz T, Gawlik A. Effect of Growth Hormone Treatment on the Concentration of Selected Metabolic Markers in Girls With Turner Syndrome. Front Endocrinol (Lausanne) 2022; 13:818735. [PMID: 35769087 PMCID: PMC9234118 DOI: 10.3389/fendo.2022.818735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background As Turner syndrome (TS) predisposes to obesity and metabolic disorders, and their complications, such as cardiovascular diseases, are the main causes of shortened life expectancy in patients with TS, new metabolic markers that could serve as early predictors of dysmetabolic state are sought. Objective Assessment of MMP-1 (matrix metalloproteinase-1), MMP-2 (matrix metalloproteinase-2), MMP-9 (matrix metallopeptidase-9), BDNF (brain-derived neurotrophic factor), GDNF (glial cell line-derived neurotrophic factor), and VEGF (vascular endothelial growth factor) before the onset of growth hormone (GH) therapy and then during GH treatment as well as markers assessment during GH medication in girls with TS to establish marker stability and repeatability, and the impact of GH on markers concentration. Method The concentrations of circulating MMP-1, MMP-2, MMP-9, BDNF, GDNF, and VEGF were measured in nine girls with TS before the onset of GH therapy and then after at least 3 months of treatment period. Subsequently, markers concentration was determined in 17 girls during GH medication, with the first determination after at least a 3-month treatment period. The patients' clinical and biochemical phenotypes were determined by weight, height, BMI, total cholesterol, HDL cholesterol, triglycerides, and glucose concentration. Results Comparison of markers concentration revealed a significantly higher concentration of MMP-2 in patients undergoing GH treatment (132.1 ± 42.05) than before the onset of therapy (105.0 ± 45.5, p=0.045). The values of the first measurement of VEGF in girls with TS undergoing GH therapy were significantly higher than those during the second measurement (30.9 ± 33.4 vs. 12.5 ± 11.7, p=0.029). There were no statistically significant differences between the measurements of the remaining markers concentration at any stage of the analysis. Conclusion Increase in MMP-2 concentration is visible during GH therapy in comparison to the pre-GH period in girls with TS which demands confirmation in subsequent tests. The role of VEGF requires further studies in the context of carbohydrate-lipid disturbances in girls with TS and its association with GH treatment.
Collapse
Affiliation(s)
- Ewa Błaszczyk
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jakub Gawlik
- Student Scientific Society, Department of Biophysics, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Gieburowska
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Tokarska
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Kimsa-Furdzik
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Hibner
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aneta Gawlik
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
35
|
Osorio-Conles Ó, Vega-Beyhart A, Ibarzabal A, Balibrea JM, Vidal J, de Hollanda A. Biological Determinants of Metabolic Syndrome in Visceral and Subcutaneous Adipose Tissue from Severely Obese Women. Int J Mol Sci 2022; 23:ijms23042394. [PMID: 35216509 PMCID: PMC8878297 DOI: 10.3390/ijms23042394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolic syndrome (MetS) is a cluster of the most dangerous heart attack risk factors: diabetes or raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. The goal of this study is to compare the state of the main features of obesity-associated white adipose tissue (WAT) dysfunction in 66 women with severe obesity without (MetS-) or with MetS (MetS+). Fat cell area, adipocyte size distribution and histological fibrosis were analysed in visceral (VAT) and abdominal subcutaneous WAT (SAT) in 33 age- and BMI-matched pairs of MetS- and MetS+ subjects. The mRNA expression of 93 genes implicated in obesity-associated WAT dysfunction was analysed by RT-qPCR in both fat depots. MetS+ females showed higher adipocyte hypertrophy in both fat depots and increased fibrosis and expression of macrophage and hypoxia markers in SAT. Transcriptional data suggest increased fatty acid oxidation in SAT and impaired thermogenesis and extracellular matrix remodelling in VAT from MetS+ subjects. A sPLS-DA model, including SAT expression of PPARA and LEPR genes identified MetS with an AUC = 0.87. Despite equal age, BMI and body composition, MetS+ females display morphological and transcriptional differences in both WAT depots, especially in SAT. These factors may contribute to the transition to MetS.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Correspondence: (Ó.O.-C.); (A.d.H.); Tel.: +34-932275707 (ext. 2910) (Ó.O.-C.); +34-932279846 (A.d.H.); Fax: +34932275589 (A.d.H.)
| | - Arturo Vega-Beyhart
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.I.); (J.M.B.)
| | - José María Balibrea
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.I.); (J.M.B.)
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (Ó.O.-C.); (A.d.H.); Tel.: +34-932275707 (ext. 2910) (Ó.O.-C.); +34-932279846 (A.d.H.); Fax: +34932275589 (A.d.H.)
| |
Collapse
|
36
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
37
|
Chu C, Chen X, Hasan AA, Szakallova A, Krämer BK, Tepel M, Hocher B. Angiopoietin-2 predicts all-cause mortality in male but not female end-stage kidney disease patients on hemodialysis. Nephrol Dial Transplant 2021; 37:1348-1356. [PMID: 34792167 PMCID: PMC9217660 DOI: 10.1093/ndt/gfab332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background Angiopoietin-2 (Ang-2) plays a pivotal role in pathological vascular remodeling and angiogenesis. Both vascular mechanisms are active in patients with end-stage renal disease (ESRD) and may contribute to the high mortality in these patients. The aim of this multicenter prospective cohort study was to investigate baseline serum Ang-2 concentrations in ESRD patients on hemodialysis (HD) for their ability to predict all-cause mortality. Methods We conducted a prospective cohort study in 340 stable HD patients from different chronic dialysis centers in Berlin, Germany. The primary endpoint was all-cause mortality during a 5-year follow-up period. Blood samples and clinical data were collected at baseline. Serum Ang-2 was measured with a validated enzyme-linked immunosorbent assay (Biomedica, Vienna, Austria). Results A total of 313 HD patients (206 men and 107 women) were finally included in the study. Receiver operating characteristic (ROC) analysis of Ang-2 concentrations yielded an area under the curve (AUC) of 0.65 (P < 0.0001) for predicting all-cause mortality in the entire study population and was used to determine the optimal cut-off (111.0 pmol/L) for all-cause mortality. Kaplan–Meier survival analysis indicated that male but not female end-stage kidney disease patients on HD with higher Ang-2 concentrations had a significantly lower survival (log-rank test, P < 0.0001 and P = 0.380 for male and female patients, respectively). Multivariable Cox regression analyses adjusted for age, comorbidity, smoking, dialysis vintage, serum creatinine, hemoglobin, C-reactive protein, serum albumin, intact parathyroid hormone (iPTH), low-density lipoprotein (LDL) and Kt/V likewise indicated that elevated Ang-2 concentrations are associated with all-cause mortality in male {hazard ratio [HR] 3.294 [95% confidence interval (CI) 1.768–6.138]; P = 0.0002} but not in female end-stage kidney disease patients on HD [HR 1.084 (95% CI 0.476–2.467); P = 0.847]. Conclusion Ang-2 at baseline is independently associated with all-cause mortality in male ESRD patients on HD.
Collapse
Affiliation(s)
- Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Martin Tepel
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
38
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
39
|
Al-Rashed F, Sindhu S, Al Madhoun A, Ahmad Z, AlMekhled D, Azim R, Al-Kandari S, Wahid MAA, Al-Mulla F, Ahmad R. Elevated resting heart rate as a predictor of inflammation and cardiovascular risk in healthy obese individuals. Sci Rep 2021; 11:13883. [PMID: 34230580 PMCID: PMC8260607 DOI: 10.1038/s41598-021-93449-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The role of leukocyte inflammatory markers and toll like receptors (TLRs)2/4 in pathologies associated with elevated resting heart rate (RHR) levels in healthy obese (HO) individuals is not well elucidated. Herein, we investigated the relationship of RHR with expression of leukocyte-inflammatory markers and TLRs in HO individuals. 58-obese and 57-lean participants with no history of a major medical condition, were recruited in this study. In HO individuals, the elevated-RHR correlated positively with diastolic blood pressure, cholesterol, pro-inflammatory monocytes CD11b+CD11c+CD206- phenotype (r = 0.52, P = 0.0003) as well as with activated T cells CD8+HLA-DR+ phenotype (r = 0.27, P = 0.039). No association was found between RHR and the percentage of CD16+CD11b+ neutrophils. Interestingly, elevated RHR positively correlated with cells expressing TLR4 and TLR2 (CD14+TLR4+, r = 0.51, P ≤ 0.0001; and CD14+TLR2+, r = 0.42, P = 0.001). TLR4+ expressing cells also associated positively with the plasma concentrations of proinflammatory or vascular permeability/matrix modulatory markers including TNF-α (r = 0.36, P = 0.005), VEGF (r = 0.47, P = 0.0002), and MMP-9 (r = 0.53, P ≤ 0.0001). Multiple regression revealed that RHR is independently associated with CD14+TLR4+ monocytes and VEGF. We conclude that in HO individuals, increased CD14+TLR4+ monocytes and circulatory VEGF levels associated independently with RHR, implying that RHR monitoring could be used as a non-invasive clinical indicator to identify healthy obese individuals at an increased risk of developing inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, 15462, Dasman, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman, Kuwait
| | - Zunair Ahmad
- Royal College of Surgeons in Ireland, Busaiteen, Bahrain
| | - Dawood AlMekhled
- School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Rafaat Azim
- Royal College of Surgeons in Ireland, Busaiteen, Bahrain
| | - Sarah Al-Kandari
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, 15462, Dasman, Kuwait
| | | | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, P.O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
40
|
Ribatti D, Annese T, Tamma R. Adipocytes, mast cells and angiogenesis. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:1051-1056. [PMID: 34171054 PMCID: PMC8343648 DOI: 10.47162/rjme.61.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Healthy adipose tissue contains a wide variety of innate and adaptive immune cells, including macrophages, dendritic cells, mast cells, eosinophils, neutrophils, and lymphocytes. Numerous signaling molecules in the adipose microenvironment can positively or negatively modulate angiogenic processes, regulate the interaction between the vascular system and adipocytes, and participate in tumor progression. Mast cells are involved in the new formation or metabolism of fat, are present in abundant quantities in fatty tissue, among fat cells, and a number of mediators released from mast cells play a role in adipogenesis. Moreover, mast cells produce several pro-angiogenic factors and are involved in tumor angiogenesis. In this context, the angiogenic effect might be amplified when the adipocytes and mast cells act in concert, and treatment of adipose tissue- and mast cell-associated cancers with anti-angiogenic drugs may represent an alternative or adjuvant strategy for the treatment of these tumors.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy;
| | | | | |
Collapse
|
41
|
SAINI SIMMI, WALIA GAGANDEEPKAUR, SACHDEVA MOHINDERPAL, GUPTA VIPIN. Genomics of body fat distribution. J Genet 2021. [DOI: 10.1007/s12041-021-01281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Garay-Sevilla ME, Gomez-Ojeda A, González I, Luévano-Contreras C, Rojas A. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Mol Cell Biochem 2021; 476:1555-1573. [PMID: 33398664 DOI: 10.1007/s11010-020-04022-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Far beyond the compelling proofs supporting that the metabolic syndrome represents a risk factor for diabetes and cardiovascular diseases, a growing body of evidence suggests that it is also a risk factor for different types of cancer. However, the involved molecular mechanisms underlying this association are not fully understood, and they have been mainly focused on the individual contributions of each component of the metabolic syndrome such as obesity, hyperglycemia, and high blood pressure to the development of cancer. The Receptor for Advanced Glycation End-products (RAGE) axis activation has emerged as an important contributor to the pathophysiology of many clinical entities, by fueling a chronic inflammatory milieu, and thus supporting an optimal microenvironment to promote tumor growth and progression. In the present review, we intend to highlight that RAGE axis activation is a crosswise element on the potential mechanistic contributions of some relevant components of metabolic syndrome into the association with cancer.
Collapse
Affiliation(s)
- Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Gomez-Ojeda
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Ileana González
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Claudia Luévano-Contreras
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
43
|
Sex Hormones in Lymphedema. Cancers (Basel) 2021; 13:cancers13030530. [PMID: 33573286 PMCID: PMC7866787 DOI: 10.3390/cancers13030530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Lymphedema is a life-long disease that affects a large number of patients treated for breast-, gynecological-, and urologic cancers in Western countries. Given that hormone levels are strongly modified in these conditions, and that patients widely undergo through hormone therapy, it is tempting to speculate that hormones might be key regulators in the maintenance of lymphedema. Despite an obvious prevalence for women, the role of sex hormones and gender has been poorly investigated in this pathology. This review aims to decipher how sex hormones interact with lymphatic vessels and whether hormone therapy could participate in lymphedema development. Abstract Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return resulting in swelling of the extremities and accumulation of undrained interstitial fluid/lymph that results in fibrosis and adipose tissue deposition in the limb. Whereas it is clearly established that primary lymphedema is sex-linked with an average ratio of one male for three females, the role of female hormones, in particular estrogens, has been poorly explored. In addition, secondary lymphedema in Western countries affects mainly women who developed the pathology after breast cancer and undergo through hormone therapy up to five years after cancer surgery. Although lymphadenectomy is identified as a trigger factor, the effect of co-morbidities associated to lymphedema remains elusive, in particular, estrogen receptor antagonists or aromatase inhibitors. In addition, the role of sex hormones and gender has been poorly investigated in the etiology of the pathology. Therefore, this review aims to recapitulate the effect of sex hormones on the physiology of the lymphatic system and to investigate whetherhormone therapy could promote a lymphatic dysfunction leading to lymphedema.
Collapse
|
44
|
Han X, Jiang Y, Niu Y, Zhu Y, Huang W, He M. Differential associations between body mass index with diabetes and vision-threatening diabetic retinopathy in an adult Chinese population. Br J Ophthalmol 2021; 106:852-856. [PMID: 33495161 DOI: 10.1136/bjophthalmol-2020-318252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 11/04/2022]
Abstract
PURPOSE To investigate the associations between body mass index (BMI) with diabetes mellitus (DM) and vision-threatening diabetic retinopathy (VTDR). METHODS This was a longitudinal study which included DM-free participants aged ≥40 years from the Lingtou Eye Cohort Study at baseline (2008-2010). Physical and ocular examinations were performed at baseline and annual follow-ups under standardised protocol. Two 45° non-mydriatic colour digital retinal photographs were obtained for each eye at all study visits, and presence of VTDR at the 2016 follow-up was graded by a deep-learning algorithm (LableMe) with proved high accuracy for detection of VTDR. RESULTS A total of 2934 participants were included with a mean (SD) age of 59.5 (7.3) years (58.3% men). Participants with incident DM (441/2934, 15%) were significantly older (p<0.001), had higher obesity levels (p<0.001), higher systolic blood pressure (SBP) (p<0.001), diastolic blood pressure (p<0.001), fasting plasma glucose (FPG) (p<0.001), triglycerides (p=0.002) and high-density lipoprotein cholesterol (p<0.001), as compared with those without. Participants with incident VTDR (48/2934, 1.63%) were also older (p<0.001), had higher SBP (p=0.013) and FPG (p<0.001), but did not differ in baseline BMI, comparing with those without. Regression analysis showed that higher baseline BMI was significantly related to incident DM (p<0.005), but not incident VTDR, during the follow-up. Subgroup analysis among participants with incident DM also revealed no association between BMI and VTDR. CONCLUSIONS Higher baseline BMI increased the risk of incident DM, but was not related to the risk of VTDR in this adult Chinese population.
Collapse
Affiliation(s)
- Xiaotong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yu Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yong Niu
- Department of Ophthalmology, Guangzhou No. 11 People's Hospital, Guangzhou, China
| | - Yongjuan Zhu
- Department of Clinical Laboratory, Health Management Center, Qilinshan Convalescent Hospital, Shenzhen, China
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.,Department of Preventive Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
45
|
Błaszczyk E, Gawlik J, Gieburowska J, Tokarska A, Kimsa-Furdzik M, Hibner G, Francuz T, Gawlik AM. Brain-Derived Neurotropic Factor, Vascular Endothelial Growth Factor and Matrix Metalloproteinases as Markers of Metabolic Status in Non-Growth Hormone-Treated Girls With Turner Syndrome. Front Endocrinol (Lausanne) 2021; 12:722199. [PMID: 34512552 PMCID: PMC8429805 DOI: 10.3389/fendo.2021.722199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Turner syndrome (TS) presents a high risk of congenital heart defects and may predispose to both obesity and related metabolic complications. Hence the search for new markers as potential early predictors of the metabolic syndrome (MetS) and cardiovascular diseases appears warranted. OBJECTIVE To assess MMP-1 (matrix metalloproteinase-1), MMP-2 (matrix metalloproteinase-2), MMP-9 (matrix metallopeptidase-9), BDNF (brain-derived neurotrophic factor), GDNF (glial cell line-derived neurotrophic factor), and VEGF (vascular endothelial growth factor) in non-MetS TS girls not treated with growth hormone (GH) vs. healthy short stature girls, and to assess the connection with basic metabolic parameters. METHOD The concentrations of circulating MMP-1, MMP-2, MMP-9, BDNF, GDNF and VEGF were measured in 12 patients with TS not treated with growth hormone. The control group was composed of 17 girls with non-pathologic short stature. The patients' clinical and biochemical phenotypes were determined by weight, height, total cholesterol, HDL cholesterol, triglycerides, glucose, aminotransferases, IGF1, TSH and fT4. RESULTS There were no differences in mean age, weight, BMI Z-Score, or hSDS between the studied group and the controls; however, they differed in baseline values of ALT (18.2 ± 4.2 vs. 14.2 ± 4.1, p= 0.02), BDNF [29951.5 (26176.9 - 41271.9) vs. 23131.7 (18392.4 - 28313.3), p=0.01] and MMP-2 [91.8 (71.7 - 111.0) vs. 143.6 (123.7 - 244.5), p< 0.001]. BDNF correlated with ALT activity (r = 0.56 p = 0.002) and BMI Z-score (r = 0.38 p = 0.042), while MMP-2 correlated with HDL concentration (r = 0.48 p = 0.029) in all the patients. The analysis of the study group alone revealed significant positive correlations between MMP-9 and TSH (r = 0.74 p = 0.036), BDNF and both ALT (r = 0.73 p = 0.038) and TSH (r = 0.85 p = 0.008), and a negative correlation between MMP-1 and fT4 (r = -0.75 p = 0.032). The control group did not present any significant correlations. CONCLUSION The higher concentrations of BDNF and lower of MMP-2 found in girls with TS without MetS compared to healthy girls with short stature, could have a major impact on the future "natural" development of the metabolic status. Our findings need further studies.
Collapse
Affiliation(s)
- Ewa Błaszczyk
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jakub Gawlik
- Student Scientific Society, Department of Biophysics, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Gieburowska
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Tokarska
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Kimsa-Furdzik
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Hibner
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aneta Monika Gawlik
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- *Correspondence: Aneta Monika Gawlik,
| |
Collapse
|
46
|
Severina AS, Shestakova MV. [Angiogenesis system, as a part of endothelial dysfunction in patients with diabetes mellitus type 2: relationship with obesity]. TERAPEVT ARKH 2020; 92:23-28. [PMID: 33346475 DOI: 10.26442/00403660.2020.10.000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
AIM To investigate parameters of angiogenesis system in patients with diabetes mellitus and their relationship with obesity. MATERIALS AND METHODS 104 patients with diabetes mellitus type 2 were included in the study. Patients were divided in 2 groups: Obesity+ (body mass index30 kg/m2;n=63) and Obesity- (body mass index 30 kg/m2;n=41). In all patients was performed clinico-diagnostical examination. mRNA expression levels of vascular endothelial growth factor (VEGF), its receptors flt-1 (fms-like tyrosine kinase 1), KDR (human kinase insert domain receptor) were determined in blood mononuclear cells. RESULTS There were no statistically significant differences in investigated parameters between study groups. mRNA expression level of VEGF was slightly lower in men compared to women: 0.19 (0.14; 0.32)vs0.28 (0.12; 0.4) respectively,р=0.2236. MRNA expression level of flt-1 was lower in men compared to women: 0.14 (0.04; 0.3)vs0.25 (0.12; 0.38),р=0.0321 (statistically significant). We found statistically significant correlations of mRNA expression level of VEGF with mRNA expression level of flt-1 and KDR. Also we found strong positive correlations of BMI and mRNA expression levels VEGF, flt-1, KDR (r=0.86107,r=0.86125,r=0.86112, respectively,p0.001). CONCLUSION Results of the study displayed relationship of obesity and angiogenesis system condition in patients with diabetes mellitus type 2. Further investigations are perspective for the future as a way to new therapeutical approach of obesity and its complications treatment.
Collapse
|
47
|
Ghosh AC, Tattikota SG, Liu Y, Comjean A, Hu Y, Barrera V, Ho Sui SJ, Perrimon N. Drosophila PDGF/VEGF signaling from muscles to hepatocyte-like cells protects against obesity. eLife 2020; 9:56969. [PMID: 33107824 PMCID: PMC7752135 DOI: 10.7554/elife.56969] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
PDGF/VEGF ligands regulate a plethora of biological processes in multicellular organisms via autocrine, paracrine, and endocrine mechanisms. We investigated organ-specific metabolic roles of Drosophila PDGF/VEGF-like factors (Pvfs). We combine genetic approaches and single-nuclei sequencing to demonstrate that muscle-derived Pvf1 signals to the Drosophila hepatocyte-like cells/oenocytes to suppress lipid synthesis by activating the Pi3K/Akt1/TOR signaling cascade in the oenocytes. Functionally, this signaling axis regulates expansion of adipose tissue lipid stores in newly eclosed flies. Flies emerge after pupation with limited adipose tissue lipid stores and lipid level is progressively accumulated via lipid synthesis. We find that adult muscle-specific expression of pvf1 increases rapidly during this stage and that muscle-to-oenocyte Pvf1 signaling inhibits expansion of adipose tissue lipid stores as the process reaches completion. Our findings provide the first evidence in a metazoan of a PDGF/VEGF ligand acting as a myokine that regulates systemic lipid homeostasis by activating TOR in hepatocyte-like cells.
Collapse
Affiliation(s)
- Arpan C Ghosh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Sudhir Gopal Tattikota
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Victor Barrera
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
48
|
Shin SS, Yoon M. Regulation of Obesity by Antiangiogenic Herbal Medicines. Molecules 2020; 25:molecules25194549. [PMID: 33020443 PMCID: PMC7582783 DOI: 10.3390/molecules25194549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea;
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
- Correspondence: ; Tel.: +8242-829-7581; Fax: 8242-829-7580
| |
Collapse
|
49
|
Afroundeh R, Saleh V, Siahkouhian M, Asadi A. THE EFFECT OF AN 8-WEEK ANAEROBIC GYMNASTICS TRAINING ON BDNF, VEGF, AND SOME PHYSIOLOGICAL CHARACTERISTICS IN CHILDREN. SCIENCE OF GYMNASTICS JOURNAL 2020. [DOI: 10.52165/sgj.12.3.381-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to observe changes in levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), resting metabolic rate (RMR) and maximum oxygen consumption (VO2max) in the gymnast children after an anaerobic gymnastics training program. Thirty beginner gymnasts aged 8-12 years old were randomly assigned to control (n = 15) and experimental (n = 15) groups. The anaerobic gymnastics training was conducted for 8 weeks, 3 times per a week. Each session lasted 45 minutes: 10 min warm-up, 30 min core exercise, and 5 min cool down. The anthropometric and body composition of subjects were measured and growth factors were measured by using human BDNF and VEGF PicoKine™ ELISA Kit and analysis was performed using sandwich enzyme-linked immunosorbent assay (Morland et al.) before and after the intervention, and VO2max, maximum heart rate and RMR were measured using a gas analyzer. At the baseline there were not any significant differences between both groups (p>0.05). But in the post-test, a significant difference was observed for BDNF(p=0.02) and VEGF(p=0.018) values between the two groups. Within-group there was a decrease in the value of the maximum heart rate indicator (P<0.05) and VO2max and BDNF increased significantly after an intervention (P<0.05). In conclusion, the results of the present study suggest that anaerobic gymnastic training increases the level of salivary BDNF and VEGF in children. These types of exercises may also improve cardiorespiratory fitness in children.
Collapse
|
50
|
Terlikowska KM, Dobrzycka B, Terlikowski R, Sienkiewicz A, Kinalski M, Terlikowski SJ. Clinical value of selected markers of angiogenesis, inflammation, insulin resistance and obesity in type 1 endometrial cancer. BMC Cancer 2020; 20:921. [PMID: 32977765 PMCID: PMC7519537 DOI: 10.1186/s12885-020-07415-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background It is a well-known fact show that the risk of developing endometrial cancer (type 1 EC) is strongly associated with obesity. In this study, selected markers, such as obesity, insulin resistance, angiogenesis and inflammation markers related to EC type 1 progression and patients’ survival data were analyzed. Methods To measure levels of adiponectin, C-reactive protein (CRP), vascular endothelial growth factor-A (VEGF-A), angiopoietin-2 (Ang-2), insulin-like growth factor-1 (IGF-1), insulin and C-peptide in 176 preoperative serum samples, the immunoassay technique (EMIT) has been applied. Results Angiopoietin-2 levels increase with age (P = 0.005), FIGO stage (p = 0.042), myometrial invasion (P = 0.009) and LVSI (P < 0.001). The CRP levels increase with age (P = 0.01), as well as the advancement of the FIGO stage (P < 0.001), higher tumor grade (P = 0.012), and myometrial invasion (P < 0.001). A positive correlation between serum Ang-2 and CRP levels was demonstrated (r = 0.44; p < 0.001). Kaplan-Meier survival analysis showed that patients with high CRP levels in serum and Ang-2 presented a worse outcome (P = 0.03 and P = 0.015, respectively). Cox regression analysis of individual predictors revealed that high serum levels of Ang-2, CRP, advanced clinical FIGO stage (P < 0.001, respectively), old age (P = 0.013) were all significant overall survival predictors. By means of multivariate analysis, their predictive significance was confirmed. Conclusion Our study provides evidence that serum levels of Ang-2 and CRP may serve as predictors for assessment of the clinical stage of type 1 EC and are significantly associated with poor prognosis. It is likely that angiogenesis and inflammation associated with obesity have a significant impact on EC type 1 progression and survival rate of patients.
Collapse
Affiliation(s)
- Katarzyna M Terlikowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37 Street, 15-295, Bialystok, Poland
| | - Bozena Dobrzycka
- Department of Gynecology and Obstetrics, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089, Bialystok, Poland
| | - Robert Terlikowski
- Department of Rehabilitation, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089, Bialystok, Poland
| | - Anna Sienkiewicz
- Department of Gynecology and Obstetrics, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089, Bialystok, Poland
| | - Maciej Kinalski
- Department of Gynecology and Obstetrics of the Independent Public Healthcare Facility Regional Complex Jan Sniadecki Hospital, M. Sklodowskiej-Curie 26 Street, 15-950, Bialystok, Poland
| | - Slawomir J Terlikowski
- Department of Obstetrics, Gynaecology and Maternity Care, Medical University of Bialystok, Szpitalna 37 Street, 15-295, Bialystok, Poland.
| |
Collapse
|