1
|
Park MS, Lee JK, Kim B, Ju HY, Yoo KH, Jung CW, Kim HJ, Kim HY. Assessing the clinical applicability of dimensionality reduction algorithms in flow cytometry for hematologic malignancies. Clin Chem Lab Med 2025; 63:1432-1442. [PMID: 40009469 DOI: 10.1515/cclm-2025-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVES Despite its utility, interpreting multiparameter flow cytometry (MFC) data for hematologic malignancy remains time-intensive and complex. This study evaluated the applicability of two dimensionality reduction (DR) algorithms, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP), to MFC data of hematologic malignancy. METHODS A total of 237 samples were re-analyzed by t-SNE- and UMAP-based gating: 80 with acute leukemia orientation tube panel, 42 with B-cell lymphoma (BCL) panel, 45 with multiple myeloma (MM) panel, 40 and 30 with measurable residual disease (MRD) panels for B-cell acute lymphoblastic leukemia (B-MRD) and MM (MM-MRD), respectively. Each result was compared to the manual gating, and sensitivity and precision were assessed using BCL and B-MRD panels. RESULTS Compared to manual gating, DR-based gating demonstrated agreements over 95.0 % for all MFC panels, and quantitative correlations (ρ) exceeded 0.94. Both t-SNE- and UMAP-based gating showed a sensitivity and negative predictive value of 100 %. Also, in one sample each from the BCL and MM-MRD panels, DR-based gating identified populations that were missed by manual gating. Sensitivity evaluation showed that both t-SNE- and UMAP-based gating successfully identified MRD populations down to the lowest MRD level of 10-5.30 when applying primary-gating strategy for CD19-positive population. Precision evaluation showed coefficient of variation below 10 % across all levels. CONCLUSIONS This study shows that DR-based gating streamlines data interpretation and minimizes overlooked populations, demonstrating significant potential as a valuable tool in MFC analysis for hematologic malignancies.
Collapse
Affiliation(s)
- Min-Seung Park
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Kwon Lee
- Department of Laboratory Medicine and Genetics, 36626 Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Boram Kim
- Department of Laboratory Medicine and Genetics, 36626 Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Hee Young Ju
- Department of Pediatrics, 36626 Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, 36626 Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, 36626 Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, 36626 Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, 36626 Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhao Y, Wang Y, Liang T, Song X, Zhu Y, Liu X, Lv M, Zheng C, Ni F. Dysregulated glutathione metabolism impairs natural killer cell function in patients with acute leukemia. Int Immunopharmacol 2025; 154:114566. [PMID: 40184815 DOI: 10.1016/j.intimp.2025.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Natural killer (NK) cell function is markedly impaired in patients with acute leukemia, weakening their anti-tumor immune response. However, the mechanisms underlying NK cell dysfunction are not fully understood. Here, we reveal that NK cells from patients with acute leukemia (AL-NK) exhibit significantly reduced intracellular glutathione (GSH) levels, accompanied by disrupted redox homeostasis and increased levels of mitochondrial reactive oxygen species. Flow cytometry and transcriptomic analyses indicate that dysregulated GSH metabolism leads to mitochondrial dysfunction in NK cells, thereby impairing their antileukemic cytotoxicity and proliferative capacity. Notably, supplementation with glutathione reduced ethyl ester (GSHEE)-a GSH precursor-effectively restores GSH levels in AL-NK cells, enhancing mitochondrial activity, oxidative phosphorylation, ATP production, and NK cell-mediated cytotoxicity. Moreover, GSHEE treatment activates the mTOR signaling pathway in NK cells, further promoting their function and proliferation. Overall, our study identifies dysregulated GSH metabolism as a key driver of NK cell dysfunction in acute leukemia and suggests that GSH-based interventions may provide a promising strategy to enhance NK cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Xian Song
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yingqiao Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinru Liu
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Mengya Lv
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Changcheng Zheng
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China.
| |
Collapse
|
3
|
Ikeda S, Hasegawa K, Kogue Y, Arimori T, Kawamoto R, Wibowo T, Yaga M, Inada Y, Uehara H, Matsubara M, Tachikawa M, Suga M, Kida S, Shibata K, Tsutsumi K, Fukushima K, Fujita J, Ueda T, Kusakabe S, Hino A, Ichii M, Hirose A, Nakamae H, Hino M, Nakao T, Inoue M, Yoshihara K, Yoshihara S, Ueda S, Tachi T, Kuroda H, Murakami K, Kijima N, Kishima H, Igashira E, Murakami M, Takiuchi T, Kimura T, Hiroshima T, Kimura T, Shintani Y, Imai C, Yusa K, Mori R, Ogino T, Eguchi H, Takeda K, Oji Y, Kumanogoh A, Takagi J, Hosen N. CAR T or NK cells targeting mismatched HLA-DR molecules in acute myeloid leukemia after allogeneic hematopoietic stem cell transplant. NATURE CANCER 2025; 6:595-611. [PMID: 40128569 DOI: 10.1038/s43018-025-00934-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/19/2025] [Indexed: 03/26/2025]
Abstract
Acute myeloid leukemia (AML)-specific target antigens are difficult to identify. Here we demonstrate that HLA-DRB1 can serve as a leukemia-specific target of chimeric antigen receptor (CAR) T cells in patients with AML after allogeneic hematopoietic stem cell transplantation (allo-HCT). We identified KG2032 as a monoclonal antibody specifically bound to AML cells in about half of patients, but not to normal leukocytes other than B lymphocytes. KG2032 reacted with a subset of HLA-DRB1 molecules, specifically those in which the 86th amino acid was not aspartic acid. KG2032 reacted minimally with nonhematopoietic tissues. These results indicate that KG2032 reactivity is highly specific for AML cells in patients who carry KG2032-reactive HLA-DRB1 alleles and who received allo-HCT from a donor carrying KG2032-nonreactive HLA-DRB1 alleles. KG2032-derived CAR T or natural killer cells showed significant anti-leukemic activity in preclinical models in female mice, suggesting that they may cure patients with AML who are incurable with allo-HCT.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Hematopoietic Stem Cell Transplantation/methods
- Animals
- Humans
- Mice
- Female
- Killer Cells, Natural/immunology
- HLA-DRB1 Chains/immunology
- HLA-DRB1 Chains/genetics
- Receptors, Chimeric Antigen/immunology
- Transplantation, Homologous
- Male
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- Antibodies, Monoclonal/immunology
- Middle Aged
- Adult
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shunya Ikeda
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kana Hasegawa
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yosuke Kogue
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Company, Osaka, Japan
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takao Arimori
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryuhei Kawamoto
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tansri Wibowo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuri Inada
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Uehara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miwa Matsubara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mana Tachikawa
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makiko Suga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kida
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kumi Shibata
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhito Tsutsumi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jiro Fujita
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Kusakabe
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihisa Hino
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Asao Hirose
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takafumi Nakao
- Department of Hematology, Osaka City General Hospital, Osaka, Japan
| | - Megumu Inoue
- Department of Hematology, Itami City Hospital, Hyogo, Japan
| | - Kyoko Yoshihara
- Department of Hematology, Hyogo Medical University Hospital, Hyogo, Japan
| | - Satoshi Yoshihara
- Department of Hematology, Hyogo Medical University Hospital, Hyogo, Japan
| | - Shuji Ueda
- Department of Hematology, Hyogo Prefectural Nishinomiya Hospital, Hyogo, Japan
| | - Tetsuro Tachi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Kuroda
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eri Igashira
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Murakami
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Takiuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Hiroshima
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chihaya Imai
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryota Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Takeda
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Kumanogoh
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Naoki Hosen
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
5
|
Elbnnani AS, Elbasir M, Altabal S, Lamami Y, Ebrahim F, Oshah HM, Alagnef R, Elzagheid A, Abulayha AM. Flow cytometric detection of leukemic blasts in Libyan pediatric patients with acute lymphoblastic leukemia. Libyan J Med 2024; 19:2319895. [PMID: 38394044 PMCID: PMC10896131 DOI: 10.1080/19932820.2024.2319895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The diagnosis of acute lymphoblastic leukemia (ALL), which is the most common type of cancer in children, has become more accurate with the use of flow cytometry. Here, this technology was used to immunophenotype leukemic cells in peripheral blood samples from Libyan pediatric ALL patients. We recruited 152 newly diagnosed patients at Tripoli Medical Center (Tripoli, Libya) by morphological examination of blood and bone marrow. Twenty-three surface and cytoplasmic antigen markers were used to characterize B and T cells in circulating blood cells by four-color flow cytometry. Six children (3.9%) turned out to have biphenotypic acute leukemia, 88 (57.9%) had B ALL, and 58 (38.1%) had T ALL. There were 68 cases of pro-B ALL CD10-positive (44.7%), 8 cases of pro-B ALL CD10-negative (5.2%), 6 cases of pre-B ALL (3.9%), and 6 of mature-B ALL (3.9%). CD13 was the most commonly expressed myeloid antigen in ALL. We present immunophenotypic data for the first time describing ALL cases in Libya. The reported results indicate that the most common subtype was pro-B ALL, and the frequency of T-ALL subtype was higher compared to previous studies. Six cases were positive for both myeloid and B lymphoid markers. Our findings may provide the basis for future studies to correlate immunophenotypic profile and genetic characteristics with treatment response among ALL patients.
Collapse
Affiliation(s)
- Abdulrhman S. Elbnnani
- Department of Human Cells and Tissues, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Mohamed Elbasir
- Department of Human Cells and Tissues, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Salah Altabal
- Department of Human Cells and Tissues, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Yosra Lamami
- Department of Human Cells and Tissues, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Fawzi Ebrahim
- Department of Human Cells and Tissues, Libyan Biotechnology Research Center, Tripoli, Libya
| | | | | | - Adam Elzagheid
- Department of Human Cells and Tissues, Libyan Biotechnology Research Center, Tripoli, Libya
| | - Abdulmunem M. Abulayha
- Department of Human Cells and Tissues, Libyan Biotechnology Research Center, Tripoli, Libya
| |
Collapse
|
6
|
Robinson JP, Jacobberger J. The evolution of flow cytometry with respect to cancer. Methods Cell Biol 2024; 195:1-21. [PMID: 40180449 DOI: 10.1016/bs.mcb.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Affiliation(s)
- J Paul Robinson
- Distinguished Professor of Cytometry & Professor of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.
| | - J Jacobberger
- Professor Emeritus, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Elsemary MT, Maritz MF, Smith LE, Warkiani ME, Thierry B. Enrichment of T-lymphocytes from leukemic blood using inertial microfluidics toward improved chimeric antigen receptor-T cell manufacturing. Cytotherapy 2024; 26:1264-1274. [PMID: 38819362 DOI: 10.1016/j.jcyt.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
Chimeric antigen receptor cell therapy is a successful immunotherapy for the treatment of blood cancers. However, hurdles in their manufacturing remain including efficient isolation and purification of the T-cell starting material. Herein, we describe a one-step separation based on inertial spiral microfluidics for efficient enrichment of T-cells in B-cell acute lymphoblastic leukemia (ALL) and B-cell chronic lymphocytic leukemia patient's samples. In healthy donors used to optimize the process, the lymphocyte purity was enriched from 65% (SD ± 0.2) to 91% (SD ± 0.06) and T-cell purity was enriched from 45% (SD ± 0.1) to 73% (SD ± 0.02). Leukemic samples had higher starting B-cells compared to the healthy donor samples. Efficient enrichment and recovery of lymphocytes and T-cells were achieved in ALL samples with B-cells, monocytes and leukemic blasts depleted by 80% (SD ± 0.09), 89% (SD ± 0.1) and 74% (SD ± 0.09), respectively, and a 70% (SD ± 0.1) T-cell recovery. Chronic lymphocytic leukemia samples had lower T-cell numbers, and the separation process was less efficient compared to the ALL. This study demonstrates the use of inertial microfluidics for T-cell enrichment and depletion of B-cell blasts in ALL, suggesting its potential to address a key bottleneck of the chimeric antigen receptor-T manufacturing workflow.
Collapse
MESH Headings
- Humans
- T-Lymphocytes/immunology
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Microfluidics/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Cell Separation/methods
- B-Lymphocytes/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Mona T Elsemary
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | - Michelle F Maritz
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | - Louise E Smith
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | | | - Benjamin Thierry
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia.
| |
Collapse
|
8
|
Tizu M, Calenic B, Constantinescu AE, Bratei AA, Stoia RA, Popa MCG, Constantinescu I. Cluster of Differentiation Markers and Human Leukocyte Antigen Expression in Chronic Lymphocytic Leukemia Patients: Correlations and Clinical Relevance. Curr Issues Mol Biol 2024; 46:10008-10025. [PMID: 39329950 PMCID: PMC11430089 DOI: 10.3390/cimb46090598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a distinct category of lymphoproliferative disorder characterized by the clonal expansion of mature B cells, followed by their accumulation in primary and secondary lymphoid organs. Cluster of differentiation (CD) markers such as CD79b, CD45, CD23, CD22 and CD81 serve as reliable prognostic indicators in CLL as well as the human leukocyte antigen (HLA) with its well-documented associations with various cancers. This study aims to investigate, for the first time, potential connections between HLA typing and CD marker expression in CLL. Although it is one of the most prevalent neoplasms, there is a need for biomarkers that can improve survival. This study included 66 CLL patients and 100 controls, with all samples analyzed using biochemical methods, flow cytometry, and cytomorphology. Next-generation sequencing was performed for HLA typing. The results indicate that several CD markers are statistically associated with different HLA alleles, specifically CD45 with HLA-C*07:01:01; CD79b with HLA-DPA1*02:01:02; CD23 with HLA-B*39:01:01; CD22 with HLA-B*49:01:01, HLA-C*07:01:01, HLA-DPB1*02:01:02, and HLA-DRB1*07:01:01; and CD81 with HLA-DPB1*04:02:01, HLA-DQA1*01:04:01, and HLA-DQB1*05:03:01. In conclusion, this research demonstrates significant statistical links between HLA genes and immunophenotypic markers in CLL patients, shedding new light on the immunological context of CLL.
Collapse
Affiliation(s)
- Maria Tizu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
| | - Alexandra-Elena Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
- “Emil Palade” Centre of Excellence for Initiating Young People in Scientific Research, 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
| | | | - Razvan Antonio Stoia
- Hematology Center, Fundeni Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania;
| | - Mihnea Catalin-Gabriel Popa
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (M.T.); (A.-E.C.); (M.C.-G.P.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
- “Emil Palade” Centre of Excellence for Initiating Young People in Scientific Research, 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
| |
Collapse
|
9
|
Sun M, Lu D, Li X, Wang J, Zhang L, Yang P, Yang Y, Shen J. Combination of circulating tumor cells and 18F-FDG PET/CT for precision diagnosis in patients with non-small cell lung cancer. Cancer Med 2024; 13:e70216. [PMID: 39302034 PMCID: PMC11413915 DOI: 10.1002/cam4.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE To investigate the value of 2-deoxy-18f-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) and circulating tumor cells (CTCs) for the differential diagnosis of patients with benign lung diseases and those with NSCLC. To explore the phenotypic heterogeneity of CTCs and their correlation with FDG uptake in patients with Stage I-IV NSCLC. METHODS Blood specimens from patients with benign lung diseases and patients with primary NSCLC were collected for the detection of CTCs and their subtypes (epithelial, mixed, and mesenchymal) and analyzed for 18F-FDG PET/CT tumor metabolic parameters, including the maximum standardized uptake value (SUVmax), standard uptake value (SUL), metabolic tumor volume of primary lesion (MTV), total lesion glycolysis of primary lesion (TLG). Clinical data including age, gender, smoking history, tumor size, TNM stage and pathology type were also collected. The value of the two method alone and in combination for the differential diagnosis of benign and malignant was comparatively analyzed. Finally, the differences in CTC and its subtypes in different stages of NSCLC were compared, and FDG metabolic parameters were correlated with CTC subtypes. RESULTS There were a total of 65 patients with pulmonary diseases, including 12 patients with benign pulmonary diseases and 53 patients with NSCLC. The mean age was 67 ± 10 (38-89 years), 27 were females and 38 were males. 31 (22 males and 9 females) had a long history of smoking. The mean size of the largest diameter of all single lesions was 36 ± 22 mm with a range of 10-108 mm. Seven out of 12 benign diseases were inflammatory granulomatous lesions and 5 were inflammatory pseudotumours. Twenty-four out of 53 NSCLC were adenocarcinomas and 29 were squamous carcinomas. Twelve out of 53 patients with NSCLC were in Stage I, 10 were in Stage II, 17 were in Stage III and 14 were in Stage IV. SUVmax, SUL, MTV, TLG, total CTCs, epithelial CTCs, and mixed CTCs were all valuable in the differential diagnosis of benign and malignant. TLG combined with mixed CTCs was statistically different from all other diagnostic methods (p < 0.05) and higher than any other diagnostic criteria. In the differential diagnosis of benign and Stage I NSCLC, only total CTC (Z = -2.188 p = 0.039) and mixed CTCs (Z = -3.020 p = 0.014) had certain diagnostic efficacy, and there was no statistical difference between them (p = 0.480). Only mesenchymal CTCs differed in Stage I-IV NSCLC, with a higher number of those who developed distant metastases than those who had non-distant metastases. Epithelial CTCs correlated with SUVmax (r = 0.333, p = 0.015) and SUL (r = 0.374, p = 0.006). Mmesenchymal CTCs correlated with MTV (r = 0.342, p = 0.018) and TLG (r = 0.319, p = 0.02). Further subgroup analyses revealed epithelial CTCs were correlated with SUVmax (r = 0.543, p = 0.009) and SUL (r = 0.552, p = 0.008), and the total CTCs was correlated with SUVmax (r = 0.622, p = 0.003), SUL (r = 0.652, p = 0.003), MTV (r = 0.460, p = 0.031), and TLG (r = 0.472, p = 0.027) in the early group (Stage I-II). Only mesenchymal CTCs was associated with MTV (r = 0.369, p = 0.041), and TLG (r = 0.415, p = 0.02) in the intermediate-late group (Stage III-IV). CONCLUSION Both FDG PET metabolic parameters and CTCs demonstrated diagnostic value for NSCLC, and combining TLG with mixed CTCs could enhance their diagnostic efficacy. The total CTCs and mixed CTCs showed greater diagnostic value than FDG PET in distinguishing benign lesions from Stage I NSCLC. In NSCLC patients, the epithelial CTCs exhibited a positive correlation with SUVmax and SUL, while mesenchymal CTCs correlated with MTV, and TLG. Besides, epithelial CTCs showed stronger correlations with SUVmax and SUL, and total CTCs showed stronger correlations with SUVmax, SUL, MTV, and TLG in Stage I-II NSCLC. Only mesenchymal CTCs in Stage III-IV NSCLC showed correlations with MTV and TLG. Stage IV NSCLC cases displayed a higher number of mesenchymal CTCs.
Collapse
Affiliation(s)
- Momo Sun
- The First Central Clinical SchoolTianjin Medical UniversityTianjinChina
- Department of Nuclear MedicineTianjin First Central HospitalTianjinChina
| | - Dongyan Lu
- The First Central Clinical SchoolTianjin Medical UniversityTianjinChina
- Department of Nuclear MedicineTianjin First Central HospitalTianjinChina
| | - Xiaoping Li
- Department of Thoracic SurgeryTianjin First Central HospitalTianjinChina
| | - Jin Wang
- The First Central Clinical SchoolTianjin Medical UniversityTianjinChina
- Department of Nuclear MedicineTianjin First Central HospitalTianjinChina
| | - Liang Zhang
- Department of Thoracic SurgeryTianjin First Central HospitalTianjinChina
| | - Pan Yang
- Department of Thoracic SurgeryTianjin First Central HospitalTianjinChina
| | - Yang Yang
- The First Central Clinical SchoolTianjin Medical UniversityTianjinChina
| | - Jie Shen
- The First Central Clinical SchoolTianjin Medical UniversityTianjinChina
- Department of Nuclear MedicineTianjin First Central HospitalTianjinChina
- Nankai UniversityTianjinChina
| |
Collapse
|
10
|
Gonsalves M, Escobar A, Altarabishi AD, Xu CQ. Advances in Microflow Cytometry-Based Molecular Detection Methods for Improved Future MDS Cancer Diagnosis. Curr Issues Mol Biol 2024; 46:8053-8070. [PMID: 39194693 DOI: 10.3390/cimb46080476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a rare form of early-stage blood cancer that typically leads to leukemia and other deadly complications. The typical diagnosis for MDS involves a mixture of blood tests, a bone marrow biopsy, and genetic analysis. Flow cytometry has commonly been used to analyze these types of samples, yet there still seems to be room for advancement in several areas, such as the limit of detection, turnaround time, and cost. This paper explores recent advancements in microflow cytometry technology and how it may be used to supplement conventional methods of diagnosing blood cancers, such as MDS and leukemia, through flow cytometry. Microflow cytometry, a more recent adaptation of the well-researched and conventional flow cytometry techniques, integrated with microfluidics, demonstrates significant potential in addressing many of the shortcomings flow cytometry faces when diagnosing a blood-related disease such as MDS. The benefits that this platform brings, such as portability, processing speed, and operating cost, exemplify the importance of exploring microflow cytometry as a point-of-care (POC) diagnostic device for MDS and other forms of blood cancer.
Collapse
Affiliation(s)
- Marc Gonsalves
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Ahmad Diaa Altarabishi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Chang-Qing Xu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
11
|
Kawamura Y, Nakanishi K, Murata Y, Teranishi K, Miyazaki R, Toda K, Imai T, Kajiwara Y, Nakagawa K, Matsuo H, Adachi S, Ota S, Hiramatsu H. Label-free cell detection of acute leukemia using ghost cytometry. Cytometry A 2024; 105:196-202. [PMID: 38087915 DOI: 10.1002/cyto.a.24821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Early diagnosis and prompt initiation of appropriate treatment are critical for improving the prognosis of acute leukemia. Acute leukemia is diagnosed by microscopic morphological examination of bone marrow smears and flow cytometric immunophenotyping of bone marrow cells stained with fluorophore-conjugated antibodies. However, these diagnostic processes require trained professionals and are time and resource-intensive. Here, we present a novel diagnostic approach using ghost cytometry, a recently developed high-content flow cytometric approach, which enables machine vision-based, stain-free, high-speed analysis of cells, leveraging their detailed morphological information. We demonstrate that ghost cytometry can detect leukemic cells from the bone marrow cells of patients diagnosed with acute lymphoblastic leukemia and acute myeloid leukemia without relying on biological staining. The approach presented here holds promise as a precise, simple, swift, and cost-effective diagnostic method for acute leukemia in clinical practice.
Collapse
Affiliation(s)
| | - Kayoko Nakanishi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | - Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sadao Ota
- ThinkCyte K.K, Tokyo, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Carneiro A, Piairo P, Matos B, Santos DAR, Palmeira C, Santos LL, Lima L, Diéguez L. Minimizing false positives for CTC identification. Anal Chim Acta 2024; 1288:342165. [PMID: 38220297 DOI: 10.1016/j.aca.2023.342165] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Cancer is a leading cause of death worldwide, with metastasis playing a significant role. Circulating Tumour Cells (CTCs) can provide important real-time insights into tumour heterogeneity and clonal evolution, making them an important tool for early diagnosis and patient monitoring. Isolated CTCs are typically identified by immunocytochemistry using positive biomarkers (cytokeratin) and exclusion biomarkers (CD45). However, some white blood cell (WBC) populations can express low levels of CD45 and stain non-specifically for cytokeratin, increasing their risk of misclassification as CTCs. There is a clear need to improve CTC detection and enumeration criteria to unequivocally eliminate interfering WBC populations. RESULTS This study showed that, indeed, some granulocyte subpopulations expressed low levels of CD45 and stained non-specifically for cytokeratin, misidentifying them as CTCs. These same cells, however, strongly expressed CD15, allowing them to be identified as WBCs and excluded from CTC classification. Flow cytometry confirmed the specificity of the CD15 antibody for the granulocyte subpopulation. False positives were considerably reduced from 25 % to 0.2 % by double exclusion, combining a CD15 antibody with a highly specific CD45 antibody. Furthermore, complete elimination of potential false positives was achieved using double exclusion in combination with improved selection of cytokeratin antibody. The study emphasises the importance of a robust exclusion criteria and high antibody specificity in CTC immuno-assays for accurate identification of CTC candidates and thorough exclusion of interfering WBC subpopulations. SIGNIFICANCE This study demonstrated how misidentifying a granulocyte subpopulation can lead to inaccurate CTC evaluation. However, sensitivity and specificity of CTC identification may be improved by using high-performing antibodies and by including a second exclusion biomarker, in turn, allowing for a more comprehensive clinical application of CTCs.
Collapse
Affiliation(s)
- Adriana Carneiro
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal; Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI IPOP) / RISE @ CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS) da Universidade do Porto, Porto, Portugal
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal; RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312, Braga, Portugal.
| | - Beatriz Matos
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal; NOVA School of Science and Technology, Caparica, 2829-516, Portugal
| | - Daniela A R Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI IPOP) / RISE @ CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal; School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI IPOP) / RISE @ CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal; Department of Immunology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, 4200-072, Portugal; Biomedical Research Center (CEBIMED, Faculty of Health Sciences, Fernando Pessoa University (UFP), Porto, 4249-004, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI IPOP) / RISE @ CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology (IPO-Porto), 4200-072, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI IPOP) / RISE @ CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330, Braga, Portugal; RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312, Braga, Portugal.
| |
Collapse
|
13
|
Hurrish KH, Su Y, Patel S, Ramage CL, Zhao J, Temby BR, Carter JL, Edwards H, Buck SA, Wiley SE, Hüttemann M, Polin L, Kushner J, Dzinic SH, White K, Bao X, Li J, Yang J, Boerner J, Hou Z, Al-Atrash G, Konoplev SN, Busquets J, Tiziani S, Matherly LH, Taub JW, Konopleva M, Ge Y, Baran N. Enhancing anti-AML activity of venetoclax by isoflavone ME-344 through suppression of OXPHOS and/or purine biosynthesis in vitro. Biochem Pharmacol 2024; 220:115981. [PMID: 38081370 PMCID: PMC11149698 DOI: 10.1016/j.bcp.2023.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 enhanced VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, a purine biosynthesis inhibitor, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired AraC resistance showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. In vivo studies revealed significantly prolonged survival upon combination therapy of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia compared to the vehicle control. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.
Collapse
Affiliation(s)
- Katie H Hurrish
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shraddha Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cassandra L Ramage
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianlei Zhao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Brianna R Temby
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven A Buck
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julie Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergej N Konoplev
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Jonathan Busquets
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Larry H Matherly
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Natalia Baran
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA.
| |
Collapse
|
14
|
Lewis JE, Hergott CB. The Immunophenotypic Profile of Healthy Human Bone Marrow. Clin Lab Med 2023; 43:323-332. [PMID: 37481314 DOI: 10.1016/j.cll.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Flow cytometry enables multiparametric characterization of hematopoietic cell immunophenotype. Deviations from normal immunophenotypic patterns comprise a cardinal feature of many hematopoietic neoplasms, underscoring the ongoing essentiality of flow cytometry as a diagnostic tool. However, understanding of aberrant hematopoiesis requires an equal understanding of normal hematopoiesis as a comparator. In this review, we outline key features of healthy adult hematopoiesis and lineage specification as illuminated by flow cytometry and provide diagrams illustrating what a diagnostician may observe in flow cytometric plots. These features provide a profile of baseline hematopoiesis, to which clinical samples with suspected neoplasia may be compared.
Collapse
Affiliation(s)
- Joshua E Lewis
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Pang K, Dong S, Zhu Y, Zhu X, Zhou Q, Gu B, Jin W, Zhang R, Fu Y, Yu B, Sun D, Duanmu Z, Wei X. Advanced flow cytometry for biomedical applications. JOURNAL OF BIOPHOTONICS 2023; 16:e202300135. [PMID: 37263969 DOI: 10.1002/jbio.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.
Collapse
Affiliation(s)
- Kai Pang
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Sihan Dong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuxi Zhu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quanyu Zhou
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jin
- International Cancer Institute, Peking University, Beijing, China
| | - Rui Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuting Fu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Bingchen Yu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Da Sun
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xunbin Wei
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
16
|
Lee JW, Lee CS, Son H, Lee J, Kang M, Chai J, Cho HJ, Kim HS. SOX17-mediated LPAR4 expression plays a pivotal role in cardiac development and regeneration after myocardial infarction. Exp Mol Med 2023; 55:1424-1436. [PMID: 37394586 PMCID: PMC10394006 DOI: 10.1038/s12276-023-01025-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 07/04/2023] Open
Abstract
Lysophosphatidic acid receptor 4 (LPAR4) exhibits transient expression at the cardiac progenitor stage during pluripotent stem cell (PSC)-derived cardiac differentiation. Using RNA sequencing, promoter analyses, and a loss-of-function study in human PSCs, we discovered that SRY-box transcription factor 17 (SOX17) is an essential upstream factor of LPAR4 during cardiac differentiation. We conducted mouse embryo analyses to further verify our human PSC in vitro findings and confirmed the transient and sequential expression of SOX17 and LPAR4 during in vivo cardiac development. In an adult bone marrow transplantation model using LPAR4 promoter-driven GFP cells, we observed two LPAR4+ cell types in the heart following myocardial infarction (MI). Cardiac differentiation potential was shown in heart-resident LPAR4+ cells, which are SOX17+, but not bone marrow-derived infiltrated LPAR4+ cells. Furthermore, we tested various strategies to enhance cardiac repair through the regulation of downstream signals of LPAR4. During the early stages following MI, the downstream inhibition of LPAR4 by a p38 mitogen-activated protein kinase (p38 MAPK) blocker improved cardiac function and reduced fibrotic scarring compared to that observed following LPAR4 stimulation. These findings improve our understanding of heart development and suggest novel therapeutic strategies that enhance repair and regeneration after injury by modulating LPAR4 signaling.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Choon-Soo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - HyunJu Son
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Minjun Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jinho Chai
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyo-Soo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Alom MM, Faruqe MO, Molla MKI, Rahman MM. Exploring Prognostic Biomarkers of Acute Myeloid Leukemia to Determine Its Most Effective Drugs from the FDA-Approved List through Molecular Docking and Dynamic Simulation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1946703. [PMID: 37359050 PMCID: PMC10287530 DOI: 10.1155/2023/1946703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Acute myeloid leukemia (AML) is a blood cancer caused by the abnormal proliferation and differentiation of hematopoietic stem cells in the bone marrow. The actual genetic markers and molecular mechanisms of AML prognosis are unclear till today. This study used bioinformatics approaches for identifying hub genes and pathways associated with AML development to uncover potential molecular mechanisms. The expression profiles of RNA-Seq datasets, GSE68925 and GSE183817, were retrieved from the Gene Expression Omnibus (GEO) database. These two datasets were analyzed by GREIN to obtain differentially expressed genes (DEGs), which were used for performing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI), and survival analysis. The molecular docking and dynamic simulation were performed to identify the most effective drug/s for AML from the drug list approved by the Food and Drug Administration (FDA). By integrating the two datasets, 238 DEGs were identified as likely to be affected by AML progression. GO enrichment analyses exhibited that the upregulated genes were mainly associated with inflammatory response (BP) and extracellular region (CC). The downregulated DEGs were involved in the T-cell receptor signalling pathway (BP), an integral component of the lumenal side of the endoplasmic reticulum membrane (CC) and peptide antigen binding (MF). The pathway enrichment analysis showed that the upregulated DEGs were mainly associated with the T-cell receptor signalling pathway. Among the top 15 hub genes, the expression levels of ALDH1A1 and CFD were associated with the prognosis of AML. Four FDA-approved drugs were selected, and a top-ranked drug was identified for each biomarker through molecular docking studies. The top-ranked drugs were further confirmed by molecular dynamic simulation that revealed their binding stability and confirmed their stable performance. Therefore, the drug compounds, enasidenib and gilteritinib, can be recommended as the most effective drugs against the ALDH1A1 and CFD proteins, respectively.
Collapse
Affiliation(s)
- Md. Murshid Alom
- Laboratory of Molecular Health Science, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Khademul Islam Molla
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Motiur Rahman
- Laboratory of Molecular Health Science, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
18
|
Rose DC, Rolig AS, Redmond WL. Characterization of murine lymphocyte activation and exhaustion markers by a 14-color flow cytometry panel. Bioanalysis 2023. [PMID: 37125902 DOI: 10.4155/bio-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Previously designed flow cytometry panels have provided a framework to analyze T-cell activation; however, few provide an extensive view of lymphocyte populations, and none are optimized for murine models. This article describes a panel designed specifically to assess the expression of activation and exhaustion markers in expanding lymphocyte populations in tumor-bearing mice across two distinct genetic backgrounds: BALB/c and C57BL/6. This comprehensive panel enables the assessment of multiple functional states and immune checkpoint markers across cytotoxic CD8+ T cells, helper and regulatory CD4+ T cells and NK cells in murine whole blood, lymph nodes and tumor.
Collapse
Affiliation(s)
- Daniel C Rose
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
- ThermoFisher Scientific, Waltham, MA 02451, USA
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR 97213, USA
| |
Collapse
|
19
|
Multilineage Lymphoblastic Lymphoma as an Initial Presentation of Mixed Phenotype Acute Leukemia. Case Rep Hematol 2023; 2023:3628712. [PMID: 36879893 PMCID: PMC9985503 DOI: 10.1155/2023/3628712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/27/2023] Open
Abstract
Mixed phenotype acute leukemia (MPAL) is characterized by leukemic blasts that express markers of multiple lineages. Compared with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), MPAL is considered to have a poor treatment outcome. We report a case of MPAL T/myeloid not otherwise specified that was initially presented as multilineage lymphoblastic lymphoma and subsequently developed into leukemic MPAL. An acute lymphoblastic leukemia-based treatment regimen was ineffective, but azacitidine and venetoclax therapy resulted in hematological complete remission. Our case suggests that multilineage lymphoblastic lymphoma should be considered to be the same disease as MPAL, albeit with different clinical presentations. Optimal treatment for MPAL has not been established yet, but azacitidine and venetoclax therapy may be a potential approach.
Collapse
|
20
|
Salomao N, Maslah N, Giulianelli A, Drevon L, Aguinaga L, Gu X, Cassinat B, Giraudier S, Fenaux P, Fahraeus R. Reduced murine double minute 2 and
4
protein, but not
messenger RNA
, expression is associated with more severe disease in myelodysplastic syndromes and acute myeloblastic leukaemia. Br J Haematol 2022; 201:234-248. [PMID: 36546586 DOI: 10.1111/bjh.18608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The human homologues of murine double minute 2 (MDM2) and 4 (MDM4) negatively regulate p53 tumour suppressor activity and are reported to be frequently overexpressed in human malignancies, prompting clinical trials with drugs that prevent interactions between MDM2/MDM4 and p53. Bone marrow samples from 111 patients with acute myeloblastic leukaemia, myelodysplastic syndrome or chronic myelomonocytic leukaemia were examined for protein (fluorescence-activated cell sorting) and messenger RNA (mRNA) expression (quantitative polymerase chain reaction) of MDM2, MDM4 and tumour protein p53 (TP53). Low protein expression of MDM2 and MDM4 was observed in immature cells from patients with excess of marrow blasts (>5%) compared with CD34+ /CD45low cells from healthy donors and patients without excess of marrow blasts (<5%). The mRNA levels were indistinguishable in all samples examined regardless of disease status or blast levels. Low MDM2 and MDM4 protein expression were correlated with poor survival. These data show a poor correlation between mRNA and protein expression levels, suggesting that quantitative flow cytometry analysis of protein expression levels should be used to predict and validate the efficacy of MDM2 and MDM4 inhibitors. These findings show that advanced disease is associated with reduced MDM2 and MDM4 protein expression and indicate that the utility of MDM2 and MDM4 inhibitors may have to be reconsidered in the treatment of advanced myeloid malignancies.
Collapse
Affiliation(s)
- Norman Salomao
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
| | - Nabih Maslah
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
| | - Anouk Giulianelli
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Louis Drevon
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Lorea Aguinaga
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Xiaolian Gu
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
| | - Bruno Cassinat
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Stephane Giraudier
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Pierre Fenaux
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
- RECAMO, Masaryk Memorial Cancer Institute Brno Czech Republic
| |
Collapse
|
21
|
Teuben MJ, Halvachizadeh S, Kalbas Y, Qiao Z, Cesarovic N, Weisskopf M, Teuber H, Kalbitz M, Cinelli P, Pfeifer R, Pape H, TREAT Research Group. Cellular activation status in femoral shaft fracture hematoma following different reaming techniques - A large animal model. J Orthop Res 2022; 40:2822-2830. [PMID: 35301740 PMCID: PMC9790649 DOI: 10.1002/jor.25309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/20/2021] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
The local inflammatory impact of different reaming protocols in intramedullary nailing has been sparsely investigated. We examined the effect of different reaming protocols on fracture hematoma (FH) immunological characteristics in pigs. To do so, a standardized midshaft femur fracture was induced in adult male pigs. Fractures were treated with conventional reamed femoral nailing (group RFN, n = 6); unreamed femoral nailing (group UFN, n = 6); reaming with a Reamer Irrigator Aspirator device (group RIA, n = 12). Animals were observed for 6 h and FH was collected. FH-cell apoptosis and neutrophil receptor expression (Mac-1/CD11b and FcγRIII/CD16) were studied by flow cytometry and local temperature changes were analyzed. The study demonstrates that apoptosis-rates of FH-immune cells were significantly lower in group RIA (3.50 ± 0.53%) when compared with non-RIA groups: (group UFN 12.50 ± 5.22%, p = 0.028 UFN vs. RIA), (group RFN 13.30 ± 3.18%, p < 0.001, RFN vs. RIA). Further, RIA-FH showed lower neutrophil CD11b/CD16 expression when compared with RFN (mean difference of 43.0% median fluorescence intensity (MFI), p = 0.02; and mean difference of 35.3% MFI, p = 0.04, respectively). Finally, RIA induced a transient local hypothermia and hypothermia negatively correlated with both FH-immune cell apoptosis and neutrophil activation. In conclusion, immunologic changes observed in FH appear to be modified by certain reaming techniques. Irrigation during reaming was associated with transient local hypothermia, decreased apoptosis, and reduced neutrophil activation. Further study is warranted to examine whether the rinsing effect of RIA, specific tissue removal by reaming, or thermal effects predominantly determine local inflammatory changes during reaming.
Collapse
Affiliation(s)
- Michel Paul Johan Teuben
- Department of TraumatologyUniversity Hospital ZurichZurichSwitzerland,Harald Tscherne Laboratory for Orthopedic ResearchZurichSwitzerland
| | - Sascha Halvachizadeh
- Department of TraumatologyUniversity Hospital ZurichZurichSwitzerland,Harald Tscherne Laboratory for Orthopedic ResearchZurichSwitzerland
| | - Yannik Kalbas
- Department of TraumatologyUniversity Hospital ZurichZurichSwitzerland,Harald Tscherne Laboratory for Orthopedic ResearchZurichSwitzerland
| | - Zhi Qiao
- Department of Trauma and Reconstructive SurgeryUniversity Clinic RWTH AachenAachenGermany
| | - Nikola Cesarovic
- Division of Surgical ResearchUniversity of Zurich and University Hospital ZurichZurichSwitzerland,Department of Health Sciences, Translational Cardiovascular TechnologiesETH ZürichZürichSwitzerland,Department of Cardiothoracic and Vascular SurgeryGerman Heart Institute BerlinBerlinGermany
| | - Miriam Weisskopf
- Division of Surgical ResearchUniversity of Zurich and University Hospital ZurichZurichSwitzerland
| | - Henrik Teuber
- Department of TraumatologyUniversity Hospital ZurichZurichSwitzerland,Harald Tscherne Laboratory for Orthopedic ResearchZurichSwitzerland
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic SurgeryUniversity Hospital Erlangen, Friedrich‐Alexander‐University NürnbergErlangenGermany
| | - Paolo Cinelli
- Department of TraumatologyUniversity Hospital ZurichZurichSwitzerland,Harald Tscherne Laboratory for Orthopedic ResearchZurichSwitzerland,Division of Surgical ResearchUniversity of Zurich and University Hospital ZurichZurichSwitzerland
| | - Roman Pfeifer
- Department of TraumatologyUniversity Hospital ZurichZurichSwitzerland,Harald Tscherne Laboratory for Orthopedic ResearchZurichSwitzerland
| | - Hans‐Christoph Pape
- Department of TraumatologyUniversity Hospital ZurichZurichSwitzerland,Harald Tscherne Laboratory for Orthopedic ResearchZurichSwitzerland
| | | |
Collapse
|
22
|
Wang H, Huang H, Lin X, Chi P, Chen H, Chen J, Mou Y, Chen Z, Yang Q, Guo C. Dynamic analysis of immune status in patients with intracranial germ cell tumor and establishment of an immune risk prognostic model. Front Immunol 2022; 13:1010146. [PMID: 36304453 PMCID: PMC9592720 DOI: 10.3389/fimmu.2022.1010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Immune status was evaluated by means of lymphocyte subset counts and immune factors in cancer. This study analyzed the peripheral blood immune index and survival outcomes in intracranial germ cell tumor (iGCT) patients. Methods Peripheral blood lymphocyte subset counts and levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF), and interferon-γ (IFN) from 133 iGCT patients were collected and retrospectively analyzed. Their clinical information was extracted from the hospital database, and prognosis was confirmed by telephone visit. Patients (n=11) underwent prospective review and their samples of peripheral blood lymphocytes were verified. Results A total of 113 (84.2%) patients received comprehensive treatments, including 96 standard therapy (combination of full course chemotherapy and radiology with or without surgery) and 17 comprehensive but non-standard therapy (either without full course chemotherapy or with non-standard radiotherapy) and 98 (73.7%) reached complete or partial response. T lymphocytes (CD3+), cytotoxic T cells (CD3+CD8+ or Tc), and B lymphocytes (CD19+) decreased (p=0.047, p=0.004, and p<0.001, respectively), while activated cytotoxic T lymphocytes (CD8+CD25+) and IFN increased (p<0.001 and p=0.002, respectively) after treatment. Median survival was 45.33 months, and patients with increased Tc cells and activated Tc cells as well as IFN presented encouraging outcomes (p=0.039, p=0.041, and p=0.017 respectively). Regression analysis showed that non-increased Tc cells and non-increased activated Tc cells were independent factors of poor prognosis (p=0.016, HR=3.96, 95%CI=1.288-12.20; p=0.002, HR=4.37 95%CI= 1.738-10.97). Standard chemo-radiotherapy was independently related to reduced risk of death(p=0.022, HR=0.19, 95%CI=0.044-0.79). Consistence was seen in a nomogram established through retro and prospective studies. An immune risk model indicated the activated group (with both increased activated T cells and IFN levels) had the best prognosis, the mildly activated type with elevated IFN levels had intermediate outcome, and patients with the silent immune status had the worst outcomes (Log rank test, p=0.011). Conclusion Implementation of standard comprehensive treatments led to positive responses. Dynamic monitoring of peripheral blood lymphocyte subsets can be used as an auxiliary indicator for prognosis judgment.
Collapse
Affiliation(s)
- Hairong Wang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - He Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoping Lin
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peidong Chi
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyu Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiangen Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongping Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qunying Yang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Chengcheng Guo, ; Qunying Yang, ; Zhongping Chen,
| |
Collapse
|
23
|
Zdziarski P, Gamian A. High Monocyte Count Associated with Human Cytomegalovirus Replication In Vivo and Glucocorticoid Therapy May Be a Hallmark of Disease. Int J Mol Sci 2022; 23:ijms23179595. [PMID: 36076989 PMCID: PMC9455616 DOI: 10.3390/ijms23179595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Cytomegalovirus (CMV) syndrome and infectious disease are defined as pathogen detection with appropriate clinical symptoms, but there are not pathognomonic signs of CMV disease. Although the prodrome of acute minor viral infections leukopenia (lymphopenia and neutropenia) is noted with onset of fever, followed by monocytosis, the role of monocytosis in CMV disease has not been described. Furthermore, under influence of corticosteroid therapy, CMV reactivation and monocytosis are described, but without a strict relationship with steroids dose. In the study, the monocyte level was investigated during the CMV infectious process. Regrettably, a non-selected group of 160 patients with high CMV viremia showed high dispersion of monocyte level and comparable with the median value for healthy subjects. Therefore, we investigated monocyte level in CMV-infected patients in relation to the logarithmic phase of the infectious process. Samples from patients with active CMV replication (exponential growth of CMV viremia) were tested. Significant monocytosis (above 1200/µL) during the logarithmic phase of CMV infection (with exponent between 3.23 and 5.77) was observed. Increased count and percentage of monocytes correlated with viral replication in several clinical situations except when there was a rapid recovery without relapse. Furthermore, glucocorticoids equivalent to 10 and 20 mg of dexamethasone during a 2–3-week period caused monocytosis—significant increase (to 1604 and 2214/µL, respectively). Conclusion: In light of the logarithmic increase of viral load, high monocytosis is a hallmark of CMV replication. In the COVID-19 era, presence of high virus level, especially part of virome (CMV) in the molecular technique, is not sufficient for the definition of either proven or probable CMV replication at any site. These preliminary observations merit additional studies to establish whether this clinical response is mediated by monocyte production or by decrease of differentiation to macrophages.
Collapse
Affiliation(s)
- Przemyslaw Zdziarski
- Lower Silesian Oncology, Pulmonology and Hematology Center, P.O. Box 1818, 50-385 Wroclaw, Poland
- Correspondence:
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
24
|
A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nat Rev Cardiol 2022; 19:395-413. [PMID: 35523863 DOI: 10.1038/s41569-022-00701-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Cardioimmunology is a field that encompasses the immune cells and pathways that modulate cardiac function in homeostasis and regulate the temporal balance between tissue injury and repair in disease. Over the past two decades, genetic fate mapping and high-dimensional sequencing techniques have defined increasing functional heterogeneity of innate and adaptive immune cell populations in the heart and other organs, revealing a complexity not previously appreciated and challenging established frameworks for the immune system. Given these rapid advances, understanding how to use these tools has become crucial. However, cardiovascular biologists without immunological expertise might not be aware of the strengths and caveats of immune-related tools and how they can be applied to examine the pathogenesis of myocardial diseases. In this Review, we guide readers through case-based examples to demonstrate how tool selection can affect data quality and interpretation and we provide critical analysis of the experimental tools that are currently available, focusing on their use in models of ischaemic heart injury and heart failure. The goal is to increase the use of relevant immunological tools and strategies among cardiovascular researchers to improve the precision, translatability and consistency of future studies of immune cells in cardiac disease.
Collapse
|
25
|
Civelekoglu O, Liu R, Usanmaz CF, Chu CH, Boya M, Ozkaya-Ahmadov T, Arifuzzman AKM, Wang N, Sarioglu AF. Electronic measurement of cell antigen expression in whole blood. LAB ON A CHIP 2022; 22:296-312. [PMID: 34897353 DOI: 10.1039/d1lc00889g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane antigens are phenotypic signatures of cells used for distinguishing various subpopulations and, therefore, are of great interest for diagnosis of diseases and monitoring of patients in hematology and oncology. Existing methods to measure antigen expression of a target subpopulation in blood samples require labor-intensive lysis of contaminating cells and subsequent analysis with complex and bulky instruments in specialized laboratories. To address this long-standing limitation in clinical cytometry, we introduce a microchip-based technique that can directly measure surface expression of target cells in hematological samples. Our microchip isolates an immunomagnetically-labeled target cell population from the contaminating background in whole blood and then utilizes the differential responses of target cells to on-chip magnetic manipulation to estimate their antigen expression. Moreover, manipulating cells with chip-sized permanent magnets and performing quantitative measurements via an on-chip electrical sensor network allows the assay to be performed in a portable platform with no reliance on laboratory infrastructure. Using our technique, we could successfully measure expressions of the CD45 antigen that is commonly expressed by white blood cells, as well as CD34 that is expressed by scarce hematopoietic progenitor cells, which constitutes only ∼0.0001% of all blood cells, directly from whole blood. With our technology, flow cytometry can potentially become a rapid bedside or at-home testing method that is available around the clock in environments where this invaluable assay with proven clinical utility is currently either outsourced or not even accessible.
Collapse
Affiliation(s)
- Ozgun Civelekoglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Can F Usanmaz
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Mert Boya
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Tevhide Ozkaya-Ahmadov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - A K M Arifuzzman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ningquan Wang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - A Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
26
|
Butov KR, Osipova EY, Mikhalkin NB, Trubina NM, Panteleev MA, Machlus KR. In vitro megakaryocyte culture from human bone marrow aspirates as a research and diagnostic tool. Platelets 2021; 32:928-935. [PMID: 32936668 PMCID: PMC9295913 DOI: 10.1080/09537104.2020.1817359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Megakaryocytes (MKs) are relatively rare in bone marrow, comprising <0.05% of the nucleated cells, which makes direct isolation from human bone marrow impractical. As such, in vitro expansion of primary MKs from patient samples offers exciting fundamental and clinical opportunities. As most of the developed ex vivo methods require a substantial volume of biomaterial, they are not widely performed on young patients. Here we propose a simple, robust, and adapted method of primary human MK culture from 1 mL of bone marrow aspirate. Our technique uses a small volume of bone marrow per culture, uses straightforward isolation methods, and generates approximately 6 × 105 mature MKs per culture. The relative high cell purity and yield achieved by this technique, combined with efficient use of low volumes of bone marrow, make this approach suitable for diagnostic and basic research of human megakaryopoiesis.
Collapse
Affiliation(s)
- Kirill R Butov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, 109029, Russia
| | - Elena Y Osipova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
| | - Nikita B Mikhalkin
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, 109029, Russia
| | - Natalia M Trubina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kellie R Machlus
- Brigham and Women’s Hospital Division of Hematology and Harvard Medical School Department of Medicine, Boston, MA 02115, USA
| |
Collapse
|
27
|
Gutjahr JC, Bayer E, Yu X, Laufer JM, Höpner JP, Tesanovic S, Härzschel A, Auer G, Rieß T, Salmhofer A, Szenes E, Haslauer T, Durand-Onayli V, Ramspacher A, Pennisi SP, Artinger M, Zaborsky N, Chigaev A, Aberger F, Neureiter D, Pleyer L, Legler DF, Orian-Rousseau V, Greil R, Hartmann TN. CD44 engagement enhances acute myeloid leukemia cell adhesion to the bone marrow microenvironment by increasing VLA-4 avidity. Haematologica 2021; 106:2102-2113. [PMID: 32616529 PMCID: PMC8327716 DOI: 10.3324/haematol.2019.231944] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Adhesive properties of leukemia cells shape the degree of organ infiltration and the extent of leukocytosis. CD44 and the integrin VLA-4, a CD49d/CD29 heterodimer, are important factors in progenitor cell adhesion in bone marrow. Here, we report their cooperation in acute myeloid leukemia (AML) by a novel non-classical CD44-mediated way of inside-out VLA-4 activation. In primary AML bone marrow samples from patients and the OCI-AML3 cell line, CD44 engagement by hyaluronan induced inside-out activation of VLA-4 resulting in enhanced leukemia cell adhesion on VCAM-1. This was independent of VLA-4 affinity regulation but based on ligand-induced integrin clustering on the cell surface. CD44-induced VLA-4 activation could be inhibited by the Src family kinase inhibitor PP2 and the multikinase inhibitor midostaurin. As a further consequence, the increased adhesion on VCAM-1 allowed AML cells to bind stromal cells strongly. Thereby, the VLA-4/VCAM-1 interaction promoted activation of Akt, MAPK, NF-kB and mTOR signaling and decreased AML cell apoptosis. Collectively, our investigations provide a mechanistic description of an unusual CD44 function in regulating VLA-4 avidity in AML, enhancing AML cell retention in the supportive bone marrow microenvironment.
Collapse
Affiliation(s)
- Julia C Gutjahr
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Elisabeth Bayer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Xiaobing Yu
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics
| | - Julia M Laufer
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz
| | - Jan P Höpner
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | | | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg
| | - Georg Auer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Tanja Rieß
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Astrid Salmhofer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Eva Szenes
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Theresa Haslauer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Valerie Durand-Onayli
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | | | - Sandra P Pennisi
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Nadja Zaborsky
- 1Laboratory for Immunological and Molecular Cancer Research
| | | | - Fritz Aberger
- Department Biosciences, Paris-Lodron University of Salzburg
| | | | - Lisa Pleyer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz
| | | | - Richard Greil
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Tanja N Hartmann
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| |
Collapse
|
28
|
Nollmann C, Wimmenauer C, Fasbender S, Mayer S, Caddedu RP, Jäger P, Heinzel T, Haas R. Uptake of carbon nanodots into human AML cells in comparison to primary hematopoietic cells. RSC Adv 2021; 11:26303-26310. [PMID: 35479430 PMCID: PMC9037386 DOI: 10.1039/d1ra05033h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
Carbon nanodots (CNDs) comprise a class of next generation nanomaterials with a wide variety of potential applications. Here, we report on their uptake into primary hematopoietic cells from three normal donors and malignant cells from five patients with de novo acute myeloid leukemia (AML). A significant CND uptake was observed in all cell types of the normal and leukemic cells. Still, the uptake was significantly smaller for the CD34+ and CD33+ myeloid subsets of the malignant cell population as compared to the normal blood-derived CD34+ and CD33+ cells. For the T and B lymphoid cell populations as defined by CD3 and CD19 within the leukemic and normal samples a similar uptake was observed. The CNDs accumulate preferentially in small clusters in the periphery of the nucleus as already shown in previous studies for CD34+ progenitor/stem cells and human breast cancer cells. This particular subcellular localization could be useful for targeting the lysosomal compartment, which plays a pivotal role in the context of autophagy associated survival of AML cells. Our results demonstrate the usability of CNDs beyond their application for in vitro and in vivo fluorescence labeling or drug delivery into normal and malignant cells. Carbon nanodots (CNDs) comprise a class of next generation nanomaterials with a wide variety of potential applications.![]()
Collapse
Affiliation(s)
- Cathrin Nollmann
- Condensed Matter Physics Laboratory, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Christian Wimmenauer
- Condensed Matter Physics Laboratory, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Stefan Fasbender
- Condensed Matter Physics Laboratory, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Saskia Mayer
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Ron-Patrick Caddedu
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Paul Jäger
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Thomas Heinzel
- Condensed Matter Physics Laboratory, Heinrich-Heine-University 40204 Düsseldorf Germany
| | - Rainer Haas
- Department of Haematology, Oncology and Clinical Immunology, Heinrich-Heine-University 40204 Düsseldorf Germany
| |
Collapse
|
29
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
30
|
Vial JP, Lechevalier N, Lacombe F, Dumas PY, Bidet A, Leguay T, Vergez F, Pigneux A, Béné MC. Unsupervised Flow Cytometry Analysis Allows for an Accurate Identification of Minimal Residual Disease Assessment in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:629. [PMID: 33562525 PMCID: PMC7914957 DOI: 10.3390/cancers13040629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
The assessment of minimal residual disease (MRD) is increasingly considered to monitor response to therapy in hematological malignancies. In acute myeloblastic leukemia (AML), molecular MRD (mMRD) is possible for about half the patients while multiparameter flow cytometry (MFC) is more broadly available. However, MFC analysis strategies are highly operator-dependent. Recently, new tools have been designed for unsupervised MFC analysis, segregating cell-clusters with the same immunophenotypic characteristics. Here, the Flow-Self-Organizing-Maps (FlowSOM) tool was applied to assess MFC-MRD in 96 bone marrow (BM) follow-up (FU) time-points from 40 AML patients with available mMRD. A reference FlowSOM display was built from 19 healthy/normal BM samples (NBM), then simultaneously compared to the patient's diagnosis and FU samples at each time-point. MRD clusters were characterized individually in terms of cell numbers and immunophenotype. This strategy disclosed subclones with varying immunophenotype within single diagnosis and FU samples including populations absent from NBM. Detectable MRD was as low as 0.09% in MFC and 0.051% for mMRD. The concordance between mMRD and MFC-MRD was 80.2%. MFC yielded 85% specificity and 69% sensitivity compared to mMRD. Unsupervised MFC is shown here to allow for an easy and robust assessment of MRD, applicable also to AML patients without molecular markers.
Collapse
Affiliation(s)
- Jean Philippe Vial
- Hematology Biology, Flow Cytometry, Bordeaux University Hospital, 33600 Pessac, France; (J.P.V.); (N.L.); (F.L.)
| | - Nicolas Lechevalier
- Hematology Biology, Flow Cytometry, Bordeaux University Hospital, 33600 Pessac, France; (J.P.V.); (N.L.); (F.L.)
| | - Francis Lacombe
- Hematology Biology, Flow Cytometry, Bordeaux University Hospital, 33600 Pessac, France; (J.P.V.); (N.L.); (F.L.)
| | - Pierre-Yves Dumas
- Service d’Hématologie Clinique et de Thérapie Cellulaire, Bordeaux University Hospital, 33600 Pessac, France; (P.-Y.D.); (T.L.); (A.P.)
| | - Audrey Bidet
- Hematology Biology, Molecular Hematology, Bordeaux University Hospital, 33600 Pessac, France;
| | - Thibaut Leguay
- Service d’Hématologie Clinique et de Thérapie Cellulaire, Bordeaux University Hospital, 33600 Pessac, France; (P.-Y.D.); (T.L.); (A.P.)
| | - François Vergez
- Hematology Biology, IUCT Oncopôle, Toulouse University Hospital, 31000 Toulouse, France;
| | - Arnaud Pigneux
- Service d’Hématologie Clinique et de Thérapie Cellulaire, Bordeaux University Hospital, 33600 Pessac, France; (P.-Y.D.); (T.L.); (A.P.)
| | - Marie C. Béné
- Hematology Biology, Nantes University Hospital, 44000 Nantes, France
| |
Collapse
|
31
|
Fontana C, Marasca F, Provitera L, Mancinelli S, Pesenti N, Sinha S, Passera S, Abrignani S, Mosca F, Lodato S, Bodega B, Fumagalli M. Early maternal care restores LINE-1 methylation and enhances neurodevelopment in preterm infants. BMC Med 2021; 19:42. [PMID: 33541338 PMCID: PMC7863536 DOI: 10.1186/s12916-020-01896-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Preterm birth affects almost 9-11% of newborns and is one of the leading causes of childhood neurodevelopmental disabilities; the underlying molecular networks are poorly defined. In neurons, retrotransposons LINE-1 (L1) are an active source of genomic mosaicism that is deregulated in several neurological disorders; early life experience has been shown to regulate L1 activity in mice. METHODS Very preterm infants were randomized to receive standard care or early intervention. L1 methylation was measured at birth and at hospital discharge. At 12 and 36 months, infants' neurodevelopment was evaluated with the Griffiths Scales. L1 methylation and CNVs were measured in mouse brain areas at embryonic and postnatal stages. RESULTS Here we report that L1 promoter is hypomethylated in preterm infants at birth and that an early intervention program, based on enhanced maternal care and positive multisensory stimulation, restores L1 methylation levels comparable to healthy newborns and ameliorates neurodevelopment in childhood. We further show that L1 activity is fine-tuned in the perinatal mouse brain, suggesting a sensitive and vulnerable window for the L1 epigenetic setting. CONCLUSIONS Our results open the field on the inspection of L1 activity as a novel molecular and predictive approach to infants' prematurity-related neurodevelopmental outcomes. TRIAL REGISTRATION ClinicalTrial.gov ( NCT02983513 ). Registered on 6 December 2016, retrospectively registered.
Collapse
Affiliation(s)
- Camilla Fontana
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Livia Provitera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Sara Mancinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Nicola Pesenti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.,Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, Milan, Italy
| | - Shruti Sinha
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Sofia Passera
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Sergio Abrignani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Enrica e Romeo Invernizzi" (INGM), Milan, Italy.
| | - Monica Fumagalli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.
| |
Collapse
|
32
|
High-Dimensional Analysis of Immune Cell Composition Predicts Periprosthetic Joint Infections and Dissects Its Pathophysiology. Biomedicines 2020; 8:biomedicines8090358. [PMID: 32957521 PMCID: PMC7554968 DOI: 10.3390/biomedicines8090358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Accurate diagnosis of periprosthetic joint infections (PJI) is one of the most widely researched areas in modern orthopedic endoprosthesis. However, our understanding of the immunological basis of this severe complication is still limited. In this study, we developed a flow cytometric approach to precisely characterize the immune cell composition in periprosthetic joints. Using high-dimensional multi-parametric data, we defined, for the first time, the local immune cell populations of artificial joints. We identified significant differences in the cellular distribution between infected and non-infected samples, and revealed that myeloid-derived suppressor cells (MDSCs) act as potential regulators of infiltrating immune cells in PJI. Further, we developed an algorithm to predict septic and aseptic samples with high sensitivity and specificity, that may serve as an indispensable addition to the current criteria of the Musculoskeletal Infection Society. This study describes a novel approach to flow cytometrically analyze the immune cell infiltrate of joint fluid that not only improves our understanding of the pathophysiology of PJI, but also enables the development of a novel screening tool to predict infection status. Our data further suggest that pharmacological targeting of MDSCs represents a novel strategy for addressing PJI.
Collapse
|
33
|
Dittmann J, Haydn T, Metzger P, Ward GA, Boerries M, Vogler M, Fulda S. Next-generation hypomethylating agent SGI-110 primes acute myeloid leukemia cells to IAP antagonist by activating extrinsic and intrinsic apoptosis pathways. Cell Death Differ 2020; 27:1878-1895. [PMID: 31831875 PMCID: PMC7244748 DOI: 10.1038/s41418-019-0465-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Therapeutic efficacy of first-generation hypomethylating agents (HMAs) is limited in elderly acute myeloid leukemia (AML) patients. Therefore, combination strategies with targeted therapies are urgently needed. Here, we discover that priming with SGI-110 (guadecitabine), a next-generation HMA, sensitizes AML cells to ASTX660, a novel antagonist of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2) and X-linked IAP (XIAP). Importantly, SGI-110 and ASTX660 synergistically induced cell death in a panel of AML cell lines as well as in primary AML samples while largely sparing normal CD34+ human progenitor cells, underlining the translational relevance of this combination. Unbiased transcriptome analysis revealed that SGI-110 alone or in combination with ASTX660 upregulated the expression of key regulators of both extrinsic and intrinsic apoptosis signaling pathways such as TNFRSF10B (DR5), FAS, and BAX. Individual knockdown of the death receptors TNFR1, DR5, and FAS significantly reduced SGI-110/ASTX660-mediated cell death, whereas blocking antibodies for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or FAS ligand (FASLG) failed to provide protection. Also, TNFα-blocking antibody Enbrel had little protective effect on SGI-110/ASTX660-induced cell death. Further, SGI-110 and ASTX660 acted in concert to promote cleavage of caspase-8 and BID, thereby providing a link between extrinsic and intrinsic apoptotic pathways. Consistently, sequential treatment with SGI-110 and ASTX660-triggered loss of mitochondrial membrane potential (MMP) and BAX activation which contributes to cell death, as BAX silencing significantly protected from SGI-110/ASTX660-mediated apoptosis. Together, these events culminated in the activation of caspases-3/-7, nuclear fragmentation, and cell death. In conclusion, SGI-110 and ASTX660 cooperatively induced apoptosis in AML cells by engaging extrinsic and intrinsic apoptosis pathways, highlighting the therapeutic potential of this combination for AML.
Collapse
Affiliation(s)
- Jessica Dittmann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Tinka Haydn
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University Freiburg, Freiburg im Breisgau, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Albert Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University Freiburg, Freiburg im Breisgau, Germany
| | | | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University Freiburg, Freiburg im Breisgau, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Albert Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg im Breisgau, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Liu X, Li Y, Xu X, Zhang Y, Li B. Optical fan for single-cell screening. JOURNAL OF BIOPHOTONICS 2020; 13:e201900155. [PMID: 31325226 DOI: 10.1002/jbio.201900155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The single-cell screening has attracted great attentions in advanced biomedicine and tissue biology, especially for the early disease diagnosis and treatment monitoring. In this work, by using a specific-designed fiber probe with a flat facet, we propose an "optical fan" strategy to screen K562 cells at the single-cell level from a populations of RBCs. After the 980-nm laser beam injected into the fiber probe, the RBCs were blown away but holding target K562 cells in place. Further, multiple leukemic cells can be screened from hundreds of red blood cells, providing an efficient approach for the cell screening. The experimental results were interpreted by the numerical simulation, and the stiffness of optical fan was also discussed.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Picou F, Vignon C, Debeissat C, Lachot S, Kosmider O, Gallay N, Foucault A, Estienne MH, Ravalet N, Bene MC, Domenech J, Gyan E, Fontenay M, Herault O. Bone marrow oxidative stress and specific antioxidant signatures in myelodysplastic syndromes. Blood Adv 2019; 3:4271-4279. [PMID: 31869414 PMCID: PMC6929385 DOI: 10.1182/bloodadvances.2019000677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal stem cell disorders with an inherent tendency for transformation in secondary acute myeloid leukemia. This study focused on the redox metabolism of bone marrow (BM) cells from 97 patients compared with 25 healthy controls. The level of reactive oxygen species (ROS) was quantified by flow cytometry in BM cell subsets as well as the expression level of 28 transcripts encoding for major enzymes involved in the antioxidant cellular response. Our results highlight increased ROS levels in BM nonlymphoid cells and especially in primitive CD34posCD38low progenitor cells. Moreover, we identified a specific antioxidant signature, dubbed "antioxidogram," for the different MDS subgroups or secondary acute myeloblastic leukemia (sAML). Our results suggest that progression from MDS toward sAML could be characterized by 3 successive molecular steps: (1) overexpression of enzymes reducing proteic disulfide bonds (MDS with <5% BM blasts [GLRX family]); (2) increased expression of enzymes detoxifying H2O2 (MDS with 5% to 19% BM blasts [PRDX and GPX families]); and finally (3) decreased expression of these enzymes in sAML. The antioxidant score (AO-Score) defined by logistic regression from the expression levels of transcripts made it possible to stage disease progression and, interestingly, this AO-Score was independent of the revised International Scoring System. Altogether, this study demonstrates that MDS and sAML present an important disturbance of redox metabolism, especially in BM stem and progenitor cells and that the specific molecular antioxidant response parameters (antioxidogram, AO-Score) could be considered as useful biomarkers for disease diagnosis and follow-up.
Collapse
Affiliation(s)
- Frederic Picou
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Christine Vignon
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Christelle Debeissat
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Sébastien Lachot
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Olivier Kosmider
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Institut Cochin, Paris, France
| | - Nathalie Gallay
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Amelie Foucault
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Marie-Hélène Estienne
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Noémie Ravalet
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Marie C Bene
- Service d'Hématologie Biologique, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Jorge Domenech
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
| | - Emmanuel Gyan
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie et Thérapie Cellulaire, CHRU de Tours, Tours, France; and
| | - Michaela Fontenay
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Institut Cochin, Paris, France
| | - Olivier Herault
- Centre National de la Recherche Scientifique (CNRS) Equipe de Recherche Labellisée 7001, LNOX "Leukemic Niche and Redox Metabolism," Tours, France
- Equipe d'Accueil 7501, Université de Tours, Tours, France
- Service d'Hématologie Biologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours, France
- CNRS Groupement de Recherche 3697, "Microenvironment of Tumor Niches," Tours, France
| |
Collapse
|
36
|
Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML. Cell Death Dis 2019; 10:917. [PMID: 31801941 PMCID: PMC6892884 DOI: 10.1038/s41419-019-2156-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/20/2019] [Accepted: 10/31/2019] [Indexed: 01/06/2023]
Abstract
Despite advances in the treatment of acute myeloid leukemia (AML), prognosis of AML patients is still dismal and better treatment options are required. B-cell Lymphoma 2 (BCL-2) homology domain 3 (BH3)-mimetics are emerging as a novel class of apoptosis-inducing agents that are currently being tested for the treatment of different hematological malignancies including AML. Particularly, the selective BCL-2 inhibitor ABT-199/Venetoclax is demonstrating clinical responses and has recently been approved in combination for the treatment of AML. Compounds targeting the related protein MCL-1 have recently entered clinical trials, highlighting the urgency to compare the different BH3-mimetics and identify the most promising antiapoptotic target in AML. We performed a side-by-side comparison of different highly selective and potent BH3-mimetics targeting BCL-2 (ABT-199), MCL-1 (S63845) or BCL-xL (A1331852) in a panel of AML cell lines and primary patient cells. Gene knockdown using siRNAs was utilized to investigate the functional relevance of BCL-2 proteins. Western blotting and immunoprecipitations were used to explore the influence of BH3-mimetics on interactions between pro- and antiapoptotic BCL-2 proteins. A1331852 induced apoptosis only in selected cases, indicating that BCL-xL is not a very promising therapeutic target in AML. However, S63845 displayed higher potency than ABT-199, with more cell lines and primary cells responding to S63845 than to ABT-199. MCL-1 dependency in AML cells was confirmed by siRNA-mediated knockdown of MCL-1, which was sufficient to induce apoptosis. S63845-induced cell death was accompanied by a displacement of the BH3-only protein BIM as well as BAK, resulting in BAK-dependent apoptosis. In contrast, ABT-199-induced cell death was mediated by BAX rather than BAK, indicating distinct non-redundant molecular functions of BCL-2 and MCL-1 in AML. Our study reveals that MCL-1 may be a more prevalent therapeutic target than BCL-2 in AML and identifies BIM and BAK as important mediators of S63845-induced apoptosis in AML.
Collapse
|
37
|
Transition from morphologic diagnosis to immunophenotypic diagnosis of acute leukemia—experience of establishing a new flow cytometry laboratory. J Hematop 2019. [DOI: 10.1007/s12308-019-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
38
|
Williams BA, Law A, Hunyadkurti J, Desilets S, Leyton JV, Keating A. Antibody Therapies for Acute Myeloid Leukemia: Unconjugated, Toxin-Conjugated, Radio-Conjugated and Multivalent Formats. J Clin Med 2019; 8:E1261. [PMID: 31434267 PMCID: PMC6723634 DOI: 10.3390/jcm8081261] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
In recent decades, therapy for acute myeloid leukemia (AML) has remained relatively unchanged, with chemotherapy regimens primarily consisting of an induction regimen based on a daunorubicin and cytarabine backbone, followed by consolidation chemotherapy. Patients who are relapsed or refractory can be treated with allogeneic hematopoietic stem-cell transplantation with modest benefits to event-free and overall survival. Other modalities of immunotherapy include antibody therapies, which hold considerable promise and can be categorized into unconjugated classical antibodies, multivalent recombinant antibodies (bi-, tri- and quad-specific), toxin-conjugated antibodies and radio-conjugated antibodies. While unconjugated antibodies can facilitate Natural Killer (NK) cell antibody-dependent cell-mediated cytotoxicity (ADCC), bi- and tri-specific antibodies can engage either NK cells or T-cells to redirect cytotoxicity against AML targets in a highly efficient manner, similarly to classic ADCC. Finally, toxin-conjugated and radio-conjugated antibodies can increase the potency of antibody therapies. Several AML tumour-associated antigens are at the forefront of targeted therapy development, which include CD33, CD123, CD13, CLL-1 and CD38 and which may be present on both AML blasts and leukemic stem cells. This review focused on antibody therapies for AML, including pre-clinical studies of these agents and those that are either entering or have been tested in early phase clinical trials. Antibodies for checkpoint inhibition and microenvironment targeting in AML were excluded from this review.
Collapse
Affiliation(s)
- Brent A Williams
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada.
| | - Arjun Law
- Hans Messner Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - Judit Hunyadkurti
- Département de medécine nucléaire et radiobiology, Faculté de medécine et des sciences de la santé, Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | - Jeffrey V Leyton
- Département de medécine nucléaire et radiobiology, Faculté de medécine et des sciences de la santé, Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Sherbrooke Molecular Imaging Centre, Centre de recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
- Institute de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Armand Keating
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
39
|
A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv 2019; 2:848-858. [PMID: 29661755 DOI: 10.1182/bloodadvances.2018017517] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
The outlook for patients with refractory/relapsed acute myeloid leukemia (AML) remains poor, with conventional chemotherapeutic treatments often associated with unacceptable toxicities, including severe infections due to profound myelosuppression. Thus there exists an urgent need for more effective agents to treat AML that confer high therapeutic indices and favorable tolerability profiles. Because of its high expression on leukemic blast and stem cells compared with normal hematopoietic stem cells and progenitors, CD123 has emerged as a rational candidate for molecularly targeted therapeutic approaches in this disease. Here we describe the development and preclinical characterization of a CD123-targeting antibody-drug conjugate (ADC), IMGN632, that comprises a novel humanized anti-CD123 antibody G4723A linked to a recently reported DNA mono-alkylating payload of the indolinobenzodiazepine pseudodimer (IGN) class of cytotoxic compounds. The activity of IMGN632 was compared with X-ADC, the ADC utilizing the G4723A antibody linked to a DNA crosslinking IGN payload. With low picomolar potency, both ADCs reduced viability in AML cell lines and patient-derived samples in culture, irrespective of their multidrug resistance or disease status. However, X-ADC exposure was >40-fold more cytotoxic to the normal myeloid progenitors than IMGN632. Of particular note, IMGN632 demonstrated potent activity in all AML samples at concentrations well below levels that impacted normal bone marrow progenitors, suggesting the potential for efficacy in AML patients in the absence of or with limited myelosuppression. Furthermore, IMGN632 demonstrated robust antitumor efficacy in multiple AML xenograft models. Overall, these findings identify IMGN632 as a promising candidate for evaluation as a novel therapy in AML.
Collapse
|
40
|
Lack of CD45 in FLT3-ITD mice results in a myeloproliferative phenotype, cortical porosity, and ectopic bone formation. Oncogene 2019; 38:4773-4787. [DOI: 10.1038/s41388-019-0757-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/12/2018] [Accepted: 02/05/2019] [Indexed: 01/08/2023]
|
41
|
Cytomegalovirus induces HLA-class-II-restricted alloreactivity in an acute myeloid leukemia cell line. PLoS One 2018; 13:e0191482. [PMID: 29377903 PMCID: PMC5788343 DOI: 10.1371/journal.pone.0191482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/06/2018] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus (HCMV) reactivation is found frequently after allogeneic hematopoietic stem cell transplantation (alloSCT) and is associated with an increased treatment-related mortality. Recent reports suggest a link between HCMV and a reduced risk of cancer progression in patients with acute leukemia or lymphoma after alloSCT. Here we show that HCMV can inhibit the proliferation of the acute myeloid leukemia cell line Kasumi-1 and the promyeloid leukemia cell line NB4. HCMV induced a significant up-regulation of HLA-class-II-molecules, especially HLA-DR expression and an increase of apoptosis, granzyme B, perforin and IFN-γ secretion in Kasumi-1 cells cocultured with peripheral blood mononuclear cells (PBMCs). Indolamin-2,3-dioxygenase on the other hand led only to a significant dose-dependent effect on IFN-γ secretion without effects on proliferation. The addition of CpG-rich oligonucleotides and ganciclovir reversed those antiproliferative effects. We conclude that HCMV can enhance alloreactivity of PBMCs against Kasumi-1 and NB4 cells in vitro. To determine if this phenomenon may be clinically relevant further investigations will be required.
Collapse
|
42
|
Qin L, Jing X, Qiu Z, Cao W, Jiao Y, Routy JP, Li T. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults. Aging (Albany NY) 2017; 8:848-59. [PMID: 26886066 PMCID: PMC4931839 DOI: 10.18632/aging.100894] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 01/03/2023]
Abstract
Aging is a major risk factor for several conditions including neurodegenerative, cardiovascular diseases and cancer. Functional impairments in cellular pathways controlling genomic stability, and immune control have been identified. Biomarker of immune senescence is needed to improve vaccine response and to develop therapy to improve immune control. To identify phenotypic signature of circulating immune cells with aging, we enrolled 1068 Chinese healthy volunteers ranging from 18 to 80 years old. The decreased naïve CD4+ and CD8+ T cells, increased memory CD4+ or CD8+ T cells, loss of CD28 expression on T cells and reverse trend of CD38 and HLA-DR, were significant for aging of immune system. Conversely, the absolute counts and percentage of NK cells and CD19+B cells maintained stable in aging individuals. The Chinese reference ranges of absolute counts and percentage of peripheral lymphocyte in this study might be useful for future clinical evaluation.
Collapse
Affiliation(s)
- Ling Qin
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xie Jing
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifeng Qiu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Yang Jiao
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Her Z, Yong KSM, Paramasivam K, Tan WWS, Chan XY, Tan SY, Liu M, Fan Y, Linn YC, Hui KM, Surana U, Chen Q. An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia. J Hematol Oncol 2017; 10:162. [PMID: 28985760 PMCID: PMC5639594 DOI: 10.1186/s13045-017-0532-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background Xenotransplantation of patient-derived AML (acute myeloid leukemia) cells in NOD-scid Il2rγnull (NSG) mice is the method of choice for evaluating this human hematologic malignancy. However, existing models constructed using intravenous injection in adult or newborn NSG mice have inferior engraftment efficiency, poor peripheral blood engraftment, or are difficult to construct. Methods Here, we describe an improved AML xenograft model where primary human AML cells were injected into NSG newborn pups intrahepatically. Results Introduction of primary cells from AML patients resulted in high levels of engraftment in peripheral blood, spleen, and bone marrow (BM) of recipient mice. The phenotype of engrafted AML cells remained unaltered during serial transplantation. The mice developed features that are consistent with human AML including spleen enlargement and infiltration of AML cells into multiple organs. Importantly, we demonstrated that although leukemic stem cell activity is enriched and mediated by CD34+CD117+ subpopulation, CD34+CD117− subpopulation can acquire CD34+CD117+ phenotype through de-differentiation. Lastly, we evaluated the therapeutic potential of Sorafenib and Regorafenib in this AML model and found that periphery and spleen AML cells are sensitive to these treatments, whereas BM provides a protective environment to AML. Conclusions Collectively, our improved model is robust, easy-to-construct, and reliable for pre-clinical AML studies. Electronic supplementary material The online version of this article (10.1186/s13045-017-0532-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Kathirvel Paramasivam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xue Ying Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yeh Ching Linn
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Kam Man Hui
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.,Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Pharmacology, National University of Singapore, Singapore, Singapore. .,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore. .,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
44
|
Abuhelwa Z, Al Shaer Q, Taha S, Ayoub K, Amer R. Characteristics of De Novo Acute Myeloid Leukemia Patients in Palestine: Experience of An-Najah National University Hospital. Asian Pac J Cancer Prev 2017; 18:2459-2464. [PMID: 28952276 PMCID: PMC5720651 DOI: 10.22034/apjcp.2017.18.9.2459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To describe the characteristics of de novo acute myeloid leukemia (AML) in the Palestinian population. Study design and setting: A retrospective chart review study was conducted at An-Najah National University Hospital (NNUH) during the period of January, 2014 to December, 2016. Methodology: The medical records of AML patients treated at NNUH were reviewed. All patients at least 16 years of age diagnosed with de novo AML and started on induction chemotherapy were included. Descriptive statistics were employed to analyze the data. Results: Out of 88 patients diagnosed with AML during the study period, 64 had de novo AML and were included. Median age at diagnosis was 36 years, with a male to female ratio of 1.13:1. Two thirds of the cases were from the West Bank and the remainder were from Gaza. Major complaints at presentation were fatigue (64.1%), fever (46.9%), respiratory tract infections (39.1%) and bruising (28.1%). Hepatomegaly was present in 23.4% and splenomegaly in 34.4%. At presentation, the median white blood cells (WBC) count, hemoglobin (Hb) concentration and platelet count were 30. 5x109/L, 9.3g/dL, and 39.5 x109/L, respectively. According to the French American British (FAB) classification, M4 was the most common subtype (32.8%) followed by M3 (21.9%). After a single cycle of induction chemotherapy complete remission (CR) was seen in 26 (41.9%) and non-remission (NR) in 17 (27.4%), while 19 patients (30.6%) died during the first admission for induction. Conclusion: The characteristics of de novo AML in Palestinian patients are comparable to published data elsewhere. M4 was the most common subtype. The outcome of the first cycle of induction chemotherapy was slightly inferior to the published data for M3 patients. Further studies are warranted to identify possible causes.
Collapse
Affiliation(s)
- Ziad Abuhelwa
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | | | | | | | | |
Collapse
|
45
|
Wang W, Bochtler T, Wuchter P, Manta L, He H, Eckstein V, Ho AD, Lutz C. Mesenchymal stromal cells contribute to quiescence of therapy-resistant leukemic cells in acute myeloid leukemia. Eur J Haematol 2017; 99:392-398. [PMID: 28800175 DOI: 10.1111/ejh.12934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Persistence of leukemic cells after induction therapy has been shown to correlate with poor survival in acute myeloid leukemia (AML). In this study, we tested if human mesenchymal stromal cells (hMSCs) have protective effects on leukemic cells undergoing chemotherapy. METHODS Persistent disease was used as marker to identify cases with therapy-resistant leukemic cells in 95 patients with AML. Immunophenotyping, cell cycle, and apoptosis assays were assessed by flow cytometry. AML coculture studies were performed with hMSC of healthy donors. RESULTS Samples from patients with persistent disease had increased fractions of CD34+ CD38- and quiescent leukemic cells. Comparison of sample series collected at time points of diagnosis and blast persistence showed a relative therapy resistance of quiescent leukemic cells. Consistent with these observations, relapsed disease always displayed higher proportions of quiescent cells compared to samples of first diagnosis suggesting that quiescence is an important therapy escape mechanism of resistant cells. Co-culture studies demonstrated that hMSC protect leukemic cells from the effect of AraC treatment by enriching for quiescent cells, mimicking the effects observed in patients. This effect was even detectable when no direct stromal contact was established. CONCLUSIONS Our data suggest that hMSC contribute to quiescence and therapy resistance of persistent AML cells.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tilmann Bochtler
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, German Cancer Research Center (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Linda Manta
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Haiju He
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Volker Eckstein
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Christoph Lutz
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Sohn HJ, Lee JY, Lee HJ, Sohn DH, Cho HI, Kim HJ, Kim TG. Simultaneous in vitro generation of CD8 and CD4 T cells specific to three universal tumor associated antigens of WT1, survivin and TERT and adoptive T cell transfer for the treatment of acute myeloid leukemia. Oncotarget 2017; 8:44059-44072. [PMID: 28477011 PMCID: PMC5546462 DOI: 10.18632/oncotarget.17212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/03/2017] [Indexed: 01/21/2023] Open
Abstract
Previously, we found that most patients with acute myeloid leukemia (AML) expressed at least one of the leukemic associated antigens (LAAs) WT1, survivin and TERT, and different combinations of the three LAAs predicted negative clinical outcomes. Multi-tumor antigen-specific T cells were generated to overcome antigenic variation and may be sufficient to maximize antitumoral effects. To generate triple antigen-specific (Tri)-T cells that recognize three LAAs, dendritic cells (DCs) were transfected with three tumor antigen-encoding RNAs. These DCs were used to stimulate both CD8 and CD4 T cells and to overcome the limitation of known human leukocyte antigen-restricted epitopes. The sum of the antigen-specific T cell frequencies was higher in the Tri-T cells than in the T cells that recognized a single antigen. Furthermore, the Tri-T cells were more effective against leukemic blasts that expressed all three LAAs compared with blasts that expressed one or two LAAs, suggesting a proportional correlation between IFN-γ secretion and LAA expression. Engrafted leukemic blasts in the bone marrow of mice significantly decreased in the presence of Tri-T cells. This technique represents an effective immunotherapeutic strategy in AML.
Collapse
Affiliation(s)
- Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Ji Yoon Lee
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedical Laboratory Science, College of Health Sciences, Sangji University, Wonju, Korea
| | - Hyun-Joo Lee
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Dae-Hee Sohn
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
47
|
Guy J, Wagner-Ballon O, Pages O, Bailly F, Borgeot J, Béné MC, Maynadié M. A 5-color flow cytometric method for extended 8-part leukocyte differential. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 92:498-507. [DOI: 10.1002/cyto.b.21524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Julien Guy
- Service d'Hématologie Biologique, CHU de Dijon; Dijon France
| | - Orianne Wagner-Ballon
- Département d'Hématologie et d'Immunologie Biologiques; Hôpital Henri Mondor, APHP, UPEC, INSERM U955 IMRB; Créteil France
| | - Olivier Pages
- Service d'Hématologie Biologique, CHU de Dijon; Dijon France
| | - François Bailly
- Service d'Hématologie Biologique, CHU de Dijon; Dijon France
| | - Jessica Borgeot
- Service d'Hématologie Biologique, CHU de Dijon; Dijon France
| | - Marie-C Béné
- Service d'Hématologie Biologique, CHU de Nantes; Nantes France
| | - Marc Maynadié
- Service d'Hématologie Biologique, CHU de Dijon; Dijon France
| |
Collapse
|
48
|
Paubelle E, Ducastelle-Leprêtre S, Labussière-Wallet H, Nicolini FE, Barraco F, Plesa A, Salles G, Wattel E, Thomas X. Fractionated gemtuzumab ozogamicin combined with intermediate-dose cytarabine and daunorubicin as salvage therapy in very high-risk AML patients: a bridge to reduced intensity conditioning transplant? Ann Hematol 2016; 96:363-371. [DOI: 10.1007/s00277-016-2899-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
|
49
|
Azad A, Rajwa B, Pothen A. Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples. Front Oncol 2016; 6:188. [PMID: 27630823 PMCID: PMC5005935 DOI: 10.3389/fonc.2016.00188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/08/2016] [Indexed: 01/22/2023] Open
Abstract
We describe algorithms for discovering immunophenotypes from large collections of flow cytometry samples and using them to organize the samples into a hierarchy based on phenotypic similarity. The hierarchical organization is helpful for effective and robust cytometry data mining, including the creation of collections of cell populations’ characteristic of different classes of samples, robust classification, and anomaly detection. We summarize a set of samples belonging to a biological class or category with a statistically derived template for the class. Whereas individual samples are represented in terms of their cell populations (clusters), a template consists of generic meta-populations (a group of homogeneous cell populations obtained from the samples in a class) that describe key phenotypes shared among all those samples. We organize an FC data collection in a hierarchical data structure that supports the identification of immunophenotypes relevant to clinical diagnosis. A robust template-based classification scheme is also developed, but our primary focus is in the discovery of phenotypic signatures and inter-sample relationships in an FC data collection. This collective analysis approach is more efficient and robust since templates describe phenotypic signatures common to cell populations in several samples while ignoring noise and small sample-specific variations. We have applied the template-based scheme to analyze several datasets, including one representing a healthy immune system and one of acute myeloid leukemia (AML) samples. The last task is challenging due to the phenotypic heterogeneity of the several subtypes of AML. However, we identified thirteen immunophenotypes corresponding to subtypes of AML and were able to distinguish acute promyelocytic leukemia (APL) samples with the markers provided. Clinically, this is helpful since APL has a different treatment regimen from other subtypes of AML. Core algorithms used in our data analysis are available in the flowMatch package at www.bioconductor.org. It has been downloaded nearly 6,000 times since 2014.
Collapse
Affiliation(s)
- Ariful Azad
- Lawrence Berkeley National Laboratory, Computational Research Division , Berkeley, CA , USA
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University , West Lafayette, IN , USA
| | - Alex Pothen
- Department of Computer Science, Purdue University , West Lafayette, IN , USA
| |
Collapse
|
50
|
Al-Mawali A, Gillis D, Lewis I. Immunoprofiling of leukemic stem cells CD34+/CD38-/CD123+ delineate FLT3/ITD-positive clones. J Hematol Oncol 2016; 9:61. [PMID: 27465508 PMCID: PMC4964068 DOI: 10.1186/s13045-016-0292-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous clonal disorder presenting with accumulation of proliferating undifferentiated blasts. Xenograft transplantation studies have demonstrated a rare population of leukemia-initiating cells called leukemic stem cells (LSCs) capable of propagating leukemia that are enriched in the CD34+/CD38- fraction. LSCs are quiescent, resistant to chemotherapy and likely responsible for relapse and therefore represent an ideal target for effective therapy. LSCs are reported to overexpress the alpha subunit of the IL-3 receptor (CD123) compared to normal CD34+/CD38- hematopoietic stem cells. It has not been demonstrated whether CD123-positive (CD34+/CD38-) subpopulation is enriched for any clonal markers of AML or any LSC properties. The aims of this study were to investigate whether FMS-like tyrosine kinase (FLT3)/internal tandem duplication (ITD) mutations are present at LSC level and whether FLT3/ITD mutation is confined to LSC as defined by CD34+/CD38-/CD123+ and not CD34+/CD38-/CD123-. METHODS Thirty-four AML cases were analyzed by five-color flow cytometry and sequential gating strategy to characterize of CD34+/CD38-/CD123+ cells. These cells were sorted, analyzed by PCR, and sequenced for FLT3/ITD. RESULTS In this study, we confirm significant expression of CD123 in 32/34 cases in the total blast population (median expression = 86 %). CD123 was also expressed in the CD34+/CD38- cells (96 ± 2 % positive) from 28/32 for CD123+ AML. CD123 was not expressed/low in normal bone marrow CD34+/CD38- cells (median expression = 0 %, range (0-.004 %). AML samples were tested for FLT3/ITD (10 positive/25). FLT3/ITD+ AML cases were sorted into two putative LSC populations according to the expression of CD123 and analyzed for FLT3/ITD again in the stem cell fractions CD34+/CD38-/CD123+ and CD34+/CD38-/CD123-. Interestingly, FLT3/ITD was only detected in CD34+/CD38-/CD123+ (7/7) and not in CD34+/CD38-/CD123- subpopulation (6/7). CONCLUSIONS This finding shows that FLT3/ITD are present at LSC level and may be a primary and not secondary event in leukemogenesis, and the oncogenic events of FLT3/ITD happen at a cell stage possessing CD123. It shows that CD123 immunoprofiling provides further delineation of FLT3+ LSC clone. This novel finding provides a rationale for treatment involving CD123-targeting antibodies with intracellular FLT3 inhibitors directed against CD34+/CD38-/CD123+. This may result in more effective anti-LSC eradication.
Collapse
Affiliation(s)
- Adhra Al-Mawali
- Division of Human Immunology and Haematology, SA Pathology, Hanson Institute, Frome Road, Adelaide, SA, 5000, Australia. .,Centre of Studies and Research, Ministry of Health, Muscat, Sultanate of Oman.
| | - David Gillis
- Division of Human Immunology and Haematology, SA Pathology, Hanson Institute, Frome Road, Adelaide, SA, 5000, Australia
| | - Ian Lewis
- Division of Human Immunology and Haematology, SA Pathology, Hanson Institute, Frome Road, Adelaide, SA, 5000, Australia
| |
Collapse
|