1
|
Luo WQ, Cao MT, Sun CX, Wang JJ, Gao MX, He XR, Dang LN, Geng YY, Li BY, Li J, Shi ZC, Yan XR. Size-dependent internalization of polystyrene microplastics as a key factor in macrophages and systemic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137701. [PMID: 40020305 DOI: 10.1016/j.jhazmat.2025.137701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Microplastics are emerging pollutants with a wide range of ecological and biological effects, including the ability to accumulate in organisms and induce toxicity. Although numerous studies have investigated the distribution and toxicity of microplastics in murine models and cell lines, the conclusions are inconsistent owing to variations in experimental designs, particle sizes, exposure methods, and dose quantifications. To address these gaps, we systematically evaluated the size-dependent internalization and toxicity of polystyrene microplastics (PS-MPs) using in vitro and in vivo models. Fluorescently labeled PS-MPs were used to confirm the negligible toxicity of fluorophores on macrophages, demonstrating their suitability for tracking particle accumulation. In vitro experiments using RAW 264.7 cell lines and primary peritoneal macrophages revealed size-dependent phagocytosis and cytotoxicity, with smaller particles (0.5 µm) demonstrating higher internalization and causing greater mitochondrial depolarization, reactive oxygen species generation, and apoptosis compared to that with larger particles (5 µm). Acute in vivo experiments comparing oral administration and tail-vein injection revealed that the absorbed dose and toxicity were significantly influenced by particle size, with smaller PS-MPs showing higher organ retention and alterations in hematological and metabolic parameters. Additionally, a 28-day subacute oral exposure study highlighted systemic toxicity, including weight loss, disrupted food intake, elevated oxidative stress markers, and reduced antioxidant enzyme activity. By integrating multiple exposure routes, macrophage models, and fluorescence toxicity evaluations, this study provided a comprehensive and realistic assessment of microplastic toxicity, offering valuable insights for advancing toxicological evaluations and regulatory frameworks. However, this study did not address the influence of other plastic types, shapes, or environmental factors on toxicity. Future studies are thus needed to explore these variables and the long-term implications of real-world microplastic exposure.
Collapse
Affiliation(s)
- Wei-Qiang Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Meng-Ting Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Chen-Xuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Jun-Jian Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Meng-Xi Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Xue-Rui He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Le-Ning Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Yang-Yang Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Bing-Yao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Cheng Shi
- Institute of Eco-toxicology, Northwest University, Xi'an 710069, China
| | - Xing-Rong Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China; Institute of Eco-toxicology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
3
|
Zhang X, Wu W, Li Y, Peng Z. Exploring the role and therapeutic potential of lipid metabolism in acute kidney injury. Ren Fail 2024; 46:2403652. [PMID: 39319697 PMCID: PMC11425701 DOI: 10.1080/0886022x.2024.2403652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Acute kidney injury (AKI) is a prevalent condition, yet no specific treatment is available. Extensive research has revealed the pivotal role of lipid-related alterations in AKI. Lipid metabolism plays an essential role in the sustenance of the kidneys. In addition to their energy-supplying function, lipids contribute to the formation of renal biomembranes and the establishment of the renal microenvironment. Moreover, lipids or their metabolites actively participate in signal transduction, which governs various vital biological processes, such as proliferation, differentiation, apoptosis, autophagy, and epithelial-mesenchymal transition. While previous studies have focused predominantly on abnormalities in lipid metabolism in chronic kidney disease, this review focuses on lipid metabolism anomalies in AKI. We explore the significance of lipid metabolism products as potential biomarkers for the early diagnosis and classification of AKI. Additionally, this review assesses current preclinical investigations on the modulation of lipid metabolism in the progression of AKI. Finally, on the basis of existing research, this review proposes future directions, highlights challenges, and presents novel targets and innovative ideas for the treatment of and intervention in AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Wen Wu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Xie YX, Yao H, Peng JF, Ni D, Liu WT, Li CQ, Yi GH. Insight into modulators of sphingosine-1-phosphate receptor and implications for cardiovascular therapeutics. J Drug Target 2024; 32:300-310. [PMID: 38269855 DOI: 10.1080/1061186x.2024.2309577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/21/2023] [Indexed: 01/26/2024]
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Xin Xie
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Hui Yao
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Jin-Fu Peng
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Dan Ni
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Wan-Ting Liu
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Chao-Quan Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Guang-Hui Yi
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
de Assis JL, Grelle GMRS, Fernandes AM, da Silva Aniceto B, Pompeu P, de Mello FV, Garrett R, Valverde RHF, Einicker-Lamas M. Sphingosine 1-phosphate protective effect on human proximal tubule cells submitted to an in vitro ischemia model: the role of JAK2/STAT3. J Physiol Biochem 2024; 80:831-843. [PMID: 39155330 DOI: 10.1007/s13105-024-01038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Acute kidney injury is a serious public health problem worldwide, being ischemia and reperfusion (I/R) the main lesion-aggravating factor that contributes to the evolution towards chronic kidney disease. Nonetheless, intervention approaches currently available are just considered palliative options. In order to offer an alternative treatment, it is important to understand key factors involved in the development of the disease including the rescue of the affected cells and/or the release of paracrine factors that are crucial for tissue repair. Bioactive lipids such as sphingosine 1-phosphate (S1P) have significant effects on the modulation of signaling pathways involved in tissue regeneration, such as cell survival, proliferation, differentiation, and migration. The main objective of this work was to explore the protective effect of S1P using human kidney proximal tubule cells submitted to a mimetic I/R lesion, via ATP depletion. We observed that the S1P pre-treatment increases cell survival by 50% and preserves the cell proliferation capacity of injured cells. We showed the presence of different bioactive lipids notably related to tissue repair but, more importantly, we noted that the pre-treatment with S1P attenuated the ischemia-induced effects in response to the injury, resulting in higher endogenous S1P production. All receptors but S1PR3 are present in these cells and the protective and proliferative effect of S1P/S1P receptors axis occur, at least in part, through the activation of the SAFE pathway. To our knowledge, this is the first time that S1PR4 and S1PR5 are referred in these cells and also the first indication of JAK2/STAT3 pathway involvement in S1P-mediated protection in an I/R renal model.
Collapse
Affiliation(s)
- Juliane Lopes de Assis
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gloria Maria Ramalho Soares Grelle
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Metabolômica, LADETEC, Instituto de Química - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Marie Fernandes
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bárbara da Silva Aniceto
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Pompeu
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Vieira de Mello
- Serviço de Citometria do Instituto de Pediatria e Puericultura Martagão Gesteira (IPPMG) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Garrett
- Laboratório de Metabolômica, LADETEC, Instituto de Química - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Hospodar Felippe Valverde
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Laboratório de Biomembranas, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Wang L, Zhang X, Ma C, Wu N. 1-Phosphate receptor agonists: A promising therapeutic avenue for ischemia-reperfusion injury management. Int Immunopharmacol 2024; 131:111835. [PMID: 38508097 DOI: 10.1016/j.intimp.2024.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Ischemia-reperfusion injury (IRI) - a complex pathological condition occurring when blood supply is abruptly restored to ischemic tissues, leading to further tissue damage - poses a significant clinical challenge. Sphingosine-1-phosphate receptors (S1PRs), a specialized set of G-protein-coupled receptors comprising five subtypes (S1PR1 to S1PR5), are prominently present in various cell membranes, including those of lymphocytes, cardiac myocytes, and endothelial cells. Increasing evidence highlights the potential of targeting S1PRs for IRI therapeutic intervention. Notably, preconditioning and postconditioning strategies involving S1PR agonists like FTY720 have demonstrated efficacy in mitigating IRI. As the synthesis of a diverse array of S1PR agonists continues, with FTY720 being a prime example, the body of experimental evidence advocating for their role in IRI treatment is expanding. Despite this progress, comprehensive reviews delineating the therapeutic landscape of S1PR agonists in IRI remain limited. This review aspires to meticulously elucidate the protective roles and mechanisms of S1PR agonists in preventing and managing IRI affecting various organs, including the heart, kidney, liver, lungs, intestines, and brain, to foster novel pharmacological approaches in clinical settings.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
7
|
Yang T, Li L, Heng C, Sha P, Wang Y, Shen J, Jiang Z, Qian S, Wei C, Yang H, Zhu X, Wang T, Wu M, Wang J, Lu Q, Yin X. Sodium butyrate ameliorated diabetic nephropathy-associated tubulointerstitial inflammation by modulating the tight junctions of renal tubular epithelial cells. Food Funct 2024; 15:2628-2644. [PMID: 38358014 DOI: 10.1039/d2fo00940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang 214500, China
| | - Pian Sha
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yiying Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jiaming Shen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Chujing Wei
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Yang
- Department of Pharmacy, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213000, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Mengying Wu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jianyun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
8
|
Yang T, Li L, Pang J, Heng C, Wei C, Wang X, Xia Z, Huang X, Zhang L, Jiang Z. Modulating intestinal barrier function by sphingosine-1-phosphate receptor 1 specific agonist SEW2871 attenuated ANIT-induced cholestatic hepatitis via the gut-liver axis. Int Immunopharmacol 2023; 125:111150. [PMID: 37924700 DOI: 10.1016/j.intimp.2023.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Bile acid (BA) homeostasis throughout the enterohepatic circulation system is a guarantee of liver physiological functions. BA circulation disorders is one of the characteristic clinical manifestations of cholestasis, and have a closely relationship with intestinal barrier function, especially ileum. Here, our in vivo and in vitro studies showed that intestinal tight junctions (TJs) were disrupted by α-naphthylisothiocyanate (ANIT), which also down-regulated the protein expression of sphingosine-1-phosphate receptor 1 (S1PR1) in the top of villus of mice ileum. Activating S1PR1 by specific agonist SEW2871 could improve TJs via inhibiting ERK1/2/LKB1/AMPK signaling pathway in the ileum of ANIT-treated mice and ANIT-cultured Caco-2 cells. SEW2871 not only regained ileum TJs by activating S1PR1 in the epithelial cells of ileum mucosa, but also recovered ileum barrier function, which was further verified by the recovered BA homeostasis in mice ileum (content and tissue) by using of high-performance liquid chromatographytandem mass spectrometry (LC-MS/MS). Subsequently, the improved intestinal injury and inflammation further strengthened that SEW2871 modulated intestinal barrier function in ANIT-treated mice. Finally, our data revealed that along with the down-regulated levels of serum lipopolysaccharides (LPS), SEW2871 improved liver function and relieved hepatitis via blocking TLR4/MyD88/NF-kB signaling pathway in ANIT-treated mice. In conclusion, these results demonstrated that activating intestinal S1PR1 by SEW2871 could modulate intestinal barrier function, leading to the improvement of cholestatic hepatitis in ANIT-treated mice via the "gut-liver" axis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiale Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chujing Wei
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyin Xia
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Xiong W, Chen S, Xiang H, Zhao S, Xiao J, Li J, Liu Y, Shu Z, Ouyang J, Zhang J, Liu H, Wang X, Zou H, Chen Y, Chen A, Lu H. S1PR1 attenuates pulmonary fibrosis by inhibiting EndMT and improving endothelial barrier function. Pulm Pharmacol Ther 2023:102228. [PMID: 37295666 DOI: 10.1016/j.pupt.2023.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic fatal disease of unknown etiology. Its pathological manifestations include excessive proliferation and activation of fibroblasts and deposition of extracellular matrix. Endothelial cell-mesenchymal transformation (EndMT), a novel mechanism that generates fibroblast during IPF, is responsible for fibroblast-like phenotypic changes and activation of fibroblasts into hypersecretory cells. However, the exact mechanism behind EndMT-derived fibroblasts and activation is uncertain. Here, we investigated the role of sphingosine 1-phosphate receptor 1 (S1PR1) in EndMT-driven pulmonary fibrosis. METHODS We treated C57BL/6 mice with bleomycin (BLM) in vivo and pulmonary microvascular endothelial cells with TGF-β1 in vitro. Western blot,flow cytometry, and immunofluorescence were used to detect the expression of S1PR1 in endothelial cells. To evaluate the effect of S1PR1 on EndMT and endothelial barrier and its role in lung fibrosis and related signaling pathways, S1PR1 agonist and antagonist were used in vitro and in vivo. RESULTS Endothelial S1PR1 protein expression was downregulated in both in vitro and in vivo models of pulmonary fibrosis induced by TGF-β1 and BLM, respectively. Downregulation of S1PR1 resulted in EndMT, indicated by decreased expression of endothelial markers CD31 and VE-cadherin, increased expression of mesenchymal markers α-SMA and nuclear transcription factor Snail, and disruption of the endothelial barrier. Further mechanistic studies found that stimulation of S1PR1 inhibited TGF-β1-mediated activation of the Smad2/3 and RhoA/ROCK1 pathways. Moreover, stimulation of S1PR1 attenuated Smad2/3 and RhoA/ROCK1 pathway-mediated damage to endothelial barrier function. CONCLUSIONS Endothelial S1PR1 provides protection against pulmonary fibrosis by inhibiting EndMT and attenuating endothelial barrier damage. Accordingly, S1PR1 may be a potential therapeutic target in progressive IPF.
Collapse
Affiliation(s)
- Wenfang Xiong
- Health Management Center, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China; Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, 410013, PR China
| | - Hong Xiang
- Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Shaoli Zhao
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Jie Xiao
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Jialing Li
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Yulan Liu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Zhihao Shu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Jie Ouyang
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Jing Zhang
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Huiqin Liu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Xuewen Wang
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China
| | - Hang Zou
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, 410013, PR China
| | - Ying Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, 410013, PR China
| | - Alex Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Hongwei Lu
- Health Management Center, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China; Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
10
|
Abdel-Zaher S, Mohamed MS, Sayed AEDH. Hemotoxic effects of polyethylene microplastics on mice. Front Physiol 2023; 14:1072797. [PMID: 36969612 PMCID: PMC10030681 DOI: 10.3389/fphys.2023.1072797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Micro- or nanoplastics, which are fragmented or otherwise tiny plastic materials, have long been a source of environmental worry. Microplastics (MPs) have been well documented to alter the physiology and behavior of marine invertebrates. The effects of some of these factors are also seen in larger marine vertebrates, such as fish. More recently, mouse models have been used to investigate the potential impacts of micro- and nanoplastics on host cellular and metabolic damages as well as mammalian gut flora. The impact on erythrocytes, which carry oxygen to all cells, has not yet been determined. Therefore, the current study aims to ascertain the impact of exposure to various MP exposure levels on hematological alterations and biochemical indicators of liver and kidney functions. In this study, a C57BL/6 murine model was concentration-dependently exposed to microplastics (6, 60, and 600 μg/day) for 15 days, followed by 15 days of recovery. The results demonstrated that exposure to 600 μg/day of MPs considerably impacted RBCs' typical structure, resulting in numerous aberrant shapes. Furthermore, concentration-dependent reductions in hematological markers were observed. Additional biochemical testing revealed that MP exposure impacted the liver and renal functioning. Taken together, the current study reveals the severe impacts of MPs on mouse blood parameters, erythrocyte deformation, and consequently, anemic patterns of the blood.
Collapse
Affiliation(s)
- Souzan Abdel-Zaher
- Department of Molecular Biology, Molecular Biology Researches and Studies Institute, Assiut University, Assiut, Egypt
| | - Mahmoud S. Mohamed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Department of Molecular Biology, Molecular Biology Researches and Studies Institute, Assiut University, Assiut, Egypt
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Zhao Y, Zeng X, Xu X, Wang W, Xu L, Wu Y, Li H. Low-dose 5-aza-2'-deoxycytidine protects against early renal injury by increasing klotho expression. Epigenomics 2022; 14:1411-1425. [PMID: 36695107 DOI: 10.2217/epi-2022-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: To explore the effect of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (Aza) on early renal injury. Materials & methods: Cell damage and inflammation are features of early renal injury. The apoptosis and inflammation in hypoxia/reoxygenation (H/R)-induced human proximal tubular epithelial cells (HK-2) and ischemia-reperfusion kidney were studied, and expression of the protein klotho was investigated. Results: Aza induced HK-2 apoptosis in a dose-dependent manner, but low-dose Aza attenuated the apoptosis and inflammation in H/R-induced HK-2 cells and ischemia-reperfusion kidney. Low-dose Aza ameliorated renal function in mice with renal ischemia-reperfusion injury. Meanwhile, low-dose Aza upregulated klotho expression in H/R-induced HK-2 cells and ischemia-reperfusion kidney. Klotho knockdown abrogated the effects of low-dose Aza on apoptosis and inflammation. Conclusion: Low-dose Aza protects against renal early injury by increasing klotho expression.
Collapse
Affiliation(s)
- Yanlong Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xiaorong Zeng
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xinli Xu
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Wenjing Wang
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Lei Xu
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yiying Wu
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Hang Li
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
12
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
13
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
14
|
Lim SW, Kim KW, Kim BM, Shin YJ, Luo K, Quan Y, Cui S, Ko EJ, Chung BH, Yang CW. Alleviation of renal ischemia/reperfusion injury by exosomes from induced pluripotent stem cell-derived mesenchymal stem cells. Korean J Intern Med 2022; 37:411-424. [PMID: 34521186 PMCID: PMC8925954 DOI: 10.3904/kjim.2020.438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/20/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Renal ischemia followed by reperfusion (I/R) is a leading cause of acute kidney injury (AKI), which is closely associated with high morbidity and mortality. Studies have shown that induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) exert powerful therapeutic effects in renal ischemia. However, the efficacy of iMSC-derived exosomes (iExo) on I/R injuries remains largely unknown. METHODS Human iPSCs were differentiated into iMSCs using a modified one-step method. Ultrafiltration, combined with purification, was used to isolate iExo from iMSCs. iExo was administered following I/R injury in a mouse model. The effect of iExo on I/R injury was assessed through changes in renal function, histology, and expression of oxidative stress, inflammation, and apoptosis markers. Further, we evaluated its association with the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. RESULTS Mice subjected to I/R injury exhibited typical AKI patterns; serum creatinine level, tubular necrosis, apoptosis, inflammatory cytokine production, and oxidative stress were markedly increased compared to sham mice. However, treatment with iExo attenuated these changes, significantly improving renal function and tissue damage, similar to the renoprotective effects of iMSCs on I/R injury. Significant induction of activated ERK 1/2 signaling molecules was observed in mice treated with iExo compared to those in the I/R injury group. CONCLUSION The present study demonstrates that iExo administration ameliorated renal damage following I/R, suggesting that iMSC-derived exosomes may provide a novel therapeutic approach for AKI treatment.
Collapse
Affiliation(s)
- Sun Woo Lim
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung Woon Kim
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- R&D Center, OncoInsight Co. Ltd., Seoul, Korea
| | - Bo Mi Kim
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo Jin Shin
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kang Luo
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yi Quan
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sheng Cui
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Jeong Ko
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Ha Chung
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Qi T, Li L, Weidong T. The Role of Sphingolipid Metabolism in Bone Remodeling. Front Cell Dev Biol 2021; 9:752540. [PMID: 34912800 PMCID: PMC8666436 DOI: 10.3389/fcell.2021.752540] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging studies of bioactive lipids have made many exciting discoveries in recent years. Sphingolipids and their metabolites perform a wide variety of cellular functions beyond energy metabolism. Emerging evidence based on genetically manipulated mouse models and molecular biology allows us to obtain new insights into the role sphingolipid played on skeletal remodeling. This review summarizes studies or understandings of the crosstalk between sphingomyelin, ceramide, and sphingosine-1-phosphate (S1P) of sphingolipids family and the cells, especially osteoblasts and osteoclasts of the bone through which bone is remodeled during life constantly. This review also shows agonists and antagonists of S1P as possible therapeutic options and opportunities on bone diseases.
Collapse
Affiliation(s)
- Tang Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tian Weidong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Bisgaard LS, Christoffersen C. The apoM/S1P Complex-A Mediator in Kidney Biology and Disease? Front Med (Lausanne) 2021; 8:754490. [PMID: 34722589 PMCID: PMC8553247 DOI: 10.3389/fmed.2021.754490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Kidney disease affects more than 10% of the population, can be both acute and chronic, and is linked to other diseases such as cardiovascular disease, diabetes, and sepsis. Despite the detrimental consequences for patients, no good treatment options directly targeting the kidney are available. Thus, a better understanding of the pathology and new treatment modalities are required. Accumulating evidence suggests that the apolipoprotein M/sphingosine-1-phosphate (apoM/S1P) axis is a likely drug target, but significant gaps in our knowledge remain. In this review, we present what has so far been elucidated about the role of apoM in normal kidney biology and describe how changes in the apoM/S1P axis are thought to affect the development of kidney disease. ApoM is primarily produced in the liver and kidneys. From the liver, apoM is secreted into circulation, where it is attached to lipoproteins (primarily HDL). Importantly, apoM is a carrier of the bioactive lipid S1P. S1P acts by binding to five different receptors. Together, apoM/S1P plays a role in several biological mechanisms, such as inflammation, endothelial cell permeability, and lipid turnover. In the kidney, apoM is primarily expressed in the proximal tubular cells. S1P can be produced locally in the kidney, and several of the five S1P receptors are present in the kidney. The functional role of kidney-derived apoM as well as plasma-derived apoM is far from elucidated and will be discussed based on both experimental and clinical studies. In summary, the current studies provide evidence that support a role for the apoM/S1P axis in kidney disease; however, additional pre-clinical and clinical studies are needed to reveal the mechanisms and target potential in the treatment of patients.
Collapse
Affiliation(s)
- Line S Bisgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To describe recent advances in the development of therapeutic agents for acute kidney injury (AKI). RECENT FINDINGS Traditional care for AKI is mostly supportive. At present, no specific therapy has been developed to prevent or treat AKI. However, based on a better understanding of the pathophysiology of AKI, various potential compounds have been recently identified and tested. A variety of pathways has been targeted, including oxidative and mitochondrial stress, cellular metabolism and repair, inflammation, apoptosis and hemodynamics. Many of these potential agents are currently ongoing early-phase clinical trials, and the purpose of this review is to provide a summary of those with the most potential. SUMMARY Despite the lack of therapies specifically approved for AKI, many interesting potential agents are entering clinical trials, with the potential to transform the care of patients with AKI.
Collapse
|
18
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
19
|
He Q, Bo J, Shen R, Li Y, Zhang Y, Zhang J, Yang J, Liu Y. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. J Diabetes Res 2021; 2021:1341750. [PMID: 34751249 PMCID: PMC8571914 DOI: 10.1155/2021/1341750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is very complicated. The currently well-accepted etiology is the "Ominous Octet" theory proposed by Professor Defronzo. Since presently used drugs for T2DM have limitations and harmful side effects, studies regarding alternative treatments are being conducted. Analyzing the pharmacological mechanism of biomolecules in view of pathogenesis is an effective way to assess new drugs. Sphingosine 1 phosphate (S1P), an endogenous lipid substance in the human body, has attracted increasing attention in the T2DM research field. This article reviews recent study updates of S1P, summarizing its effects on T2DM with respect to pathogenesis, promoting β cell proliferation and inhibiting apoptosis, reducing insulin resistance, protecting the liver and pancreas from lipotoxic damage, improving intestinal incretin effects, lowering basal glucagon levels, etc. With increasing research, S1P may help treat and prevent T2DM in the future.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaqi Bo
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ruihua Shen
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Li
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
20
|
Donati C, Cencetti F, Bernacchioni C, Vannuzzi V, Bruni P. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cell Signal 2020; 78:109861. [PMID: 33253915 DOI: 10.1016/j.cellsig.2020.109861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive accumulation of extracellular matrix components, leading to loss of tissue function in affected organs. Although the majority of fibrotic diseases have different origins, they have in common a persistent inflammatory stimulus and lymphocyte-monocyte interactions that determine the production of numerous fibrogenic cytokines. Treatment to contrast fibrosis is urgently needed, since some fibrotic diseases lead to systemic fibrosis and represent a major cause of death. In this article, the role of the bioactive sphingolipid sphingosine 1-phosphate (S1P) and its signalling pathway in the fibrosis of different tissue contexts is extensively reviewed, highlighting that it may represent an innovative and promising pharmacological therapeutic target for treating this devastating multifaceted disease. In multiple tissues S1P influences different aspects of fibrosis modulating the recruitment of inflammatory cells, as well as cell proliferation, migration and transdifferentiation into myofibroblasts, the cell type mainly involved in fibrosis development. Moreover, at the level of fibrotic lesions, S1P metabolism is profoundly influenced by multiple cross-talk with profibrotic mediators, such as transforming growth factor β, thus finely regulating the development of fibrosis. This article is part of a Special Issue entitled "Physiological and pathological roles of bioactive sphingolipids".
Collapse
Affiliation(s)
- Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
21
|
McGowan EM, Haddadi N, Nassif NT, Lin Y. Targeting the SphK-S1P-SIPR Pathway as a Potential Therapeutic Approach for COVID-19. Int J Mol Sci 2020; 21:ijms21197189. [PMID: 33003377 PMCID: PMC7583882 DOI: 10.3390/ijms21197189] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The world is currently experiencing the worst health pandemic since the Spanish flu in 1918-the COVID-19 pandemic-caused by the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic is the world's third wake-up call this century. In 2003 and 2012, the world experienced two major coronavirus outbreaks, SARS-CoV-1 and Middle East Respiratory syndrome coronavirus (MERS-CoV), causing major respiratory tract infections. At present, there is neither a vaccine nor a cure for COVID-19. The severe COVID-19 symptoms of hyperinflammation, catastrophic damage to the vascular endothelium, thrombotic complications, septic shock, brain damage, acute disseminated encephalomyelitis (ADEM), and acute neurological and psychiatric complications are unprecedented. Many COVID-19 deaths result from the aftermath of hyperinflammatory complications, also referred to as the "cytokine storm syndrome", endotheliitus and blood clotting, all with the potential to cause multiorgan dysfunction. The sphingolipid rheostat plays integral roles in viral replication, activation/modulation of the immune response, and importantly in maintaining vasculature integrity, with sphingosine 1 phosphate (S1P) and its cognate receptors (SIPRs: G-protein-coupled receptors) being key factors in vascular protection against endotheliitus. Hence, modulation of sphingosine kinase (SphK), S1P, and the S1P receptor pathway may provide significant beneficial effects towards counteracting the life-threatening, acute, and chronic complications associated with SARS-CoV-2 infection. This review provides a comprehensive overview of SARS-CoV-2 infection and disease, prospective vaccines, and current treatments. We then discuss the evidence supporting the targeting of SphK/S1P and S1P receptors in the repertoire of COVID-19 therapies to control viral replication and alleviate the known and emerging acute and chronic symptoms of COVID-19. Three clinical trials using FDA-approved sphingolipid-based drugs being repurposed and evaluated to help in alleviating COVID-19 symptoms are discussed.
Collapse
Affiliation(s)
- Eileen M McGowan
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
- Correspondence: ; Tel.: +61-405814048
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| | - Yiguang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou 510080, China;
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia; (N.H.); (N.T.N.)
| |
Collapse
|
22
|
Gaire BP, Choi JW. Sphingosine 1-Phosphate Receptors in Cerebral Ischemia. Neuromolecular Med 2020; 23:211-223. [PMID: 32914259 DOI: 10.1007/s12017-020-08614-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023]
Abstract
Sphingosine 1-phosphate (S1P) is an important lipid biomolecule that exerts pleiotropic cellular actions as it binds to and activates its five G-protein-coupled receptors, S1P1-5. Through these receptors, S1P can mediate diverse biological activities in both healthy and diseased conditions. S1P is produced by S1P-producing enzymes, sphingosine kinases (SphK1 and SphK2), and is abundantly present in different organs, including the brain. The medically important roles of receptor-mediated S1P signaling are well characterized in multiple sclerosis because FTY720 (Gilenya™, Novartis), a non-selective S1P receptor modulator, is currently used as a treatment for this disease. In cerebral ischemia, its role is also notable because of FTY720's efficacy in both rodent models and human patients with cerebral ischemia. In particular, some of the S1P receptors, including S1P1, S1P2, and S1P3, have been identified as pathogenic players in cerebral ischemia. Other than these receptors, S1P itself and S1P-producing enzymes have been shown to play certain roles in cerebral ischemia. This review aims to compile the current updates and overviews about the roles of S1P signaling, along with a focus on S1P receptors in cerebral ischemia, based on recent studies that used in vivo rodent models of cerebral ischemia.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Inchon, 21936, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Inchon, 21936, Republic of Korea.
| |
Collapse
|
23
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Poirier B, Briand V, Kadereit D, Schäfer M, Wohlfart P, Philippo MC, Caillaud D, Gouraud L, Grailhe P, Bidouard JP, Trellu M, Muslin AJ, Janiak P, Parkar AA. A G protein-biased S1P 1 agonist, SAR247799, protects endothelial cells without affecting lymphocyte numbers. Sci Signal 2020; 13:13/634/eaax8050. [PMID: 32487716 DOI: 10.1126/scisignal.aax8050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial dysfunction is a hallmark of tissue injury and is believed to initiate the development of vascular diseases. Sphingosine-1 phosphate receptor-1 (S1P1) plays fundamental physiological roles in endothelial function and lymphocyte homing. Currently available clinical molecules that target this receptor are desensitizing and are essentially S1P1 functional antagonists that cause lymphopenia. They are clinically beneficial in autoimmune diseases such as multiple sclerosis. In patients, several side effects of S1P1 desensitization have been attributed to endothelial damage, suggesting that drugs with the opposite effect, namely, the ability to activate S1P1, could help to restore endothelial homeostasis. We found and characterized a biased agonist of S1P1, SAR247799, which preferentially activated downstream G protein signaling to a greater extent than β-arrestin and internalization signaling pathways. SAR247799 activated S1P1 on endothelium without causing receptor desensitization and potently activated protection pathways in human endothelial cells. In a pig model of coronary endothelial damage, SAR247799 improved the microvascular hyperemic response without reducing lymphocyte numbers. Similarly, in a rat model of renal ischemia/reperfusion injury, SAR247799 preserved renal structure and function at doses that did not induce S1P1-desensitizing effects, such as lymphopenia and lung vascular leakage. In contrast, a clinically used S1P1 functional antagonist, siponimod, conferred minimal renal protection and desensitized S1P1 These findings demonstrate that sustained S1P1 activation can occur pharmacologically without compromising the immune response, providing a new approach to treat diseases associated with endothelial dysfunction and vascular hyperpermeability.
Collapse
Affiliation(s)
- Bruno Poirier
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Veronique Briand
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Dieter Kadereit
- Medicinal Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main,, Germany
| | - Matthias Schäfer
- Diabetes and Cardiovascular Research, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Paulus Wohlfart
- Diabetes and Cardiovascular Research, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Marie-Claire Philippo
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Dominique Caillaud
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Laurent Gouraud
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Patrick Grailhe
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Jean-Pierre Bidouard
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Marc Trellu
- Drug Metabolism and Pharmacokinetics, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Anthony J Muslin
- Diabetes and Cardiovascular Research, Sanofi US Services, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Philip Janiak
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Ashfaq A Parkar
- Diabetes and Cardiovascular Research, Sanofi US Services, 55 Corporate Drive, Bridgewater, NJ 08807, USA.
| |
Collapse
|
25
|
Abstract
Sphingosine-1-phosphate (S1P) can regulate several physiological and pathological processes. S1P signaling via its cell surface receptor S1PR1 has been shown to enhance tumorigenesis and stimulate growth, expansion, angiogenesis, metastasis, and survival of cancer cells. S1PR1-mediated tumorigenesis is supported and amplified by activation of downstream effectors including STAT3, interleukin-6, and NF-κB networks. S1PR1 signaling can also trigger various other signaling pathways involved in carcinogenesis including activation of PI3K/AKT, MAPK/ERK1/2, Rac, and PKC/Ca, as well as suppression of cyclic adenosine monophosphate (cAMP). It also induces immunological tolerance in the tumor microenvironment, while the immunosuppressive function of S1PR1 can also lead to the generation of pre-metastatic niches. Some tumor cells upregulate S1PR1 signaling pathways, which leads to drug resistant cancer cells, mainly through activation of STAT3. This signaling pathway is also implicated in some inflammatory conditions leading to the instigation of inflammation-driven cancers. Furthermore, it can also increase survival via induction of anti-apoptotic pathways, for instance, in breast cancer cells. Therefore, S1PR1 and its signaling pathways can be considered as potential anti-tumor therapeutic targets, alone or in combination therapies. Given the oncogenic nature of S1PR1 and its distribution in a variety of cancer cell types along with its targeting advantages over other molecules of this family, S1PR1 should be considered a favorable target in therapeutic approaches to cancer. This review describes the role of S1PR1 in cancer development and progression, specifically addressing breast cancer, glioma, and hematopoietic malignancies. We also discuss the potential use of S1P signaling modulators as therapeutic targets in cancer therapy.
Collapse
|
26
|
Raza Z, Saleem U, Naureen Z. Sphingosine 1-phosphate signaling in ischemia and reperfusion injury. Prostaglandins Other Lipid Mediat 2020; 149:106436. [PMID: 32173486 DOI: 10.1016/j.prostaglandins.2020.106436] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Ischemia and reperfusion injury is a complex hemodynamic pathological phenomenon that engages the metabolic to inflammatory machinery in development of disease conditions like heart failure, stroke and acute kidney failure. Target specific therapeutic approaches for ischemia reperfusion injury remains critical despite the extensive studies contributing to the understanding of its pathogenesis. Ischemic or pharmacological conditionings have been long established manipulations to harness the endogenous protective mechanisms against ischemia reperfusion injury that fostered the development of potential therapeutic targets such as sphingolipids signaling. Sphingosine 1-phosphate has been emerged as a crucial metabolite of sphingolipids to regulate the cell survival, vascular integrity and inflammatory cascades in ischemia reperfusion injury. Sphingosine 1-phosphate signaling process has been implicated to downgrade the mitochondrial dysfunction, apoptotic assembly along with upregulation of RISK and SAFE pro-survival pathways. It also regulates the endothelial dysfunction and immune cells behavior to control the vascular permeability and immune cells infiltration at ischemia reperfusion injury site. Targeting the signaling of this single moiety holds the vast potential to extensively influence the detrimental signaling of ischemia reperfusion injury. This review highlights the role and significance of S1P signaling that can be therapeutically exploit to treat ischemia reperfusion injury mediated pathological conditions in different organs.
Collapse
Affiliation(s)
- Zohaib Raza
- Government College University, Faisalabad, Pakistan.
| | - Uzma Saleem
- Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
27
|
Transcriptional Regulator TonEBP Mediates Oxidative Damages in Ischemic Kidney Injury. Cells 2019; 8:cells8101284. [PMID: 31635160 PMCID: PMC6830075 DOI: 10.3390/cells8101284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI.
Collapse
|
28
|
Weigert A, Olesch C, Brüne B. Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater. Front Immunol 2019; 10:1706. [PMID: 31379883 PMCID: PMC6658986 DOI: 10.3389/fimmu.2019.01706] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) is produced by sphingosine kinases to either signal through intracellular targets or to activate a family of specific G-protein-coupled receptors (S1PR). S1P levels are usually low in peripheral tissues compared to the vasculature, forming a gradient that mediates lymphocyte trafficking. However, S1P levels rise during inflammation in peripheral tissues, thereby affecting resident or recruited immune cells, including macrophages. As macrophages orchestrate initiation and resolution of inflammation, the sphingosine kinase/S1P/S1P-receptor axis emerges as an important determinant of macrophage function in the pathogenesis of inflammatory diseases such as cancer, atherosclerosis, and infection. In this review, we therefore summarize the current knowledge how S1P affects macrophage biology.
Collapse
Affiliation(s)
- Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
29
|
Preparation of fibrin hydrogels to promote the recruitment of anti-inflammatory macrophages. Acta Biomater 2019; 89:152-165. [PMID: 30862554 DOI: 10.1016/j.actbio.2019.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Macrophages play an important role in regulating inflammation and tissue regeneration. In the present study, uniform fibrin hydrogel scaffolds were engineered in millimeters. These scaffolds induced anti-inflammatory macrophages to digest and infiltrate the scaffold. The culture conditions of the fibrin hydrogels decreased the secretion of tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine, and increased the secretion of interleukin-10 (IL-10), an anti-inflammatory cytokine, in mouse bone marrow-derived macrophages. Similar results were also observed in human monocyte-derived macrophages (HMDMs). In addition, most of cells that infiltrated the fibrin hydrogels were macrophages expressing CD163, CD204, and CD206, which are anti-inflammatory macrophages markers, both in mice and in human cells. Therefore, to induce increased macrophage infiltration, we attempted to combine fibrin hydrogels with SEW2871, a monocyte/macrophage recruitment agent that is known to be a sphingosine-1 phosphate receptor 1 agonist, solubilized in water by micelle formation with a cholesterol-grafted gelatin. However, the fibrin hydrogels alone retained the same monocyte migration activity as the hydrogels with SEW2871-incorporated micelles in the hydrogel-bearing mouse model. These findings indicate that fibrin hydrogels have a strong promoting effect on the recruitment of anti-inflammatory macrophages. Therefore, fibrin hydrogels may be an optimal biomaterial in the design of medicines for macrophage-induced regenerative therapies. STATEMENT OF SIGNIFICANCE: The immune response to tissue injury is important for determining the speed and the result of the regeneration. Alternatively activated macrophages (M2 macrophages) resolve inflammatory response and promote tissue repair by producing anti-inflammatory factors. Promoting the recruitment of macrophages is a hopeful strategy in the design of biomaterials for tissue regeneration. In the present study, we combined the fibrin hydrogel, which promotes anti-inflammatory polarization, with a macrophage recruitment agent. We revealed that the fibrin hydrogel significantly promoted anti-inflammatory polarization in mouse in vivo and human in vitro. Moreover, macrophages significantly infiltrated into the fibrin hydrogel regardless of the agent combination. Fibrin hydrogels may become a reliable biomaterial for tissue regeneration, and the present study is believed to provide information for many researchers.
Collapse
|
30
|
Wang H, Huang H, Ding SF. Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biol Int 2018; 42:1492-1502. [PMID: 29790626 DOI: 10.1002/cbin.10991] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hang Wang
- Department of Cardiology; Wuhan General Hospital of PLA; Wuhan 430070 China
- Clinic Center; China Life Health Industry Group; Shenzhen 515000 China
| | - Hao Huang
- Medical Project Department; Livzon Pharmaceutical Group Inc.; Zhuhai 519045 China
| | - Shi-Fang Ding
- Department of Cardiology; Wuhan General Hospital of PLA; Wuhan 430070 China
| |
Collapse
|
31
|
Sphingosine 1-Phosphate Receptor 1 Is Required for MMP-2 Function in Bone Marrow Mesenchymal Stromal Cells: Implications for Cytoskeleton Assembly and Proliferation. Stem Cells Int 2018; 2018:5034679. [PMID: 29713350 PMCID: PMC5866864 DOI: 10.1155/2018/5034679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cell- (BM-MSC-) based therapy is a promising option for regenerative medicine. An important role in the control of the processes influencing the BM-MSC therapeutic efficacy, namely, extracellular matrix remodelling and proliferation and secretion ability, is played by matrix metalloproteinase- (MMP-) 2. Therefore, the identification of paracrine/autocrine regulators of MMP-2 function may be of great relevance for improving BM-MSC therapeutic potential. We recently reported that BM-MSCs release the bioactive lipid sphingosine 1-phosphate (S1P) and, here, we demonstrated an impairment of MMP-2 expression/release when the S1P receptor subtype S1PR1 is blocked. Notably, active S1PR1/MMP-2 signalling is required for F-actin structure assembly (lamellipodia, microspikes, and stress fibers) and, in turn, cell proliferation. Moreover, in experimental conditions resembling the damaged/regenerating tissue microenvironment (hypoxia), S1P/S1PR1 system is also required for HIF-1α expression and vinculin reduction. Our findings demonstrate for the first time the trophic role of S1P/S1PR1 signalling in maintaining BM-MSCs' ability to modulate MMP-2 function, necessary for cytoskeleton reorganization and cell proliferation in both normoxia and hypoxia. Altogether, these data provide new perspectives for considering S1P/S1PR1 signalling a pharmacological target to preserve BM-MSC properties and to potentiate their beneficial potential in tissue repair.
Collapse
|
32
|
Ito T, Kuriyama N, Kato H, Matsuda A, Mizuno S, Usui M, Sakurai H, Isaji S. Sinusoidal protection by sphingosine-1-phosphate receptor 1 agonist in liver ischemia-reperfusion injury. J Surg Res 2018; 222:139-152. [PMID: 29273365 DOI: 10.1016/j.jss.2017.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Functional and structural damages in sinusoidal endothelial cells (SECs) have a crucial role during hepatic ischemia-reperfusion injury (IRI). In regulating endothelial function, sphingosine-1-phosphate receptor 1 (S1PR1), which is a G protein-coupled receptor, has an important role. The present study aimed to clarify whether SEW2871, a selective S1PR1 agonist, can attenuate hepatic damage caused by hepatic IRI, focusing on SEC functions. METHODS In vivo, using a 60-min partial-warm IRI model, mice were treated with SEW2871 or without it (with vehicle). In vitro, isolated SECs pretreated with SEW2871 or without it (with vehicle) were incubated with hydrogen peroxide. RESULTS Compared with the IRI + vehicle group, SEW2871 administration significantly improved serum transaminase levels and liver damage, attenuated infiltration of Ly-6G and mouse macrophage antigen-1-positive cells, suppressed the expression of vascular cell adhesion molecule-1 and proinflammatory cytokines in the liver, and enhanced the expressions of endothelial nitric oxide synthase (eNOS) and vascular endothelial (VE) cadherin in the liver (eNOS/β-actin [median]: 0.24 versus 0.53, P = 0.008; VE-cadherin/β-actin [median]: 0.21 versus 0.94, P = 0.008). In vitro, compared with the vehicle group, pretreatment of SECs with SEW2871 significantly increased the expressions of eNOS and VE-cadherin (eNOS/β-actin [median]: 0.22 versus 0.29, P = 0.008; VE-cadherin/β-actin [median]: 0.38 versus 0.67, P = 0.008). As results of investigation of prosurvival signals, SEW2871 significantly increased Akt phosphorylation in SECs and decreased lactate dehydrogenase levels in supernatants of SECs. CONCLUSIONS These results indicate that S1PR1 agonist induces attenuation of hepatic IRI, which might be provided by preventing SEC damage. S1PR1 may be a therapeutic target for the prevention of early sinusoidal injury after hepatic IRI.
Collapse
Affiliation(s)
- Takahiro Ito
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naohisa Kuriyama
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | - Hiroyuki Kato
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masanobu Usui
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroyuki Sakurai
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shuji Isaji
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
33
|
Zhou Y, Guo F. A selective sphingosine-1-phosphate receptor 1 agonist SEW-2871 aggravates gastric cancer by recruiting myeloid-derived suppressor cells. J Biochem 2018; 163:77-83. [PMID: 29036438 DOI: 10.1093/jb/mvx064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/12/2017] [Indexed: 12/19/2022] Open
Abstract
The immune status of tumor microenvironment in gastric cancer is poorly understood, which limits the development of novel strategies in this field. Sphingosine-1-phosphate (S1P) acts as an immune modulator, but the role of S1P in gastric cancer is elusive. Here, we aim to investigate S1P receptor 1 (S1P1)-mediated effect of S1P in gastric cancer. We generated a xenograft mouse model and used SEW-2871, a S1P1 specific agonist to activate S1P1 signalling. Tumor-infiltrating lymphocytes (TILs) were isolated and analysed using flow cytometry. Chemokine expression of tumor cells was evaluated using quantitative real-time polymerase chain reaction. Myeloid-derived suppressor cells (MDSCs) migration was assessed using Transwell chambers. SEW-2871 promoted tumor growth in our mouse model, and induced a higher level of MDSC and a reduced level of CD8+CD69+ T cells within tumor. Consistently, the anti-tumoral function of cytotoxic T lymphocytes was impaired in mice with SEW-2871 treatment. Additionally, SEW-2871 enhanced expression of several MDSC recruitment-associated chemokines (CXCL12, CXCL5 and CCL2) in tumor cells. These chemokines facilitated MDSC migration by interaction with CCR2, CXCR2 and CXCR4. S1P1 signalling promoted gastric cancer by enhancing chemokine expression in tumor cells and recruiting MDSC to tumor microenvironment, which impaired anti-tumoral function of TILs.
Collapse
Affiliation(s)
- Yujing Zhou
- Department of Gastroenterology, Daqing Oilfield General Hospital, No. 9 Zhongkang Road, Daqing 163000, China
| | - Feng Guo
- Department of Gastroenterology, Daqing Oilfield General Hospital, No. 9 Zhongkang Road, Daqing 163000, China
| |
Collapse
|
34
|
Chen H, Busse LW. Novel Therapies for Acute Kidney Injury. Kidney Int Rep 2017; 2:785-799. [PMID: 29270486 PMCID: PMC5733745 DOI: 10.1016/j.ekir.2017.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology. The old paradigm of identifying renal injury based on location-prerenal, intrarenal, and postrenal-is now being supplanted with a new paradigm based on observable kidney injury patterns. The pathophysiology of AKI on a molecular and microanatomical level includes inflammation, immune dysregulation, oxidative injury, and impaired microcirculation. Treatment has traditionally been supportive, including the avoidance of nephrotoxins, judicious volume and blood pressure management, hemodynamic monitoring, and renal replacement therapy. Fluid overload and chloride-rich fluids are now implicated in the development of AKI, and resuscitation with a balanced, buffered solution at a conservative rate will mitigate risk. Novel therapies, which address specific observable kidney injury patterns include direct oxygen-free radical scavengers such as α-lipoic acid, curcumin, sodium-2-mercaptoethane sulphonate, propofol, and selenium. In addition, angiotensin II and adenosine receptor antagonists hope to ameliorate kidney injury via manipulation of renal hemodynamics and tubulo-glomerular feedback. Alkaline phosphatase, sphingosine 1 phosphate analogues, and dipeptidylpeptidase-4 inhibitors counteract kidney injury via manipulation of inflammatory pathways. Finally, genetic modifiers such as 5INP may mitigate AKI via transcriptive processes.
Collapse
Affiliation(s)
- Huaizhen Chen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Laurence William Busse
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Naibaho AH, Mustika A, Rahaju AS. SHORT-TERM TOXICITY TEST OF SINGALAWANG EXTRACT ON MALE WHITE RATS KIDNEY NECROSIS. FOLIA MEDICA INDONESIANA 2017. [DOI: 10.20473/fmi.v52i1.5212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Singawalang leaf is used as a traditional medicine by the communities suffering from pneumonia due to TB disease. However, experiments to explain it’s toxicity are few. Therefore, this study was conducted to disclose it’s toxicity. This was an experimental laboratory study using post–test only control group design. The sampling method was simple random sampling. The animals were randomly divided into 4 (four) groups, each group consisted of 8 (eight) mice, the control group (P0) received distilled water as a solvent material. Treatment group 1 (P1) obtained ethanol extract of singawalang (Petiveria alliaceae) in low doses of 90 mg/kgbw. Treatment group 2 (P2) obtained ethanol extract of singawalang (Petiveria alliaceae) in medium doses of 180 mg/kgbw. Treatment group 3 (P3) obtained ethanol extract of singawalang (Petiveria alliaceae) in high doses of 360 mg/kgbw. Th extracts were given with sonde once a day for 30 days. Results showed that the leaf ethanol extract singawalang (Petiveria alliaceae) does not induce sub-acute necrosis effects on kidney of male white mice (Mus musculus) in doses 90 mg/kgbw, 180 mg/kgbw, and 360 mg/kgbw.
Collapse
|
36
|
Vestri A, Pierucci F, Frati A, Monaco L, Meacci E. Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis? Front Pharmacol 2017. [PMID: 28626422 PMCID: PMC5454082 DOI: 10.3389/fphar.2017.00296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is characterized by a peculiar mechanism of action. In fact, S1P, which is produced inside the cell, can act as an intracellular mediator, whereas after its export outside the cell, it can act as ligand of specific G-protein coupled receptors, which were initially named endothelial differentiation gene (Edg) and eventually renamed sphingosine 1-phosphate receptors (S1PRs). Among the five S1PR subtypes, S1PR1, S1PR2 and S1PR3 isoforms show broad tissue gene expression, while S1PR4 is primarily expressed in immune system cells, and S1PR5 is expressed in the central nervous system. There is accumulating evidence for the important role of S1P as a mediator of many processes, such as angiogenesis, carcinogenesis and immunity, and, ultimately, fibrosis. After a tissue injury, the imbalance between the production of extracellular matrix (ECM) and its degradation, which occurs due to chronic inflammatory conditions, leads to an accumulation of ECM and, consequential, organ dysfunction. In these pathological conditions, many factors have been described to act as pro- and anti-fibrotic agents, including S1P. This bioactive lipid exhibits both pro- and anti-fibrotic effects, depending on its site of action. In this review, after a brief description of sphingolipid metabolism and signaling, we emphasize the involvement of the S1P/S1PR axis and the downstream signaling pathways in the development of fibrosis. The current knowledge of the therapeutic potential of S1PR subtype modulators in the treatment of the cardiac functions and fibrinogenesis are also examined.
Collapse
Affiliation(s)
- Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of RomeRome, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| |
Collapse
|
37
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
38
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Gaire BP, Lee CH, Sapkota A, Lee SY, Chun J, Cho HJ, Nam TG, Choi JW. Identification of Sphingosine 1-Phosphate Receptor Subtype 1 (S1P 1) as a Pathogenic Factor in Transient Focal Cerebral Ischemia. Mol Neurobiol 2017; 55:2320-2332. [PMID: 28343295 DOI: 10.1007/s12035-017-0468-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023]
Abstract
Medically relevant roles of receptor-mediated sphingosine 1-phosphate (S1P) signaling have become a successful or promising target for multiple sclerosis or cerebral ischemia. Animal-based proof-of-concept validation for the latter is particularly through the neuroprotective efficacy of FTY720, a non-selective S1P receptor modulator, presumably via activation of S1P1. In spite of a clear link between S1P signaling and cerebral ischemia, it remains unknown whether the role of S1P1 is pathogenic or neuroprotective. Here, we investigated the involvement of S1P1 along with its role in cerebral ischemia using a transient middle cerebral artery occlusion ("tMCAO") model. Brain damage following tMCAO, as assessed by brain infarction, neurological deficit score, and neural cell death, was reduced by oral administration of AUY954, a selective S1P1 modulator as a functional antagonist, in a therapeutic paradigm, indicating that S1P1 is a pathogenic mediator rather than a neuroprotective mediator. This pathogenic role of S1P1 in cerebral ischemia was reaffirmed because tMCAO-induced brain damage was reduced by genetic knockdown with an intracerebroventricular microinjection of S1P1 shRNA lentivirus into the brain. Genetic knockdown of S1P1 or AUY954 exposure reduced microglial activation, as assessed by reduction in the number of activated microglia and reversed morphology from amoeboid to ramified, and microglial proliferation in ischemic brain. Its role in microglial activation was recapitulated in lipopolysaccharide-stimulated primary mouse microglia, in which the mRNA expression level of TNF-α and IL-1β, well-known markers for microglial activation, was reduced in microglia transfected with S1P1 siRNA. These data suggest that the pathogenic role of S1P1 is associated with microglial activation in ischemic brain. Additionally, the pathogenic role of S1P1 in cerebral ischemia appears to be associated with the blood-brain barrier disruption and brain-derived neurotrophic factor (BDNF) downregulation. Overall, findings from the current study clearly identify S1P1 signaling as a pathogenic factor in transient focal cerebral ischemia, further implicating S1P1 antagonists including functional antagonists as plausible therapeutic agents for human stroke.
Collapse
Affiliation(s)
| | - Chi-Ho Lee
- Gachon University, Incheon, 406-799, Republic of Korea
| | - Arjun Sapkota
- Gachon University, Incheon, 406-799, Republic of Korea
| | - Sang Yeul Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 55 Hanynagdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hee Jun Cho
- TherlifEx, Namdong-gu, Incheon, 21653, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 55 Hanynagdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Ji Woong Choi
- Gachon University, Incheon, 406-799, Republic of Korea.
| |
Collapse
|
40
|
FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. Mediators Inflamm 2017; 2017:3701385. [PMID: 28270699 PMCID: PMC5320072 DOI: 10.1155/2017/3701385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022] Open
Abstract
FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines.
Collapse
|
41
|
Park SJ, Im DS. Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery. Biomol Ther (Seoul) 2017; 25:80-90. [PMID: 28035084 PMCID: PMC5207465 DOI: 10.4062/biomolther.2016.160] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023] Open
Abstract
Initial discovery on sphingosine 1-phosphate (S1P) as an intracellular second messenger was faced unexpectedly with roles of S1P as a first messenger, which subsequently resulted in cloning of its G protein-coupled receptors, S1P1–5. The molecular identification of S1P receptors opened up a new avenue for pathophysiological research on this lipid mediator. Cellular and molecular in vitro studies and in vivo studies on gene deficient mice have elucidated cellular signaling pathways and the pathophysiological meanings of S1P receptors. Another unexpected finding that fingolimod (FTY720) modulates S1P receptors accelerated drug discovery in this field. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials. In addition, more selective S1P receptor modulators with better pharmacokinetic profiles and fewer side effects are under development. Some of them are being clinically tested in the contexts of multiple sclerosis and other autoimmune and inflammatory disorders, such as, psoriasis, Crohn’s disease, ulcerative colitis, polymyositis, dermatomyositis, liver failure, renal failure, acute stroke, and transplant rejection. In this review, the authors discuss the state of the art regarding the status of drug discovery efforts targeting S1P receptors and place emphasis on potential clinical applications.
Collapse
Affiliation(s)
- Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
42
|
Luo CJ, Luo F, Zhang L, Xu Y, Cai GY, Fu B, Feng Z, Sun XF, Chen XM. Knockout of interleukin-17A protects against sepsis-associated acute kidney injury. Ann Intensive Care 2016; 6:56. [PMID: 27334720 PMCID: PMC4917508 DOI: 10.1186/s13613-016-0157-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/05/2016] [Indexed: 12/14/2022] Open
Abstract
Background Sepsis-associated acute kidney injury (SA-AKI) is an independent risk factor for death in patients with sepsis, but treatment for it is limited. To improve the diagnosis and treatment of SA-AKI, we must first understand its pathogenesis. Recently, interleukin (IL)-17A has been shown to be associated with the pathogenesis of acute kidney injury and sepsis, but its role in SA-AKI remains unclear. Methods SA-AKI was induced in male C57BL/6 and IL-17A−/− mice using cecal ligation and puncture (CLP) operations for 24 h. Results At 7 days, only seven mice survived in the wild-type septic group, but nine survived in the IL-17A−/− septic group, corresponding to survival rates of 25 % and 45 %, respectively. At 24 h after CLP operations, both wild-type and IL-17A−/− septic mice developed kidney injury. The IL-17A−/− septic mice exhibited decreased serum creatinine and blood urea nitrogen levels and an improved acute tubular necrosis score. The IL-17A−/− septic mice exhibited decreased IL-6, interferon-γ, tumor necrosis factor-α, CXCL1, CXCL2, and CXCL5 expression in kidney tissue, but increased IL-10 expression. In addition, renal neutrophil infiltration was attenuated significantly in the IL-17A−/− septic group. Moreover, IL-17A−/− septic mice showed significantly decreased apoptosis of tubular epithelial cells, including decreased TUNEL-positive tubular cell number and cleaved caspase-3 level, compared with the wild-type CLP group. Their Bax/Bcl-2 expression ratio was also increased. Conclusions Our study demonstrates that IL-17A knockout could protect against SA-AKI. We show that IL-17A plays a pathogenic role in SA-AKI by increasing the levels of proinflammatory cytokines and chemokines, and by inducing neutrophil infiltration and apoptosis of tubular epithelial cells. Accordingly, IL-17A may be a novel target in SA-AKI. Electronic supplementary material The online version of this article (doi:10.1186/s13613-016-0157-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong-Juan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China.,State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Feng Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China.,Department of Cardiology, Liaocheng People's Hospital, Shandong, 252000, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Shandong, 266003, People's Republic of China
| | - Guang-Yan Cai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Bo Fu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Zhe Feng
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Xue-Feng Sun
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Xiang-Mei Chen
- State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital and Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
43
|
Perry HM, Huang L, Ye H, Liu C, Sung SSJ, Lynch KR, Rosin DL, Bajwa A, Okusa MD. Endothelial Sphingosine 1‑Phosphate Receptor‑1 Mediates Protection and Recovery from Acute Kidney Injury. J Am Soc Nephrol 2016; 27:3383-3393. [PMID: 26961351 DOI: 10.1681/asn.2015080922] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/02/2016] [Indexed: 12/15/2022] Open
Abstract
Epithelial and endothelial injury and a cascade of immune and interstitial cell activation in the kidney lead to AKI. After mild to moderate AKI, the epithelium can regenerate and restore kidney function, yet little is known about the endothelium during these repair processes. Sphingosine 1-phosphate receptor 1 (S1P1), a G protein-coupled receptor, is necessary for vascular homeostasis. Here, we used an inducible genetic approach in a mouse model of AKI, ischemia-reperfusion injury (IRI), to determine the temporal effects of endothelial S1P1 during AKI. Deletion of endothelial S1P1 before IRI exacerbated kidney injury and inflammation, and the delayed deletion of S1P1 after IRI prevented kidney recovery, resulting in chronic inflammation and progressive fibrosis. Specifically, S1P1 directly suppressed endothelial activation of leukocyte adhesion molecule expression and inflammation. Altogether, the data indicate activation of endothelial S1P1 is necessary to protect from IRI and permit recovery from AKI. Endothelial S1P1 may be a therapeutic target for the prevention of early injury as well as prevention of progressive kidney fibrosis after AKI.
Collapse
Affiliation(s)
- Heather M Perry
- Departments of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine
| | - Liping Huang
- Departments of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine
| | - Hong Ye
- Departments of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine
| | - Chong Liu
- Microbiology, Immunology, and Cancer Biology, and
| | - Sun-Sang J Sung
- Departments of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine
| | - Kevin R Lynch
- Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Diane L Rosin
- Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Amandeep Bajwa
- Departments of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine
| | - Mark D Okusa
- Departments of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine,
| |
Collapse
|
44
|
Agarwal A, Dong Z, Harris R, Murray P, Parikh SM, Rosner MH, Kellum JA, Ronco C. Cellular and Molecular Mechanisms of AKI. J Am Soc Nephrol 2016; 27:1288-99. [PMID: 26860342 DOI: 10.1681/asn.2015070740] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this article, we review the current evidence for the cellular and molecular mechanisms of AKI, focusing on epithelial cell pathobiology and related cell-cell interactions, using ischemic AKI as a model. Highlighted are the clinical relevance of cellular and molecular targets that have been investigated in experimental models of ischemic AKI and how such models might be improved to optimize translation into successful clinical trials. In particular, development of more context-specific animal models with greater relevance to human AKI is urgently needed. Comorbidities that could alter patient susceptibility to AKI, such as underlying diabetes, aging, obesity, cancer, and CKD, should also be considered in developing these models. Finally, harmonization between academia and industry for more clinically relevant preclinical testing of potential therapeutic targets and better translational clinical trial design is also needed to achieve the goal of developing effective interventions for AKI.
Collapse
Affiliation(s)
- Anupam Agarwal
- Division of Nephrology, and Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia
| | - Raymond Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Patrick Murray
- Department of Medicine, University College of Dublin, Dublin, Ireland
| | - Samir M Parikh
- Division of Nephrology and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mitchell H Rosner
- Department of Medicine, Nephrology Division, and the Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology, Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Claudio Ronco
- Department of Nephrology, Dialysis, and Transplantation, San Bortolo Hospital, and the International Renal Research Institute, 36100 Vicenza, Italy
| | | |
Collapse
|
45
|
Madsen Svarrer EM, Andersen HØ, Helvind M, Slagman MCJ, Navis G, Dullaart RPF, Dahlbäck B, Nielsen LB. Urinary apolipoprotein M as a biomarker of acute kidney injury in children undergoing heart surgery. Biomark Med 2016; 10:81-93. [DOI: 10.2217/bmm.15.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate whether apoM is excreted in urine of children undergoing heart surgery and the potential of apoM as early biomarker of acute kidney injury (AKI). Materials & methods: Urine was collected in children undergoing heart surgery. ApoM was measured with ELISA. U-apoM was characterized by gel filtration chromatography and western blotting. Results: ApoM was excreted into the urine 0–4 h postoperatively as the full-length apoM in particles smaller than plasma HDL. At 0 h, U-apoM predicted AKI with an area under the receiver-operating characteristics curve of 0.70 (p < 0.018). Sensitivity was 0.71 and specificity was 0.68 at a cutoff level at 1.45 nmol/l. Conclusion: ApoM is excreted in the urine of children after cardiac surgery. Its potential as biomarker of AKI deserves exploration.
Collapse
Affiliation(s)
| | - Henrik Ørbæk Andersen
- Department of Cardiothoracic Surgery, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Helvind
- Department of Cardiothoracic Surgery, Rigshospitalet, University of Copenhagen, Denmark
| | - Maartje CJ Slagman
- Department of Nephrology, University of Groningen & University Medical Center Groningen, Holland
| | - Gerjan Navis
- Department of Nephrology, University of Groningen & University Medical Center Groningen, Holland
| | - Robin PF Dullaart
- Department of Endocrinology, University of Groningen & University Medical Center Groningen, Holland
| | - Björn Dahlbäck
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, University Hospital, Malmö, Sweden
| | - Lars Bo Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
SEW2871 protects from experimental colitis through reduced epithelial cell apoptosis and improved barrier function in interleukin-10 gene-deficient mice. Immunol Res 2015; 61:303-11. [PMID: 25588868 DOI: 10.1007/s12026-015-8625-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of intestinal epithelial barrier function including typical tight junction changes and epithelial cell apoptosis plays an important role in Crohn's disease. SEW2871, a selective sphingosine-1-phosphate type-1 receptor agonist, has been proven to be efficient in protecting against colitis in IL-10(-/-) mice in our previous study. Here we performed additional studies to investigate whether treatment with SEW2871 was associated with an improved epithelial barrier function in IL-10(-/-) mice. SEW2871 was administered by gavage at a dose of 20 mg/kg/day for 2 weeks to IL-10(-/-) mice. Severity of colitis, CD4+ T cells in colon lamina propria and proinflammatory cytokine productions were evaluated. Furthermore, intestinal permeability, tight junction (occludin and ZO-1) expressions and distributions, as well as epithelial cell apoptosis, were also assessed. SEW2871 treatment attenuated established colitis associated with decreased CD4+ T cells in colon lamina propria and reduced TNF-α and IFN-γ levels. Moreover, enhanced barrier function, which resulted from ameliorated tight junction (occludin and ZO-1) expressions and suppressed epithelial cell apoptosis, was found to contribute to the therapeutic effects. SEW2871 treatment protects from colitis in IL-10(-/-) mice through reduced epithelial cell apoptosis and improved barrier function. Thus, targeting sphingosine-1-phosphate may represent a new therapeutic approach in Crohn's disease.
Collapse
|
47
|
Ni Q, Yuan B, Liu T, Lan F, Luo X, Lu X, Huang P, Dai L, Jin X, Yin H. Sphingosine-1-phosphate receptor 1 agonist SEW2871 prolongs heterotopic heart allograft survival in mice. Int Immunopharmacol 2015; 26:37-42. [PMID: 25776899 DOI: 10.1016/j.intimp.2015.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active metabolite of plasma-membrane sphingolipids that is essential for immune cell trafficking. Recent studies have revealed immunomodulatory functions of S1P and its receptors (S1PR1-S1PR5) in many inflammatory conditions, such as asthma and autoimmunity. Here, we explore the efficacy of SEW2871, a selective S1PR1 agonist, in the prevention of acute allograft rejection in a murine cardiac transplantation model. Treatment of recipient mice with SEW2871 significantly prolongs cardiac allograft survival as compared to those recipients treated with control vehicle. The enhanced graft survival is associated with reduced circulating lymphocytes and allograft inflammatory cell infiltration. The cytokine analysis showed decreased allograft expression of TNF-α, IFN-γ and IL-2 in the SEW2871-treated mice. Moreover, administration of SEW2871 increases the percentage of CD4(+) T regulatory cells and FoxP3 expression in spleen of allograft recipients. Therefore, SEW2871 plays a critical role in regulation of lymphocyte trafficking and development, which directly contributes to prolongation of the allograft survival.
Collapse
Affiliation(s)
- Qian Ni
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Baohong Yuan
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fang Lan
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaochun Luo
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyan Lu
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Huang
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liangcheng Dai
- Intensive Care Unit, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Zou L, Ke L, Wu C, Tong Z, Li W, Li N, Li J. SEW2871 Alleviates the Severity of Caerulein-Induced Acute Pancreatitis in Mice. Biol Pharm Bull 2015; 38:1012-9. [DOI: 10.1248/bpb.b15-00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lei Zou
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Lu Ke
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Congye Wu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Zhihui Tong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Weiqin Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Ning Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University
| |
Collapse
|
49
|
Murakami M, Saito T, Tabata Y. Controlled release of sphingosine-1-phosphate agonist with gelatin hydrogels for macrophage recruitment. Acta Biomater 2014; 10:4723-4729. [PMID: 25038462 DOI: 10.1016/j.actbio.2014.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 11/30/2022]
Abstract
The objective of this study is to design a drug delivery system (DDS) for the in vivo promotion of macrophage recruitment. As the drug, a water-insoluble agonist of sphingosine-1-phosphate type 1 receptor (SEW2871) was selected. SEW2871 (SEW) was water-solubilized by micelle formation with gelatin grafted by L-lactic acid oligomer. SEW micelles were mixed with gelatin, followed by dehydrothermal crosslinking of gelatin to obtain gelatin hydrogels incorporating SEW micelles. SEW was released from the hydrogels incorporating SEW micelles in vitro and in vivo. The water-solubilized SEW showed in vitro macrophage migration activity. When implanted into the back subcutis or the skin wound defect of mice, the hydrogel incorporating SEW micelles promoted macrophage migration toward the tissue around the implanted site to a significantly great extent compared with SEW-free hydrogel and that mixed with SEW micelles. The hydrogel is a promising DDS to enhance macrophage recruitment in vivo.
Collapse
Affiliation(s)
- Masahiro Murakami
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Saito
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
50
|
Dong J, Wang H, Wu G, Zhao J, Zhang L, Zuo L, Zhu W, Gong J, Li Y, Gu L, Li J. Oral treatment with SEW2871, a sphingosine-1-phosphate type 1 receptor agonist, ameliorates experimental colitis in interleukin-10 gene deficient mice. Clin Exp Immunol 2014; 177:94-101. [PMID: 24611843 PMCID: PMC4089158 DOI: 10.1111/cei.12304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2014] [Indexed: 12/17/2022] Open
Abstract
SEW2871, a selective sphingosine-1-phosphate type 1 receptor (S1P1) agonist, has been shown to be effective in protecting kidneys against ischaemia-reperfusion injury by reducing CD4(+) T cell infiltration in mice. However, the effects of SEW2871 on colitis remain unclear. The aim of this study was to investigate the effects of SEW2871 on established colitis in interleukin (IL)-10 gene-deficient (IL-10(-/-)) mice, a murine model of Crohn's disease (CD). SEW2871 was administered by gavage at a dose of 20 mg/kg/day for 2 weeks to IL-10(-/-) mice. Severity of colitis, serum amyloid A, tissue myeloperoxidase (MPO), T cells in blood and colon lamina propria (LP) and proinflammatory cytokine productions were evaluated. Furthermore, the phospho-signal transducer and activator of transcription (STAT)-3 (p-STAT-3) expression in lymphocytes isolated from colon LP was also assessed. The 2-week administration of SEW2871 ameliorated established colitis in IL-10(-/-) mice, associated with a reduction of serum amyloid A concentration, a decreased colon MPO concentration, a depletion of the peripheral CD4(+) CD45(+) T cells and a reduction of the homing of T cells into colon LP. Moreover, typical cytokines of T helper type 1 (Th1) and Th17 cells and p-STAT-3 expression were also suppressed by SEW2871 treatment. SEW2871 treatment ameliorates established experimental colitis in IL-10(-/-) mice, which may provide a new therapeutic approach for human CD therapy.
Collapse
Affiliation(s)
- J Dong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|