1
|
Stein T, Cieplewicz-Guźla P, Iżykowska K, Pieniawska M, Żaba R, Dańczak-Pazdrowska A, Polańska A. What Is New in Morphea-Narrative Review on Molecular Aspects and New Targeted Therapies. J Clin Med 2024; 13:7134. [PMID: 39685593 DOI: 10.3390/jcm13237134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Morphea, also known as localized scleroderma, is an autoimmune chronic connective tissue disease. It is characterized by excessive collagen deposition in the dermis and/or subcutaneous tissue. The etiopathogenesis of this disease is not fully understood, with endothelial cell damage, immunological disorders, extracellular matrix disorders and factors such as infection, trauma and other autoimmune diseases being considered. As medicine advances, there is increasing evidence that genetic factors play a significant role in disease risk and progression. In addition to environmental factors and genetic predisposition, epigenetic factors may be potential triggers for morphea. Epigenetics studies changes that affect gene expression without altering the DNA sequence, such as microRNAs, long non-coding RNAs or DNA methylation. Understanding the pathogenesis of this disease is key to identifying potential new treatments. There are anecdotal reports of good therapeutic effects following the use of biological drugs such as tocilizumab, a humanized IgG monoclonal antibody; abatacept, a recombinant soluble fusion protein; JAK inhibitors, such as tofacitinib and baricitinib; and a drug used successfully in cancer treatment, imatinib, a tyrosine kinase receptor inhibitor. In this article, we aim to review up-to-date knowledge on the pathogenesis of morphea, with particular emphasis on genetic and epigenetic factors. In addition, we present the new options of morphea treatment based on several case series treated with new drugs that are potential targets for the development of therapies for this disease.
Collapse
Affiliation(s)
- Tomasz Stein
- Department of Dermatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | | | - Katarzyna Iżykowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Ryszard Żaba
- Department of Dermatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | | | - Adriana Polańska
- Department of Dermatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Yu D, Lu Z, Chong Y. Integrins as a bridge between bacteria and cells: key targets for therapeutic wound healing. BURNS & TRAUMA 2024; 12:tkae022. [PMID: 39015251 PMCID: PMC11250365 DOI: 10.1093/burnst/tkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
Integrins are heterodimers composed of α and β subunits that are bonded through non-covalent interactions. Integrins mediate the dynamic connection between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs where these heterodimers participate in diverse physiological and pathological responses at the molecular level in living organisms. Wound healing is a crucial process in the recovery from traumatic diseases and comprises three overlapping phases: inflammation, proliferation and remodeling. Integrins are regulated during the entire wound healing process to enhance processes such as inflammation, angiogenesis and re-epithelialization. Prolonged inflammation may result in failure of wound healing, leading to conditions such as chronic wounds. Bacterial colonization of a wound is one of the primary causes of chronic wounds. Integrins facilitate the infectious effects of bacteria on the host organism, leading to chronic inflammation, bacterial colonization, and ultimately, the failure of wound healing. The present study investigated the role of integrins as bridges for bacteria-cell interactions during wound healing, evaluated the role of integrins as nodes for bacterial inhibition during chronic wound formation, and discussed the challenges and prospects of using integrins as therapeutic targets in wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
3
|
Leask A, Fadl A, Naik A. A modest proposal: targeting αv integrin-mediated activation of latent TGFbeta as a novel therapeutic approach to treat scleroderma fibrosis. Expert Opin Investig Drugs 2024; 33:279-285. [PMID: 38393748 DOI: 10.1080/13543784.2024.2323528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION The potent profibrotic cytokine transforming growth factor-β (TGF-β) has been associated with the onset and progression of the fibrosis seen in the autoimmune connective tissue disease scleroderma (systemic sclerosis, SSc). AREA COVERED This review explores the data supporting the notion that TGF-β contributes to SSc fibrosis and examines why initiating clinical trials in SSc aimed at targeting integrin-mediated latent TGF-β activation is timely. EXPERT OPINION Targeting TGF-β directly has not been proven to be clinically effective in this disease. Conversely, targeting matrix stiffness, which perpetuates fibrosis, may have more promise. Intriguingly, targeting integrin-mediated activation of latent TGF-β, which bridges these concepts, may have therapeutic value.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Asmaa Fadl
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Leask A, Naik A, Stratton RJ. Back to the future: targeting the extracellular matrix to treat systemic sclerosis. Nat Rev Rheumatol 2023; 19:713-723. [PMID: 37789119 DOI: 10.1038/s41584-023-01032-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Fibrosis is the excessive deposition of a stable extracellular matrix (ECM); fibrotic tissue is composed principally of highly crosslinked type I collagen and highly contractile myofibroblasts. Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by skin and organ fibrosis. The fibrotic process has been recognized in SSc for >40 years, but drugs with demonstrable efficacy against SSc fibrosis in ameliorating the lung involvement have only recently been identified. Unfortunately, these treatments are ineffective at improving the skin score in patients with SSc. Previous clinical trials in SSc have largely focused on the cross-purposing of anti-inflammatory drugs and the use of immunosuppressive drugs from the transplantation field, which address inflammatory and/or autoimmune processes. Limited examination has taken place of specific anti-fibrotic agents developed through their ability to directly target the ECM in SSc by, for example, alleviating the persistent matrix stiffness and mechanotransduction that might be required for both the initiation and maintenance of fibrosis, including in SSc. However, because of the importance of the ECM in the SSc phenotype, attempts have now been made to identify drugs that specifically target the ECM, including some drugs that are currently under consideration for the treatment of cancer.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| |
Collapse
|
5
|
Zhu L, Liu L, Wang A, Liu J, Huang X, Zan T. Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis. Matrix Biol 2023; 121:1-21. [PMID: 37164179 DOI: 10.1016/j.matbio.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lechen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aoli Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jinwen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Fertala J, Wang ML, Rivlin M, Beredjiklian PK, Abboud J, Arnold WV, Fertala A. Extracellular Targets to Reduce Excessive Scarring in Response to Tissue Injury. Biomolecules 2023; 13:biom13050758. [PMID: 37238628 DOI: 10.3390/biom13050758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive scar formation is a hallmark of localized and systemic fibrotic disorders. Despite extensive studies to define valid anti-fibrotic targets and develop effective therapeutics, progressive fibrosis remains a significant medical problem. Regardless of the injury type or location of wounded tissue, excessive production and accumulation of collagen-rich extracellular matrix is the common denominator of all fibrotic disorders. A long-standing dogma was that anti-fibrotic approaches should focus on overall intracellular processes that drive fibrotic scarring. Because of the poor outcomes of these approaches, scientific efforts now focus on regulating the extracellular components of fibrotic tissues. Crucial extracellular players include cellular receptors of matrix components, macromolecules that form the matrix architecture, auxiliary proteins that facilitate the formation of stiff scar tissue, matricellular proteins, and extracellular vesicles that modulate matrix homeostasis. This review summarizes studies targeting the extracellular aspects of fibrotic tissue synthesis, presents the rationale for these studies, and discusses the progress and limitations of current extracellular approaches to limit fibrotic healing.
Collapse
Affiliation(s)
- Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark L Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Pedro K Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Joseph Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - William V Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Zhang Q, Zhang S, Chen J, Xie Z. The Interplay between Integrins and Immune Cells as a Regulator in Cancer Immunology. Int J Mol Sci 2023; 24:6170. [PMID: 37047140 PMCID: PMC10093897 DOI: 10.3390/ijms24076170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Integrins are a group of heterodimers consisting of α and β subunits that mediate a variety of physiological activities of immune cells, including cell migration, adhesion, proliferation, survival, and immunotolerance. Multiple types of integrins act differently on the same immune cells, while the same integrin may exert various effects on different immune cells. In the development of cancer, integrins are involved in the regulation of cancer cell proliferation, invasion, migration, and angiogenesis; conversely, integrins promote immune cell aggregation to mediate the elimination of tumors. The important roles of integrins in cancer progression have provided valuable clues for the diagnosis and targeted treatment of cancer. Furthermore, many integrin inhibitors have been investigated in clinical trials to explore effective regimens and reduce side effects. Due to the complexity of the mechanism of integrin-mediated cancer progression, challenges remain in the research and development of cancer immunotherapies (CITs). This review enumerates the effects of integrins on four types of immune cells and the potential mechanisms involved in the progression of cancer, which will provide ideas for more optimal CIT in the future.
Collapse
Affiliation(s)
- Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China
| |
Collapse
|
8
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 384] [Impact Index Per Article: 192.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
9
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
10
|
LaChance AH, Goldman N, Kassamali B, Vleugels RA. Immunologic underpinnings and treatment of morphea. Expert Rev Clin Immunol 2022; 18:461-483. [DOI: 10.1080/1744666x.2022.2063841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Avery H. LaChance
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nathaniel Goldman
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- New York Medical College School of Medicine, Valhalla, NY
| | - Bina Kassamali
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
11
|
Rahman SR, Roper JA, Grove JI, Aithal GP, Pun KT, Bennett AJ. Integrins as a drug target in liver fibrosis. Liver Int 2022; 42:507-521. [PMID: 35048542 DOI: 10.1111/liv.15157] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
As the worldwide prevalence of chronic liver diseases is high and continuing to increase, there is an urgent need for treatment to prevent cirrhosis-related morbidity and mortality. Integrins are heterodimeric cell-surface proteins that are promising targets for therapeutic intervention. αv integrins are central in the development of fibrosis as they activate latent TGFβ, a known profibrogenic cytokine. The αv subunit can form heterodimers with β1, β3, β5, β6 or β8 subunits and one or more of these integrins are central to the development of liver fibrosis, however, their relative importance is not understood. This review summarises the current knowledge of αv integrins and their respective β subunits in different organs, with a focus on liver fibrosis and the emerging preclinical and clinical data with regards to αv integrin inhibitors.
Collapse
Affiliation(s)
- Syedia R Rahman
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,FRAME Alternatives Laboratory, Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - James A Roper
- Novel Human Genetics Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Jane I Grove
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| | - K Tao Pun
- Novel Human Genetics Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Andrew J Bennett
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,FRAME Alternatives Laboratory, Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.,Nottingham Digestive Diseases Centre, Translational Medical Sciences, Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
The Immunogenetics of Morphea and Lichen Sclerosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:155-172. [DOI: 10.1007/978-3-030-92616-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Ikawa T, Ichimura Y, Miyagawa T, Fukui Y, Toyama S, Omatsu J, Awaji K, Norimatsu Y, Watanabe Y, Yoshizaki A, Sato S, Asano Y. The Contribution of LIGHT to the Development of Systemic Sclerosis by Modulating IL-6 and T Helper Type 1 Chemokine Expression in Dermal Fibroblasts. J Invest Dermatol 2021; 142:1541-1551.e3. [PMID: 34838790 DOI: 10.1016/j.jid.2021.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 01/24/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune and vascular disease resulting in multiple organ fibrosis, in which IL-6 and T helper (Th)2/Th17 cytokines serve as critical disease drivers. LIGHT is a proinflammatory cytokine promoting IL-6 production in lung fibroblasts and Th1 chemokine expression in dermal fibroblasts (DFs) stimulated with IFN-γ. In this study, we investigated the potential contribution of LIGHT to SSc development using clinical samples and animal models. In SSc-involved skin, LIGHT was upregulated in inflammatory cells, whereas herpesvirus entry mediator (HVEM), a receptor of LIGHT, was downregulated in DFs. Similar expression profiles of LIGHT and HVEM were reproduced in bleomycin-treated mice. Transcription factor FLI1 bound to the HVEM promoter, and FLI1 small interfering RNA suppressed HVEM expression in normal DFs. In SSc DFs, LIGHT significantly increased IL-6 production, whereas IFN-γ/LIGHT-dependent Th1 chemokine induction was decreased compared with that in normal DFs. Importantly, LIGHT small interfering RNA significantly attenuated bleomycin-induced skin fibrosis, and serum LIGHT levels were elevated in patients with diffuse cutaneous SSc and positively correlated with clinical parameters reflecting skin and pulmonary fibrosis. Taken together, these results suggest that altered response of DFs to LIGHT, namely increased IL-6 production and decreased Th1 chemokine expression, contributes to the development of skin fibrosis in SSc.
Collapse
Affiliation(s)
- Tetsuya Ikawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yohei Ichimura
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
McEntee CP, Gunaltay S, Travis MA. Regulation of barrier immunity and homeostasis by integrin-mediated transforming growth factor β activation. Immunology 2019; 160:139-148. [PMID: 31792952 PMCID: PMC7218408 DOI: 10.1111/imm.13162] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF‐β) is a multifunctional cytokine that regulates cell growth, differentiation, adhesion, migration and death dependent on cell type, developmental stage, or tissue conditions. Various cell types secrete TGF‐β, but always as an inactive complex. Hence, for TGF‐β to function, this latent complex must somehow be activated. Work in recent years has highlighted a critical role for members of the αv integrin family, including αvβ1, αvβ3, αvβ5, αvβ6 and αvβ8 that are involved in TGF‐β activation in various contexts, particularly at barrier sites such as the gut, lung and skin. The integrins facilitating this context‐ and location‐specific regulation can be dysregulated in certain diseases, so are potential therapeutic targets in a number of disorders. In this review, we discuss the role of TGF‐β at these barrier sites with a focus on how integrin‐mediated TGF‐β activation regulates tissue and immune homeostasis, and how this is altered in disease.
Collapse
Affiliation(s)
- Craig P McEntee
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Sezin Gunaltay
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Badshah II, Brown S, Weibel L, Rose A, Way B, Sebire N, Inman G, Harper J, O'Shaughnessy RFL. Differential expression of secreted factors SOSTDC1 and ADAMTS8 cause profibrotic changes in linear morphoea fibroblasts. Br J Dermatol 2019; 180:1135-1149. [PMID: 30367460 DOI: 10.1111/bjd.17352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Linear morphoea (LM) is a rare connective tissue disorder characterized by a line of thickened skin and subcutaneous tissue and can also affect the underlying muscle and bone. Little is known about the disease aetiology, with treatment currently limited to immune suppression, and disease recurrence post-treatment is common. OBJECTIVES In order to uncover new therapeutic avenues, the cell-intrinsic changes in LM fibroblasts compared with site-matched controls were characterized. METHODS We grew fibroblasts from site-matched affected and unaffected regions from five patients with LM, we subjected them to gene expression analysis and investigation of SMAD signalling. RESULTS Fibroblasts from LM lesions showed increased migration, proliferation, altered collagen processing, and abnormally high basal levels of phosphorylated SMAD2, thereby rendering them less responsive to transforming growth factor (TGF)-β1 and reducing the degree of myofibroblast differentiation, which is a key component of the wound-healing and scarring process in normal skin. Conditioned media from normal fibroblasts could reverse LM-affected fibroblast migration and proliferation, suggesting that the LM phenotype is driven by an altered secretome. Gene array analysis and RNA-Seq indicated upregulation of ADAMTS8 and downregulation of FRAS1 and SOSTDC1. SOSTDC1 knock-down recapitulated the reduced TGF-β1 responsiveness and LM fibroblast migration, while overexpression of ADAMTS8 induced myofibroblast markers. CONCLUSIONS We demonstrate that cell-intrinsic changes in the LM fibroblast secretome lead to changes observed in the disease, and that secretome modulation could be a viable therapeutic approach in the treatment of LM.
Collapse
Affiliation(s)
- I I Badshah
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - S Brown
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
- Restoration of Appearance and Function Trust, Leopold Muller Building, Mount Vernon Hospital, Northwood, Middlesex, U.K
| | - L Weibel
- Department of Dermatology, University Hospital, Zurich, Switzerland
| | - A Rose
- Division of Cancer Research, University of Dundee, School of Medicine, Dundee, U.K
| | - B Way
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - N Sebire
- Histopathology, Great Ormond Street Hospital, London, U.K
| | - G Inman
- Division of Cancer Research, University of Dundee, School of Medicine, Dundee, U.K
| | - J Harper
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - R F L O'Shaughnessy
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, U.K
| |
Collapse
|
16
|
Perrucci GL, Barbagallo VA, Corlianò M, Tosi D, Santoro R, Nigro P, Poggio P, Bulfamante G, Lombardi F, Pompilio G. Integrin ανβ5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. J Transl Med 2018; 16:352. [PMID: 30541573 PMCID: PMC6292173 DOI: 10.1186/s12967-018-1730-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Background To date the TGF-β1 activation mediated by integrin ανβ5 during fibrosis is well-known. This process has been shown also in the heart, where cardiac fibroblasts (CF) differentiate into α-smooth muscle actin (α-SMA)-positive myofibroblasts (MyoFB). Here, we studied the effects on CF, isolated by spontaneously hypertensive rats (SHR), of integrin ανβ5 inhibition in MyoFB differentiation. Methods Staining and immunohistochemistry were performed on rat cardiac tissue. CF were isolated by enzymatic digestion from SHR (SHR-CF) and normotensive WKY (WKY-CF) rat hearts and then treated for in vitro evaluation. Results SHR heart tissues revealed a higher TGF-β1 expression vs. WKY samples. SHR-CF showed an enhanced SMAD2/3 activation and an up-regulated expression of α-SMA, a typical MyoFB marker, especially after TGF-β1 treatment. Immunostaining on cardiac tissues revealed a higher expression of integrin ανβ5 in SHR vs. WKY rat hearts. In vitro results confirmed the up-regulation of integrin ανβ5 expression in SHR-CF at basal condition and after TGF-β1 treatment, in comparison with WKY-CF. Inhibition of integrin ανβ5 by cilengitide treatment led a decreased expression of ανβ5, collagen I, and α-SMA in SHR-CF vs. WKY-CF, resulting in a diminished differentiation of CF into MyoFB. Taking together, results suggested that SHR-CF are more susceptible to TGF-β1, showing an up-regulated activation of SMAD2/3 signaling, and an increased ανβ5, α-SMA, and collagen I expression. Hypertension stimulus promoted an up-regulation of integrin ανβ5 on SHR cardiac tissue and its in vitro inhibition reverted pro-fibrotic events of SHR-CF. Conclusion Inhibition of integrin ανβ5 exerted by cilengitide strongly diminished SHR-CF differentiation into detrimental MyoFB. So, integrin ανβ5 might be considered a novel therapeutic target and cilengitide an effective pharmacological tool to limit the progression of hypertension-induced cardiac fibrosis. Electronic supplementary material The online version of this article (10.1186/s12967-018-1730-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy. .,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy.
| | | | - Maria Corlianò
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Delfina Tosi
- Unità di Patologia, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Ospedale San Paolo, via Antonio di Rudinì 8, Milan, Italy
| | - Rosaria Santoro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Patrizia Nigro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Paolo Poggio
- Unità per lo Studio di Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| | - Gaetano Bulfamante
- Unità di Patologia, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Ospedale San Paolo, via Antonio di Rudinì 8, Milan, Italy
| | - Federico Lombardi
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy.,Unità di Cardiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, Milan, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, via Carlo Parea 4, Milan, Italy
| |
Collapse
|
17
|
Progranulin overproduction due to constitutively activated c-Abl/PKC-δ/Fli1 pathway contributes to the resistance of dermal fibroblasts to the anti-fibrotic effect of tumor necrosis factor-α in localized scleroderma. J Dermatol Sci 2018; 92:207-214. [DOI: 10.1016/j.jdermsci.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/02/2018] [Accepted: 09/11/2018] [Indexed: 11/21/2022]
|
18
|
Perrucci GL, Rurali E, Pompilio G. Cardiac fibrosis in regenerative medicine: destroy to rebuild. J Thorac Dis 2018; 10:S2376-S2389. [PMID: 30123577 DOI: 10.21037/jtd.2018.03.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulio Pompilio
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.,Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
19
|
Tabata N, Nagano Inoue C. Juvenile Localized Scleroderma with Hyaline Deposits in the Renal Arteriole. Case Rep Dermatol 2018; 10:89-95. [PMID: 29805370 PMCID: PMC5968237 DOI: 10.1159/000488901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022] Open
Abstract
We report a 10-year-old boy with localized scleroderma of the linear and plaque type, who showed proteinuria and hematuria. In this patient, skin, articular, and renal manifestations appeared successively and then began to resolve in the same order. A renal biopsy specimen demonstrated mild mesangial cell proliferation, exudate of immunoglobulin in the glomerular capillary, and large electron-dense deposits in the afferent arteriole. We consider that there were some transient factors that had caused the skin and articular manifestations, which also induced renal vascular inflammatory responses.
Collapse
Affiliation(s)
- Nobuko Tabata
- Department of Dermatology, Japanese Red Cross Sendai Hospital, Taihaku-ku, Sendai, Japan
| | - Chiyoko Nagano Inoue
- Department of Pediatrics, Japanese Red Cross Sendai Hospital, Taihaku-ku, Sendai, Japan
| |
Collapse
|
20
|
Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev 2018; 129:37-53. [PMID: 29414674 DOI: 10.1016/j.addr.2018.01.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
Wound healing is a complex process, which ultimately leads to fibrosis if not repaired well. Pathologically very similar to fibrosis is the tumor stroma, found in several solid tumors which are regarded as wounds that do not heal. Integrins are heterodimeric surface receptors which control various physiological cellular functions. Additionally, integrins also sense ECM-induced extracellular changes during pathological events, leading to cellular responses, which influence ECM remodeling. The purpose and scope of this review is to introduce integrins as key targets for therapeutics and drug delivery within the scope of wound healing, fibrosis and the tumor stroma. This review provides a general introduction to the biology of integrins including their types, ligands, means of signaling and interaction with growth factor receptors. Furthermore, we highlight integrins as key targets for therapeutics and drug delivery, based on their biological role, expression pattern within human tissues and at cellular level. Next, therapeutic approaches targeting integrins, with a focus on clinical studies, and targeted drug delivery strategies based on ligands are described.
Collapse
|
21
|
Bahali AG, Su O, Emiroglu N, Cengiz FP, Kaya MO, Onsun N. Evaluation of mean platelet volume in localized scleroderma. An Bras Dermatol 2018; 92:635-637. [PMID: 29166498 PMCID: PMC5674694 DOI: 10.1590/abd1806-4841.20176045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/22/2016] [Indexed: 12/24/2022] Open
Abstract
Background Localized scleroderma is a chronic inflammatory skin disease characterized by
sclerosis of the dermis and subcutaneous tissue. Platelets play an important
role in inflammation. Following activation, platelets rapidly release
numerous mediators and cytokines, which contribute to inflammation. Objectives To evaluate whether there was any relation between localized scleroderma and
platelet parameters. Methods Forty-one patients with localized scleroderma were enrolled in the study. The
control group consisted of 30 healthy subjects. Results The mean platelet volume level in the patient group was 9.9 ± 1.3 fl
and in the control group was 7.6 ± 1.1 fl. This difference was
statistically significant (p< 0.001). The plateletcrit values are
minimally higher in the patient group as compared to the control group. It
was statistically significant (p<0.001). There was no significant
difference in the platelet counts between the two groups (p= 0.560) In the
patient group, there was no significant relation between the mean platelet
volume levels and clinical signs of disease (p=0.09). However, plateletcrit
values are higher in generalized than localized forms of disease
(p=0.01). Study Limitations The limited number of patients and the retrospective nature of the study were
our limitations. Conclusions This study suggests that platelets might play a role in the pathogenesis of
scleroderma. Platelet parameters may be used as markers for evaluating
disease severity and inflammatory processes. Thus, there is a need for more
detailed and prospective studies.
Collapse
Affiliation(s)
- Anil Gulsel Bahali
- Department of Dermatology, Bezmialem Vakıf University - Istanbul, Turkey
| | - Ozlem Su
- Department of Dermatology, Bezmialem Vakıf University - Istanbul, Turkey
| | - Nazan Emiroglu
- Department of Dermatology, Bezmialem Vakıf University - Istanbul, Turkey
| | - Fatma Pelin Cengiz
- Department of Dermatology, Bezmialem Vakıf University - Istanbul, Turkey
| | - Mehmet Onur Kaya
- Department of Biostatistics, Bezmialem Vakıf University - Istanbul, Turkey
| | - Nahide Onsun
- Department of Dermatology, Bezmialem Vakıf University - Istanbul, Turkey
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Organ fibrosis is a lethal component of scleroderma. The hallmark of scleroderma fibrosis is extensive extracellular matrix (ECM) deposition by activated myofibroblasts, specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. The purpose of this review is to discuss novel mechanistic insight into myofibroblast activation in scleroderma. RECENT FINDINGS Matrix stiffness, traditionally viewed as an end point of organ fibrosis, is now recognized as a critical regulator of tissue fibrogenesis that hijacks the normal physiologic wound-healing program to promote organ fibrosis. Here, we discuss how matrix stiffness orchestrates fibrosis by controlling three fundamental pro-fibrotic mechanisms: (a) mechanoactivation of myofibroblasts, (b) integrin-mediated latent transforming growth factor beta 1 (TGF-β1) activation, and (c) activation of non-canonical TGF-β1 signaling pathways. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of scleroderma. Future research on mechanobiology of scleroderma may lead to important clinical applications such as improved diagnosis and treatment of patients with scleroderma and other fibrotic-related diseases.
Collapse
|
23
|
Gillespie SR, Tedesco LJ, Wang L, Bernstein AM. The deubiquitylase USP10 regulates integrin β1 and β5 and fibrotic wound healing. J Cell Sci 2017; 130:3481-3495. [PMID: 28851806 DOI: 10.1242/jcs.204628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Scarring and fibrotic disease result from the persistence of myofibroblasts characterized by high surface expression of αv integrins and subsequent activation of the transforming growth factor β (TGFβ) proteins; however, the mechanism controlling their surface abundance is unknown. Genetic screening revealed that human primary stromal corneal myofibroblasts overexpress a subset of deubiquitylating enzymes (DUBs), which remove ubiquitin from proteins, preventing degradation. Silencing of the DUB USP10 induces a buildup of ubiquitin on integrins β1 and β5 in cell lysates, whereas recombinant USP10 removes ubiquitin from these integrin subunits. Correspondingly, the loss and gain of USP10 decreases and increases, respectively, αv/β1/β5 protein levels, without altering gene expression. Consequently, endogenous TGFβ is activated and the fibrotic markers alpha-smooth muscle actin (α-SMA) and cellular fibronectin (FN-EDA) are induced. Blocking either TGFβ signaling or cell-surface αv integrins after USP10 overexpression prevents or reduces fibrotic marker expression. Finally, silencing of USP10 in an ex vivo cornea organ culture model prevents the induction of fibrotic markers and promotes regenerative healing. This novel mechanism puts DUB expression at the head of a cascade regulating integrin abundance and suggests USP10 as a novel antifibrotic target.
Collapse
Affiliation(s)
- Stephanie R Gillespie
- Icahn School of Medicine at Mount Sinai, Departments of Ophthalmology and Pharmacology and Systems Therapeutics, New York, NY 10029, USA
| | - Liana J Tedesco
- Icahn School of Medicine at Mount Sinai, Departments of Ophthalmology and Pharmacology and Systems Therapeutics, New York, NY 10029, USA
| | - Lingyan Wang
- Icahn School of Medicine at Mount Sinai, Departments of Ophthalmology and Pharmacology and Systems Therapeutics, New York, NY 10029, USA
| | - Audrey M Bernstein
- Icahn School of Medicine at Mount Sinai, Departments of Ophthalmology and Pharmacology and Systems Therapeutics, New York, NY 10029, USA
| |
Collapse
|
24
|
Kim MW, Park JT, Kim JH, Koh SJ, Yoon HS, Cho S, Park HS. Periostin in Mature Stage Localized Scleroderma. Ann Dermatol 2017; 29:268-275. [PMID: 28566901 PMCID: PMC5438931 DOI: 10.5021/ad.2017.29.3.268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/25/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Periostin is a novel matricellular protein expressed in many tissues, including bone, periodontal ligament, and skin. Although its expression is prominent in various fibrotic conditions, studies of periostin in localized scleroderma are rare. OBJECTIVE To investigate the expression of periostin and other molecules in localized scleroderma. METHODS A retrospective study of 14 patients with confirmed mature stage localized scleroderma was undertaken. Fourteen age-matched and biopsy site-matched subjects with normal skin were included as controls. Collagen fiber deposition, periostin, procollagen, transforming growth factor-β, and matrix metalloproteinase (MMP)-1 expression were assessed and compared between the two groups. Co-localization of α-smooth muscle actin and periostin was evaluated using confocal microscopy. RESULTS Periostin was predominantly expressed along the dermo-epidermal junction in the controls. Conversely, patients with localized scleroderma demonstrated increased collagen fiber deposition and periostin expression that was more widely distributed along the entire dermis. MMP-1 staining showed increased expression in the epidermis and dermis of patients compared to scanty expression in the controls. A semi-quantitative evaluation showed a higher proportion of excessive collagen bundle deposition (57.1% vs. 7.1%, p=0.013), diffuse periostin positivity (42.9% vs. 0%, p=0.016), and moderate MMP-1 positivity (71.4% vs. 7.1%, p=0.001) in patients than in the controls. CONCLUSION Compared to the controls, patients with localized scleroderma had enhanced periostin expression corresponding to increased collagen fiber deposition and unexpected overexpression of MMP-1. The results of this human in vivo study may implicate the pathogenesis of localized scleroderma.
Collapse
Affiliation(s)
- Min-Woo Kim
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Jung Tae Park
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Seong-Joon Koh
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Hyun-Sun Yoon
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Soyun Cho
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Hyun-Sun Park
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul, Korea
| |
Collapse
|
25
|
Shea BS, Probst CK, Brazee PL, Rotile NJ, Blasi F, Weinreb PH, Black KE, Sosnovik DE, Van Cott EM, Violette SM, Caravan P, Tager AM. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2017; 2:86608. [PMID: 28469072 PMCID: PMC5414562 DOI: 10.1172/jci.insight.86608] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Fibrotic lung disease, most notably idiopathic pulmonary fibrosis (IPF), is thought to result from aberrant wound-healing responses to repetitive lung injury. Increased vascular permeability is a cardinal response to tissue injury, but whether it is mechanistically linked to lung fibrosis is unknown. We previously described a model in which exaggeration of vascular leak after lung injury shifts the outcome of wound-healing responses from normal repair to pathological fibrosis. Here we report that the fibrosis produced in this model is highly dependent on thrombin activity and its downstream signaling pathways. Direct thrombin inhibition with dabigatran significantly inhibited protease-activated receptor-1 (PAR1) activation, integrin αvβ6 induction, TGF-β activation, and the development of pulmonary fibrosis in this vascular leak-dependent model. We used a potentially novel imaging method - ultashort echo time (UTE) lung magnetic resonance imaging (MRI) with the gadolinium-based, fibrin-specific probe EP-2104R - to directly visualize fibrin accumulation in injured mouse lungs, and to correlate the antifibrotic effects of dabigatran with attenuation of fibrin deposition. We found that inhibition of the profibrotic effects of thrombin can be uncoupled from inhibition of hemostasis, as therapeutic anticoagulation with warfarin failed to downregulate the PAR1/αvβ6/TGF-β axis or significantly protect against fibrosis. These findings have direct and important clinical implications, given recent findings that warfarin treatment is not beneficial in IPF, and the clinical availability of direct thrombin inhibitors that our data suggest could benefit these patients.
Collapse
Affiliation(s)
- Barry S. Shea
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island, USA
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - Patricia L. Brazee
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | | | - Francesco Blasi
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | | | - Katharine E. Black
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| | - David E. Sosnovik
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | - Elizabeth M. Van Cott
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine and Center for Immunology and Inflammatory Diseases
| |
Collapse
|
26
|
Ghatak S, Hascall VC, Markwald RR, Feghali-Bostwick C, Artlett CM, Gooz M, Bogatkevich GS, Atanelishvili I, Silver RM, Wood J, Thannickal VJ, Misra S. Transforming growth factor β1 (TGFβ1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 2017; 292:10490-10519. [PMID: 28389561 DOI: 10.1074/jbc.m116.752469] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive clinical syndrome of fatal outcome. The lack of information about the signaling pathways that sustain fibrosis and the myofibroblast phenotype has prevented the development of targeted therapies for IPF. Our previous study showed that isolated fibrogenic lung fibroblasts have high endogenous levels of the hyaluronan receptor, CD44V6 (CD44 variant containing exon 6), which enhances the TGFβ1 autocrine signaling and induces fibroblasts to transdifferentiate into myofibroblasts. NADPH oxidase 4 (NOX4) enzyme, which catalyzes the reduction of O2 to hydrogen peroxide (H2O2), has been implicated in the cardiac and lung myofibroblast phenotype. However, whether CD44V6 regulates NOX4 to mediate tissue repair and fibrogenesis is not well-defined. The present study assessed the mechanism of how TGF-β-1-induced CD44V6 regulates the NOX4/reactive oxygen species (ROS) signaling that mediates the myofibroblast differentiation. Specifically, we found that NOX4/ROS regulates hyaluronan synthesis and the transcription of CD44V6 via an effect upon AP-1 activity. Further, CD44V6 is part of a positive-feedback loop with TGFβ1/TGFβRI signaling that acts to increase NOX4/ROS production, which is required for myofibroblast differentiation, myofibroblast differentiation, myofibroblast extracellular matrix production, myofibroblast invasion, and myofibroblast contractility. Both NOX4 and CD44v6 are up-regulated in the lungs of mice subjected to experimental lung injury and in cases of human IPF. Genetic (CD44v6 shRNA) or a small molecule inhibitor (CD44v6 peptide) targeting of CD44v6 abrogates fibrogenesis in murine models of lung injury. These studies support a function for CD44V6 in lung fibrosis and offer proof of concept for therapeutic targeting of CD44V6 in lung fibrosis disorders.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology,
| | - Vincent C Hascall
- the Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, Ohio 44195
| | | | | | - Carol M Artlett
- the Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Monika Gooz
- the College of Pharmacy/Pharmaceutical Biomedical Science, Medical University of South Carolina, Charleston, South Carolina 29425
| | | | - Ilia Atanelishvili
- the Division of Rheumatology and Immunology, Department of Medicine, and
| | - Richard M Silver
- the Division of Rheumatology and Immunology, Department of Medicine, and
| | - Jeanette Wood
- Genkyotex, 16 Chemin des Aulx, CH-1228 Plan-les-Ouates Geneva, Switzerland, and
| | - Victor J Thannickal
- the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Suniti Misra
- From the Department of Regenerative Medicine and Cell Biology,
| |
Collapse
|
27
|
Bakulev AL, Galkina EM, Karakaeva AV, Litvinenko MV. A case of localized bullous scleroderma. VESTNIK DERMATOLOGII I VENEROLOGII 2016. [DOI: 10.25208/0042-4609-2016-92-3-97-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Bullous scleroderma is a rare type of the focal form of the disease mainly affecting the skin and characterized by induration and sclerosis foci as well as subepidermal blisters containing a transparent matter. The article describes a case study of bullous scleroderma in an adult woman with localized skin eruptions in the area of the left breast, which were completely regressed after a standard therapy with the use of drugs having an effect on collagen synthesis.
Collapse
|
28
|
Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol 2015; 93:162-74. [PMID: 26562414 DOI: 10.1016/j.yjmcc.2015.11.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is one of the major components of the healing mechanism following any injury of the heart and as such may contribute to both systolic and diastolic dysfunction in a range of pathophysiologic conditions. Canonically, it can occur as part of the remodeling process that occurs following myocardial infarction or that follows as a response to pressure overload. Integrins are cell surface receptors which act in both cellular adhesion and signaling. Most importantly, in the context of the continuously contracting myocardium, they are recognized as mechanotransducers. They have been implicated in the development of fibrosis in several organs, including the heart. This review will focus on the involvement of integrins and integrin-related proteins, in cardiac fibrosis, outlining the roles of these proteins in the fibrotic responses in specific cardiac pathologies, discuss some of the common end effectors (angiotensin II, transforming growth factor beta 1 and mechanical stress) through which integrins function and finally discuss how manipulation of this set of proteins may lead to new treatments which could prove useful to alter the deleterious effects of cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ruixia Li
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
29
|
Cichon MA, Radisky DC. Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial-mesenchymal transition and in cancer. Cell Adh Migr 2015; 8:588-94. [PMID: 25482625 PMCID: PMC4594483 DOI: 10.4161/19336918.2014.972788] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular matrix (ECM) provides both structural support and contextual information to cells within tissues and organs. The combination of biochemical and biomechanical signals from the ECM modulates responses to extracellular signals toward differentiation, proliferation, or apoptosis; alterations in the ECM are necessary for development and remodeling processes, but aberrations in the composition and organization of ECM are associated with disease pathology and can predispose to development of cancer. The primary cell surface sensors of the ECM are the integrins, which provide the physical connection between the ECM and the cytoskeleton and also convey biochemical information about the composition of the ECM. Transforming growth factor-β (TGF-β) is an extracellular signaling molecule that is a powerful controller of a variety of cellular functions, and that has been found to induce very different outcomes according to cell type and cellular context. It is becoming clear that ECM-mediated signaling through integrins is reciprocally influenced by TGF-β: integrin expression, activation, and responses are affected by cellular exposure to TGF-β, and TGF-β activation and cellular responses are in turn controlled by signaling from the ECM through integrins. Epithelial-mesenchymal transition (EMT), a physiological process that is activated by TGF-β in normal development and in cancer, is also affected by the composition and structure of the ECM. Here, we will outline how signaling from the ECM controls the contextual response to TGF-β, and how this response is selectively modulated during disease, with an emphasis on recent findings, current challenges, and future opportunities.
Collapse
|
30
|
Leask A. Matrix remodeling in systemic sclerosis. Semin Immunopathol 2015; 37:559-63. [PMID: 26141607 DOI: 10.1007/s00281-015-0508-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is an often-fatal disease characterized by connective tissue fibrosis of skin and internal organs. In scleroderma, there is an excessive production and accumulation of extracellular matrix (ECM) components resulting from an increase in collagen synthesis and matrix stability. Understanding how this how excessive ECM is produced and remodeled may represent a novel therapeutic approach. In this review, the transcription factors and collagen-modifying enzymes underlying collagen overexpression and enhancing stability in SSc are discussed. Moreover, the role of matrix stiffness in promoting fibrosis via a feed-forward mechanism is discussed. Indeed, the emerging evidence is that enhanced ECM remodeling resulting in increased ECM stiffness may be sufficient in itself to sustain persistence fibrosis in SSc.
Collapse
Affiliation(s)
- Andrew Leask
- Department of Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada,
| |
Collapse
|
31
|
Toki S, Motegi SI, Yamada K, Uchiyama A, Kanai S, Yamanaka M, Ishikawa O. Clinical and laboratory features of systemic sclerosis complicated with localized scleroderma. J Dermatol 2015; 42:283-7. [PMID: 25582037 DOI: 10.1111/1346-8138.12775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/09/2014] [Indexed: 02/04/2023]
Abstract
Localized scleroderma (LSc) primarily affects skin, whereas systemic sclerosis (SSc) affects skin and various internal organs. LSc and SSc are considered to be basically different diseases, and there is no transition between them. However, LSc and SSc have several common characteristics, including endothelial cell dysfunction, immune activation, and excess fibrosis of the skin, and there exist several SSc cases complicated with LSc during the course of SSc. Clinical and laboratory characteristics of SSc patients with LSc remain unclear. We investigated the clinical and laboratory features of 8 SSc patients with LSc among 220 SSc patients (3.6%). The types of LSc included plaque (5/8), guttate (2/8), and linear type (1/8). All cases were diagnosed as having SSc within 5 years before or after the appearance of LSc. In three cases of SSc with LSc (37.5%), LSc skin lesions preceded clinical symptoms of SSc. Young age, negative antinuclear antibody, and positive anti-RNA polymerase III antibody were significantly prevalent in SSc patients with LSc. The positivity of anticentromere antibody tended to be prevalent in SSc patients without LSc. No significant difference in the frequency of complications, such as interstitial lung disease, reflux esophagitis, and pulmonary artery hypertension, was observed. The awareness of these characteristic of SSc with LSc are essential to establish an early diagnosis and treatment.
Collapse
Affiliation(s)
- Sayaka Toki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Integrin β-8, but not β-5 or -6, protein expression is increased in livers of children with biliary atresia. J Pediatr Gastroenterol Nutr 2014; 59:679-83. [PMID: 25079481 DOI: 10.1097/mpg.0000000000000518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Our previous work demonstrated altered messenger RNA expression of integrin β-5 and -8, using an in silico analysis of publically available data from patients with biliary atresia (BA); however, we were unable to demonstrate statistically significant differences in protein expression because of sample size. In the present study, we repeated the analysis of liver fibrosis and protein expression of the integrins in a larger cohort of patients with BA and compared them with patients undergoing liver biopsy for other diagnoses, with the hypothesis that ≥ 1 of the integrins would be differentially expressed. METHODS Liver specimens were obtained at 2 collaborating institutions. Samples from infants with BA (n = 23) were compared with samples from those who underwent liver biopsy for neonatal hepatitis (n = 9). All of the specimens were analyzed by 2 pathologists (C.R. and R.A.), who were blinded to the diagnoses. Standard Ishak scoring was performed to evaluate fibrosis and inflammation, and immunohistochemical (IHC) positivity was graded from 0 to 4. Comparisons between the IHC positivity and Ishak scoring for the BA and control groups were performed using the Student t test with P < 0.01 considered significant because of the multiple comparisons. Interobserver variability was assessed by intraclass correlation (ICC). RESULTS Pooled analysis from specimens from patients with BA showed significantly more fibrosis than controls based on Ishak scores (3.21 ± 1.82 vs 1.17 ± 1.00, P < 0.005). IHC evaluation showed increased integrin ανβ8 protein expression when compared with controls (2.67 ± 0.81 vs 1.72 ± 0.62, P < 0.005); however, there were no significant differences in integrin ανβ5 (1.93 ± 0.84 vs 1.50 ± 0.90, P = 0.23) or integrin ανβ6 (0.85 ± 1.20 vs 0.94 ± 0.85, P = 0.82) expression. These data were confirmed on individual analysis. Interobserver agreement was fair for integrin ανβ5 (ICC 0.52), good for integrin ανβ6 (ICC 0.72), and excellent for integrin ανβ8 (ICC 0.79) and fibrosis (ICC 0.89). CONCLUSIONS Our data show that integrin ανβ8, but not integrin ανβ5 or integrin ανβ6, protein expression is increased in liver specimens of patients with BA. These data support the mounting evidence that transforming growth factor-β (TGF-β) activation is responsible for the fibrosis found in BA. Anti-integrin ανβ8 or more global integrin blocking strategies may be therapeutic options in BA, but further work is clearly needed.
Collapse
|
33
|
Valverde-Franco G, Hum D, Matsuo K, Lussier B, Pelletier JP, Fahmi H, Kapoor M, Martel-Pelletier J. The in vivo effect of prophylactic subchondral bone protection of osteoarthritic synovial membrane in bone-specific Ephb4-overexpressing mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:335-46. [PMID: 25453723 DOI: 10.1016/j.ajpath.2014.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/17/2023]
Abstract
Osteoarthritis (OA) is characterized by progressive joint destruction, including synovial membrane alteration. EphB4 and its ligand ephrin-B2 were found in vitro to positively affect OA subchondral bone and cartilage. In vivo in an experimental mouse model overexpressing bone-specific Ephb4 (TgEphB4), a protective effect was found on both the subchondral bone and cartilage during OA. We investigated in the TgEphB4 mouse model the in vivo effect on synovial membrane during OA. Knee OA was surgically induced by destabilization of the medial meniscus (DMM). Synovial membrane was evaluated using histology, histomorphometry, IHC, and real-time PCR. Compared to DMM-wild-type (WT) mice, DMM-TgEphB4 mice had a significant decrease in synovial membrane thickness, vascular endothelial growth factor, and the profibrotic markers fibrin, type 1 procollagen, type 3 collagen, connective tissue growth factor, smooth muscle actin-α, cartilage oligomeric matrix protein, and procollagen-lysine, and 2-oxoglutarate 5-dioxygenase 2. Moreover, factors known to modulate transforming growth factor-β signaling, transforming growth factor receptor 1/ALK1, phosphorylated Smad-1, and heat shock protein 90β were significantly decreased in DMM-TgEphB4 compared with DMM-WT mice. Ephb4 overexpression also exhibited a protective effect on synovial membrane thickness of aged (24-month-old) mice. Overexpression of bone-specific Ephb4 clearly demonstrated prevention of the development and/or progression of fibrosis in OA synovial membrane, reinforcing the hypothesis that protecting the subchondral bone prophylactically and during OA reduces the pathologic changes in other articular tissues.
Collapse
Affiliation(s)
- Gladys Valverde-Franco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - David Hum
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, Tokyo, Japan
| | - Bertrand Lussier
- Faculty of Veterinary Medicine, Clinical Science, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| |
Collapse
|
34
|
Abstract
Transforming growth factor β (TGF-β) has long been implicated in fibrotic diseases, including the multisystem fibrotic disease systemic sclerosis (SSc). Expression of TGF-β-regulated genes in fibrotic skin and lungs of patients with SSc correlates with disease activity, which points to this cytokine as the central mediator of pathogenesis. Patients with SSc often develop pulmonary arterial hypertension (PAH), a particularly lethal complication caused by vascular dysfunction. Several genetic diseases with vascular features related to SSc, such as familial PAH and hereditary haemorrhagic telangiectasia, are caused by mutations in the TGF-β-sensing ALK-1 signalling pathway. These observations suggest that increased TGF-β signalling causes both vascular and fibrotic features of SSc. The question of how latent TGF-β becomes activated in local SSc tissues is, therefore, central to the understanding of SSc. Both TGF-β1 and TGF-β3 can be activated by integrins αvβ6 and αvβ8, whose upregulation in bronchial epithelial cells can activate TGF-β in SSc lungs. Other αv integrins, thrombospondin-1 or altered TGF-β sequestration by matrix proteins might be important in other target tissues. How the immune system triggers this process remains unclear, although links between inflammation and TGF-β activation are emerging. Together, these observations provide an increasingly secure framework for understanding TGF-β in SSc pathogenesis.
Collapse
Affiliation(s)
- Robert Lafyatis
- Boston University School of Medicine, E5 Arthritis Centre, 72 E. Concord Street, Boston, MA 02118, USA
| |
Collapse
|
35
|
Agarwal SK. Integrins and cadherins as therapeutic targets in fibrosis. Front Pharmacol 2014; 5:131. [PMID: 24917820 PMCID: PMC4042084 DOI: 10.3389/fphar.2014.00131] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 01/14/2023] Open
Abstract
Fibrosis is the excessive deposition of extracellular matrix proteins into tissues leading to scar formation, disruption of normal tissue architecture and organ failure. Despite the large clinical impact of fibrosis, treatment options are limited. Adhesion molecules, in particular αvβ6 and α3β1 integrins and cadherin-11, have been demonstrated to be important mediators of tissue fibrosis. These data are reviewed here and provide the foundation for these molecules to be potential therapeutic targets for patients with fibrotic diseases.
Collapse
Affiliation(s)
- Sandeep K Agarwal
- Section of Allergy, Immunology, and Rheumatology, Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
36
|
Hata S, Okamura K, Hatta M, Ishikawa H, Yamazaki J. Proteolytic and non-proteolytic activation of keratinocyte-derived latent TGF-β1 induces fibroblast differentiation in a wound-healing model using rat skin. J Pharmacol Sci 2014; 124:230-43. [PMID: 24492413 DOI: 10.1254/jphs.13209fp] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) reportedly causes the differentiation of fibroblasts to myofibroblasts during wound healing. We investigated the mechanism underlying the activation of latent TGF-β1 released by keratinocytes in efforts to identify promising pharmacological approaches for the prevention of hypertrophic scar formation. A three-dimensional collagen gel matrix culture was prepared using rat keratinocytes and dermal fibroblasts. Stratified keratinocytes promoted the TGF receptor-dependent increase in α-smooth muscle actin (α-SMA) immunostaining and mRNA levels in fibroblasts. Latent TGF-β1 was found to be localized suprabasally and secreted. α-SMA expression was inhibited by an anti-αv-integrin antibody and a matrix metalloproteinase (MMP) inhibitor, GM6001. In a two-dimensional fibroblast culture, α-SMA expression depended on the production of endogenous TGF-β1 and required αv-integrin or MMP for the response to recombinant latent TGF-β1. In keratinocyte-conditioned medium, MMP-dependent latent TGF-β1 secretion was detected. Applying this medium to the fibroblast culture enhanced α-SMA production. This effect was decreased by GM6001, the anti-αv-integrin antibody, or the preabsorption of latent TGF-β1. These results indicate that keratinocytes secrete latent TGF-β1, which is liberated to fibroblasts over distance and is activated to produce α-SMA with the aid of a positive-feedback loop. MMP inhibition was effective for targeting both keratinocytes and fibroblasts in this model.
Collapse
Affiliation(s)
- Shozaburo Hata
- Department of Oral Growth & Development, Fukuoka Dental College, Japan
| | | | | | | | | |
Collapse
|
37
|
McMahan ZH, Wigley FM. Novel investigational agents for the treatment of scleroderma. Expert Opin Investig Drugs 2013; 23:183-98. [PMID: 24261610 DOI: 10.1517/13543784.2014.848852] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The purpose of this article is to highlight novel therapies that are being used in scleroderma (SSc). Therapeutic interventions in SSc generally target at least one of three ongoing biological processes characteristic of the disease: vasculopathy, autoimmunity and tissue fibrosis. Treatment decisions in SSc are determined by the level of disease activity and the degree of specific organ involvement. Traditional therapy has primarily focused on organ-specific management without clear evidence of overall disease modification. AREAS COVERED The authors provide a review of a variety of agents, which are already used for other autoimmune diseases, that are now being used to treat active SSc skin or lung disease, including rituximab, tocilizumab and IVIG. Several agents studied in vitro and in animal models of fibrosis have shown promise, including bortezomib, LPA-1 antagonists, anti-CCN2 therapy, anti-IL-13 and thrombin antagonists. The authors also provide details on targeting intracellular molecular pathways and matricellular proteins, which is another novel area of investigation. EXPERT OPINION Combination therapy may be necessary to control the complex biological network active in SSc. Most of the current evidence that suggest benefit of these agents is based on small population studies. Ultimately well-designed clinical trials are required to define the role of these agents in treating SSc.
Collapse
Affiliation(s)
- Zsuzsanna Hortobagyi McMahan
- Johns Hopkins University, Medicine/Rheumatology , 55200 Eastern Avenue, MFL Center Tower, Suite 5300, Baltimore, MD 21224 , USA
| | | |
Collapse
|
38
|
Iordanskaia T, Hubal MJ, Koeck E, Rossi C, Schwarz K, Nadler EP. Dysregulation of upstream and downstream transforming growth factor-β transcripts in livers of children with biliary atresia and fibrogenic gene signatures. J Pediatr Surg 2013; 48:2047-53. [PMID: 24094956 PMCID: PMC3792400 DOI: 10.1016/j.jpedsurg.2013.03.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Our previous work demonstrated that the transforming-growth factor (TGF) β pathway plays a central role in the liver fibrosis associated with experimental biliary atresia (BA). To confirm these findings in humans, we performed an in silico analysis of publicly available microarray data from liver specimens from children with BA, with the hypothesis that the TGF-β pathway would be dysregulated. METHODS We analyzed publicly available liver gene expression microarray data from 47 infants with BA. We re-analyzed the microarray image files and clinical data to compare gene expression differences between the fibrogenic and inflammatory cohorts identified in the initial study. Targets from the microarray analysis were confirmed using the animal model of BA. RESULTS Analysis of variance (ANOVA) detected 6903 transcripts (2822 distinct genes) differentially regulated between groups (p < 0.01; fold change >1.2). We used a targeted approach to identified a subgroup of 24 TGF-β-related transcripts. Expressions for procollagen transcripts were increased in the fibrogenic group (1.2-fold to 1.4-fold); expression of matrix metalloproteinase (MMP)-7 was similarly increased 2-fold, while MMP-9 and plasminogen activator inhibitor-1 were decreased 2-fold and 3-fold respectively. Integrins β5 (1.18-fold) and β8 (1.84-fold) also demonstrated increased expression in the fibrogenic group. Increased expression of β5 (3-fold) and β8 (5-fold) as well as Smad-3 (4-fold) and Smad interacting protein (SIP)-1 (3.5-fold) mRNA was confirmed in experimental BA. Phosphorylated Smad-3 protein in the experimental group was also nearly twice that of the control group, further implicating the TGF-β pathway. CONCLUSION Gene transcripts for known upstream and downstream TGF-β mediators are differentially expressed in liver specimens from children with BA and a fibrogenic gene signature. The same integrins that were dysregulated in the human specimens were also found to be up-regulated in our animal BA model, as were other intermediaries in the TGF-β pathway. Further investigation into whether these mediators may be attractive targets for future therapy in children with BA is warranted.
Collapse
Affiliation(s)
- Tatiana Iordanskaia
- Sheihk Zayed Institute for Pediatric Surgical Innovation, Washington DC 20010
| | - Monica J. Hubal
- Sheihk Zayed Institute for Pediatric Surgical Innovation, Washington DC 20010
| | - Emily Koeck
- Sheihk Zayed Institute for Pediatric Surgical Innovation, Washington DC 20010
| | - Christopher Rossi
- Department of Pathology, Children’s National Medical Center, Washington DC 20010
| | - Kathleen Schwarz
- Division of Pediatric Gastroenterology and Nutrition, Johns Hopkins School of Medicine, Baltimore, MD 21287
| | - Evan P. Nadler
- Sheihk Zayed Institute for Pediatric Surgical Innovation, Washington DC 20010
| |
Collapse
|
39
|
Fett N. Scleroderma: Nomenclature, etiology, pathogenesis, prognosis, and treatments: Facts and controversies. Clin Dermatol 2013; 31:432-437. [DOI: 10.1016/j.clindermatol.2013.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Henderson NC, Sheppard D. Integrin-mediated regulation of TGFβ in fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:891-6. [PMID: 23046811 PMCID: PMC3573259 DOI: 10.1016/j.bbadis.2012.10.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 12/26/2022]
Abstract
Fibrosis is a major cause of morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only effective treatment for end-stage fibrotic disease. However, demand for donor organs greatly outstrips supply, and so effective anti-fibrotic treatments are urgently required. In recent years, the integrin family of cell adhesion receptors has gained prominence as key regulators of chronic inflammation and fibrosis. Fibrosis models in multiple organs have demonstrated that integrins have profound effects on the fibrotic process. There is now abundant in vivo data demonstrating critical regulatory roles for integrins expressed on different cell types during tissue fibrogenesis. In this review, we will examine the ways in which integrins regulate these processes and discuss how the manipulation of integrins using function blocking antibodies and small molecule inhibitors may have clinical utility in the treatment of patients with a broad range of fibrotic diseases. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Neil C Henderson
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
41
|
Grebennikov VA, Anisimov LA, Gursky GE. Atypical manifestation of idiopathic atrophoderma of Pasini and Pierini. VESTNIK DERMATOLOGII I VENEROLOGII 2013. [DOI: 10.25208/vdv616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The authors describe a case of idiopathic atrophoderma of Pasini and Pierini, which was difficult to diagnose, had no clinical signs of skin atrophy and was diagnosed only as a result of histopathology. A female patient aged 25 developed small-size spots of cyanochroic and brown color in the left-hand lumbar area, which formed a focus of irregular shape with the marble pattern without any signs of skin atrophy or compression. Similar foci later affected skin in the area of the left bladebone and left shoulder. However, histopathology revealed atrophic manifestations and a light form of sclerosis in the subepidermal zone of the affected skin, which made it possible to diagnose the condition, and the administered treatment demonstrated positive clinical dynamics.
Collapse
|
42
|
Makino K, Jinnin M, Hirano A, Yamane K, Eto M, Kusano T, Honda N, Kajihara I, Makino T, Sakai K, Masuguchi S, Fukushima S, Ihn H. The Downregulation of microRNA let-7a Contributes to the Excessive Expression of Type I Collagen in Systemic and Localized Scleroderma. THE JOURNAL OF IMMUNOLOGY 2013; 190:3905-15. [DOI: 10.4049/jimmunol.1200822] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, Fukushima S, Inoue Y, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H. miR-150 Down-Regulation Contributes to the Constitutive Type I Collagen Overexpression in Scleroderma Dermal Fibroblasts via the Induction of Integrin β3. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:206-16. [DOI: 10.1016/j.ajpath.2012.09.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 09/13/2012] [Accepted: 09/26/2012] [Indexed: 01/08/2023]
|
44
|
Abstract
Lung fibrosis can affect the parenchyma and the airways, classically giving rise to idiopathic pulmonary fibrosis (IPF) in the parenchyma or airway remodeling in asthma and chronic obstructive pulmonary disease. TGF-β activation has been implicated in the fibrosis of both IPF and airway remodeling. However, the mechanisms of TGF-β activation appear to differ depending on the cellular and anatomical compartments, with implications on disease pathogenesis. Although it appears that epithelial cell activation of TGF-β by the αvβ6 integrin is central in IPF, mesenchymal activation of TGF-β by the αvβ5 and αvβ8 integrins appears to predominate in airway remodeling. Interestingly, the mechanism of TGF-β by the integrins αvβ6 and αvβ5 is shared, relying on cytoskeletal changes, whereas activation of TGF-β by the αvβ8 integrin is distinct, relying on proteolytic cleavage of the latency-associated peptide of TGF-β by matrix metalloproteinase 14. This article describes the mechanisms through which epithelial cells activate TGF-β by the αvβ6 integrin and mesenchymal cells activate TGF-β by the αvβ5 integrin, and highlights their roles in lung fibrosis.
Collapse
|
45
|
Wang W, Olson D, Liang G, Franceschi RT, Li C, Wang B, Wang SS, Yang S. Collagen XXIV (Col24α1) promotes osteoblastic differentiation and mineralization through TGF-β/Smads signaling pathway. Int J Biol Sci 2012; 8:1310-22. [PMID: 23139630 PMCID: PMC3492790 DOI: 10.7150/ijbs.5136] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022] Open
Abstract
Collagen XXIV (Col24α1) is a recently discovered fibrillar collagen. It is known that mouse Col24α1 is predominantly expressed in the forming skeleton of the mouse embryo, as well as in the trabecular bone and periosteum of the newborn mouse. However, the role and mechanism of Col24α1 in osteoblast differentiation and mineralization remains unclear. By analyzing the expression pattern of Col24α1, we confirmed that it is primarily expressed in bone tissues, and this expression gradually increased concomitant with the progression of osteoblast differentiation. Through the use of a lentivirus vector-mediated interference system, silencing Col24α1 expression in MC3T3-E1 murine preosteoblastic cells resulted in significant inhibition of alkaline phosphatase (ALP) activity, cell mineralization, and the expression of osteoblast marker genes such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), ALP, and type I collagen (Col I). Subsequent overexpression not only rescued the deficiency in osteoblast differentiation from Col24α1 silenced cells, but also enhanced osteoblastic differentiation in control cells. We further revealed that Col24α1 interacts with integrin β3, and silencing Col24α1 up-regulated the expression of Smad7 during osteoblast differentiation while at the same time inhibiting the phosphorylation of the Smad2/3 complex. These results suggest that Col24α1 imparts some of its regulatory control on osteoblast differentiation and mineralization at least partially through interaction with integrin β3 and the transforming growth factor beta (TGF-β) /Smads signaling pathway.
Collapse
Affiliation(s)
- Weizhuo Wang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Noda S, Asano Y, Akamata K, Aozasa N, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Sumida H, Yanaba K, Tada Y, Sugaya M, Kadono T, Sato S. Constitutive activation of c-Abl/protein kinase C-δ/Fli1 pathway in dermal fibroblasts derived from patients with localized scleroderma. Br J Dermatol 2012; 167:1098-105. [PMID: 22591006 DOI: 10.1111/j.1365-2133.2012.11055.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND A noncanonical pathway of transforming growth factor-β signalling, the c-Abl/protein kinase C-δ (PKC-δ)/Friend leukemia virus integration 1 (Fli1) axis, is a powerful regulator of collagen synthesis in dermal fibroblasts. OBJECTIVES To investigate the significance of the c-Abl/PKC-δ/Fli1 pathway for the establishment of the profibrotic phenotype in lesional dermal fibroblasts from patients with localized scleroderma (LSc). METHODS The activation status of the c-Abl/PKC-δ/Fli1 pathway was evaluated by immunoblotting and chromatin immunoprecipitation using cultured dermal fibroblasts from patients with LSc and closely matched healthy controls and by immunostaining on skin sections. The effects of a platelet-derived growth factor receptor inhibitor AG1296 and gene silencing of c-Abl on the expression levels of type I collagen were evaluated by immunoblotting. RESULTS The phosphorylation levels of Fli1 at threonine 312 were increased, while the total Fli1 levels and the binding of Fli1 to the COL1A2 promoter were decreased, in cultured LSc fibroblasts compared with cultured normal fibroblasts. Furthermore, in cultured LSc fibroblasts, the expression levels of c-Abl were elevated compared with cultured normal fibroblasts and PKC-δ was preferentially localized in the nucleus. These findings were also confirmed in vivo by immunohistochemistry using skin sections. Moreover, gene silencing of c-Abl, but not AG1296, significantly suppressed the expression of type I collagen in cultured LSc fibroblasts. CONCLUSIONS Constitutive activation of the c-Abl/PKC-δ/Fli1 pathway at least partially contributes to the establishment of the profibrotic phenotype in LSc dermal fibroblasts, which provides a novel molecular basis to explain the efficacy of imatinib against skin sclerosis in a certain subset of LSc.
Collapse
Affiliation(s)
- S Noda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Etoh M, Jinnin M, Makino K, Yamane K, Nakayama W, Aoi J, Honda N, Kajihara I, Makino T, Fukushima S, Ihn H. microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma. Arch Dermatol Res 2012; 305:9-15. [DOI: 10.1007/s00403-012-1287-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/16/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
48
|
Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:11. [PMID: 22824096 PMCID: PMC3443459 DOI: 10.1186/1755-1536-5-11] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
49
|
Kajihara I, Jinnin M, Honda N, Makino K, Makino T, Masuguchi S, Sakai K, Fukushima S, Inoue Y, Ihn H. Scleroderma dermal fibroblasts overexpress vascular endothelial growth factor due to autocrine transforming growth factor β signaling. Mod Rheumatol 2012; 23:516-24. [PMID: 22740248 DOI: 10.1007/s10165-012-0698-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/05/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Overexpression of vascular endothelial growth factor (VEGF) in scleroderma (SSc) skin may play a role in the pathogenesis of the disease. Our study was undertaken to evaluate whether dermal fibroblasts function as one of the sources of the increased VEGF in SSc, and to clarify its mechanism. METHODS Protein and mRNA levels of VEGF were analyzed using immunoblotting, enzyme-linked immunosorbent assay, and real-time PCR. The DNA-binding ability of Smad3 was evaluated by DNA affinity precipitation. RESULTS VEGF mRNA expression in vivo was increased in SSc skin compared to skin with other collagen diseases. Expression of VEGF protein and mRNA in cultured SSc dermal fibroblasts was constitutively and significantly upregulated. Ectopic TGF-β stimulation induced VEGF synthesis in normal fibroblasts, and TGF-β knockdown normalized the upregulated VEGF levels in SSc fibroblasts. Furthermore, Smad3 overexpression induced VEGF levels. We found that bp -532 to -521 on the VEGF promoter is a putative binding site for Smads, and that the binding activity of Smad3 to VEGF promoter was constitutively increased in SSc fibroblasts as well as in normal fibroblasts treated with exogenous TGF-β1. CONCLUSIONS We demonstrated that VEGF were overexpressed due to autocrine TGF-β/Smad signaling in SSc. TGF-β signaling may contribute to the pathogenesis of angiopathy as well as tissue fibrosis.
Collapse
Affiliation(s)
- Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nakerakanti S, Trojanowska M. The Role of TGF-β Receptors in Fibrosis. Open Rheumatol J 2012; 6:156-62. [PMID: 22802914 PMCID: PMC3396054 DOI: 10.2174/1874312901206010156] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/04/2023] Open
Abstract
Recent advances in defining TGF-β signaling pathways have provided a new level of understanding of the role of this pleiotropic growth factor in the development of fibrosis. Here, we review selected topics related to the profibrotic role of TGF-β . We will discuss new insights into the mechanisms of ligand activation and the contribution of Erk1/2 MAPK, PI3K/FAK, and Endoglin/Smad1 signaling pathways to the process of fibrosis. There is growing evidence of the disease-specific alterations of the downstream components of the TGF-β signaling pathway that may be explored for the future therapeutic interventions.
Collapse
Affiliation(s)
- Sashidhar Nakerakanti
- Arthritis Center, Boston University School of Medicine, 72 East Concord St, Boston, MA 02118, USA
| | | |
Collapse
|