1
|
Ma LZ, Liu WS, He Y, Zhang Y, You J, Feng JF, Tan L, Cheng W, Yu JT. Plasma proteomics identify novel biomarkers and dynamic patterns of biological aging. J Adv Res 2025:S2090-1232(25)00297-8. [PMID: 40328427 DOI: 10.1016/j.jare.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025] Open
Abstract
INTRODUCTION Plasma proteomics examines levels of thousands of proteins and has the potential to identify clinical biomarkers for healthy aging. OBJECTIVES This large proteomics study aims to identify clinical biomarkers for healthy aging and further explore potential mechanisms involved in aging. METHODS This study analyzed data from 51,904 UK Biobank participants to explore the association between 2,923 plasma proteins and nine aging-related phenotypes, including PhenoAge, KDM-Biological Age, healthspan, parental lifespan, frailty, and longevity. Protein levels were measured using proteomics, and associations were assessed with a significance threshold of P < 1.90E-06. We utilized the DE-SWAN method to detect and measure the nonlinear alterations in plasma proteome during the process of biological aging. Mendelian randomization was applied to assess causal relationships, and a PheWAS explored the broader health impacts of these proteins. RESULTS We identified 227 proteins significantly associated with aging (P < 1.90E-06), with the pathway of inflammation and regeneration being notably implicated. Our findings revealed fluctuating patterns in the plasma proteome during biological aging in middle-aged adults, pinpointing specific peaks of biological age-related changes at 41, 60, and 67 years, alongside distinct age-related protein change patterns across various organs. Furthermore, mendelian randomization further supported the causal association between plasma levels of CXCL13, DPY30, FURIN, IGFBP4, SHISA5, and aging, underscoring the significance of these drug targets. These five proteins have broad-ranging effects. The PheWAS analysis of proteins associated with aging highlighted their crucial roles in vital biological processes, particularly in overall mortality, health maintenance, and cardiovascular health. Moreover, proteins can serve as mediators in healthy lifestyle and aging processes. CONCLUSION These significant discoveries underscore the importance of monitoring and intervening in the aging process at critical periods, alongside identifying potential biomarkers and therapeutic targets for age-related disorders within the plasma proteomic landscape, thus offering valuable insights into healthy aging.
Collapse
Affiliation(s)
- Ling-Zhi Ma
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Klaver EJ, Dukes-Rimsky L, Kumar B, Xia ZJ, Dang T, Lehrman MA, Angel P, Drake RR, Freeze HH, Steet R, Flanagan-Steet H. Protease-dependent defects in N-cadherin processing drive PMM2-CDG pathogenesis. JCI Insight 2021; 6:153474. [PMID: 34784297 PMCID: PMC8783681 DOI: 10.1172/jci.insight.153474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The genetic bases for the congenital disorders of glycosylation (CDG) continue to expand, but how glycosylation defects cause patient phenotypes remains largely unknown. Here, we combined developmental phenotyping and biochemical studies in a potentially new zebrafish model (pmm2sa10150) of PMM2-CDG to uncover a protease-mediated pathogenic mechanism relevant to craniofacial and motility phenotypes in mutant embryos. Mutant embryos had reduced phosphomannomutase activity and modest decreases in N-glycan occupancy as detected by matrix-assisted laser desorption ionization mass spectrometry imaging. Cellular analyses of cartilage defects in pmm2sa10150 embryos revealed a block in chondrogenesis that was associated with defective proteolytic processing, but seemingly normal N-glycosylation, of the cell adhesion molecule N-cadherin. The activities of the proconvertases and matrix metalloproteinases responsible for N-cadherin maturation were significantly altered in pmm2sa10150 mutant embryos. Importantly, pharmacologic and genetic manipulation of proconvertase activity restored matrix metalloproteinase activity, N-cadherin processing, and cartilage pathology in pmm2sa10150 embryos. Collectively, these studies demonstrate in CDG that targeted alterations in protease activity create a pathogenic cascade that affects the maturation of cell adhesion proteins critical for tissue development.
Collapse
Affiliation(s)
- Elsenoor J Klaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Lynn Dukes-Rimsky
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Brijesh Kumar
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Tammie Dang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Mark A Lehrman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Peggi Angel
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Richard Steet
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | | |
Collapse
|
3
|
Akerman AW, Collins EN, Peterson AR, Collins LB, Harrison JK, DeVaughn A, Townsend JM, Vanbuskirk RL, Riopedre‐Maqueira J, Reyes A, Oh JE, Raybuck CM, Jones JA, Ikonomidis JS. miR-133a Replacement Attenuates Thoracic Aortic Aneurysm in Mice. J Am Heart Assoc 2021; 10:e019862. [PMID: 34387094 PMCID: PMC8475064 DOI: 10.1161/jaha.120.019862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/01/2021] [Indexed: 11/22/2022]
Abstract
Background Thoracic aortic aneurysms (TAAs) occur because of abnormal remodeling of aortic extracellular matrix and are accompanied by the emergence of proteolytically active myofibroblasts. The microRNA miR-133a regulates cellular phenotypes and is reduced in clinical TAA specimens. This study tested the hypothesis that miR-133a modulates aortic fibroblast phenotype, and overexpression by lentivirus attenuates the development of TAA in a murine model. Methods and Results TAA was induced in mice. Copy number of miR-133a was reduced in TAA tissue and linear regression analysis confirmed an inverse correlation between aortic diameter and miR-133a. Analyses of phenotypic markers revealed an mRNA expression profile consistent with myofibroblasts in TAA tissue. Fibroblasts were isolated from the thoracic aortae of mice with/without TAA. When compared with controls, miR-133a was reduced, migration was increased, adhesion was reduced, and the ability to contract a collagen disk was increased. Overexpression/knockdown of miR-133a controlled these phenotypes. After TAA induction in mice, a single tail-vein injection of either miR-133a overexpression or scrambled sequence (control) lentivirus was performed. Overexpression of miR-133a attenuated TAA development. The pro-protein convertase furin was confirmed to be a target of miR-133a by luciferase reporter assay. Furin was elevated in this murine model of TAA and repressed by miR-133a replacement in vivo resulting in reduced proteolytic activation. Conclusions miR-133a regulates aortic fibroblast phenotype and over-expression prevented the development of TAA in a murine model. These findings suggest that stable alterations in aortic fibroblasts are associated with development of TAA and regulation by miR-133a may lead to a novel therapeutic strategy.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/prevention & control
- Calcium Chloride
- Cell Adhesion
- Cell Movement
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Furin/genetics
- Furin/metabolism
- Genetic Therapy
- Genetic Vectors
- Lentivirus/genetics
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Phenotype
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Adam W. Akerman
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Elizabeth N. Collins
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Andrew R. Peterson
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Lauren B. Collins
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jessica K. Harrison
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Amari DeVaughn
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jaleel M. Townsend
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Rebecca L. Vanbuskirk
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | | | - Ailet Reyes
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Joyce E. Oh
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Charles M. Raybuck
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jeffrey A. Jones
- Division of Cardiothoracic SurgeryDepartment of SurgeryMedical University of South CarolinaCharlestonSC
- Research ServiceRalph H. Johnson VA Medical CenterCharlestonSC
| | - John S. Ikonomidis
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| |
Collapse
|
4
|
High glucose induces trafficking of prorenin receptor and stimulates profibrotic factors in the collecting duct. Sci Rep 2021; 11:13815. [PMID: 34226610 PMCID: PMC8257763 DOI: 10.1038/s41598-021-93296-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence indicates that prorenin receptor (PRR) is upregulated in collecting duct (CD) of diabetic kidney. Prorenin is secreted by the principal CD cells, and is the natural ligand of the PRR. PRR activation stimulates fibrotic factors, including fibronectin, collagen, and transforming growth factor-β (TGF-β) contributing to tubular fibrosis. However, whether high glucose (HG) contributes to this effect is unknown. We tested the hypothesis that HG increases the abundance of PRR at the plasma membrane of the CD cells, thus contributing to the stimulation of downstream fibrotic factors, including TGF-β, collagen I, and fibronectin. We used streptozotocin (STZ) male Sprague–Dawley rats to induce hyperglycemia for 7 days. At the end of the study, STZ-induced rats showed increased prorenin, renin, and angiotensin (Ang) II in the renal inner medulla and urine, along with augmented downstream fibrotic factors TGF-β, collagen I, and fibronectin. STZ rats showed upregulation of PRR in the renal medulla and preferential distribution of PRR on the apical aspect of the CD cells. Cultured CD M-1 cells treated with HG (25 mM for 1 h) showed increased PRR in plasma membrane fractions compared to cells treated with normal glucose (5 mM). Increased apical PRR was accompanied by upregulation of TGF-β, collagen I, and fibronectin, while PRR knockdown prevented these effects. Fluorescence resonance energy transfer experiments in M-1 cells demonstrated augmented prorenin activity during HG conditions. The data indicate HG stimulates profibrotic factors by inducing PRR translocation to the plasma membrane in CD cells, which in perspective, might be a novel mechanism underlying the development of tubulointerstitial fibrosis in diabetes mellitus.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW In this paper, we seek to review coronavirus disease 2019 (COVID-19) associated kidney injury with a focus on what is known about pathophysiology. RECENT FINDINGS Kidney injury is a common complication of SARS-CoV-2 infection and is associated with increased morbidity and mortality. Acute tubular necrosis and glomerular injury are two common findings. Direct viral effect, endothelial dysfunction, and podocyte and tubular epithelial injury have been described. COVID-19-related glomerular injury may also be associated with high-risk APOL1 genotype. SUMMARY Data on COVID-19 renal involvement have suggested novel mechanisms of kidney injury that need to be further elucidated. More data are needed on renal involvement in milder disease, renal-specific therapeutic interventions, and long-term sequelae.
Collapse
|
6
|
Shetty AA, Tawhari I, Safar-Boueri L, Seif N, Alahmadi A, Gargiulo R, Aggarwal V, Usman I, Kisselev S, Gharavi AG, Kanwar Y, Quaggin SE. COVID-19-Associated Glomerular Disease. J Am Soc Nephrol 2021; 32:33-40. [PMID: 33214201 PMCID: PMC7894674 DOI: 10.1681/asn.2020060804] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/05/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Studies have documented AKI with high-grade proteinuria in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In some patients, biopsies have revealed collapsing glomerulopathy, a distinct form of glomerular injury that has been associated with other viruses, including HIV. Previous patient reports have described patients of African ancestry who developed nephrotic-range proteinuria and AKI early in the course of disease. METHODS In this patient series, we identified six patients with coronavirus disease 2019 (COVID-19), AKI, and nephrotic-range proteinuria. COVID-19 was diagnosed by a positive nasopharyngeal swab RT-PCR for SARS-CoV-2 infection. We examined biopsy specimens from one transplanted kidney and five native kidneys. Three of the six patients underwent genetic analysis of APOL1, the gene encoding the APOL1 protein, from DNA extracted from peripheral blood. In addition, we purified genomic DNA from paraffin-embedded tissue and performed APOL1 genotype analysis of one of the native biopsies and the donor kidney graft. RESULTS All six patients were of recent African ancestry. They developed COVID-19-associated AKI with podocytopathy, collapsing glomerulopathy, or both. Patients exhibited generally mild respiratory symptoms, and no patient required ventilator support. Genetic testing performed in three patients confirmed high-risk APOL1 genotypes. One APOL1 high-risk patient developed collapsing glomerulopathy in the engrafted kidney, which was transplanted from a donor who carried a low-risk APOL1 genotype; this contradicts current models of APOL1-mediated kidney injury, and suggests that intrinsic renal expression of APOL1 may not be the driver of nephrotoxicity and specifically, of podocyte injury. CONCLUSIONS Glomerular disease presenting as proteinuria with or without AKI is an important presentation of COVID-19 infection and may be associated with a high-risk APOL1 genotype.
Collapse
Affiliation(s)
- Aneesha A. Shetty
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ibrahim Tawhari
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Luisa Safar-Boueri
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nay Seif
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ameen Alahmadi
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard Gargiulo
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vikram Aggarwal
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Irtaza Usman
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sergey Kisselev
- Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Ali G. Gharavi
- Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Yahspal Kanwar
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Susan E. Quaggin
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
7
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
A higher level of serum furin indicates a higher risk of microalbuminuria: results from a longitudinal study in Chinese adults. Clin Exp Nephrol 2020; 24:885-892. [PMID: 32770419 DOI: 10.1007/s10157-020-01912-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Furin, a key enzyme of natriuretic peptide system, has been suggested to play a role in microalbuminuria, but the association between furin and microalbuminuria has been scarcely studied. METHODS Leveraging a longitudinal cohort of Chinese adults who had urinary albumin measured twice 4 years apart, we examined the cross-sectional and prospective associations of baseline serum furin with microalbuminuria, adjusting for age, sex, education level, smoking, drinking, obesity, blood pressure, glucose, lipids, and antihypertensive medications. RESULTS The cross-sectional analysis in 2175 participants (53 ± 10 years, 38% men) found that a 10-time higher level of serum furin was significantly associated with a 64% higher risk of having microalbuminuria (OR = 1.64, P = 0.005). The longitudinal analysis found a positive association between baseline serum furin and dynamic elevation of albumin excretion during follow-up. The prospective analysis in 1357 participants free of microalbuminuria at baseline found that a 10-time higher level of serum furin at baseline was significantly associated with a 1.28-time higher risk of developing microalbuminuria 4 years later (OR = 2.28, P < 0.001). CONCLUSIONS A higher level of serum furin at baseline predicted an increased risk of developing microalbuminuria in Chinese adults. These findings indicate that furin might be a predictor or a risk factor for microalbuminuria but the causality still needs more investigations.
Collapse
|
9
|
Matrix Metalloproteinases in Diabetic Kidney Disease. J Clin Med 2020; 9:jcm9020472. [PMID: 32046355 PMCID: PMC7073625 DOI: 10.3390/jcm9020472] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
Around the world diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD), which is characterized by mesangial expansion, glomerulosclerosis, tubular atrophy, and interstitial fibrosis. The hallmark of the pathogenesis of DKD is an increased extracellular matrix (ECM) accumulation causing thickening of the glomerular and tubular basement membranes, mesangial expansion, sclerosis, and tubulointerstitial fibrosis. The matrix metalloproteases (MMPs) family are composed of zinc-dependent enzymes involved in the degradation and hydrolysis of ECM components. Several MMPs are expressed in the kidney; nephron compartments, vasculature and connective tissue. Given their important role in DKD, several studies have been performed in patients with DKD proposing that the measurement of their activity in serum or in urine may become in the future markers of early DKD. Studies from diabetic nephropathy experimental models suggest that a balance between MMPs levels and their inhibitors is needed to maintain renal homeostasis. This review focuses in the importance of the MMPs within the kidney and their modifications at the circulation, kidney and urine in patients with DKD. We also cover the most important studies performed in experimental models of diabetes in terms of MMPs levels, renal expression and its down-regulation effect.
Collapse
|
10
|
Parrish AR. Matrix Metalloproteinases in Kidney Disease: Role in Pathogenesis and Potential as a Therapeutic Target. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:31-65. [PMID: 28662825 DOI: 10.1016/bs.pmbts.2017.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are large family of proteinases. In addition to a fundamental role in the remodeling of the extracellular matrix, they also cleave a number of cell surface proteins and are involved in multiple cellular processes. MMP activity is regulated via numerous mechanisms, including inhibition by endogenous tissue inhibitors of metalloproteinases (TIMPs). Similar to MMPs, a role for TIMPs has been established in multiple cell signaling pathways. Aberrant expression of MMPs and TIMPS in renal pathophysiology has long been recognized, and with the generation of specific knockout mice, the mechanistic role of several MMPs and TIMPs is becoming more understood and has revealed both pathogenic and protective roles. This chapter will focus on the expression and localization of MMPs and TIMPs in the kidney, as well as summarizing the current information linking these proteins to acute kidney injury and chronic kidney disease. In addition, we will summarize studies suggesting that MMPs and TIMPs may be biomarkers of renal dysfunction and represent novel therapeutic targets to attenuate kidney disease.
Collapse
Affiliation(s)
- Alan R Parrish
- School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
11
|
Sun QX, Zhou HM, Du QW. Association of Rs2071410 on Furin with Transient Ischemic Attack Susceptibility and Prognosis in a Chinese Population. Med Sci Monit 2016; 22:3828-3834. [PMID: 27760099 PMCID: PMC5083045 DOI: 10.12659/msm.897122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Because genotype CG/GG of Furin rs2071410 can increase susceptibility to hypertension, this study investigated whether Furin rs2071410 is correlated with transient ischemic attack (TIA) susceptibility and prognosis. Material/Methods The odds ratios (ORs) and their 95% confidence intervals (95% CIs) were evaluated to assess the association of rs2071410 with TIA risk, and logistic regression was used to estimate the effects of various risk factors (e.g., diabetes, hypertension, and hyperlipidemia) on TIA. Results Compared with the homozygous genotype CC of rs2071410, the frequency of CG + GG genotype in the case group was significantly higher than in the control group (OR=1.47, 95% CI: 1.05–2.05, P<0.05). The CG + GG genotype carriers were observed to have worse 90-day prognosis after TIA treatment than patients carrying CC genotype (OR=12.86, 95% CI: 7.41–22.33, P<0.05). Moreover, logistic regression analysis found that age, diabetes, hypertension, and hyperlipidemia were associated with the onset of TIA (P<0.05, all). Of note, individuals with CG + GG genotype had 49.3% increased risk of TIA compared with individuals with CC genotype (OR=1.49, 95% CI: 1.05–2.12), and patients with CG + GG genotype had worse 90-day prognosis after TIA treatment than patients with CC genotype (OR=11.39, 95% CI: 6.29–20.62). Conclusions Furin rs2071410 was significantly correlated with TIA occurrence and prognosis in the Chinese population.
Collapse
Affiliation(s)
- Qin-Xiang Sun
- Department of Internal Medical, Affiliated Hospital of Shandong Medical College, Linyi, Shandong, China (mainland)
| | - Hai-Mei Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of ShanDong Medical College, Linyi, Shandong, China (mainland)
| | - Qing-Wei Du
- , Clinical Department of Shandong Medical College, Linyi, Shandong, China (mainland)
| |
Collapse
|
12
|
Xu X, Xiao L, Xiao P, Yang S, Chen G, Liu F, Kanwar YS, Sun L. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem 2015; 21:3244-60. [PMID: 25039784 DOI: 10.2174/0929867321666140716092052] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/06/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 415800, China..
| |
Collapse
|
13
|
Poirier S, Mayer G. The biology of PCSK9 from the endoplasmic reticulum to lysosomes: new and emerging therapeutics to control low-density lipoprotein cholesterol. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1135-48. [PMID: 24115837 PMCID: PMC3793591 DOI: 10.2147/dddt.s36984] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) directly binds to the epidermal growth factor-like repeat A domain of low-density lipoprotein receptor and induces its degradation, thereby controlling circulating low-density lipoprotein cholesterol (LDL-C) concentration. Heterozygous loss-of-function mutations in PCSK9 can decrease the incidence of coronary heart disease by up to 88%, owing to lifelong reduction of LDL-C. Moreover, two subjects with PCSK9 loss-of-function mutations on both alleles, resulting in a total absence of functional PCSK9, were found to have extremely low circulating LDL-C levels without other apparent abnormalities. Accordingly, PCSK9 could represent a safe and effective pharmacological target to increase clearance of LDL-C and to reduce the risk of coronary heart disease. Recent clinical trials using anti-PCSK9 monoclonal antibodies that block the PCSK9:low-density lipoprotein receptor interaction were shown to considerably reduce LDL-C levels by up to 65% when given alone and by up to 72% in patients already receiving statin therapy. In this review, we will discuss how major scientific breakthroughs in PCSK9 cell biology have led to the development of new and forthcoming LDL-C-lowering pharmacological agents.
Collapse
Affiliation(s)
- Steve Poirier
- Laboratory of Molecular Cell Biology, Montreal Heart institute, Montréal, QC, Canada ; Départements de Pharmacologie, Montréal, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
14
|
Kappert K, Meyborg H, Fritzsche J, Urban D, Krüger J, Wellnhofer E, Kintscher U, Fleck E, Stawowy P. Proprotein convertase subtilisin/kexin type 3 promotes adipose tissue-driven macrophage chemotaxis and is increased in obesity. PLoS One 2013; 8:e70542. [PMID: 23936445 PMCID: PMC3735592 DOI: 10.1371/journal.pone.0070542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinase (MMP)-dependent extracellular matrix (ECM) remodeling is a key feature in cardiometabolic syndrome-associated adipogenesis and atherosclerosis. Activation of membrane-tethered (MT) 1-MMP depends on furin (PCSK3). However, the regulation and function of the natural furin-inhibitor serpinB8 and thus furin/MT1-MMP-activity in obesity-related tissue inflammation/remodeling is unknown. Here we aimed to determine the role of serpinB8/furin in obesity-associated chronic inflammation. METHODS AND RESULTS Monocyte → macrophage transformation was characterized by decreases in serpinB8 and increases in furin/MT1-MMP. Rescue of serpinB8 by protein overexpression inhibited furin-dependent pro-MT1-MMP activation in macrophages, supporting its role as a furin-inhibitor. Obese white adipose tissue-facilitated macrophage migration was inhibited by furin- and MMP-inhibition, stressing the importance of the furin-MMP axis in fat tissue inflammation/remodeling. Monocytes from obese patients (body mass index (BMI) >30kg/m(2)) had higher furin, MT1-MMP, and resistin gene expression compared to normal weight individuals (BMI<25kg/m(2)) with significant correlations of BMI/furin and furin/MT1-MMP. In vitro, the adipocytokine resistin induced furin and MT1-MMP in mononuclear cells (MNCs), while MCP-1 had no effect. CONCLUSIONS Acquisition of the inflammatory macrophage phenotype is characterized by an imbalance in serpinB8/furin, leading to MT1-MMP activation, thereby enhancing migration. Increases in MT1-MMP and furin are present in MNCs from obese patients. Dissecting the regulation of furin and its inhibitor serpinB8 should facilitate targeting inflammation/remodeling in cardiometabolic diseases.
Collapse
Affiliation(s)
- Kai Kappert
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Meyborg
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Jan Fritzsche
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Daniel Urban
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Janine Krüger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ernst Wellnhofer
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Ulrich Kintscher
- Department of Translational Pharmacology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eckart Fleck
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Philipp Stawowy
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
Pozzi A, Zent R. TGF-β sequestration by mesangial cell integrin αvβ8: A novel mechanism of glomerular endothelial cell regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:485-9. [PMID: 21281780 DOI: 10.1016/j.ajpath.2010.10.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 12/16/2022]
Affiliation(s)
- Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, Tennessee, USA.
| | | |
Collapse
|
16
|
Kappert K, Meyborg H, Baumann B, Furundzija V, Kaufmann J, Graf K, Stibenz D, Fleck E, Stawowy P. Integrin cleavage facilitates cell surface-associated proteolysis required for vascular smooth muscle cell invasion. Int J Biochem Cell Biol 2009; 41:1511-7. [DOI: 10.1016/j.biocel.2009.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 12/22/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
|
17
|
Zürbig P, Decramer S, Dakna M, Jantos J, Good DM, Coon JJ, Bandin F, Mischak H, Bascands JL, Schanstra JP. The human urinary proteome reveals high similarity between kidney aging and chronic kidney disease. Proteomics 2009; 9:2108-17. [PMID: 19296547 PMCID: PMC2768386 DOI: 10.1002/pmic.200800560] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Indexed: 11/09/2022]
Abstract
Aging induces morphological changes of the kidney and reduces renal function. We analyzed the low molecular weight urinary proteome of 324 healthy individuals from 2-73 years of age to gain insight on human renal aging. We observed age-related modification of secretion of 325 out of over 5000 urinary peptides. The majority of these changes were associated with renal development before and during puberty, while 49 peptides were related to aging in adults. We therefore focussed the remainder of the study on these 49 peptides. The majority of these 49 peptides were also markers of chronic kidney disease, suggesting high similarity between aging and chronic kidney disease. Blinded evaluation of samples from healthy volunteers and diabetic nephropathy patients confirmed both the correlation of biomarkers with aging and with renal disease. Identification of a number of these aging-related peptides led us to hypothesize that reduced proteolytic activity is involved in human renal aging. Finally, among the 324 supposedly healthy individuals, some had urinary aging-related peptide excretion patterns typical of an individual significantly older than their actual age. In conclusion, these aging-related biomarkers may allow noninvasive detection of renal lesions in healthy persons and show high resemblance between human aging and chronic kidney disease. This similarity has to be taken into account when searching for biomarkers of renal disease.
Collapse
Affiliation(s)
- Petra Zürbig
- Mosaiques Diagnostics & Therapeutics AG, Hannover, Germany
| | - Stéphane Decramer
- Inserm, U858/I2MR, Department of Renal and Cardiac Remodelling, Team #5, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
- Université Toulouse III Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, Toulouse, F-31000 France
- Department of Paediatric Nephrology, Hôpital des Enfants, Toulouse, France. Centre de Référence du Sud Ouest des Maladies Rénales Rares
| | - Mohammed Dakna
- Mosaiques Diagnostics & Therapeutics AG, Hannover, Germany
| | - Justyna Jantos
- Mosaiques Diagnostics & Therapeutics AG, Hannover, Germany
| | - David M. Good
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, WI, USA
| | - Flavio Bandin
- Department of Paediatric Nephrology, Hôpital des Enfants, Toulouse, France. Centre de Référence du Sud Ouest des Maladies Rénales Rares
| | - Harald Mischak
- Mosaiques Diagnostics & Therapeutics AG, Hannover, Germany
- Medical School Hannover, Hannover, Germany
| | - Jean-Loup Bascands
- Inserm, U858/I2MR, Department of Renal and Cardiac Remodelling, Team #5, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
- Université Toulouse III Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, Toulouse, F-31000 France
| | - Joost P Schanstra
- Inserm, U858/I2MR, Department of Renal and Cardiac Remodelling, Team #5, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
- Université Toulouse III Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, Toulouse, F-31000 France
| |
Collapse
|
18
|
Thrailkill KM, Clay Bunn R, Fowlkes JL. Matrix metalloproteinases: their potential role in the pathogenesis of diabetic nephropathy. Endocrine 2009; 35:1-10. [PMID: 18972226 PMCID: PMC2629499 DOI: 10.1007/s12020-008-9114-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/21/2008] [Accepted: 09/03/2008] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs), a family of proteinases including collagenases, gelatinases, stromelysins, matrilysins, and membrane-type MMPs, affect the breakdown and turnover of extracellular matrix (ECM). Moreover, they are major physiologic determinants of ECM degradation and turnover in the glomerulus. Renal hypertrophy and abnormal ECM deposition are hallmarks of diabetic nephropathy (DN), suggesting that altered MMP expression or activation contributes to renal injury in DN. Herein, we review and summarize recent information supporting a role for MMPs in the pathogenesis of DN. Specifically, studies describing dysregulated activity of MMPs and/or their tissue inhibitors in various experimental models of diabetes, including animal models of type 1 or type 2 diabetes, clinical investigations of human type 1 or type 2 diabetes, and kidney cell culture studies are reviewed.
Collapse
Affiliation(s)
- Kathryn M Thrailkill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | |
Collapse
|
19
|
Fortier S, Labelle D, Sina A, Moreau R, Annabi B. Silencing of the MT1-MMP/ G6PT axis suppresses calcium mobilization by sphingosine-1-phosphate in glioblastoma cells. FEBS Lett 2008; 582:799-804. [PMID: 18267120 DOI: 10.1016/j.febslet.2008.01.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 01/25/2023]
Abstract
The contributions of membrane type-1 matrix metalloproteinase (MT1-MMP) and of the glucose-6-phosphate transporter (G6PT) in sphingosine-1-phosphate (S1P)-mediated Ca(2+) mobilization were assessed in glioblastoma cells. We show that gene silencing of MT1-MMP or G6PT decreased the extent of S1P-induced Ca(2+) mobilization, chemotaxis, and extracellular signal-related kinase phosphorylation. Chlorogenic acid and (-)-epigallocatechin-3-gallate, two diet-derived inhibitors of G6PT and of MT1-MMP, respectively, reduced S1P-mediated Ca(2+) mobilization. An intact MT1-MMP/G6PT signaling axis is thus required for efficient Ca(2+) mobilization in response to bioactive lipids such as S1P. Targeted inhibition of either MT1-MMP or G6PT may lead to reduced infiltrative and invasive properties of brain tumor cells.
Collapse
Affiliation(s)
- Simon Fortier
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BioMed, Université du Québec à Montréal, Succ Centre-ville, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
20
|
Acevedo LM, Londono I, Oubaha M, Ghitescu L, Bendayan M. Glomerular CD34 expression in short- and long-term diabetes. J Histochem Cytochem 2008; 56:605-14. [PMID: 18319274 DOI: 10.1369/jhc.7a7354.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aging and diabetes are associated with exacerbated expression of adhesion molecules. Given their importance in endothelial dysfunction and their possible involvement in the alteration of glomerular permeability occurring in diabetes, we have evaluated expression of the sialomucin-type adhesion molecule CD34 in renal glomerular cells of normal and diabetic animals at two different ages by colloidal gold immunocytochemistry and immunoblotting. CD34 labeling was mostly assigned to the plasma membranes of glomerular endothelium and mesangial processes. Podocyte membranes were also labeled, but to a lesser degree. Short- and long-term diabetes triggers a substantial increase in immunogold labeling for CD34 in renal tissues compared with young normoglycemic animals. However, the level of labeling in old diabetic and healthy control rats is similar, suggesting that the effect of diabetes and aging on CD34 expression is similar but not synergistic. Western blotting of isolated glomerular fractions corroborated immunocytochemical results. Increased expression of CD34 may reflect its involvement in the pathogenesis of glomerular alterations related to age and diabetes. Alterations present in early diabetes, resembling those occurring with age, strengthen the concept that diabetes is an accelerated form of aging.
Collapse
Affiliation(s)
- Luz Marina Acevedo
- Department of Pathology and Cell Biology, Université de Montréal, Montréal QC H3T 1J4, Canada
| | | | | | | | | |
Collapse
|
21
|
Hiden U, Glitzner E, Ivanisevic M, Djelmis J, Wadsack C, Lang U, Desoye G. MT1-MMP expression in first-trimester placental tissue is upregulated in type 1 diabetes as a result of elevated insulin and tumor necrosis factor-alpha levels. Diabetes 2008; 57:150-7. [PMID: 17928399 DOI: 10.2337/db07-0903] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In pregestational diabetes, the placenta at term of gestation is characterized by various structural and functional changes. Whether similar alterations occur in the first trimester has remained elusive. Placental development requires proper trophoblast invasion and tissue remodeling, processes involving matrix metalloproteinases (MMPs) of which the membrane-anchored members (MT-MMPs) such as MT1-MMPs are key players. Here, we hypothesize a dysregulation of placental MT1-MMP in the first trimester of type 1 diabetic pregnancies induced by the diabetic environment. RESEARCH DESIGN AND METHODS MT1-MMP protein was measured in first-trimester placentas of healthy (n = 13) and type 1 diabetic (n = 13) women. To identify potential regulators, first-trimester trophoblasts were cultured under hyperglycemia and various insulin, IGF-I, IGF-II, and tumor necrosis factor-alpha (TNF-alpha) concentrations in presence or absence of signaling pathway inhibitors. RESULTS MT1-MMP was strongly expressed in first-trimester trophoblasts. In type 1 diabetes, placental pro-MT1-MMP was upregulated, whereas active MT1-MMP expression was only increased in late first trimester. In isolated primary trophoblasts, insulin, IGF-I, IGF-II, and TNF-alpha upregulated MT1-MMP expression, whereas glucose had no effect. The insulin effect was dependent on phosphatidylinositol 3-kinase, the IGF-I effect on mitogen-activated protein kinase, and the IGF-II effect on both. CONCLUSIONS This is the first study reporting alterations in the first-trimester placenta in type 1 diabetes. The upregulated MT1-MMP expression in type 1 diabetes may be the result of higher maternal insulin and TNF-alpha levels. We speculate that the elevated MT1-MMP will affect placental development and may thus contribute to long-term structural alterations in the placenta in pregestational diabetes.
Collapse
Affiliation(s)
- Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
22
|
Belkaid A, Fortier S, Cao J, Annabi B. Necrosis induction in glioblastoma cells reveals a new "bioswitch" function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia 2007; 9:332-340. [PMID: 17460777 PMCID: PMC1854846 DOI: 10.1593/neo.07142] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 12/30/2022]
Abstract
Cytoskeleton disorganization is an early step in the activation process of matrix metalloproteinase 2 (MMP-2) by membrane type 1 MMP (MT1-MMP) but is also associated with endoplasmic reticulum (ER) dysfunction and subsequent cell death. Given evidence that the ER-embedded glucose-6-phosphate transporter (G6PT) regulates glioblastoma cell survival and that MT1-MMP is a key enzyme in the cancer cell invasive phenotype, we explored the molecular link between G6PT and MT1-MMP. Cytoskeleton-disrupting agents such as concanavalin A (ConA) and cytochalasin D triggered proMMP-2 activation and cell death in U87 glioma cells. ConA decreased G6PT gene expression, an event that was also observed in cells overexpressing the full-length recombinant MT1-MMP protein. Overexpression of a membrane-bound catalytically active but cytoplasmic domain-deleted MT1-MMP was unable to downregulate G6PT gene expression or to trigger necrosis. Gene silencing of MT1-MMP with small interfering RNA prevented proMMP-2 activation and induced G6PT gene expression. ConA inhibited Akt phosphorylation, whereas overexpression of recombinant G6PT rescued the cells from ConA-induced proMMP-2 activation and increased Akt phosphorylation. Altogether, new functions of MT1-MMP in cell death signaling may be linked to those of G6PT. Our study indicates a molecular signaling axis regulating the invasive phenotype of brain tumor cells and highlights a new "bioswitch" function for G6PT in cell survival.
Collapse
Affiliation(s)
- Anissa Belkaid
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| | - Simon Fortier
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| | - Jian Cao
- Department of Medicine, State University of New York, Stony Brook, NY 11794, USA
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| |
Collapse
|
23
|
Catania JM, Chen G, Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 2006; 292:F905-11. [PMID: 17190907 DOI: 10.1152/ajprenal.00421.2006] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a large family of proteinases that remodel extracellular matrix (ECM) components and cleave a number of cell surface proteins. MMP activity is regulated via a number of mechanisms, including inhibition by tissue inhibitors of metalloproteinases (TIMPs). Originally thought to cleave only ECM proteins, MMP substrates are now known to include signaling molecules (growth factor receptors) and cell adhesion molecules. Recent data suggest a role for MMPs in a number of renal pathophysiologies, both acute and chronic. This review will focus on the expression and localization of MMPs and TIMPs in the kidney, as well as summarizing the current information linking these proteins to acute kidney injury, glomerulosclerosis/tubulointerstitial fibrosis, chronic allograft nephropathy, diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma.
Collapse
Affiliation(s)
- J M Catania
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas 77843, USA
| | | | | |
Collapse
|