1
|
Deepa C, Bhatt A. Skin substitutes: from conventional to 3D bioprinting. J Artif Organs 2025; 28:154-170. [PMID: 39739216 DOI: 10.1007/s10047-024-01481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 01/02/2025]
Abstract
Three-dimensional bioprinting is getting enormous attention among the scientific community for its application in complex regenerative tissue engineering applications. One of the focus areas of 3-D bioprinting is Skin tissue engineering. Skin is the largest external organ and also the outer protective layer is prone to injuries due to accidents, burns, pathologic diseases like diabetes, and immobilization of patients due to other health conditions, etc. The demand for skin tissue and the need for an off-the-shelf skin construct to treat patients is increasing on an alarming basis. Conventional approaches like skin grafting increase morbidity. Other approaches include acellular grafts, where integration with the host tissue is a major concern. The emerging technology of the future is 3D bioprinting, where different biopolymers or hybrid polymers together provide the properties of extracellular matrix (ECM) and tissue microenvironment needed for cellular growth and proliferation. This raises the hope for the possibility of a shelf skin construct, which can be used on demand or even skin can be printed directly on the wound site (in-situ printing) based on the depth and complex structure of the wound site. In the present review article, we have tried to provide an overview of Skin tissue engineering, Conventional advancement in technology, 3D bioprinting and bioprinters for skin 3D printing, different biomaterials for skin 3D bioprinting applications, desirable properties of biomaterials and future challenges.
Collapse
Affiliation(s)
- C Deepa
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695012, Kerala, India
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, 695012, Kerala, India.
| |
Collapse
|
2
|
Leon-Valdivieso CY, Bethry A, Pinese C, Dai M, Pompee C, Pernot JM, Garric X. Engineering Shape to Overcome Contraction: The Role of Polymer-Collagen Hybrids in Advanced Dermal Substitutes. J Biomed Mater Res A 2025; 113:e37805. [PMID: 39381904 DOI: 10.1002/jbm.a.37805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
Collagen gels are the standard dermal equivalents par excellence, however the problem of rapid cell-mediated contraction remains unresolved. Therefore, the development of hybrid constructs (HCs) based on collagen and polymeric scaffolds is proposed to address the mechanical instability that usually limits the formation of new, functional tissue. Equally important, these synthetic structures should be temporary (degradable) while ensuring that cells are well-adapted to the new extracellular environment. In this study, we screened a library of scaffolds made of various polymers, including homopolymers of polycaprolactone (PCL) and poly D,L-lactide (PLA50), their blends (PCL/PLA50), and copolymers (poly(D,L-lactide-co-caprolactone), PCLLA50) to prepare HCs in a layer-by-layer fashion. The properties of polymers and copolymers along with their processability by electrospinning and 3D-printing were evaluated. Then, we assessed the HCs resistance toward cell-mediated contraction as well as the degradation of the polymeric scaffolds. Our results indicate that scaffolds with higher PLA50 content (e.g., PLA50 100%, PCL/PLA50 or PCLLA50, both at 50/50 caprolactone-to-D,L-lactide molar ratio) presented more drawbacks in terms of handleability and processing, while those with greater PCL presence showed structural steadiness and ease to use. All the scaffolds integrated well with the collagen gel to form the corresponding HCs. With few exceptions, the HCs demonstrated good resistance to cell-derived contraction over 3 weeks. Notably, HCs based on PCLLA50 90/10 (both versions, electrospun or 3D-printed) performed best, showing only a 5%-17% area reduction compared to the 93% observed in collagen-only gels. This copolymer displayed hydrolytic degradation depending on its shape, with up to 45% and 65% loss of molecular weight for the electrospun and 3D-printed forms, respectively, correlating with their progressive change in mechanical features. HCs containing PCLLA50 90/10 also exhibited a better fibroblast distribution, enhanced myofibroblastic differentiation, and a three-fold increase in cell proliferation (when the electrospun type was used) compared to collagen controls. These findings were instrumental in selecting a potential HC that might be used for future experiments in vivo.
Collapse
Affiliation(s)
- Christopher Y Leon-Valdivieso
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- CARTIGEN, University Hospital of Montpellier, Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, University Hospital of Nimes, Nimes, France
| | - Michèle Dai
- URGO Recherche Innovation et Développement, Chenôve, France
| | - Christian Pompee
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, University Hospital of Nimes, Nimes, France
| |
Collapse
|
3
|
Morgner B, Werz O, Wiegand C, Tittelbach J. Bilayered skin equivalent mimicking psoriasis as predictive tool for preclinical treatment studies. Commun Biol 2024; 7:1529. [PMID: 39558145 PMCID: PMC11574237 DOI: 10.1038/s42003-024-07226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Psoriasis is a prevalent, inflammatory skin disease without cure. Further research is required to unravel dysregulated processes and develop new therapeutic interventions. The lack of suitable in vivo and in vitro preclinical models is an impediment in the psoriasis research. Recently, the development of 3D skin models has progressed including replicas with disease-like features. To investigate the use of in vitro models as preclinical test tools, the study focused on treatment responses of 3D skin replicas. Cytokine-priming of skin organoids induced psoriatic features like inflammation, antimicrobial peptides (AMP), hyperproliferation and impaired differentiation. Topical application of dexamethasone (DEX) or celastrol (CEL), a natural anti-inflammatory compound reduced the secretion of pro-inflammatory cytokines. DEX and CEL decreased the gene expression of inflammatory mediators. DEX barely affected the psoriatic AMP transcription but CEL downregulated psoriasis-driven AMP genes. Subcutaneous application of adalimumab (ADM) or bimekizumab (BMM) showed anti-psoriatic effects via protein induction of the differentiation marker keratin-10. Dual blockage of TNF-α and IL-17A repressed the inflammatory psoriasis phenotype. BMM inhibited the psoriatic expression of AMP genes and induced KRT10 and cell-cell contact genes. The present in vitro model provides a 3D environment with in vivo-like cutaneous responses and represents a promising tool for preclinical investigations.
Collapse
Affiliation(s)
- Bianka Morgner
- University Hospital Jena, Department of Dermatology, Friedrich Schiller University Jena, Jena, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Cornelia Wiegand
- University Hospital Jena, Department of Dermatology, Friedrich Schiller University Jena, Jena, Germany
| | - Jörg Tittelbach
- University Hospital Jena, Department of Dermatology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
4
|
Godoi MM, Reis EM, Koepp J, Ferreira J. Perspective from developers: Tissue-engineered products for skin wound healing. Int J Pharm 2024; 660:124319. [PMID: 38866084 DOI: 10.1016/j.ijpharm.2024.124319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Tissue-engineered products (TEPs) are at the forefront of developmental medicines, precisely where monoclonal antibodies and recombinant cytokines were 30 years ago. TEPs development for treating skin wounds has become a fast-growing field as it offers the potential to find novel therapeutic approaches for treating pathologies that currently have limited or no effective alternatives. This review aims to provide the reader with the process of translating an idea from the laboratory bench to clinical practice, specifically in the context of TEPs designing for skin wound healing. It encompasses historical perspectives, approved therapies, and offers a distinctive insight into the regulatory framework in Brazil. We explore the essential guidelines for quality testing, and nonclinical proof-of-concept considering the Brazilian Network of Experts in Advanced Therapies (RENETA) and International Standards and Guidelines (ICH e ISO). Adopting a multifaceted approach, our discussion incorporates scientific and industrial perspectives, addressing quality, biosafety, non-clinical viability, clinical trial and real-word data for pharmacovigilance demands. This comprehensive analysis presents a panoramic view of the development of skin TEPs, offering insights into the evolving landscape of this dynamic and promising field.
Collapse
Affiliation(s)
- Manuella Machado Godoi
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina- UFSC, Florianópolis, SC, Brazil.
| | - Emily Marques Reis
- Department of Chemical and Food Engineering, Federal University of Santa Catarina- UFSC, Florianópolis, SC, Brazil; Biocelltis Biotecnologia, Florianópolis, SC, Brazil
| | - Janice Koepp
- Biocelltis Biotecnologia, Florianópolis, SC, Brazil
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina- UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Polak J, Sachs D, Scherrer N, Süess A, Liu H, Levesque M, Werner S, Mazza E, Restivo G, Meboldt M, Giampietro C. Radial matrix constraint influences tissue contraction and promotes maturation of bi-layered skin equivalents. BIOMATERIALS ADVANCES 2024; 156:213702. [PMID: 37992477 DOI: 10.1016/j.bioadv.2023.213702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Human skin equivalents (HSEs) serve as important tools for mechanistic studies with human skin cells, drug discovery, pre-clinical applications in the field of tissue engineering and for skin transplantation on skin defects. Besides the cellular and extracellular matrix (ECM) components used for HSEs, physical constraints applied on the scaffold during HSEs maturation influence tissue organization, functionality, and homogeneity. In this study, we introduce a 3D-printed culture insert that exposes bi-layered HSEs to a static radial constraint through matrix adhesion. We examine the effect of various diameters of the ring-shaped culture insert on the HSE's characteristics and compare them to state-of-the-art unconstrained and planar constrained HSEs. We show that radial matrix constraint of HSEs regulates tissue contraction, promotes fibroblast and matrix organization that is similar to human skin in vivo and improves keratinocyte differentiation, epidermal stratification, and basement membrane formation depending on the culture insert diameter. Together, these data demonstrate that the degree of HSE's contraction is an important design consideration in skin tissue engineering. Therefore, this study can help to mimic various in vivo skin conditions and to increase the control of relevant tissue properties.
Collapse
Affiliation(s)
- Jessica Polak
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland.
| | - David Sachs
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Nino Scherrer
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland
| | - Adrian Süess
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Huan Liu
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland; Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dubendorf 8600, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Mirko Meboldt
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Costanza Giampietro
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland; Swiss Federal Laboratories for Materials Science and Technology (EMPA), Dubendorf 8600, Switzerland
| |
Collapse
|
6
|
Ahn M, Cho WW, Lee H, Park W, Lee SH, Back JW, Gao Q, Gao G, Cho DW, Kim BS. Engineering of Uniform Epidermal Layers via Sacrificial Gelatin Bioink-Assisted 3D Extrusion Bioprinting of Skin. Adv Healthc Mater 2023; 12:e2301015. [PMID: 37537366 DOI: 10.1002/adhm.202301015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Indexed: 08/05/2023]
Abstract
To reconstruct an ideal full-thickness skin model, basal keratinocytes must be distributed as a confluent monolayer on the dermis. However, the currently available extrusion bioprinting method for the skin is limited when producing an air-exposed cellular monolayer because the cells are encapsulated within a bioink. This is the first study to use sacrificial gelatin-assisted extrusion bioprinting to reproduce a uniform and stratified epidermal layer. Experimental analyses of the rheological properties, printability, cell viability, and initial keratinocyte adhesion shows that the optimal gelatin bioink concentration is 4 wt.%. The appropriate thickness of the bioprinted gelatin structure for achieving a confluent keratinocyte layer is determined to be 400 µm. The suggested strategy generates a uniform keratinocyte monolayer with tight junctions throughout the central and peripheral regions, whereas manual seeding generates non-uniform cellular aggregates and vacancies. These results influence gene expression, exhibiting a propensity for epidermal differentiation. Finally, the gelatin-assisted keratinocytes are bioprinted onto a dermis composed of gelatin methacryloyl and dermis-derived decellularized extracellular matrix to establish a full-thickness skin model. Thus, this strategy leads to significant improvements in epidermal differentiation/stratification. The findings demonstrate that the gelatin-assisted approach is advantageous for recreating reliable full-thickness skin models with significant consistency for mass production.
Collapse
Affiliation(s)
- Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan, 626841, Republic of Korea
| | - Won-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hanju Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 626841, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seok-Hyeon Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 626841, Republic of Korea
| | - Jae Woo Back
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 626841, Republic of Korea
| | - Qiqi Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan, 626841, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 626841, Republic of Korea
| |
Collapse
|
7
|
Ahn M, Cho WW, Park W, Lee JS, Choi MJ, Gao Q, Gao G, Cho DW, Kim BS. 3D biofabrication of diseased human skin models in vitro. Biomater Res 2023; 27:80. [PMID: 37608402 PMCID: PMC10464270 DOI: 10.1186/s40824-023-00415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Human skin is an organ located in the outermost part of the body; thus, it frequently exhibits visible signs of physiological health. Ethical concerns and genetic differences in conventional animal studies have increased the need for alternative in vitro platforms that mimic the structural and functional hallmarks of natural skin. Despite significant advances in in vitro skin modeling over the past few decades, different reproducible biofabrication strategies are required to reproduce the pathological features of diseased human skin compared to those used for healthy-skin models. To explain human skin modeling with pathological hallmarks, we first summarize the structural and functional characteristics of healthy human skin. We then provide an extensive overview of how to recreate diseased human skin models in vitro, including models for wounded, diabetic, skin-cancer, atopic, and other pathological skin types. We conclude with an outlook on diseased-skin modeling and its technical perspective for the further development of skin engineering.
Collapse
Affiliation(s)
- Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan, 626841, Kyungnam, Korea
| | - Won-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Min-Ju Choi
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea
| | - Qiqi Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Gao
- School of Medical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan, 626841, Kyungnam, Korea.
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
8
|
Oliveira C, Sousa D, Teixeira JA, Ferreira-Santos P, Botelho CM. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol 2023; 11:1136077. [PMID: 37576995 PMCID: PMC10415681 DOI: 10.3389/fbioe.2023.1136077] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Diana Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
- Department of Chemical Engineering, Faculty of Science, University of Vigo, Ourense, Spain
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| |
Collapse
|
9
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
10
|
Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, Maarof M, Thomas S, Motta A, Fauzi MB. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol 2023; 11:1160577. [PMID: 37292094 PMCID: PMC10245056 DOI: 10.3389/fbioe.2023.1160577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaima Maliha Riha
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn Bhd Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Blessy Joseph
- Business Innovation and Incubation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabu Thomas
- International and Inter University Centre for Nanosciences and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Freer M, Darling N, Goncalves K, Mills KJ, Przyborski S. Development of a mammalian neurosensory full-thickness skin equivalent and its application to screen sensitizing stimuli. Bioeng Transl Med 2023; 8:e10484. [PMID: 37206205 PMCID: PMC10189474 DOI: 10.1002/btm2.10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Human skin equivalents (HSEs) are an increasingly popular research tool due to limitations associated with animal testing for dermatological research. They recapitulate many aspects of skin structure and function, however, many only contain two basic cell types to model dermal and epidermal compartments, which limits their application. We describe advances in the field skin tissue modeling to produce a construct containing sensory-like neurons that is responsive to known noxious stimuli. Through incorporation of mammalian sensory-like neurons, we were able to recapitulate aspects of the neuroinflammatory response including secretion of substance P and a range of pro-inflammatory cytokines in response to a well-characterized neurosensitizing agent: capsaicin. We observed that neuronal cell bodies reside in the upper dermal compartment with neurites extending toward the keratinocytes of the stratum basale where they exist in close proximity to one another. These data suggest that we are able to model aspects of the neuroinflammatory response that occurs during exposure to dermatological stimuli including therapeutics and cosmetics. We propose that this skin construct can be considered a platform technology with a wide range of applications including screening of actives, therapeutics, modeling of inflammatory skin diseases, and fundamental approaches to probe underlying cell and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Przyborski
- Department of BiosciencesDurham UniversityDurhamUK
- Reprocell Europe LtdGlasgowUK
| |
Collapse
|
12
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
13
|
Jones CFE, Di Cio S, Connelly JT, Gautrot JE. Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model. Front Bioeng Biotechnol 2022; 10:915702. [PMID: 35928950 PMCID: PMC9343775 DOI: 10.3389/fbioe.2022.915702] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-engineered skin constructs have been under development since the 1980s as a replacement for human skin tissues and animal models for therapeutics and cosmetic testing. These have evolved from simple single-cell assays to increasingly complex models with integrated dermal equivalents and multiple cell types including a dermis, epidermis, and vasculature. The development of micro-engineered platforms and biomaterials has enabled scientists to better recreate and capture the tissue microenvironment in vitro, including the vascularization of tissue models and their integration into microfluidic chips. However, to date, microvascularized human skin equivalents in a microfluidic context have not been reported. Here, we present the design of a novel skin-on-a-chip model integrating human-derived primary and immortalized cells in a full-thickness skin equivalent. The model is housed in a microfluidic device, in which a microvasculature was previously established. We characterize the impact of our chip design on the quality of the microvascular networks formed and evidence that this enables the formation of more homogenous networks. We developed a methodology to harvest tissues from embedded chips, after 14 days of culture, and characterize the impact of culture conditions and vascularization (including with pericyte co-cultures) on the stratification of the epidermis in the resulting skin equivalents. Our results indicate that vascularization enhances stratification and differentiation (thickness, architecture, and expression of terminal differentiation markers such as involucrin and transglutaminase 1), allowing the formation of more mature skin equivalents in microfluidic chips. The skin-on-a-chip tissue equivalents developed, because of their realistic microvasculature, may find applications for testing efficacy and safety of therapeutics delivered systemically, in a human context.
Collapse
Affiliation(s)
- Christian F. E. Jones
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stefania Di Cio
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - John T. Connelly
- The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Julien E. Gautrot
- Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
15
|
Sarama R, Matharu PK, Abduldaiem Y, Corrêa MP, Gil CD, Greco KV. In Vitro Disease Models for Understanding Psoriasis and Atopic Dermatitis. Front Bioeng Biotechnol 2022; 10:803218. [PMID: 35265594 PMCID: PMC8899215 DOI: 10.3389/fbioe.2022.803218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Psoriasis (PS) and Atopic Dermatitis (AD) are two of the most prevalent inflammatory skin diseases. Dysregulations in the immune response are believed to play a crucial role in the pathogenesis of these conditions. Various parallels can be drawn between the two disorders, as they are both genetically mediated, and characterised by dry, scaly skin caused by abnormal proliferation of epidermal keratinocytes. The use of in vitro disease models has become an increasingly popular method to study PS and AD due to the high reproducibility and accuracy in recapitulating the pathogenesis of these conditions. However, due to the extensive range of in vitro models available and the majority of these being at early stages of production, areas of development are needed. This review summarises the key features of PS and AD, the different types of in vitro models available to study their pathophysiology and evaluating their efficacy in addition to discussing future research opportunities.
Collapse
Affiliation(s)
- Roudin Sarama
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
| | - Priya K. Matharu
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
| | - Yousef Abduldaiem
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Mab P. Corrêa
- Programa de Pós-Graduação Em Biociências, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José, Brazil
| | - Cristiane D. Gil
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São José, Brazil
| | - Karin V. Greco
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
- *Correspondence: Karin V. Greco,
| |
Collapse
|
16
|
Golchin A, Shams F, Basiri A, Ranjbarvan P, Kiani S, Sarkhosh-Inanlou R, Ardeshirylajimi A, Gholizadeh-Ghaleh Aziz S, Sadigh S, Rasmi Y. Combination Therapy of Stem Cell-derived Exosomes and Biomaterials in the Wound Healing. Stem Cell Rev Rep 2022; 18:1892-1911. [PMID: 35080745 DOI: 10.1007/s12015-021-10309-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a serious obstacle due to the complexity of evaluation and management. While novel approaches to promoting chronic wound healing are of critical interest at the moment, several studies have demonstrated that combination therapy is critical for the treatment of a variety of diseases, particularly chronic wounds. Among the various approaches that have been proposed for wound care, regenerative medicine-based methods have garnered the most attention. As is well known, regenerative medicine's three primary tools are gene/cell therapy, biomaterials, and tissue engineering. Multifunctional biomaterials composed of synthetic and natural components are highly advantageous for exosome carriers, which utilizing them is an exciting wound healing method. Recently, stem cell-secreted exosomes and certain biomaterials have been identified as critical components of the wound healing process, and their combination therapy appears to produce significant results. This paper presents a review of literature and perspectives on the use of stem cell-derived exosomes and biomaterials in wound healing, particularly chronic wounds, and discusses the possibility of future clinical applications.
Collapse
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid, Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Roya Sarkhosh-Inanlou
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sanaz Sadigh
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
17
|
Pavez Loriè E, Baatout S, Choukér A, Buchheim JI, Baselet B, Dello Russo C, Wotring V, Monici M, Morbidelli L, Gagliardi D, Stingl JC, Surdo L, Yip VLM. The Future of Personalized Medicine in Space: From Observations to Countermeasures. Front Bioeng Biotechnol 2021; 9:739747. [PMID: 34966726 PMCID: PMC8710508 DOI: 10.3389/fbioe.2021.739747] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of personalized medicine is to detach from a “one-size fits all approach” and improve patient health by individualization to achieve the best outcomes in disease prevention, diagnosis and treatment. Technological advances in sequencing, improved knowledge of omics, integration with bioinformatics and new in vitro testing formats, have enabled personalized medicine to become a reality. Individual variation in response to environmental factors can affect susceptibility to disease and response to treatments. Space travel exposes humans to environmental stressors that lead to physiological adaptations, from altered cell behavior to abnormal tissue responses, including immune system impairment. In the context of human space flight research, human health studies have shown a significant inter-individual variability in response to space analogue conditions. A substantial degree of variability has been noticed in response to medications (from both an efficacy and toxicity perspective) as well as in susceptibility to damage from radiation exposure and in physiological changes such as loss of bone mineral density and muscle mass in response to deconditioning. At present, personalized medicine for astronauts is limited. With the advent of longer duration missions beyond low Earth orbit, it is imperative that space agencies adopt a personalized strategy for each astronaut, starting from pre-emptive personalized pre-clinical approaches through to individualized countermeasures to minimize harmful physiological changes and find targeted treatment for disease. Advances in space medicine can also be translated to terrestrial applications, and vice versa. This review places the astronaut at the center of personalized medicine, will appraise existing evidence and future preclinical tools as well as clinical, ethical and legal considerations for future space travel.
Collapse
Affiliation(s)
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.,Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Alexander Choukér
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Judith-Irina Buchheim
- Laboratory of Translational Research "Stress and Immunity", Department of Anesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | | | - Monica Monici
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Dimitri Gagliardi
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Manchester, United Kingdom
| | - Julia Caroline Stingl
- Institute of Clinical Pharmacology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Leonardo Surdo
- Space Applications Services NV/SA for the European Space Agency, Noordwijk, Netherlands
| | - Vincent Lai Ming Yip
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalized Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Moon S, Kim DH, Shin JU. In Vitro Models Mimicking Immune Response in the Skin. Yonsei Med J 2021; 62:969-980. [PMID: 34672130 PMCID: PMC8542468 DOI: 10.3349/ymj.2021.62.11.969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
The skin is the first line of defense of our body, and it is composed of the epidermis and dermis with diverse immune cells. Various in vitro models have been investigated to recapitulate the immunological functions of the skin and to model inflammatory skin diseases. The simplest model is a two-dimensional (2D) co-culture system, which helps understand the direct and indirect cell-to-cell interactions between immune and structural cells; however, it has limitations when observing three-dimensional (3D) interactions or reproducing skin barriers. Conversely, 3D skin constructs can mimic the human skin characteristics in terms of epidermal and dermal structures, barrier functions, cell migration, and cell-to-cell interaction in the 3D space. Recently, as the importance of neuro-immune-cutaneous interactions in the inflammatory response is emerging, 3D skin constructs containing both immune cells and neurons are being developed. A microfluidic culture device called "skin-on-a-chip," which simulates the structures and functions of the human skin with perfusion, was also developed to mimic immune cell migration through the vascular system. This review summarizes the in vitro skin models with immune components, focusing on two highly prevalent chronic inflammatory skin diseases: atopic dermatitis and psoriasis. The development of these models will be valuable in studying the pathophysiology of skin diseases and evaluating the efficacy and toxicity of new drugs.
Collapse
Affiliation(s)
- Sujin Moon
- CHA University College of Medicine, Seongnam, Korea
| | - Dong Hyun Kim
- CHA University College of Medicine, Seongnam, Korea
- Department of Dermatology, CHA Bundang Medical Center, Seongnam, Korea
| | - Jung U Shin
- CHA University College of Medicine, Seongnam, Korea
- Department of Dermatology, CHA Bundang Medical Center, Seongnam, Korea.
| |
Collapse
|
19
|
Montero A, Atienza C, Elvira C, Jorcano JL, Velasco D. Hyaluronic acid-fibrin hydrogels show improved mechanical stability in dermo-epidermal skin substitutes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112352. [PMID: 34474900 DOI: 10.1016/j.msec.2021.112352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Human plasma-derived bilayered skin substitutes have been successfully used by our group in different skin tissue engineering applications. However, several issues associated with their poor mechanical properties were observed, and they often resulted in rapid contraction and degradation. In this sense, hydrogels composed of plasma-derived fibrin and thiolated-hyaluronic acid (HA-SH, 0.05-0.2% w/v) crosslinked with poly(ethylene glycol) diacrylate (PEGDA, 2:1, 6:1, 10:1 and 14:1 mol of thiol to moles of acrylate) were developed to reduce the shrinking rates and enhance the mechanical properties of the plasma-derived matrices. Plasma/HA-SH-PEGDA hydrogels showed a decrease in the contraction behaviour ranging from 5% to 25% and an increase in Young's modulus. Furthermore, the results showed that a minimal amount of the added HA-SH was able to escape the plasma/HA-SH-PEGDA hydrogels after incubation in PBS. The results showed that the increase in rigidity of the matrices as well as the absence of adhesion cellular moieties in the second network of HA-SH/PEGDA, resulted in a decrease in contraction in the presence of the encapsulated primary human fibroblasts (hFBs), which may have been related to an overall decrease in proliferation of hFBs found for all hydrogels after 7 days with respect to the plasma control. The metabolic activity of hFB returned to the control levels at 14 days except for the 2:1 PEGDA crosslinking ratio. The metabolic activity of primary human keratinocytes (hKCs) seeded on the hydrogels showed a decrease when high amounts of HA-SH and PEGDA crosslinker were incorporated. Organotypic skins formed in vitro after 21 days with plasma/HA-SH-PEGDA hydrogels with an HA content of 0.05% w/v and a 2:1 crosslinking ratio were up to three times thicker than the plasma controls, evidencing a reduction in contraction, while they also showed better and more homogeneous keratin 10 (K10) expression in the supra-basal layer of the epidermis. Furthermore, filaggrin expression showed the formation of an enhanced stratum corneum for the constructs containing HA. These promising results indicate the potential of using these biomimetic hydrogels as in vitro skin models for pharmaceutical products and cosmetics and future work will elucidate their potential functionality for clinical treatment.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
| | - Clara Atienza
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
| | - Carlos Elvira
- Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
20
|
Sainy J, Atneriya U, Kori JL, Maheshwari R. Development of an Aloe vera-based Emulgel for the Topical Delivery of Desoximetasone. Turk J Pharm Sci 2021; 18:465-475. [PMID: 34496553 DOI: 10.4274/tjps.galenos.2020.33239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Desoximetasone (DMS) is a widely recommended drug for the topical treatment of plaque psoriasis. However, low water solubility and short half life of DMS present major obstacles in the development of an effective topical formulation. Thus, there is a demand for the development of a safe and effective topical system to deliver hydrophobic DMS. The present study aimed to develop an Aloe vera-based emulgel formulation to ensure enhanced skin deposition of DMS for effective treatment of plaque psoriasis. Materials and Methods Different formulations (DE1-DE4) of Aloe vera emulgel were prepared using dispersion technique, wherein varying concentrations of propylene glycol (6-14% w/w) and carbopol 934 (0.5-1.0% w/w) were used. Results Zetasizer measurements revealed that the globule size of the formulations ranged from 10.34 µm±0.9 to 14.60 µm±1.4 (n=50). Extrudability analysis for the DE3 and DE2 formulations revealed an extrudability of 5.6±0.11 g/cm2 and 5.8±0.13 g/cm2, respectively. The pH of the formulations was recorded in the range of 5.8-6.8. Among these formulations, DE3 showed a maximum drug content of 94.64%±0.29 (n=3), and thus was used for further in vitro evalutions. A texture analyzer showed that an optimized DE3 formulation was firmer and exhibited optimal spreadability in comparison with the DE2 formulation. For DE3, the mean max force that represented "firmness" was recorded to be 833.37 g, where as the mean area, denoting "work of shear", was 324.230 g.sec. The DE3 formulation exhibited DMS permeation of 95.40±1.6% over a period of 7 h, as detrmined using an in house fabricated Franze diffusion cell. Evaluation of in vitro release kinetics revealed that the release of DMS fitted into the Korsmeyer-Peppas model. Conclusion Physicochemical characteristics and enhanced in vitro permeation of DMS from Aloe vera emulgel highlight its suitability to be efficiently employed for the topical treatment of skin ailments.
Collapse
Affiliation(s)
- Jitendra Sainy
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore (M.P.), India
| | - Umesh Atneriya
- BM College of Pharmaceutical Education and Research, Indore, Madhya Pradesh, India
| | - Jagjiwan Lal Kori
- BM College of Pharmaceutical Education and Research, Indore, Madhya Pradesh, India
| | - Rahul Maheshwari
- SVKM'S NMIMS University Faculty of Pharmacy and Technology Management, Department of Pharmaceutics, Telangana, India
| |
Collapse
|
21
|
Risueño I, Valencia L, Jorcano JL, Velasco D. Skin-on-a-chip models: General overview and future perspectives. APL Bioeng 2021; 5:030901. [PMID: 34258497 PMCID: PMC8270645 DOI: 10.1063/5.0046376] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023] Open
Abstract
Over the last few years, several advances have been made toward the development and production of in vitro human skin models for the analysis and testing of cosmetic and pharmaceutical products. However, these skin models are cultured under static conditions that make them unable to accurately represent normal human physiology. Recent interest has focused on the generation of in vitro 3D vascularized skin models with dynamic perfusion and microfluidic devices known as skin-on-a-chip. These platforms have been widely described in the literature as good candidates for tissue modeling, as they enable a more physiological transport of nutrients and permit a high-throughput and less expensive evaluation of drug candidates in terms of toxicity, efficacy, and delivery. In this Perspective, recent advances in these novel platforms for the generation of human skin models under dynamic conditions for in vitro testing are reported. Advances in vascularized human skin equivalents (HSEs), transferred skin-on-a-chip (introduction of a skin biopsy or a HSE in the chip), and in situ skin-on-a-chip (generation of the skin model directly in the chip) are critically reviewed, and currently used methods for the introduction of skin cells in the microfluidic chips are discussed. An outlook on current applications and future directions in this field of research are also presented.
Collapse
Affiliation(s)
- I Risueño
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - L Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | - J L Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28911 Leganés (Madrid), Spain
| | | |
Collapse
|
22
|
Plaza C, Meyrignac C, Botto JM, Capallere C. Characterization of a New Full-Thickness In Vitro Skin Model. Tissue Eng Part C Methods 2021; 27:411-420. [PMID: 34107746 DOI: 10.1089/ten.tec.2021.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Since 30 years, bioengineering allowed to reconstruct human tissues using normal human cells. Skin is one of the first organ to be reconstructed thanks to the development of specific cell culture media and supports favoring the culture of human skin cells, such as fibroblasts, keratinocytes, or melanocytes. Skin models have evolved from epidermis to complex models including a dermis. The purpose of the present study was to design a reconstructed full-thickness (FT) skin suitable to perform in vitro testing of both molecules and plant extracts. First, we reconstructed epidermis with normal human keratinocytes displaying the expected multilayered morphology and expressing specific epidermal proteins (e-cadherin, claudin-1, p63, Ki67, Keratin 10, filaggrin, and loricrin). Then, a dermal equivalent was developed using a collagen matrix allowing the growth of fibroblasts. The functionality of the dermis was demonstrated by the measurement of skin parameters such as rigidity or elasticity with Ballistometer® and other parameters such as the contraction over time and the expression of dermal proteins. The combination of these two compartments (dermis and epidermis) allowed to reconstruct an FT model. This study model allowed to study the communication between compartments and with the establishment of a dermoepidermal junction showing the expression of specific proteins (collagen XVII, laminin, and collagen IV). Impact statement The objective of our research project was to design a three-dimensional human full-thickness (FT) skin suitable to perform in vitro testing of molecules and plant ingredients. The combination of these two reconstructed compartments (dermis and epidermis) allowed to reconstruct an FT model. This study model allowed to study the communication between compartments and with the establishment of a dermoepidermal junction showing the expression of specific proteins (collagen XVII, laminin, and collagen IV). This in vitro model can be use by cosmetic and pharmaceutical industries to study the effect of chemical or natural compounds on the skin.
Collapse
Affiliation(s)
- Christelle Plaza
- Department of Tissue Engineering and Toxicology In Vitro, Ashland Specialties France, Sophia Antipolis, France
| | - Celine Meyrignac
- Department of Tissue Engineering and Toxicology In Vitro, Ashland Specialties France, Sophia Antipolis, France
| | - Jean-Marie Botto
- Department of Tissue Engineering and Toxicology In Vitro, Ashland Specialties France, Sophia Antipolis, France
| | - Christophe Capallere
- Department of Tissue Engineering and Toxicology In Vitro, Ashland Specialties France, Sophia Antipolis, France
| |
Collapse
|
23
|
Montero A, Quílez C, Valencia L, Girón P, Jorcano JL, Velasco D. Effect of Fibrin Concentration on the In Vitro Production of Dermo-Epidermal Equivalents. Int J Mol Sci 2021; 22:ijms22136746. [PMID: 34201667 PMCID: PMC8269027 DOI: 10.3390/ijms22136746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023] Open
Abstract
Human plasma-derived bilayered skin substitutes were successfully used by our group to produce human-based in vitro skin models for toxicity, cosmetic, and pharmaceutical testing. However, mechanical weakness, which causes the plasma-derived fibrin matrices to contract significantly, led us to attempt to improve their stability. In this work, we studied whether an increase in fibrin concentration from 1.2 to 2.4 mg/mL (which is the useful fibrinogen concentration range that can be obtained from plasma) improves the matrix and, hence, the performance of the in vitro skin cultures. The results show that this increase in fibrin concentration indeed affected the mechanical properties by doubling the elastic moduli and the maximum load. A structural analysis indicated a decreased porosity for the 2.4 mg/mL hydrogels, which can help explain this mechanical behavior. The contraction was clearly reduced for the 2.4 mg/mL matrices, which also allowed for the growth and proliferation of primary fibroblasts and keratinocytes, although at a somewhat reduced rate compared to the 1.2 mg/mL gels. Finally, both concentrations of fibrin gave rise to organotypic skin cultures with a fully differentiated epidermis, although their lifespans were longer (25–35%) in cultures with more concentrated matrices, which improves their usefulness. These systems will allow the generation of much better in vitro skin models for the testing of drugs, cosmetics and chemicals, or even to “personalized” skin for the diagnosis or determination of the most effective treatment possible.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Cristina Quílez
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Leticia Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Paula Girón
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.L.J.); (D.V.)
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.L.J.); (D.V.)
| |
Collapse
|
24
|
Choi DH, Jeon B, Lim MH, Lee DH, Ye SK, Jeong SY, Kim S. 3D cell culture using a clinostat reproduces microgravity-induced skin changes. NPJ Microgravity 2021; 7:20. [PMID: 34075058 PMCID: PMC8169764 DOI: 10.1038/s41526-021-00148-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Exposure to microgravity affects human physiology in various ways, and astronauts frequently report skin-related problems. Skin rash and irritation are frequent complaints during space missions, and skin thinning has also been reported after returning to Earth. However, spaceflight missions for studying the physiological changes in microgravity are impractical. Thus, we used a previously developed 3D clinostat to simulate a microgravity environment and investigate whether physiological changes of the skin can be reproduced in a 3D in vitro setting. Our results showed that under time-averaged simulated microgravity (taSMG), the thickness of the endothelial cell arrangement increased by up to 59.75%, indicating skin irritation due to vasodilation, and that the diameter of keratinocytes and fibroblast co-cultured spheroids decreased by 6.66%, representing skin thinning. The α1 chain of type I collagen was upregulated, while the connective tissue growth factor was downregulated under taSMG. Cytokeratin-10 expression was significantly increased in the taSMG environment. The clinostat-based 3D culture system can reproduce physiological changes in the skin similar to those under microgravity, providing insight for understanding the effects of microgravity on human health before space exploration.
Collapse
Affiliation(s)
- Dong Hyun Choi
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea.,Department of Emergency Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Byoungjun Jeon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Min Hyuk Lim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea. .,Institute of Bioengineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
25
|
Chopra H, Kumar S, Singh I. Biopolymer-based Scaffolds for Tissue Engineering Applications. Curr Drug Targets 2021; 22:282-295. [PMID: 33143611 DOI: 10.2174/1389450121999201102140408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Tissue engineering is governed by the use of cells and polymers. The cells may be accounted for the type of tissue to be targeted, while polymers may vary from natural to synthetic. The natural polymers have advantages such as non-immunogenic and complex structures that help in the formation of bonds in comparison to the synthetic ones. Various targeted drug delivery systems have been prepared using polymers and cells, such as nanoparticles, hydrogels, nanofibers, and microspheres. The design of scaffolds depends on the negative impact of material used on the human body and they have been prepared using surface modification technique or neo material synthesis. The dermal substitutes are a distinctive array that aims at the replacement of skin parts either through grafting or some other means. This review focuses on biomaterials for their use in tissue engineering. This article shall provide the bird's eye view of the scaffolds and dermal substitutes, which are naturally derived.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Kumar
- ASBASJSM College of Pharmacy, Bela, Ropar, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
26
|
Besnard M, Padonou F, Provin N, Giraud M, Guillonneau C. AIRE deficiency, from preclinical models to human APECED disease. Dis Model Mech 2021; 14:dmm046359. [PMID: 33729987 PMCID: PMC7875492 DOI: 10.1242/dmm.046359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare life-threatening autoimmune disease that attacks multiple organs and has its onset in childhood. It is an inherited condition caused by a variety of mutations in the autoimmune regulator (AIRE) gene that encodes a protein whose function has been uncovered by the generation and study of Aire-KO mice. These provided invaluable insights into the link between AIRE expression in medullary thymic epithelial cells (mTECs), and the broad spectrum of self-antigens that these cells express and present to the developing thymocytes. However, these murine models poorly recapitulate all phenotypic aspects of human APECED. Unlike Aire-KO mice, the recently generated Aire-KO rat model presents visual features, organ lymphocytic infiltrations and production of autoantibodies that resemble those observed in APECED patients, making the rat model a main research asset. In addition, ex vivo models of AIRE-dependent self-antigen expression in primary mTECs have been successfully set up. Thymus organoids based on pluripotent stem cell-derived TECs from APECED patients are also emerging, and constitute a promising tool to engineer AIRE-corrected mTECs and restore the generation of regulatory T cells. Eventually, these new models will undoubtedly lead to main advances in the identification and assessment of specific and efficient new therapeutic strategies aiming to restore immunological tolerance in APECED patients.
Collapse
Affiliation(s)
- Marine Besnard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Francine Padonou
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Nathan Provin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Matthieu Giraud
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Carole Guillonneau
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| |
Collapse
|
27
|
Hennies HC, Poumay Y. Skin Disease Models In Vitro and Inflammatory Mechanisms: Predictability for Drug Development. Handb Exp Pharmacol 2021; 265:187-218. [PMID: 33387068 DOI: 10.1007/164_2020_428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Investigative skin biology, analysis of human skin diseases, and numerous clinical and pharmaceutical applications rely on skin models characterized by reproducibility and predictability. Traditionally, such models include animal models, mainly rodents, and cellular models. While animal models are highly useful in many studies, they are being replaced by human cellular models in more and more approaches amid recent technological development due to ethical considerations. The culture of keratinocytes and fibroblasts has been used in cell biology for many years. However, only the development of co-culture and three-dimensional epidermis and full-skin models have fundamentally contributed to our understanding of cell-cell interaction and cell signalling in the skin, keratinocyte adhesion and differentiation, and mechanisms of skin barrier function. The modelling of skin diseases has highlighted properties of the skin important for its integrity and cutaneous development. Examples of monogenic as well as complex diseases including atopic dermatitis and psoriasis have demonstrated the role of skin models to identify pathomechanisms and drug targets. Recent investigations have indicated that 3D skin models are well suitable for drug testing and preclinical studies of topical therapies. The analysis of skin diseases has recognized the importance of inflammatory mechanisms and immune responses and thus other cell types such as dendritic cells and T cells in the skin. Current developments include the production of more complete skin models comprising a range of different cell types. Organ models and even multi-organ systems are being developed for the analysis of higher levels of cellular interaction and drug responses and are among the most recent innovations in skin modelling. They promise improved robustness and flexibility and aim at a body-on-a-chip solution for comprehensive pharmaceutical in vitro studies.
Collapse
Affiliation(s)
- Hans Christian Hennies
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK. .,Cologne Center for Genomics, University Hospital Cologne, Cologne, Germany.
| | - Yves Poumay
- Faculty of Medicine, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
28
|
Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Sci Rep 2020; 10:22192. [PMID: 33335194 PMCID: PMC7747639 DOI: 10.1038/s41598-020-79114-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The junction between the epithelium and the underlying connective tissue undulates, constituting of rete ridges, which lack currently available soft tissue constructs. In this study, using a micro electro mechanical systems process and soft lithography, fifteen negative molds, with different dimensions and aspect ratios in grid- and pillar-type configurations, were designed and fabricated to create three-dimensional micropatterns and replicated onto fish-scale type I collagen scaffolds treated with chemical crosslinking. Image analyses showed the micropatterns were well-transferred onto the scaffold surfaces, showing the versatility of our manufacturing system. With the help of rheological test, the collagen scaffold manufactured in this study was confirmed to be an ideal gel and have visco-elastic features. As compared with our previous study, its mechanical and handling properties were improved by chemical cross-linking, which is beneficial for grafting and suturing into the complex structures of oral cavity. Histologic evaluation of a tissue-engineered oral mucosa showed the topographical microstructures of grid-type were well-preserved, rather than pillar-type, a well-stratified epithelial layer was regenerated on all scaffolds and the epithelial rete ridge-like structure was developed. As this three-dimensional microstructure is valuable for maintaining epithelial integrity, our micropatterned collagen scaffolds can be used not only intraorally but extraorally as a graft material for human use.
Collapse
|
29
|
Gronbach L, Jurmeister P, Schäfer-Korting M, Keilholz U, Tinhofer I, Zoschke C. Primary Extracellular Matrix Enables Long-Term Cultivation of Human Tumor Oral Mucosa Models. Front Bioeng Biotechnol 2020; 8:579896. [PMID: 33344431 PMCID: PMC7746540 DOI: 10.3389/fbioe.2020.579896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
3D tumor models clearly outperform 2D cell cultures in recapitulating tissue architecture and drug response. However, their potential in understanding treatment efficacy and resistance development should be better exploited if also long-term effects of treatment could be assessed in vitro. The main disadvantages of the matrices commonly used for in vitro culture are their limited cultivation time and the low comparability with patient-specific matrix properties. Extended cultivation periods are feasible when primary human cells produce the extracellular matrix in situ. Herein, we adapted the hyalograft-3D approach from reconstructed human skin to normal and tumor oral mucosa models and compared the results to bovine collagen-based models. The hyalograft models showed similar morphology and cell proliferation after 7 weeks compared to collagen-based models after 2 weeks of cultivation. Tumor thickness and VEGF expression increased in hyalograft-based tumor models, whereas expression of laminin-332, tenascin C, and hypoxia-inducible factor 1α was lower than in collagen-based models. Taken together, the in situ produced extracellular matrix better confined tumor invasion in the first part of the cultivation period, with continuous tumor proliferation and increasing invasion later on. This proof-of-concept study showed the successful transfer of the hyalograft approach to tumor oral mucosa models and lays the foundation for the assessment of long-term drug treatment effects. Moreover, the use of an animal-derived extracellular matrix is avoided.
Collapse
Affiliation(s)
- Leonie Gronbach
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Philipp Jurmeister
- Institute of Pathology, Berlin Institute of Health, Humboldt-Universität zu Berlin, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Heidelberg and German Cancer Consortum Partner Site Berlin, German Cancer Research Center, Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Ulrich Keilholz
- Comprehensive Cancer Center, Berlin Institute of Health, Humboldt-Universität zu Berlin, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ingeborg Tinhofer
- Heidelberg and German Cancer Consortum Partner Site Berlin, German Cancer Research Center, Berlin, Germany.,Department of Radiooncology and Radiotherapy, Berlin Institute of Health, Humboldt-Universität zu Berlin, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
30
|
Gronbach L, Wolff C, Klinghammer K, Stellmacher J, Jurmeister P, Alexiev U, Schäfer-Korting M, Tinhofer I, Keilholz U, Zoschke C. A multilayered epithelial mucosa model of head neck squamous cell carcinoma for analysis of tumor-microenvironment interactions and drug development. Biomaterials 2020; 258:120277. [PMID: 32795620 DOI: 10.1016/j.biomaterials.2020.120277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/23/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Pharmacotherapy of head and neck squamous cell carcinoma (HNSCC) often fails due to the development of chemoresistance and severe systemic side effects of current regimens limiting dose escalation. Preclinical models comprising all major elements of treatment resistance are urgently needed for the development of new strategies to overcome these limitations. For model establishment, we used tumor cells from patient-derived HNSCC xenografts or cell lines (SCC-25, UM-SCC-22B) and characterized the model phenotype. Docetaxel and cetuximab were selected for comparative analysis of drug-related effects at topical and systemic administration. Cetuximab cell binding was mapped by cluster-based fluorescence lifetime imaging microscopy.The tumor oral mucosa (TOM) models displayed unstructured, hyper-proliferative, and pleomorphic cell layers, reflecting well the original tumor morphology and grading. Dose- and time-dependent effects of docetaxel on tumor size, apoptosis, hypoxia, and interleukin-6 release were observed. Although the spectrum of effects was comparable, significantly lower doses were required to achieve similar docetaxel-induced changes at topical compared to systemic application. Despite displaying anti-proliferative effects in monolayer cultures, cetuximab treatment showed only minor effects in TOM models. This was not due to inefficient cetuximab uptake or target cell binding but likely mediated by microenvironmental components.We developed multi-layered HNSCC models, closely reflecting tumor morphology and displaying complex interactions between the tumor and its microenvironment. Topical application of docetaxel emerged as promising option for HNSCC treatment. Aside from the development of novel strategies for topical drug delivery, our tumor model might help to better understand key regulators of drug-tumor-interactions.
Collapse
Affiliation(s)
- Leonie Gronbach
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christopher Wolff
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Konrad Klinghammer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Hematology and Oncology, Charitéplatz 1, 10117, Berlin, Germany
| | - Johannes Stellmacher
- Freie Universität Berlin, Institute of Experimental Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Philipp Jurmeister
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrike Alexiev
- Freie Universität Berlin, Institute of Experimental Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Monika Schäfer-Korting
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Ingeborg Tinhofer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Department of Radiooncology and Radiotherapy, Charitéplatz 1, 10117, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Berlin, Berlin, Germany
| | - Ulrich Keilholz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Comprehensive Cancer Center, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Zoschke
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology & Toxicology), Königin-Luise-Str. 2+4, 14195, Berlin, Germany.
| |
Collapse
|
31
|
Montero A, Acosta S, Hernández R, Elvira C, Jorcano JL, Velasco D. Contraction of fibrin-derived matrices and its implications for in vitro human skin bioengineering. J Biomed Mater Res A 2020; 109:500-514. [PMID: 32506782 DOI: 10.1002/jbm.a.37033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
It is well-known that fibroblasts play a fundamental role in the contraction of collagen and fibrin hydrogels when used in the production of in vitro bilayered skin substitutes. However, little is known about the contribution of other factors, such as the hydrogel matrix itself, on this contraction. In this work, we studied the contraction of plasma-derived fibrin hydrogels at different temperatures (4, 23, and 37°C) in an isotonic buffer (phosphate-buffered saline). These types of hydrogels presented a contraction of approximately 30% during the first 24 hr, following a similar kinetics irrespectively of the temperature. This kinetics continued in a slowed down manner to reach a plateau value of 40% contraction after 10-15 days. Contraction of commercial fibrinogen hydrogels was studied under similar conditions and the kinetics was completed after 8 hr, reaching values between 20 and 70% depending on the temperature. We attribute these substantial differences to a modulatory effect on the contraction due to plasma proteins which are initially embedded in, and progressively released from, the plasma-based hydrogels. The elastic modulus of hydrogels measured at a constant frequency decreased with increasing temperature in 7-day gels. Rheological measurements showed the absence of a strain-hardening behavior in the plasma-derived fibrin hydrogels. Finally, plasma-derived fibrin hydrogels with and without human primary fibroblast and keratinocytes were prepared in transwell inserts and their height measured over time. Both cellular and acellular gels showed a height reduction of 30% during the first 24 hr likely due to the above-mentioned intrinsic fibrin matrix contraction.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Sonia Acosta
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Rebeca Hernández
- Institute of Polymer Science and Technology, CSIC, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, CSIC, Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain.,Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| |
Collapse
|
32
|
Sierra-Sánchez Á, Fernández-González A, Lizana-Moreno A, Espinosa-Ibáñez O, Martinez-Lopez A, Guerrero-Calvo J, Fernández-Porcel N, Ruiz-García A, Ordóñez-Luque A, Carriel V, Arias-Santiago S. Hyaluronic acid biomaterial for human tissue-engineered skin substitutes: Preclinical comparative in vivo study of wound healing. J Eur Acad Dermatol Venereol 2020; 34:2414-2427. [PMID: 32173915 DOI: 10.1111/jdv.16342] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is not an ideal biomaterial for tissue-engineered skin substitutes (TESSs), and most of the studies or existing therapies use xenogeneic origin natural biomaterials or biosynthetic scaffolds. OBJECTIVE To analyse clinical, histological integration and homeostasis parameters of a human TESS manufactured with fibrin-hyaluronic acid biomaterial (HA-Skin), grafted in immunodeficient mice for 8 weeks, and compared with the gold standard treatment (Autograft), a human TESS manufactured with fibrin-agarose biomaterial (AG-Skin) and secondary wound healing dressings. METHODS Human TESSs and autografts were implanted into BALB/c mice after surgical excision. Secondary wound healing approach was achieved with biosynthetic collagen wound dressing (Biobrane® ) and fibrin-hyaluronic acid or fibrin-agarose biomaterial without cells (Total N = 44). Clinical integration and homeostasis parameters were evaluated every two weeks for two months. Histological and immunohistochemical analyses were performed four and eight weeks after grafting. RESULTS HA-Skin, AG-Skin and Autograft groups showed a proper clinical integration and epithelization eight weeks later. Scar evaluation revealed better results for Autograft and HA-Skin. Homeostasis analysis indicated similar values of transepidermal water loss and elasticity between HA-Skin (6.42 ± 0.75 g/h/m2 , 0.42 ± 0.08 AU), Autograft (6.91 ± 1.28 g/h/m2 , 0.40 ± 0.08 AU) and healthy mouse skin (6.40 ± 0.43 g/h/m2 , 0.35 ± 0.03 AU). Histological results showed that human TESSs and autografts presented better skin structuration and higher expression of cytokeratins. CONCLUSIONS This study suggests that human TESS based on fibrin-hyaluronic acid biomaterial could be suitable for clinical application in the treatment of several dermatological pathologies (wound healing).
Collapse
Affiliation(s)
- Á Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Lizana-Moreno
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - O Espinosa-Ibáñez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Martinez-Lopez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - J Guerrero-Calvo
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - N Fernández-Porcel
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Ruiz-García
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Ordóñez-Luque
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - V Carriel
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain
| | - S Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Dermatology Department, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Chhabra R, Peshattiwar V, Pant T, Deshpande A, Modi D, Sathaye S, Tibrewala A, Dyawanapelly S, Jain R, Dandekar P. In Vivo Studies of 3D Starch–Gelatin Scaffolds for Full-Thickness Wound Healing. ACS APPLIED BIO MATERIALS 2020; 3:2920-2929. [DOI: 10.1021/acsabm.9b01139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roha Chhabra
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Vaibhavi Peshattiwar
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Tejal Pant
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Aparna Deshpande
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Modi
- Department of Molecular and Cellular Biology, National Institute For Research In Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Anil Tibrewala
- Consultant Plastic and Cosmetic Surgeon, P.D. Hinduja National Hospital and Medical Research Centre, Veer Sawarkar Marg, Asavari, Shivaji Park, Mumbai 400016, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
34
|
|
35
|
Suhail S, Sardashti N, Jaiswal D, Rudraiah S, Misra M, Kumbar SG. Engineered Skin Tissue Equivalents for Product Evaluation and Therapeutic Applications. Biotechnol J 2019; 14:e1900022. [PMID: 30977574 PMCID: PMC6615970 DOI: 10.1002/biot.201900022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/20/2019] [Indexed: 12/12/2022]
Abstract
The current status of skin tissue equivalents that have emerged as relevant tools in commercial and therapeutic product development applications is reviewed. Due to the rise of animal welfare concerns, numerous companies have designed skin model alternatives to assess the efficacy of pharmaceutical, skincare, and cosmetic products in an in vitro setting, decreasing the dependency on such methods. Skin models have also made an impact in determining the root causes of skin diseases. When designing a skin model, there are various chemical and physical considerations that need to be considered to produce a biomimetic design. This includes designing a structure that mimics the structural characteristics and mechanical strength needed for tribological property measurement and toxicological testing. Recently, various commercial products have made significant progress towards achieving a native skin alternative. Further research involve the development of a functional bilayered model that mimics the constituent properties of the native epidermis and dermis. In this article, the skin models are divided into three categories: in vitro epidermal skin equivalents, in vitro full-thickness skin equivalents, and clinical skin equivalents. A description of skin model characteristics, testing methods, applications, and potential improvements is presented.
Collapse
Affiliation(s)
- Sana Suhail
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| | - Naseem Sardashti
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| | - Devina Jaiswal
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, Western New England University, 1215 Wilbrahan Road, Springfield, MA 01119
| | - Swetha Rudraiah
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Ave., Farmington, CT 06030, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Saint Joseph, 229 Trumbull St., Hartford CT 06103, USA
| | - Manoj Misra
- Unilever R&D, 40 Merritt Blvd, Trumbull, CT 06611, USA
| | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Ave., Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT 06269, USA
| |
Collapse
|
36
|
A novel strategy to engineer pre-vascularized 3-dimensional skin substitutes to achieve efficient, functional engraftment. Sci Rep 2019; 9:7797. [PMID: 31127144 PMCID: PMC6534548 DOI: 10.1038/s41598-019-44113-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/07/2019] [Indexed: 11/08/2022] Open
Abstract
Autologous split-thickness skin grafts are the preferred treatment for excised burn wounds, but donor sites for autografting are often limited in patients with extensive burns. A number of alternative treatments are already in use to treat large burns and ulcers. Despite intense efforts to develop tissue-engineered skin, delayed or absent vascularization is one of the major reasons for tissue-engineered skin engraftment failure. To overcome these problems, we developed a scaffold-free 3-dimensional (3D) skin substitute containing vascular networks that combine dermal fibroblasts, endothelial cells, and epidermal keratinocytes based on our layer-by-layer cell coating technique. We transplanted the pre-vascularized 3D skin substitutes onto full-thickness skin defects on severe combined immunodeficiency mice to assess their integration with the host tissue and effects on wound healing. We used non-vascularized 3D skin substitutes as a control. Vessels containing red blood cells were evident in the non-vascularized control by day 14. However, blood perfusion of the human-derived vasculature could be detected within 7 days of grafting. Moreover, the pre-vascularized 3D skin substitutes had high graft survival and their epidermal layers were progressively replaced by mouse epidermis. We propose that a novel dermo-epidermal 3D skin substitute containing blood vessels can promote efficient reconstruction of full-thickness skin defects.
Collapse
|
37
|
Kim BS, Gao G, Kim JY, Cho D. 3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin. Adv Healthc Mater 2019; 8:e1801019. [PMID: 30358939 DOI: 10.1002/adhm.201801019] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/01/2018] [Indexed: 11/09/2022]
Abstract
Although skin cell-printing has exhibited promises for fabrication of functional skin equivalents, existing skin models through 3D cell printing are still composed of dermal and epidermal layers. However, a key hope for printing skin is to improve structural complexity of human skin over conventional construction, enabling the precise localization of multiple cell types and biomaterials. Here, the complexity of skin anatomy is increased using 3D cell printing. A novel printing platform is suggested for engineering a matured perfusable vascularized 3D human skin equivalent composed of epidermis, dermis, and hypodermis. The skin model is evaluated using functional markers representing each region of epidermis, dermis, and hypodermis to confirm tissue maturation. It is hypothesized that the vascularized dermal and hypodermal compartments that provide a more realistic microenvironment can promote cross-talks with the epidermal compartment, producing better recapitulation of epidermal morphogenesis. Skin stemness in epithelial tissue is investigated. These findings reveal that the full-thickness skin has more similarities to the native human skin compared with the dermal and epidermal skin model, indicating that it better reflects the actual complexity of native human skin. It is envisioned that it offers better predictive and reliable in vitro platform for investigation of mechanisms of pathological research and skin disease modeling.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Ge Gao
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jae Yun Kim
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Dong‐Woo Cho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
38
|
Savoji H, Godau B, Hassani MS, Akbari M. Skin Tissue Substitutes and Biomaterial Risk Assessment and Testing. Front Bioeng Biotechnol 2018; 6:86. [PMID: 30094235 PMCID: PMC6070628 DOI: 10.3389/fbioe.2018.00086] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tremendous progress has been made over the past few decades to develop skin substitutes for the management of acute and chronic wounds. With the advent of tissue engineering and the ability to combine advanced manufacturing technologies with biomaterials and cell culture systems, more biomimetic tissue constructs have been emerged. Synthetic and natural biomaterials are the main constituents of these skin-like constructs, which play a significant role in tissue grafting, the body's immune response, and the healing process. The act of implanting biomaterials into the human body is subject to the body's immune response, and the complex nature of the immune system involves many different cell types and biological processes that will ultimately determine the success of a skin graft. As such, a large body of recent studies has been focused on the evaluation of the performance and risk assessment of these substitutes. This review summarizes the past and present advances in in vitro, in vivo and clinical applications of tissue-engineered skins. We discuss the role of immunomodulatory biomaterials and biomaterials risk assessment in skin tissue engineering. We will finally offer a roadmap for regulating tissue engineered skin substitutes.
Collapse
Affiliation(s)
- Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| | - Mohsen Sheikh Hassani
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
39
|
Property characterization of reconstructed human epidermis equivalents, and performance as a skin irritation model. Toxicol In Vitro 2018; 53:45-56. [PMID: 30053440 DOI: 10.1016/j.tiv.2018.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022]
Abstract
In recent years, in vitro skin models combining cell biology and tissue engineering have been developed in order to replace animal models for toxicological studies and to serve as research support to better understand skin biology. This study reports the development and characterization of a epidermal tissue equivalent meant to be used to develop and to evaluate the effect of applied cosmetic ingredients, and for alternative toxicological testing. This epidermis equivalent model was characterized relative to the morphological characteristics of short- and long-term maintained tissues by performing histological studies. We also studied the integrity of the epidermal barrier. Finally, with the goal of validating its use as a skin irritation test, we studied the irritation potential of 20 chemical references listed in OECD Test Guideline N°439 (In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method). In 2015, OECD officially published the updated version of the Validated Reference Method (VRM) that uses reconstructed human epidermis models for irritation testing, thus offering the possibility for proposed putative similar test methods to obtain a validation agreement through Performance Standards-based validation. In this study, we observed that the epidermal equivalent we developed showed similarities to human in vivo skin, based on the analyzed parameters. Moreover, its performances as a skin irritation test were similar to the ones described in the OECD Test Guideline N°439.
Collapse
|
40
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
41
|
He J, Xiong L, Li Q, Lin L, Miao X, Yan S, Hong Z, Yang L, Wen Y, Deng X. 3D modeling of cancer stem cell niche. Oncotarget 2018; 9:1326-1345. [PMID: 29416698 PMCID: PMC5787442 DOI: 10.18632/oncotarget.19847] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells reside in a distinct microenvironment called niche. The reciprocal interactions between cancer stem cells and niche contribute to the maintenance and enrichment of cancer stem cells. In order to simulate the interactions between cancer stem cells and niche, three-dimensional models have been developed. These in vitro culture systems recapitulate the spatial dimension, cellular heterogeneity, and the molecular networks of the tumor microenvironment and show great promise in elucidating the pathophysiology of cancer stem cells and designing more clinically relavant treatment modalites.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liangwu Lin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shichao Yan
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| |
Collapse
|
42
|
Shi L, Xiong L, Hu Y, Li W, Chen Z, Liu K, Zhang X. Three-dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24779] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Lei Shi
- State Key Lab of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan China
| | - Liming Xiong
- Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yiqiang Hu
- Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Wenchao Li
- State Key Lab of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan China
| | - ZhiChao Chen
- State Key Lab of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan China
| | - Kang Liu
- State Key Lab of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan China
| | - Xianglin Zhang
- State Key Lab of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
43
|
Pei B, Wang W, Fan Y, Wang X, Watari F, Li X. Fiber-reinforced scaffolds in soft tissue engineering. Regen Biomater 2017; 4:257-268. [PMID: 28798872 PMCID: PMC5544910 DOI: 10.1093/rb/rbx021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022] Open
Abstract
Soft tissue engineering has been developed as a new strategy for repairing damaged or diseased soft tissues and organs to overcome the limitations of current therapies. Since most of soft tissues in the human body are usually supported by collagen fibers to form a three-dimensional microstructure, fiber-reinforced scaffolds have the advantage to mimic the structure, mechanical and biological environment of natural soft tissues, which benefits for their regeneration and remodeling. This article reviews and discusses the latest research advances on design and manufacture of novel fiber-reinforced scaffolds for soft tissue repair and how fiber addition affects their structural characteristics, mechanical strength and biological activities in vitro and in vivo. In general, the concept of fiber-reinforced scaffolds with adjustable microstructures, mechanical properties and degradation rates can provide an effective platform and promising method for developing satisfactory biomechanically functional implantations for soft tissue engineering or regenerative medicine.
Collapse
Affiliation(s)
- Baoqing Pei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Fumio Watari
- Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
44
|
Desmet E, Ramadhas A, Lambert J, Van Gele M. In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med (Maywood) 2017; 242:1158-1169. [PMID: 28585891 DOI: 10.1177/1535370217710637] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Psoriasis is a complex chronic immune-mediated inflammatory cutaneous disease associated with the development of inflammatory plaques on the skin. Studies proved that the disease results from a deregulated interplay between skin keratinocytes, immune cells and the environment leading to a persisting inflammatory process modulated by pro-inflammatory cytokines and activation of T cells. However, a major hindrance to study the pathogenesis of psoriasis more in depth and subsequent development of novel therapies is the lack of suitable pre-clinical models mimicking the complex phenotype of this skin disorder. Recent advances in and optimization of three-dimensional skin equivalent models have made them attractive and promising alternatives to the simplistic monolayer cultures, immunological different in vivo models and scarce ex vivo skin explants. Moreover, human skin equivalents are increasing in complexity level to match human biology as closely as possible. Here, we critically review the different types of three-dimensional skin models of psoriasis with relevance to their application potential and advantages over other models. This will guide researchers in choosing the most suitable psoriasis skin model for therapeutic drug testing (including gene therapy via siRNA molecules), or to examine biological features contributing to the pathology of psoriasis. However, the addition of T cells (as recently applied to a de-epidermized dermis-based psoriatic skin model) or other immune cells would make them even more attractive models and broaden their application potential. Eventually, the ultimate goal would be to substitute animal models by three-dimensional psoriatic skin models in the pre-clinical phases of anti-psoriasis candidate drugs. Impact statement The continuous development of novel in vitro models mimicking the psoriasis phenotype is important in the field of psoriasis research, as currently no model exists that completely matches the in vivo psoriasis skin or the disease pathology. This work provides a complete overview of the different available in vitro psoriasis models and suggests improvements for future models. Moreover, a focus was given to psoriatic skin equivalent models, as they offer several advantages over the other models, including commercial availability and validity. The potential and reported applicability of these models in psoriasis pre-clinical research is extensively discussed. As such, this work offers a guide to researchers in their choice of pre-clinical psoriasis model depending on their type of research question.
Collapse
Affiliation(s)
- Eline Desmet
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Anesh Ramadhas
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Mireille Van Gele
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| |
Collapse
|
45
|
Kim BS, Lee JS, Gao G, Cho DW. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 2017; 9:025034. [DOI: 10.1088/1758-5090/aa71c8] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR. Advances in Skin Regeneration Using Tissue Engineering. Int J Mol Sci 2017; 18:E789. [PMID: 28387714 PMCID: PMC5412373 DOI: 10.3390/ijms18040789] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/04/2017] [Indexed: 12/11/2022] Open
Abstract
Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application.
Collapse
Affiliation(s)
- Komal Vig
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Atul Chaudhari
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shweta Tripathi
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Saurabh Dixit
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Rajnish Sahu
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shreekumar Pillai
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Vida A Dennis
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| | - Shree R Singh
- Center for Nanobiotechnology Research, Alabama State University, 1627 Harris Way, Montgomery, AL 36104, USA.
| |
Collapse
|
47
|
Mieremet A, Rietveld M, Absalah S, van Smeden J, Bouwstra JA, El Ghalbzouri A. Improved epidermal barrier formation in human skin models by chitosan modulated dermal matrices. PLoS One 2017; 12:e0174478. [PMID: 28333992 PMCID: PMC5363943 DOI: 10.1371/journal.pone.0174478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/09/2017] [Indexed: 01/15/2023] Open
Abstract
Full thickness human skin models (FTMs) contain an epidermal and a dermal equivalent. The latter is composed of a collagen dermal matrix which harbours fibroblasts. Current epidermal barrier properties of FTMs do not fully resemble that of native human skin (NHS), which makes these human skin models less suitable for barrier related studies. To further enhance the resemblance of NHS for epidermal morphogenesis and barrier formation, we modulated the collagen dermal matrix with the biocompatible polymer chitosan. Herein, we report that these collagen-chitosan FTMs (CC-FTMs) possess a well-organized epidermis and maintain both the early and late differentiation programs as in FTMs. Distinctively, the epidermal cell activation is reduced in CC-FTMs to levels observed in NHS. Dermal-epidermal interactions are functional in both FTM types, based on the formation of the basement membrane. Evaluation of the barrier structure by the organization of the extracellular lipid matrix of the stratum corneum revealed an elongated repeat distance of the long periodicity phase. The ceramide composition exhibited a higher resemblance of the NHS, based on the carbon chain-length distribution and subclass profile. The inside-out barrier functionality indicated by the transepidermal water loss is significantly improved in the CC-FTMs. The expression of epidermal barrier lipid processing enzymes is marginally affected, although more restricted to a single granular layer. The novel CC-FTM resembles the NHS more closely, which makes them a promising tool for epidermal barrier related studies.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Marion Rietveld
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Samira Absalah
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Jeroen van Smeden
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Joke A. Bouwstra
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
48
|
An Interaction between Arsenic-Induced Epigenetic Modification and Inflammatory Promotion in a Skin Equivalent during Arsenic Carcinogenesis. J Invest Dermatol 2017; 137:187-196. [DOI: 10.1016/j.jid.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
|
49
|
Tsunenaga M. Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin. ACTA ACUST UNITED AC 2016; 5:113-122. [PMID: 27853671 PMCID: PMC5070419 DOI: 10.2174/2211542005666160725154356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for studying the reconstruction of the basement membrane and its contribution to epidermal homeostasis because they lack the basement membrane and show abnormal expression of epidermal differentiation markers. By using these models, it has been shown that reconstruction of the basement membrane is enhanced not only by supplying basement membrane components, but also by inhibiting proteinases such as urokinase and matrix metalloproteinase. Although matrix metalloproteinase inhibitors assist in the reconstruction of the basement membrane structure, their action is not sufficient to promote its functional recovery. However, heparanase inhibitors stabilize the heparan sulfate chains of perlecan (a heparan sulfate proteoglycan) and promote the regulation of heparan sulfate binding growth factors in the basement membrane. Heparan sulfate promotes effective protein-protein interactions, thereby facilitating the assembly of type VII collagen anchoring fibrils and elastin-associated microfibrils. Using both matrix metalloproteinase inhibitors and heparanase inhibitors, the basement membrane in a skin-equivalent model comes close to recapitulating the structure and function of an in vivo basement membrane. Therefore, by using an appropriate dermis model and suitable protease inhibitors, it may be possible to produce skin-equivalent models that are more similar to natural skin
Collapse
Affiliation(s)
- Makoto Tsunenaga
- Shiseido Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558, Japan
| |
Collapse
|
50
|
Abbott RD, Kimmerling EP, Cairns DM, Kaplan DL. Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21861-21868. [PMID: 26849288 DOI: 10.1021/acsami.5b12114] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tissue engineering has broad and diverse impacts on a variety of different applications from tissue regeneration to drug screening. While two-dimensional (2-D) cell culture platforms are suitable for tissue interfaces where planar surfaces are relevant, three dimensional (3-D) tissue models have enhanced relevance and sustainability over 2-D devices. The improvements between 2-D and 3-D functions and sustainability are related to the limitations of 2-D systems to support proper cellular morphology and signaling over time, resulting in cell overgrowth or changes in viability. For sustainable (long-term) cultures, 3-D silk protein scaffolds provide biocompatibility, porous features for transport, robust yet tunable mechanical properties, retain size and open porous structures for extended time frames due to slow proteolytic biodegradation, avoid specific cell signaling, and require no chemical cross-linking. Silk degradation can be extended for months to years without premature collapse of structures (that would result in necrosis) to support cell interactions during slow remodeling toward native tissue. Silk can also be fabricated into different material formats, such as hydrogels, tubes, sponges, composites, fibers, microspheres, and thin films, providing versatile platforms and interfaces for a variety of different applications. For sustainable tissue engineering applications, many formats have been used, including silk ionmer hydrogels that have been cultured for up to 8 weeks and porous silk scaffolds that have been cultured for up to 6 months. In this review, we highlight some of our tissue engineering work related to long-term in vitro cultures. While each tissue engineered system (adipose tissue, cortical brain tissue, intestine, kidney tissue, bone) is unique, they all use silk biomaterials as a base scaffolding material to achieve sustainable cultivation. Sustainability is important for studies that extend past a few weeks to study acute and chronic impacts of treatments, disease models, and other related applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Rosalyn D Abbott
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Erica P Kimmerling
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Dana M Cairns
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|