1
|
Combination Therapies Targeting Apoptosis in Paediatric AML: Understanding the Molecular Mechanisms of AML Treatments Using Phosphoproteomics. Int J Mol Sci 2023; 24:ijms24065717. [PMID: 36982791 PMCID: PMC10058112 DOI: 10.3390/ijms24065717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Paediatric acute myeloid leukaemia (AML) continues to present treatment challenges, as no “standard approach” exists to treat those young patients reliably and safely. Combination therapies could become a viable treatment option for treating young patients with AML, allowing multiple pathways to be targeted. Our in silico analysis of AML patients highlighted “cell death and survival” as an aberrant, potentially targetable pathway in paediatric AML patients. Therefore, we aimed to identify novel combination therapies to target apoptosis. Our apoptotic drug screening resulted in the identification of one potential “novel” drug pairing, comprising the Bcl-2 inhibitor ABT-737 combined with the CDK inhibitor Purvalanol-A, as well as one triple combination of ABT-737 + AKT inhibitor + SU9516, which showed significant synergism in a series of paediatric AML cell lines. Using a phosphoproteomic approach to understand the apoptotic mechanism involved, proteins related to apoptotic cell death and cell survival were represented, in agreement with further results showing differentially expressed apoptotic proteins and their phosphorylated forms among combination treatments compared to single-agent treated cells such upregulation of BAX and its phosphorylated form (Thr167), dephosphorylation of BAD (Ser 112), and downregulation of MCL-1 and its phosphorylated form (Ser159/Thr 163). Total levels of Bcl-2 were decreased but correlated with increased levels of phosphorylated Bcl-2, which was consistent with our phosphoproteomic analysis predictions. Bcl-2 phosphorylation was regulated by extracellular-signal-regulated kinase (ERK) but not PP2A phosphatase. Although the mechanism linking to Bcl-2 phosphorylation remains to be determined, our findings provide first-hand insights on potential novel combination treatments for AML.
Collapse
|
2
|
Combined BCL-2 and PI3K/AKT Pathway Inhibition in KMT2A-Rearranged Acute B-Lymphoblastic Leukemia Cells. Int J Mol Sci 2023; 24:ijms24021359. [PMID: 36674872 PMCID: PMC9865387 DOI: 10.3390/ijms24021359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Numerous hematologic neoplasms, including acute B-lymphoblastic leukemia (B-ALL), are characterized by overexpression of anti-apoptotic BCL-2 family proteins. Despite the high clinical efficacy of the specific BCL-2 inhibitor venetoclax in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL), dose limitation and resistance argue for the early exploration of rational combination strategies. Recent data indicated that BCL-2 inhibition in B-ALL with KMT2A rearrangements is a promising intervention option; however, combinatorial approaches have not been in focus so far. The PI3K/AKT pathway has emerged as a possible target structure due to multiple interactions with the apoptosis cascade as well as relevant dysregulation in B-ALL. Herein, we demonstrate for the first time that combined BCL-2 and PI3K/AKT inhibition has synergistic anti-proliferative effects on B-ALL cell lines. Of note, all tested combinations (venetoclax + PI3K inhibitors idelalisib or BKM-120, as well as AKT inhibitors MK-2206 or perifosine) achieved comparable anti-leukemic effects. In a detailed analysis of apoptotic processes, among the PI3K/AKT inhibitors only perifosine resulted in an increased rate of apoptotic cells. Furthermore, the combination of venetoclax and perifosine synergistically enhanced the activity of the intrinsic apoptosis pathway. Subsequent gene expression studies identified the pro-apoptotic gene BBC3 as a possible player in synergistic action. All combinatorial approaches additionally modulated extrinsic apoptosis pathway genes. The present study provides rational combination strategies involving selective BCL-2 and PI3K/AKT inhibition in B-ALL cell lines. Furthermore, we identified a potential mechanistic background of the synergistic activity of combined venetoclax and perifosine application.
Collapse
|
3
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
4
|
miR-338-3p Plays a Significant Role in Casticin-Induced Suppression of Acute Myeloid Leukemia via Targeting PI3K/Akt Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9214130. [PMID: 35765408 PMCID: PMC9233736 DOI: 10.1155/2022/9214130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Objective Casticin is generally used in traditional herbal medicine for its anti-inflammatory and anticarcinogenic pharmacological properties. Also, microRNAs are indispensable oncogenes or cancer suppressors being dysregulated in various diseases. In this study, we aimed to elucidate the mechanisms underlying effects of casticin on the progression of acute myeloid leukemia (AML). Methods CCK-8 and flow cytometry were utilized to measure the proliferation and apoptosis of AML cell lines, respectively, after treatment with different concentrations of casticin. The alteration of several microRNA expressions in response to casticin treatment was detected by performing qRT-PCR, and the activity of PI3K/Akt pathways was evaluated through immunoblotting. Afterwards, the potential target gene of miR-338-3p was investigated by dual-luciferase reporter assay. In order to evaluate the role of miR-338-3p in the casticin-induced cellular phenotype changes, AML cells were transfected with miR-338-3p mimics or inhibitor and then subjected to proliferation and apoptosis analysis. Finally, a mouse xenograft model system was employed to investigate the role of casticin in AML progression in vivo. Results Suppressed cellular proliferation and enhanced apoptosis were observed in HL-60 and THP-1 cells after exposure to casticin, accompanied by remarkable upregulation of the miR-338-3p expression as well as a decline in the phosphorylation of PI3K and Akt proteins. RUNX2 was identified as a direct target molecular of miR-338-3p, which might account for the findings that miR-338-3p knockdown enhanced the PI3K/Akt pathway activity, whereas the miR-338-3p overexpression inactivated this signaling pathway. In addition, the inhibition of the miR-338-3p expression attenuated severe cell apoptosis and suppressions of PI3K/Akt pathway induced by casticin. Furthermore, casticin treatment retarded tumor growth rate in mouse models, whilst elevating miR-338 expression and repressing the activity of PI3K/Akt pathway in vivo. However, miR-338-3p depletion could also abolish the phenotypic alterations caused by casticin treatment. Conclusion Casticin promotes AML cell apoptosis but inhibits AML cell proliferation in vitro and tumor growth in vivo by upregulating miR-338-3p, which targets RUNX2 and thereafter inactivates PI3K-Akt signaling pathway. Our results provide insights into the mechanisms underlying the action of casticin in the control of AML progression.
Collapse
|
5
|
Xu YC, Lin YS, Zhang L, Lu Y, Sun YL, Fang ZG, Li ZY, Fan RF. MicroRNAs of bone marrow mesenchymal stem cell-derived exosomes regulate acute myeloid leukemia cell proliferation and apoptosis. Chin Med J (Engl) 2020; 133:2829-2839. [PMID: 33273332 PMCID: PMC10631584 DOI: 10.1097/cm9.0000000000001138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a malignant hematological disease, originating from hematopoiesis stem cell differentiation obstruction and clonal proliferation. New reagents or biologicals for the treatment of AML are urgently needed, and exosomes have been identified as candidate biomarkers for disease diagnosis and prognosis. This study aimed to investigate the effects of exosomes from bone marrow mesenchymal stem cells (BMSCs) on AML cells as well as the underlying microRNA (miRNA)-mediated mechanisms. METHODS Exosomes were isolated using a precipitation method, followed by validation using marker protein expression and nanoparticle tracking analysis. Differentially expressed miRNAs were identified by deep RNA sequencing and confirmed by quantitative real-time polymerase chain reaction (qPCR). Cell proliferation was assessed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt method, and cell cycle progression and apoptosis were detected by flow cytometry. Functional gene expression was analyzed by qPCR and Western blotting (WB). Significant differences were determined using Student's t test or analysis of variance. RESULTS BMSCs-derived exosomes effectively suppressed cell proliferation (both P < 0.0001 at 10 and 20 μg/mL) and cell cycle progression (P < 0.01 at G0-G1 stage), and also significantly enhanced cell apoptosis (P < 0.001) in KG-1a cells. There were 1167 differentially expressed miRNAs obtained from BMSCs-derived exosomes compared with KG-1a cell-derived exosomes (P < 0.05). Knockdown of hsa-miR-124-5p in BMSCs abrogated the effects of BMSCs-derived exosomes in regulating KG-1a such as the change in cell proliferation (both P < 0.0001 vs. normal KG-1a cell [NC] at 48 and 72 h). KG-1a cells treated with BMSCs-derived exosomes suppressed expression of structural maintenance of chromosomes 4 (P < 0.001 vs. NC by qPCR and P < 0.0001 vs. NC by WB), which is associated with the progression of various cancers. This BMSCs-derived exosomes effect was significantly reversed with knockdown of hsa-miR-124-5p (P < 0.0001 vs. NC by WB). CONCLUSIONS BMSCs-derived exosomes suppress cell proliferation and cycle progression and promote cell apoptosis in KG-1a cells, likely acting through hsa-miR-124-5p. Our study establishes a basis for a BMSCs-derived exosomes-based AML treatment.
Collapse
Affiliation(s)
- Yi-Chuan Xu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yan-Si Lin
- Department of General Practice, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Ling Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Ying Lu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yan-Ling Sun
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhi-Gang Fang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zi-Yu Li
- Department of Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Rui-Fang Fan
- Department of Prevention and Health, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
6
|
Mirza MU, Ahmad S, Abdullah I, Froeyen M. Identification of novel human USP2 inhibitor and its putative role in treatment of COVID-19 by inhibiting SARS-CoV-2 papain-like (PLpro) protease. Comput Biol Chem 2020; 89:107376. [PMID: 32979815 PMCID: PMC7487165 DOI: 10.1016/j.compbiolchem.2020.107376] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb-palm-fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situation of COVID-19 outbreak, there is a lack of in-vitro facilities readily available to test SARS-CoV-2 inhibitors in whole-cell assays. Therefore, we adopted an alternate route to identify potential USP2 inhibitor through integrated in-silico efforts. After an extensive virtual screening protocol, the best compounds were selected and tested. The compound Z93 showed significant IC50 value against Jurkat (9.67 μM) and MOTL-4 cells (11.8 μM). The binding mode of Z93 was extensively analyzed through molecular docking, followed by MD simulations, and molecular interactions were compared with SARS-CoV-2. The relative binding poses of Z93 fitted well in the binding site of both proteases and showed consensus π-π stacking and H-bond interactions with histidine and aspartate/asparagine residues of the catalytic triad. These results led us to speculate that compound Z93 might be the first potential chemical lead against SARS-CoV-2 PLpro, which warrants in-vitro evaluations.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium
| | - Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
7
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
8
|
Hanekamp D, Cloos J, Schuurhuis GJ. Leukemic stem cells: identification and clinical application. Int J Hematol 2017; 105:549-557. [PMID: 28357569 DOI: 10.1007/s12185-017-2221-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
Abstract
Leukemic stem cells (LSCs) in acute myeloid leukemia (AML) represent a low-frequency subpopulation of leukemia cells that possess stem cell properties distinct from the bulk leukemia cells, including self-renewal capacity and drug resistance. Due to these properties, LSCs are supposed to facilitate the development of relapse. The existence of LSCs is demonstrated by the ability to engraft and initiate human AML in immune-compromised mouse models. Although several lines of evidence suggest the complex heterogeneity of phenotypes displayed by LSC, many studies consider the CD34+/CD38- compartment as the most relevant. To increase the understanding of the true LSC, techniques such as multicolor flow cytometry, side-population assay and ALDH assay are utilized in many laboratories and could aid in this. A better understanding of different LSC phenotypes is necessary to enhance risk group classification, guide clinical decision-making and to identify new therapeutic targets. These efforts to eliminate LSC should ultimately improve the dismal AML outcome by preventing relapse development.
Collapse
Affiliation(s)
- Diana Hanekamp
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Department of Paediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerrit Jan Schuurhuis
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Yang K, Chen Y, To KKW, Wang F, Li D, Chen L, Fu L. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med 2017; 49:e303. [PMID: 28303028 PMCID: PMC5382559 DOI: 10.1038/emm.2016.168] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/20/2016] [Accepted: 10/24/2016] [Indexed: 01/13/2023] Open
Abstract
Alectinib, an inhibitor of anaplastic lymphoma kinase (ALK), was approved by the Food and Drug Administration (FDA) for the treatment of patients with ALK-positive non-small cell lung cancer (NSCLC). Here we investigated the reversal effect of alectinib on multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters, which is the primary cause of chemotherapy failure. We provide the first evidence that alectinib increases the sensitivity of ABCB1- and ABCG2-overexpressing cells to chemotherapeutic agents in vitro and in vivo. Mechanistically, alectinib increased the intracellular accumulation of ABCB1/ABCG2 substrates such as doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, alectinib stimulated ATPase activity and competed with substrates of ABCB1 or ABCG2 and competed with [125I] iodoarylazidoprazosin (IAAP) photolabeling bound to ABCB1 or ABCG2 but neither altered the expression and localization of ABCB1 or ABCG2 nor the phosphorylation levels of AKT and ERK. Alectinib also enhanced the cytotoxicity of DOX and the intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. These findings suggest that alectinib combined with traditional chemotherapy may be beneficial to patients with ABCB1- or ABCG2-mediated MDR.
Collapse
Affiliation(s)
- Ke Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Yifan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Delan Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Likun Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| |
Collapse
|
10
|
Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer 2017; 16:2. [PMID: 28137304 PMCID: PMC5282926 DOI: 10.1186/s12943-016-0574-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997, extensive studies have been contributed to identification and characterization of such cell populations in various tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens, microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical trials for evaluation of their effects on leukemias.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, China. .,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
11
|
Combination screening in vitro identifies synergistically acting KP372-1 and cytarabine against acute myeloid leukemia. Biochem Pharmacol 2016; 118:40-49. [PMID: 27565890 DOI: 10.1016/j.bcp.2016.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022]
Abstract
Cytogenetic lesions often alter kinase signaling in acute myeloid leukemia (AML) and the addition of kinase inhibitors to the treatment arsenal is of interest. We have screened a kinase inhibitor library and performed combination testing to find promising drug-combinations for synergistic killing of AML cells. Cytotoxicity of 160 compounds in the library InhibitorSelect™ 384-Well Protein Kinase Inhibitor I was measured using the fluorometric microculture cytotoxicity assay (FMCA) in three AML cell lines. The 15 most potent substances were evaluated for dose-response. The 6 most cytotoxic compounds underwent combination synergy analysis based on the FMCA readouts after either simultaneous or sequential drug addition in AML cell lines. The 4 combinations showing the highest level of synergy were evaluated in 5 primary AML samples. Synergistic calculations were performed using the combination interaction analysis package COMBIA, written in R, using the Bliss independence model. Based on obtained results, an iterative combination search was performed using the therapeutic algorithmic combinatorial screen (TACS) algorithm. Of 160 substances, cell survival was ⩽50% at <0.5μM for Cdk/Crk inhibitor, KP372-1, synthetic fascaplysin, herbimycin A, PDGF receptor tyrosine kinase inhibitor IV and reference-drug cytarabine. KP372-1, synthetic fascaplysin or herbimycin A obtained synergy when combined with cytarabine in AML cell lines MV4-11 and HL-60. KP372-1 added 24h before cytarabine gave similar results in patient cells. The iterative search gave further improved synergy between cytarabine and KP372-1. In conclusion, our in vitro studies suggest that combining KP372-1 and cytarabine is a potent and synergistic drug combination in AML.
Collapse
|
12
|
Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 2016; 40:1-20. [PMID: 27678246 DOI: 10.1007/s13402-016-0297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, Box 113, New York, NY, 10065, USA.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
13
|
Li B, Zhao W, Zhang X, Wang J, Luo X, Baker SD, Jordan CT, Dong Y. Design, synthesis and evaluation of anti-CD123 antibody drug conjugates. Bioorg Med Chem 2016; 24:5855-5860. [PMID: 27687970 DOI: 10.1016/j.bmc.2016.09.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/02/2023]
Abstract
Leukemia stem cells (LSCs) account for the development of drug resistance and increased recurrence rate in acute myeloid leukemia (AML) patients. Targeted drug delivery to leukemia stem cells remains a major challenge in AML chemotherapy. Overexpressed interleukin-3 receptor alpha chain, CD123, on the surface of leukemia stem cells was reported to be a potential target in AML treatment. Here, we designed and developed an antibody drug conjugate (CD123-CPT) by integrating anti-CD123 antibody with a chemotherapeutic agent, Camptothecin (CPT), via a disulfide linker. The linker is biodegradable in the presence of Glutathione (GSH, an endogenous component in cells), which leads to release of CPT. Anti-CD123 antibody conjugates showed significant higher cellular uptake in CD123-overexpressed tumor cells. More importantly, CD123-CPT demonstrated potent inhibitory effects on CD123-overexpressed tumor cells. Consequently, these results provide a promising targeted chemotherapeutical strategy for AML treatment.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Xinfu Zhang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Junfeng Wang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Xiao Luo
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Sharyn D Baker
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
14
|
Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 2016; 165:114-31. [DOI: 10.1016/j.pharmthera.2016.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
|
15
|
Kostadinova A, Topouzova-Hristova T, Momchilova A, Tzoneva R, Berger MR. Antitumor Lipids--Structure, Functions, and Medical Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:27-66. [PMID: 26572975 DOI: 10.1016/bs.apcsb.2015.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels.
Collapse
Affiliation(s)
- Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Martin R Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit, Heidelberg, Germany
| |
Collapse
|
16
|
Shen J, Hong Y, Zhao Q, Zhang JL. Preclinical evaluation of perifosine as a potential promising anti-rhabdomyosarcoma agent. Tumour Biol 2015; 37:1025-33. [PMID: 26269112 DOI: 10.1007/s13277-015-3740-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer that arises from the skeletal muscle. Recent studies have identified an important role of AKT signaling in RMS progression. In the current study, we investigated the activity of perifosine, an oral alkylphospholipid AKT inhibitor, against human RMS cells (RD and Rh-30 lines) both in vivo and in vitro, and studied the underlying mechanisms. We showed that perifosine significantly inhibited RMS cell growth in concentration- and time-dependent manners. Meanwhile, perifosine induced dramatic apoptosis in RMS cells. At the signaling level, perifosine blocked AKT activation, while inducing reactive oxygen species (ROS) production as well as JNK and P38 phosphorylations in RMS cells. Restoring AKT activation by introducing a constitutively active-AKT (CA-AKT) only alleviated (not abolished) perifosine-induced cytotoxicity in RD cells. Yet, the ROS scavenger N-acetyl cysteine (NAC) as well as pharmacological inhibitors against JNK (SP-600125) or P38 (SB-203580) suppressed perifosine-induced cytotoxicity in RMS cells. Thus, perifosine induces growth inhibition and apoptosis in RMS cells through mechanisms more than just blocking AKT. In vivo, oral administration of perifosine significantly inhibited growth of Rh-30 xenografts in severe combined immunodeficient (SCID) mice. Our data indicate that perifosine might be further investigated as a promising anti-RMS agent.
Collapse
Affiliation(s)
- Jie Shen
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yue Hong
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qiong Zhao
- Department of Thoracic Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| | - Jian-Li Zhang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
17
|
Lin X, Fang Q, Chen S, Zhe N, Chai Q, Yu M, Zhang Y, Wang Z, Wang J. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leuk Res 2015; 39:544-52. [PMID: 25828744 DOI: 10.1016/j.leukres.2015.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/26/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
Abstract
There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.
Collapse
Affiliation(s)
- Xiaojing Lin
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Qin Fang
- Department of Pharmacy, the Affiliated Baiyun Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Shuya Chen
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Nana Zhe
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Qixiang Chai
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Meisheng Yu
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Yaming Zhang
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Ziming Wang
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Jishi Wang
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China.
| |
Collapse
|
18
|
Hu T, Li C, Zhang Y, Wang L, Peng L, Cheng H, Wang W, Chu Y, Xu M, Cheng T, Yuan W. Phosphoinositide-dependent kinase 1 regulates leukemia stem cell maintenance in MLL-AF9-induced murine acute myeloid leukemia. Biochem Biophys Res Commun 2015; 459:692-8. [PMID: 25769952 DOI: 10.1016/j.bbrc.2015.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022]
Abstract
Although great efforts have been made to improve available therapies, the mortality rate of acute myeloid leukemia (AML) remains high due to poor treatment response and frequent relapse after chemotherapy. Leukemia stem cells (LSCs) are thought to account for this poor prognosis and relapse. Phosphoinositide-dependent kinase 1 (PDK1) is a critical regulator of the PI3K/Akt pathway and has been shown to be frequently activated in leukemia. However, the role of PDK1 in the regulation of LSCs in AML is still not clear. Using a PDK1 conditional deletion MLL-AF9 murine AML model, we revealed that the deletion of PDK1 prolonged the survival of AML mice by inducing LSC apoptosis. This was accompanied by the increased expression of the pro-apoptotic genes Bax and p53 and the reduced expression of Stat5, which has been shown to be constitutively activated in leukemia. Thus, our findings suggest that PDK1 plays an essential role in maintaining LSCs. Further delineating the function of PDK1 in LSCs may provide a new strategy for the improved treatment of AML relapse.
Collapse
Affiliation(s)
- Tianyuan Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Cong Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Le Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Luyun Peng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Mingjiang Xu
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
19
|
Carneiro BA, Kaplan JB, Altman JK, Giles FJ, Platanias LC. Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia. Cancer Biol Ther 2015; 16:648-56. [PMID: 25801978 PMCID: PMC4622839 DOI: 10.1080/15384047.2015.1026510] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 12/29/2022] Open
Abstract
An accumulating understanding of the complex pathogenesis of acute myeloid leukemia (AML) continues to lead to promising therapeutic approaches. Among the key aberrant intracellular signaling pathways involved in AML, the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) axis is of major interest. This axis modulates a wide array of critical cellular functions, including proliferation, metabolism, and survival. Pharmacologic inhibitors of components of this pathway have been developed over the past decade, but none has an established role in the treatment of AML. This review will discuss the preclinical data and clinical results driving ongoing attempts to exploit the PI3K/AKT/mTOR pathway in patients with AML and address issues related to negative feedback loops that account for leukemic cell survival. Targeting the PI3K/AKT/mTOR pathway is of high interest for the treatment of AML, but combination therapies with other targeted agents may be needed to block negative feedback loops in leukemia cells.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Jason B Kaplan
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Jessica K Altman
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Francis J Giles
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
- Division of Hematology-Oncology; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL, USA
| |
Collapse
|
20
|
Rasul A, Zhao BJ, Liu J, Liu B, Sun JX, Li J, Li XM. Molecular Mechanisms of Casticin Action: an Update on its Antitumor Functions. Asian Pac J Cancer Prev 2014; 15:9049-58. [DOI: 10.7314/apjcp.2014.15.21.9049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia 2014; 28:2197-205. [PMID: 24699302 DOI: 10.1038/leu.2014.123] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 12/24/2022]
Abstract
Acute myeloid leukemia (AML) primary cells express high levels of phosphorylated Akt, a master regulator of cellular functions regarded as a promising drug target. By means of reverse phase protein arrays, we examined the response of 80 samples of primary cells from AML patients to selective inhibitors of the phosphatidylinositol 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis. We confirm that >60% of the samples analyzed are characterized by high pathway phosphorylation. Unexpectedly, however, we show here that targeting Akt and mTOR with the specific inhibitors Akti 1/2 and Torin1, alone or in combination, result in paradoxical Akt phosphorylation and activation of downstream signaling in 70% of the samples. Indeed, we demonstrate that cropping Akt or mTOR activity can stabilize the Akt/mTOR downstream effectors Forkhead box O and insulin receptor substrate-1, which in turn potentiate signaling through upregulation of the expression/phosphorylation of selected growth factor receptor tyrosine kinases (RTKs). Activation of RTKs in turn reactivates PI3K and downstream signaling, thus overruling the action of the drugs. We finally demonstrate that dual inhibition of Akt and RTKs displays strong synergistic cytotoxic effects in AML cells and downmodulates Akt signaling to a much greater extent than either drug alone, and should therefore be explored in AML clinical setting.
Collapse
|
22
|
ZHAO BING, LI XIAOMENG. Altholactone induces reactive oxygen species-mediated apoptosis in bladder cancer T24 cells through mitochondrial dysfunction, MAPK-p38 activation and Akt suppression. Oncol Rep 2014; 31:2769-75. [DOI: 10.3892/or.2014.3126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/14/2014] [Indexed: 11/06/2022] Open
|
23
|
Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia. Leukemia 2013; 28:1196-206. [PMID: 24310736 DOI: 10.1038/leu.2013.369] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022]
Abstract
Constitutively active phosphoinositide 3-kinase (PI3K) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival and drug resistance. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120 (BKM120), an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in G2/M phase cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T lymphoblasts, and promoting a dose- and time-dependent dephosphorylation of Akt and S6RP. BKM120 maintained its pro-apoptotic activity against Jurkat cells even when cocultured with MS-5 stromal cells, which mimic the bone marrow microenvironment. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. Moreover, in vivo administration of BKM120 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth, thus prolonging survival time. Taken together, our findings indicate that BKM120, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment for T-ALLs that have aberrant upregulation of the PI3K signaling pathway.
Collapse
|
24
|
Huang W, Yang L, Liang S, Liu D, Chen X, Ma Z, Zhai S, Li P, Wang X. AEG-1 is a target of perifosine and is over-expressed in gastric dysplasia and cancers. Dig Dis Sci 2013; 58:2873-80. [PMID: 23912246 DOI: 10.1007/s10620-013-2735-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Perifosine, an alkylphospholipid, is an Akt inhibitor which inhibits the growth of diverse cancer cells. We have reported its inhibitory effects on the growth of gastric cancer cells recently, but its molecular mechanisms are still largely unknown. AIMS The purpose of this study was to investigate the effect and regulatory mechanism of perifosine in gastric cancer. METHODS Cell viability was determined by sulforhodamine B assay after transiently transfected with AEG-1 specific siRNAs. qRT-PCR and western blot assay were used to determine the mRNA expression and proteins levels of cell signaling molecules examined. Immunohistochemistry was used to detect the AEG-1 expression in 87 gastric carcinomas, 60 dysplasia, and 47 normal gastric mucosa. RESULTS Perifosine decreased AEG-1 gene expression along with inhibition of Akt/GSK3β/C-MYC signaling pathway. Knockdown of AEG-1 using siRNA led to significant down-regulation of cyclin D1 expression at both mRNA level and protein level, and inhibited the growth of gastric cancer cells. AEG-1 expression was elevated in gastric dysplasia and cancer tissues compared to normal gastric mucosa (P < 0.01). AEG-1 over-expression correlated with diffuse type of gastric cancer and advanced tumor stages. CONCLUSIONS Perifosine inhibits the growth of gastric cancer cells possibly through inhibition of the Akt/GSK3β/C-MYC signaling pathway-mediated down-regulation of AEG-1 that subsequently down-regulated cyclin D1. AEG-1 may play an important role in the carcinogenesis and progression of gastric cancer and could be a therapeutic target of perifosine.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Pathology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, 210006, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Espirito Santo A, Medeiros R. Pharmacogenetic considerations for non-Hodgkin's lymphoma therapy. Expert Opin Drug Metab Toxicol 2013; 9:1625-34. [PMID: 24053936 DOI: 10.1517/17425255.2013.835803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chemotherapy is the current standard treatment for hematological malignancies for both curative and palliative purposes. Unfortunately, in the current treatment scenario chemotherapy resistance is an issue that is know to lead to a relapse in cancer. The multidrug resistance 1 (MDR1) gene is often involved in drug resistance and, so far, the best studied mechanism of resistance relates to the level of P-glycoprotein (P-gp) expression on cancer cells; however, correlation with single nucleotide polymorphism (SNP) in the MDR1 gene has also been observed via a number of different mechanisms that interfere with function and expression of P-gp. AREAS COVERED This article describes the influence of P-gp expression and SNP on the MDR1 gene in non-Hodgkin's lymphoma (NHL) and their effect on both its risk and outcome. The authors also provide a brief summary of the more important therapeutic options, which aim to overcome this drug resistance mechanism, and discuss their known mechanisms of action. EXPERT OPINION There is evidence pertaining to an association between the outcome of NHL and P-gp expression. However, the authors emphasize the need for more studies to reinforce this evidence. Furthermore, there is a definite need for the therapeutic targets, which provide tumor cellular lines of interest, to be tested in humans, in order to better evaluate their toxicity and overall effect on the outcome. The ultimate aim of this research is to develop specifically designed therapies that are tailored to the intrinsic characteristics of specific patients.
Collapse
Affiliation(s)
- Ana Espirito Santo
- Servico de OncoHematologia, Portuguese Institute of Oncology , Porto , Portugal
| | | |
Collapse
|
26
|
Krawczyk J, Keane N, Swords R, O'Dwyer M, Freeman CL, Giles FJ. Perifosine--a new option in treatment of acute myeloid leukemia? Expert Opin Investig Drugs 2013; 22:1315-27. [PMID: 23931614 DOI: 10.1517/13543784.2013.826648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Perifosine is a novel targeted oral Akt inhibitor. In preclinical leukemia models, perifosine has an independent cytotoxic potential but also synergizes well with other rationally selected targeted agents. The evidence from clinical trials supporting the use of perifosine in the therapy of leukemias is limited. The optimal dose and schedule have yet to be defined. However, given its favorable toxicity profile and mechanism of action, the therapeutic potential of perifosine should be evaluated in well-designed clinical trials. AREAS COVERED The role of the phosphatidylinositol-3 kinase (PI3K)/Akt zpathway in normal cells, cancer and leukemias is discussed. The mechanism of action of perifosine and the basic information on the development and chemical properties are summarized. The evidence from in vivo and in vitro studies is presented. The efficacy and side effect profile are summarized. EXPERT OPINION The safety and tolerability profile of perifosine are satisfactory. The evidence from clinical trials in patients with leukemias is very limited. The preclinical data are encouraging. Perifosine has the potential to play a role in the treatment of leukemias in the future. Its role needs to be confirmed in clinical trials.
Collapse
|
27
|
Shen J, Liang L, Wang C. Perifosine inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via regulation multiple signaling pathways: new implication for Kawasaki disease (KD) treatment. Biochem Biophys Res Commun 2013; 437:250-5. [PMID: 23806687 DOI: 10.1016/j.bbrc.2013.06.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 11/16/2022]
Abstract
Kawasaki disease (KD) is a multisystem vasculitis of unknown etiology, with coronary artery aneurysms occurring in majority of untreated cases. Tumor necrosis factor (TNF)-α is the pleiotropic inflammatory cytokine elevated during the acute phase of KD, which induces damage to vascular endothelial cells to cause systemic vasculitis. We here investigated the potential role of perifosine, a novel Akt inhibitor, on TNFα expression in LPS-stimulated macrophages and in ex-vivo cultured peripheral blood mononuclear cells (PBMCs) of acute KD patients. Here, we found that perifosine inhibited LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, perifosine administration down-regulated TNFα production in PBMCs isolated from acute KD patients. For the mechanism study, we found that perifosine significantly inhibited Akt and ERK/mitogen-activated protein kinases (MAPK) signaling, while activating AMP-activated protein kinase (AMPK) signaling in both patients' PBMCs and LPS-stimulated macrophages. Interestingly, although perifosine is generally known as an Akt inhibitor, our data suggested that ERK inhibition and AMPK activation, but not Akt inactivation were possibly involved in perifosine-mediated inhibition against TNFα production in monocytes. In conclusion, our data suggested that perifosine significantly inhibited TNFα production via regulation multiple signaling pathways. The results of this study should have significant translational relevance in managing this devastating disease.
Collapse
Affiliation(s)
- Jie Shen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, China
| | | | | |
Collapse
|
28
|
Giacomini A, Righi M, Cleris L, Locatelli SL, Mitola S, Daidone MG, Gianni AM, Carlo-Stella C. Induction of death receptor 5 expression in tumor vasculature by perifosine restores the vascular disruption activity of TRAIL-expressing CD34(+) cells. Angiogenesis 2013; 16:707-22. [PMID: 23605004 DOI: 10.1007/s10456-013-9348-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/15/2013] [Indexed: 01/31/2023]
Abstract
The proapoptotic death receptor 5 (DR5) expressed by tumor associated endothelial cells (TECs) mediates vascular disrupting effects of human CD34(+) cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL (+) cells) in mice. Indeed, lack of DR5 on TECs causes resistance to CD34-TRAIL (+) cells. By xenografting in nonobese diabetic/severe combined immunodeficient mice the TRAIL-resistant lymphoma cell line SU-DHL-4V, which generates tumors lacking endothelial DR5 expression, here we demonstrate for the first time that the Akt inhibitor perifosine induces in vivo DR5 expression on TECs, thereby overcoming tumor resistance to the vascular disruption activity of CD34-TRAIL (+) cells. In fact, CD34-TRAIL (+) cells combined with perifosine, but not CD34-TRAIL (+) cells alone, exerted marked antivascular effects and caused a threefold increase of hemorrhagic necrosis in SU-DHL-4V tumors. Consistent with lack of DR5 expression, CD34-TRAIL (+) cells failed to affect the growth of SU-DHL-4V tumors, but CD34-TRAIL (+) cells plus perifosine reduced tumor volumes by 60 % compared with controls. In view of future clinical studies using membrane-bound TRAIL, our results highlight a strategy to rescue patients with primary or acquired resistance due to the lack of DR5 expression in tumor vasculature.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Via Manzoni, 56, 20089 Rozzano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Liang S, Guo R, Zhang Z, Liu D, Xu H, Xu Z, Wang X, Yang L. Upregulation of the eIF4E signaling pathway contributes to the progression of gastric cancer, and targeting eIF4E by perifosine inhibits cell growth. Oncol Rep 2013; 29:2422-30. [PMID: 23588929 DOI: 10.3892/or.2013.2397] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/15/2013] [Indexed: 12/16/2022] Open
Abstract
The increase of eukaryotic translation initiation factor 4E (eIF4E) expression is frequently observed in several types of cancer, making eIF4E an attractive anticancer drug target. However, the role of eIF4E in gastric cancer pathogenesis remains unclear. Perifosine is a bioavailable alkylphospholipid exhibiting antitumor activity in a series of cancer types. In this study, gastric cancer cell lines were selected to explore the role of eIF4E as a potential target for treating human gastric cancer. The expression of total eIF4E (T-eIF4E)and phosphorylated eIF4E (p-eIF4E) in gastric cancer samples was detected by immunohistochemical assay. RNA interference was used to silence eIF4E expression. Sulforhodamine B assay was performed to evaluate tumor cell viability. Colony formation assay was used to examine the effects of eIF4E small interfering RNA (siRNA) or perifosine on colony formation. The mRNA levels of eIF4E were analyzed by qRT-PCR and western blot analysis was carried out to evaluate the expression of Akt and eIF4E. The results showed that increased expression levels of T-eIF4E and p-eIF4E were found in gastric cancer tissues and cells. Reduced eIF4E expression blocked the proliferation of gastric cancer cells. Perifosine downregulated the T-eIF4E and p-eIF4E levels in a dose- and time-dependent manner; it also inhibited the growth of gastric cancer cells. Moreover, this inhibitory effect was significantly enhanced by the combination of eIF4E siRNA and perifosine treatments. Our results indicate that eIF4E gene silencing can inhibit tumor cell growth, and eIF4E can be developed as a promising therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Song Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yao C, Wei JJ, Wang ZY, Ding HM, Li D, Yan SC, Yang YJ, Gu ZP. Perifosine induces cell apoptosis in human osteosarcoma cells: new implication for osteosarcoma therapy? Cell Biochem Biophys 2013; 65:217-27. [PMID: 23015227 DOI: 10.1007/s12013-012-9423-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the advances of adjuvant chemotherapy and significant improvement of survival, the prognosis for patients with osteosarcoma is generally poor. The search for more effective anti-osteosarcoma agents is necessary and urgent. Here we report that perifosine induces cell apoptosis and growth inhibition in cultured human osteosarcoma cells. Perifosine blocks Akt/mTOR complex 1 (mTORC1) signaling, while promoting caspase-3, c-Jun N-terminal kinases (JNK), and p53 activation. Further, perifosine inhibits survivin expression probably by disrupting its association with heat shock protein-90 (HSP-90). These signaling changes together were responsible for a marked increase of osteosarcoma cell apoptosis and growth inhibition. Finally, we found that a low dose of perifosine enhanced etoposide- or doxorubicin-induced anti-OS cells activity. The results together suggest that perifosine might be used as a novel and effective anti-osteosarcoma agent.
Collapse
Affiliation(s)
- Chen Yao
- Department of Orthopedics, BenQ Medical Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Phase I study of UCN-01 and perifosine in patients with relapsed and refractory acute leukemias and high-risk myelodysplastic syndrome. Invest New Drugs 2013; 31:1217-27. [PMID: 23443507 DOI: 10.1007/s10637-013-9937-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/07/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND The PI3K-Akt pathway is frequently activated in acute leukemias and represents an important therapeutic target. UCN-01 and perifosine are known to inhibit Akt activation. METHODS The primary objective of this phase I study was to determine the maximum tolerated dose (MTD) of UCN-01 given in combination with perifosine in patients with advanced acute leukemias and myelodysplastic syndrome. Secondary objectives included safety, pharmacokinetics, pharmacodynamics, and efficacy. Perifosine 150 mg every 6 h was given orally on day 1 followed by 100 mg once a day continuously in 28-day cycles. UCN-01 was given intravenously over 3 h on day 4 at three dose levels (DL1=40 mg/m(2); DL2=65 mg/m(2); DL3=90 mg/m(2)). RESULTS Thirteen patients were treated (DL1, n=6; DL2, n=4; DL3, n=3) according to a traditional "3+3" design. Two patients at the DL3 experienced dose-limiting toxicity including grade 3-4 pericardial effusion, hypotension, hyperglycemia, hyperkalemia, constitutional symptoms and grade 5 pneumonitis. Other frequent toxicities were grade 1-2 nausea, diarrhea, vomiting, fatigue and hyperglycemia. The MTD was determined to be UCN-01 65 mg/m(2) with perifosine 100 mg a day. No appreciable direct Akt inhibition could be demonstrated in patients' mononuclear cells using Western blot, however, reduced phosphorylation of the downstream target ribosomal protein S6 in leukemic blasts was noted by intracellular flow cytometry. No objective responses were observed on this study. CONCLUSION UCN-01 and perifosine can be safely administered, but this regimen lacked clinical efficacy. This approach may have failed because of insufficient Akt inhibition in vivo.
Collapse
|
32
|
Piedfer M, Bouchet S, Tang R, Billard C, Dauzonne D, Bauvois B. p70S6 kinase is a target of the novel proteasome inhibitor 3,3'-diamino-4'-methoxyflavone during apoptosis in human myeloid tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1316-28. [PMID: 23481040 DOI: 10.1016/j.bbamcr.2013.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/17/2013] [Accepted: 02/15/2013] [Indexed: 12/01/2022]
Abstract
Acute myeloid leukemia (AML) is a deadly disease characterized by the clonal expansion and accumulation of hematopoietic stem cells arrested at various stages of development. Clinical research efforts are currently focusing on targeted therapies that induce apoptosis in AML cells. Herein, the effects and mechanisms of the novel flavone 3,3'-diamino-4'-methoxyflavone (DD1) on AML cell dysfunction were investigated in AML cells (monoblast U937, myelomonocyte OCI-AML3, promyelocyte NB4, myeloblast HL-60) and blood samples from patients with AML. The administration of DD1 inhibited proliferation and induced death of AML cell lines and reduced the clonogenic activity of AML, but not normal, blood cells. The flavone's apoptotic action in U937 cells was associated with recruitment of mitochondria, Bax activation, Bad dephosphorylation (at Ser(136)), activation of caspases -8, -9, and -3 and cleavage of the caspase substrate PARP-1. DD1 induced a marked decrease in (i) Thr(389)-phosphorylation and (ii) protein levels of the caspase-3 substrate P70 ribosomal S6 kinase (P70S6K, known for its ability to phosphorylate Bad). Caspase-dependent apoptosis and P70S6K degradation were simultaneously prevented by the caspase inhibitors. Importantly, DD1 was shown to directly inhibit the proteasome's chymotrypsin-like activity in U937 cells. Apoptotic activity of the proteasome inhibitor bortezomib was also related to Bax activation and P70S6K downregulation. Accordingly, DD1 failed to induce P70S6K cleavage, Bax stimulation and apoptosis in K562 cells resistant to bortezomib. These results indicate that DD1 has the potential to eradicate AML cells and support a critical role for Bax and P70S6K in DD1-mediated proteasome inhibition and apoptosis of leukemia cells.
Collapse
Affiliation(s)
- Marion Piedfer
- Université Pierre et Marie Curie, Université Paris-Descartes, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Meng H, Jin Y, Liu H, You L, Yang C, Yang X, Qian W. SNS-032 inhibits mTORC1/mTORC2 activity in acute myeloid leukemia cells and has synergistic activity with perifosine against Akt. J Hematol Oncol 2013; 6:18. [PMID: 23415012 PMCID: PMC3599109 DOI: 10.1186/1756-8722-6-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disorder with aberrant regulation of a variety of signal pathways. Therefore, simultaneous targeting of two or even more deregulated signal transduction pathways is needed to overcome drug resistance. Previously, it was reported that SNS-032, a selective cyclin-dependent kinase inhibitor, is an effective agent for treatment of AML; however, the molecular mechanisms of SNS-032-induced cell death of AML cells are not yet fully understood. The aim of the study was to characterize the effects in vitro of SNS-032, used alone and in combination with an Akt inhibitor perifosine, against AML cells and to identify the mechanism involved. RESULTS SNS-032 significantly induced cytotoxicity in human AML cell lines and blasts from patients with newly diagnosed or relapsed AML. However, Kasumi-1 cells and some of leukemic samples (14.9%) from AML patients were resistant to SNS-032-mediated cell death. Western blot analysis showed that SNS-032 strongly inhibited the phosphorylation of mammalian target of rapamycin (mTOR) on Ser 2448 and Ser2481, and that removal of SNS-032 resulted in partial recovery of cell death and reactivation of phosphorylation of mTOR. Moreover, exogenous insulin-like growth factor-1 (IGF-1) did not reverse SNS-032-induced cell growth inhibition and downregualtion of phosphor-mTOR at Ser2448 and Ser2481 although slight suppression of IGF-1R expression was triggered by the agent. Furthermore, SNS-032 at a lower concentration (60-80 nM) enhanced AML cell cytotoxicity induced by perifosine, an Akt inhibitor. Importantly, SNS-032 treatment reduced colony formation ability of AML cells, which was significantly increased when two agents were combined. This combination therapy led to almost complete inhibition of Akt activity. CONCLUSION We conclude that SNS-032 might directly target mammalian target of rapamycin complex 1 (mTORC1)/mTORC2. Our results further provide a rationale for combining SNS-032 with perifosine for the treatment of AML.
Collapse
Affiliation(s)
- Haitao Meng
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Anticancer mechanisms and clinical application of alkylphospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:663-74. [PMID: 23137567 DOI: 10.1016/j.bbalip.2012.10.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 11/20/2022]
Abstract
Synthetic alkylphospholipids (ALPs), such as edelfosine, miltefosine, perifosine, erucylphosphocholine and erufosine, represent a relatively new class of structurally related antitumor agents that act on cell membranes rather than on DNA. They selectively target proliferating (tumor) cells, inducing growth arrest and apoptosis, and are potent sensitizers of conventional chemo- and radiotherapy. ALPs easily insert in the outer leaflet of the plasma membrane and cross the membrane via an ATP-dependent CDC50a-containing 'flippase' complex (in carcinoma cells), or are internalized by lipid raft-dependent endocytosis (in lymphoma/leukemic cells). ALPs resist catabolic degradation, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. At the same time, stress pathways (e.g. stress-activated protein kinase/JNK) are activated to promote apoptosis. In many preclinical and clinical studies, perifosine was the most effective ALP, mainly because it inhibits Akt activity potently and consistently, also in vivo. This property is successfully exploited clinically in highly malignant tumors, such as multiple myeloma and neuroblastoma, in which a tyrosine kinase receptor/Akt pathway is amplified. In such cases, perifosine therapy is most effective in combination with conventional anticancer regimens or with rapamycin-type mTOR inhibitors, and may overcome resistance to these agents. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
|
35
|
Bruserud O, Reikvam H, Kittang AO, Ahmed AB, Tvedt THA, Sjo M, Hatfield KJ. High-dose etoposide in allogeneic stem cell transplantation. Cancer Chemother Pharmacol 2012; 70:765-82. [PMID: 23053272 DOI: 10.1007/s00280-012-1990-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/19/2012] [Indexed: 12/19/2022]
Abstract
The anti-leukemic effect of etoposide is well documented. High-dose etoposide 60 mg/kg in combination with fractionated total body irradiation (TBI), usually single fractions of 1.2 Gy up to a total of 13.2 Gy, is used as conditioning therapy for allogeneic stem cell transplantation. Most studies of this conditioning regimen have included patients with acute leukemia receiving bone marrow or mobilized stem cell grafts derived from family or matched unrelated donors, and the treatment is then effective even in patients with high-risk disease. The most common adverse effects are fever with hypotension and rash, nausea and vomiting, sialoadenitis, neuropathy and metabolic acidosis. A small minority of patients develop severe allergic reactions. Etoposide has also been tested in a wide range of combination regimens, but for many of these combinations, relatively few patients are included, and some combinations have only been tested in patients who have undergone autologous transplants. However, the general conclusion is that many of these combinations are effective in patients with high-risk malignancies and the toxicity often seems acceptable. Thus, etoposide-based conditioning therapy should be further evaluated in patients having allogeneic transplants, but randomized trials are needed and the design of future trials should be based on the well-characterized TBI + high-dose etoposide regimen.
Collapse
Affiliation(s)
- Oystein Bruserud
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
36
|
Barrett D, Brown VI, Grupp SA, Teachey DT. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr Drugs 2012; 14:299-316. [PMID: 22845486 PMCID: PMC4214862 DOI: 10.2165/11594740-000000000-00000] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphatidylinositiol 3-kinase (PI3K), AKT, mammalian target of rapamycin (mTOR) signaling pathway (PI3K/AKT/mTOR) is frequently dysregulated in disorders of cell growth and survival, including a number of pediatric hematologic malignancies. The pathway can be abnormally activated in childhood acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), and chronic myelogenous leukemia (CML), as well as in some pediatric lymphomas and lymphoproliferative disorders. Most commonly, this abnormal activation occurs as a consequence of constitutive activation of AKT, providing a compelling rationale to target this pathway in many of these conditions. A variety of agents, beginning with the rapamycin analogue (rapalog) sirolimus, have been used successfully to target this pathway in a number of pediatric hematologic malignancies. Rapalogs demonstrate significant preclinical activity against ALL, which has led to a number of clinical trials. Moreover, rapalogs can synergize with a number of conventional cytotoxic agents and overcome pathways of chemotherapeutic resistance for drugs commonly used in ALL treatment, including methotrexate and corticosteroids. Based on preclinical data, rapalogs are also being studied in AML, CML, and non-Hodgkin's lymphoma. Recently, significant progress has been made using rapalogs to treat pre-malignant lymphoproliferative disorders, including the autoimmune lymphoproliferative syndrome (ALPS); complete remissions in children with otherwise therapy-resistant disease have been seen. Rapalogs only block one component of the pathway (mTORC1), and newer agents are under preclinical and clinical development that can target different and often multiple protein kinases in the PI3K/AKT/mTOR pathway. Most of these agents have been tolerated in early-phase clinical trials. A number of PI3K inhibitors are under investigation. Of note, most of these also target other protein kinases. Newer agents are under development that target both mTORC1 and mTORC2, mTORC1 and PI3K, and the triad of PI3K, mTORC1, and mTORC2. Preclinical data suggest these dual- and multi-kinase inhibitors are more potent than rapalogs against many of the aforementioned hematologic malignancies. Two classes of AKT inhibitors are under development, the alkyl-lysophospholipids (APLs) and small molecule AKT inhibitors. Both classes have agents currently in clinical trials. A number of drugs are in development that target other components of the pathway, including eukaryotic translation initiation factor (eIF) 4E (eIF4E) and phosphoinositide-dependent protein kinase 1 (PDK1). Finally, a number of other key signaling pathways interact with PI3K/AKT/mTOR, including Notch, MNK, Syk, MAPK, and aurora kinase. These alternative pathways are being targeted alone and in combination with PI3K/AKT/mTOR inhibitors with promising preclinical results in pediatric hematologic malignancies. This review provides a comprehensive overview of the abnormalities in the PI3K/AKT/mTOR signaling pathway in pediatric hematologic malignancies, the agents that are used to target this pathway, and the results of preclinical and clinical trials, using those agents in childhood hematologic cancers.
Collapse
Affiliation(s)
- David Barrett
- Department of Pediatrics, Division of Oncology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
| | - Valerie I. Brown
- Department of Pediatrics, Division of Oncology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
| | - Stephan A. Grupp
- Department of Pediatrics, Division of Oncology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
| | - David T. Teachey
- Department of Pediatrics, Division of Oncology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
- Department of Pediatrics, Division of Hematology, Children’s
Hospital of Philadelphia, University of Pennsylvania School of Medicine,
Philadelphia, PA, USA
| |
Collapse
|
37
|
Ma Z, Zhu L, Luo X, Zhai S, Li P, Wang X. Perifosine enhances mTORC1-targeted cancer therapy by activation of GSK3β in NSCLC cells. Cancer Biol Ther 2012; 13:1009-17. [PMID: 22825337 DOI: 10.4161/cbt.20989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
mTORC1 inhibitors, including rapamycin and its analogs, have been actively studied both pre-clinically and clinically. However, the single treatment of mTORC1 inhibitors has been modest in most cancer types. We have previously demonstrated that the activation of PI3K/Akt and MEK/ERK signaling pathways attenuates the anticancer efficacy of mTORC1 inhibitors. In this study, we report that mTORC1 inhibition also phosphorylates and inactivates GSK3β, which is a tumor suppressor in lung cancer. Moreover, we show that perifosine, as an Akt inhibitor, decreases rapamycin-induced phosphorylation of GSK3β and elevated p-GSK3β levels in rapamycin-resistant cell lines. Combination of perifosine with mTORC1 inhibitors showed enhanced anticancer efficacy both in cell cultures and in a xenograft mouse model. In addition, perifosine inhibits the growth of both rapamycin sensitive and resistant A549 cells. However, inhibition of GSK3β by a selective inhibitor- LiCl, or downregulation of GSK3β expression by siRNA, reverses the growth inhibitory effects of perifosine on rapamycin resistant cells, suggesting the important role of GSK3β activation in enhancing mTORC1 inhibitors efficacy by perifosine. Thus, our results provide a potential therapeutic strategy to enhance mTORC1-targeted cancer therapy by using perifosine or targeting GSK3β.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
38
|
Morishita N, Tsukahara H, Chayama K, Ishida T, Washio K, Miyamura T, Yamashita N, Oda M, Morishima T. Activation of Akt is associated with poor prognosis and chemotherapeutic resistance in pediatric B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 2012; 59:83-9. [PMID: 22183914 DOI: 10.1002/pbc.24034] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/14/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, a pro-survival pathway, plays important roles in tumor cell growth. However, the role of Akt in the pathogenesis of pediatric B-precursor acute lymphoblastic leukemia (B-pre ALL) remains to be clarified. This study was undertaken to explore the clinical relevance and molecular mechanisms underlying the activation of Akt (i.e., phosphorylated Akt, P-Akt) in pediatric B-pre ALL. PROCEDURE We evaluated the activation status of Akt in bone marrow samples from 21 children with newly diagnosed B-pre ALL and correlated the expression level of P-Akt with clinicopathologic and prognostic features. Additionally, we transfected the myristoylated Akt cDNA into the B-pre ALL cell line, Nalm-6, and examined the effect, in vitro, of Akt activation on the response to antitumor drugs. RESULTS P-Akt expression in B-pre ALL blast cells at diagnosis was associated significantly with poor response to induction chemotherapy including prednisolone, dexamethasone, vincristine, and adriamycin in B-pre ALL patients. Both overall survival and relapse-free survival in patients with P-Akt expression were reduced significantly more than in patients without P-Akt expression. Activation of Akt reduced the extent of apoptosis induced by the antitumor drugs in Nalm-6 listed above. Activation of Akt did not induce expression of P-glycoprotein, a drug transporter that is capable of conferring multidrug resistance. CONCLUSION These results support the contention that Akt activation is a mechanism of chemotherapeutic resistance in B-pre ALL and suggest that Akt can be a therapeutic target for the treatment of relapsed or refractory pediatric B-pre ALL.
Collapse
Affiliation(s)
- Naoto Morishita
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
mTOR kinase inhibitors as a treatment strategy in hematological malignancies. Future Med Chem 2012; 4:487-504. [PMID: 22416776 DOI: 10.4155/fmc.12.14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is a key element of intracellular signal transduction, responsible for the regulation of cell growth and proliferation. Since abnormal activation of the mTOR pathway was found in several tumors, including human malignancies, it may be an attractive target for antineoplastic treatment. The first identified mTOR inhibitor was rapamycin (sirolimus). Subsequently, the most potent rapamycin analogues (rapalogues), such as everolimus, temsirolimus and deforolimus, have been developed. After encouraging preclinical experiments, several clinical trials testing the rapalogues in monotherapy or in combinations with other cytotoxic agents have been conducted in patients with hematological malignancies. Results of these studies, described in this review, indicate that inhibition of the mTOR pathway may be a very promising strategy of anti-tumor treatment in several types of lymphomas and leukemias. Recently, a second generation of more effective mTOR inhibitors has been developed. These are currently being assessed in preclinical, Phase I or I/II clinical studies.
Collapse
|
40
|
Simioni C, Neri LM, Tabellini G, Ricci F, Bressanin D, Chiarini F, Evangelisti C, Cani A, Tazzari PL, Melchionda F, Pagliaro P, Pession A, McCubrey JA, Capitani S, Martelli AM. Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia. Leukemia 2012; 26:2336-42. [PMID: 22614243 DOI: 10.1038/leu.2012.136] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder arising from T-cell progenitors. T-ALL accounts for 15% of newly diagnosed ALL cases in children and 25% in adults. Although the prognosis of T-ALL has improved, due to the use of polychemotherapy schemes, the outcome of relapsed/chemoresistant T-ALL cases is still poor. A signaling pathway that is frequently upregulated in T-ALL, is the phosphatidylinositol 3-kinase/Akt/mTOR network. To explore whether Akt could represent a target for therapeutic intervention in T-ALL, we evaluated the effects of the novel allosteric Akt inhibitor, MK-2206, on a panel of human T-ALL cell lines and primary cells from T-ALL patients. MK-2206 decreased T-ALL cell line viability by blocking leukemic cells in the G(0)/G(1) phase of the cell cycle and inducing apoptosis. MK-2206 also induced autophagy, as demonstrated by an increase in the 14-kDa form of LC3A/B. Western blotting analysis documented a concentration-dependent dephosphorylation of Akt and its downstream targets, GSK-3α/β and FOXO3A, in response to MK-2206. MK-2206 was cytotoxic to primary T-ALL cells and induced apoptosis in a T-ALL patient cell subset (CD34(+)/CD4(-)/CD7(-)), which is enriched in leukemia-initiating cells. Taken together, our findings indicate that Akt inhibition may represent a potential therapeutic strategy in T-ALL.
Collapse
Affiliation(s)
- C Simioni
- Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tong Y, Liu YY, You LS, Qian WB. Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro. Acta Pharmacol Sin 2012; 33:542-50. [PMID: 22407228 DOI: 10.1038/aps.2011.192] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM The efficacy of the Akt inhibitor perifosine against chronic myeloid leukemia (CML) cells and its mechanisms of action are unknown. In this study, the cytotoxic effects of perifosine on CML and acute myeloid leukemia (AML) cell lines were compared to elucidate the mechanisms underlying the differences. METHODS Human AML cell lines Kasumi-1 and HL-60, and the CML cell line K562 were used. Cell viability was quantitated using MTT assay. Apoptosis was determined using Annexin V-FITC/propidium iodide and Hoechst staining, which were followed by flow cytometry and fluorescence microscopy analysis, respectively. Caspase pathway activation and the expression of autophagy-related genes were examined using Western blot. Autophagy was studied using electron microscopy, the acridine orange staining method, and GFP-LC3 was examined with fluorescence microscopy. RESULTS In contrast to AML cell lines, the CML cell lines K562 and K562/G (an imatinib-insensitive CML cell line) were resistant to perifosine (2.5-20 μmol/L) in respect to inhibiting cell growth and inducing apoptosis. Perifosine (2.5, 5, and 10 μmol/L) inhibited Akt and its phosphorylation in AML cells, but not in CML cells. Treatment with perifosine (20 μmol/L) resulted in autophagy in CML cells as shown by the increased formation of acidic vesicular organelles and the accumulation of LC3-II. Treatment of CML cells with perifosine (5, 10, and 20 μmol/L) dose-dependently upregulated AGT5, but not Beclin 1 at the protein level. Furthermore, inhibition of autophagy by chloroquine (40 nmol/L) significantly suppressed the cell growth and induced apoptosis in CML cells treated with perifosine (20 μmol/L). CONCLUSION Our results show that CML cell lines were resistant to the Akt inhibitor perifosine in vitro, which is due to perifosine-induced protective autophagy and upregulation of ATG5.
Collapse
|
42
|
Sun W, Modak S. Emerging treatment options for the treatment of neuroblastoma: potential role of perifosine. Onco Targets Ther 2012; 5:21-9. [PMID: 22419878 PMCID: PMC3299554 DOI: 10.2147/ott.s14578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Achieving a cure for high-risk neuroblastoma, the most common extracranial solid tumor in children, remains a formidable task despite the recent addition of antibody-mediated anti-GD2 immunotherapy to established multimodality therapy. The PI3K/Akt pathway is a pivotal signaling pathway utilized by a plethora of receptor tyrosine kinases that contribute to the aggressive phenotype of high-risk neuroblastoma. Akt is aberrantly activated in high-risk neuroblastoma and is therefore an attractive therapeutic target. Perifosine is the best-characterized Akt inhibitor in preclinical studies and in clinical trials in adults, although safety in children is not yet confirmed. It is a synthetic third-generation alkylphospholipid with good oral bioavailability and modest side effects. Perifosine targets the lipid-binding PH domain of Akt and inhibits the translocation of Akt to the cell membrane, an essential step for Akt activation. It decreases Akt phosphorylation and increases caspase-dependent apoptosis in neuroblastoma cell lines, inhibits growth of neuroblastoma xenografts, and overcomes RTK/ligand-mediated chemoresistance. It is currently being studied in two Phase I clinical trials in children with recurrent or refractory solid tumors including neuroblastoma. In the single agent trial (ClinicalTrials.gov identifier NCT00776867), maximum tolerated dose has not yet been reached and pharmacokinetic data has been accrued. In the second study (ClinicalTrials.gov identifier NCT01049841), patients are treated with a combination of perifosine and the mTOR-inhibitor temsirolimus based on preclinical data showing synergy of the two agents, and the premise that direct Akt inhibition may overcome Akt activation secondary to mTOR inhibition. Based on results from adult trials, it is unlikely that perifosine alone will produce dramatic therapeutic effects against high-risk neuroblastoma. However, given the recent encouraging early-phase combination therapy results in adults with multiple myeloma and colorectal carcinoma, rational perifosine-containing combination regimens hold promise for neuroblastoma therapy. These will be explored after safety in children is established in Phase I studies.
Collapse
Affiliation(s)
- Weili Sun
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
43
|
The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood 2012; 119:911-23. [PMID: 22065598 DOI: 10.1182/blood-2011-07-366203] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
An important mediator of cytokine signaling implicated in regulation of hematopoiesis is the PI3K/protein kinase B (PKB/c-Akt) signaling module. Constitutive activation of this signaling module has been observed in a large group of leukemias. Because activation of this signaling pathway has been demonstrated to be sufficient to induce hematologic malignancies and is thought to correlate with poor prognosis and enhanced drug resistance, it is considered to be a promising target for therapy. A high number of pharmacologic inhibitors directed against either individual or multiple components of this pathway have already been developed to improve therapy. In this review, the safety and efficacy of both single and dual-specificity inhibitors will be discussed as well as the potential of combination therapy with either inhibitors directed against other signal transduction molecules or classic chemotherapy.
Collapse
|
44
|
Martelli AM, Tabellini G, Ricci F, Evangelisti C, Chiarini F, Bortul R, McCubrey JA, Manzoli FA. PI3K/AKT/mTORC1 and MEK/ERK signaling in T-cell acute lymphoblastic leukemia: new options for targeted therapy. Adv Biol Regul 2012; 52:214-227. [PMID: 21983557 DOI: 10.1016/j.advenzreg.2011.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Alberto M Martelli
- Cellular Signalling Laboratory, Department of Anatomical Sciences, University of Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Grimaldi C, Chiarini F, Tabellini G, Ricci F, Tazzari PL, Battistelli M, Falcieri E, Bortul R, Melchionda F, Iacobucci I, Pagliaro P, Martinelli G, Pession A, Barata JT, McCubrey JA, Martelli AM. AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications. Leukemia 2011; 26:91-100. [PMID: 21968881 DOI: 10.1038/leu.2011.269] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4(+) T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34(+)/CD7(-)/CD4(-)) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL.
Collapse
Affiliation(s)
- C Grimaldi
- Department of Human Anatomy, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lin KK, Rossi L, Boles NC, Hall BE, George TC, Goodell MA. CD81 is essential for the re-entry of hematopoietic stem cells to quiescence following stress-induced proliferation via deactivation of the Akt pathway. PLoS Biol 2011; 9:e1001148. [PMID: 21931533 PMCID: PMC3172193 DOI: 10.1371/journal.pbio.1001148] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/29/2011] [Indexed: 12/28/2022] Open
Abstract
A protein that is thought to orchestrate the distribution of other signaling molecules on the cell membrane, CD81, is critical to maintaining the functional integrity of hematopoietic stem cells during their regeneration. The regulatory mechanisms governing the cell cycle progression of hematopoietic stem cells (HSCs) are well characterized, but those responsible for the return of proliferating HSCs to a quiescent state remain largely unknown. Here, we present evidence that CD81, a tetraspanin molecule acutely responsive to proliferative stress, is essential for the maintenance of long-term repopulating HSCs. Cd81−/− HSCs showed a marked engraftment defect when transplanted into secondary recipient mice and a significantly delayed return to quiescence when stimulated to proliferate with 5-fluorouracil (5FU). In addition, we found that CD81 proteins form a polarized patch when HSCs are returning to quiescence. Thus, we propose that the spatial distribution of CD81 during the HSC recovery phase drives proliferative HSC to quiescence, and is important to preserve the self-renewal properties. Here, we show that lack of CD81 leads to loss of HSC self-renewal, and the clustering of CD81 on HSC membrane results in deactivation of Akt, which subsequently leads to nuclear translocation of FoxO1a. Thus, CD81 functions as part of a previously undefined mechanism that prohibits excessive proliferation of HSCs exposed to environmental stress. Hematopoietic stem cells (HSCs) remain dormant in the bone marrow until needed to replenish the hematopoietic system, at which point they are stimulated to proliferate extensively, undergoing both regeneration (self-renewal) and differentiation. Self-renewal is key to maintaining an adequate HSC reserve, and return to dormancy after such stimulation is critical, yet still poorly understood. In this study, we report that CD81, a transmembrane organizing protein, is a novel regulator involved in HSC self-renewal. Transplanting HSCs into mice that are lethally irradiated to remove their native HSCs stimulates the transplanted HSCs to proliferate to replenish the hematopoietic system, allowing us to examine whether and how HSCs return to quiescence. HSCs lacking CD81 take longer to return to quiescence after such stimulation, resulting in reduced stem cell function. Conversely, forced CD81 membrane clustering, using an antibody, promotes early return of proliferating stem cells to quiescence and nuclear localization of FoxO1a, a key protein that mediates the cell cycle arrest. CD81 clustering also constrains Akt activity, which orchestrates multiple pathways such as cell proliferation and responses to reactive oxygen species. Treatment of Cd81-deficient HSCs with an Akt inhibitor, perifosine, which bypasses the requirement for CD81 in this process, rescues the delay defect of Cd81-deficient HSCs. Together, our data demonstrate that CD81 is critical to maintaining the functional integrity of HSCs during regeneration, and it is acting through Akt to influence its downstream pathways that govern cell cycle progression.
Collapse
Affiliation(s)
- Kuanyin K. Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lara Rossi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
- Institute of Hematology and Medical Oncology “L. & A. Seràgnoli,” University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Nathan C. Boles
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brian E. Hall
- Amnis Corporation, Seattle, Washington, United States of America
| | | | - Margaret A. Goodell
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Bäsecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2011; 2:135-64. [PMID: 21411864 PMCID: PMC3260807 DOI: 10.18632/oncotarget.240] [Citation(s) in RCA: 453] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Martelli AM, Evangelisti C, Chiarini F, McCubrey JA. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 2011; 1:89-103. [PMID: 20671809 PMCID: PMC2911128 DOI: 10.18632/oncotarget.114] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis plays a central role in cell proliferation, growth, and survival under physiological conditions. However, aberrant PI3K/Akt/mTOR signaling has been implicated in many human cancers, including acute myelogenous leukemia (AML). Therefore, the PI3K/Akt/mTOR network is considered as a validated target for innovative cancer therapy. The limit of acceptable toxicity for standard polychemotherapy has been reached in AML. Novel therapeutic strategies are therefore needed. This review highlights how the PI3K/Akt/mTOR signaling axis is constitutively active in AML patients, where it affects survival, proliferation, and drug-resistance of leukemic cells including leukemic stem cells. Effective targeting of this pathway with small molecule kinase inhibitors, employed alone or in combination with other drugs, could result in the suppression of leukemic cell growth. Furthermore, targeting the PI3K/Akt/mTOR signaling network with small pharmacological inhibitors, employed either alone or in combinations with other drugs, may result in less toxic and more efficacious treatment of AML patients. Efforts to exploit pharmacological inhibitors of the PI3K/Akt/mTOR cascade which show efficacy and safety in the clinical setting are now underway.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomical Sciences University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
49
|
In vitro effects of perifosine, bortezomib and lenalidomide against hematopoietic progenitor cells from healthy donors. Invest New Drugs 2011; 30:1396-403. [PMID: 21750922 DOI: 10.1007/s10637-011-9705-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
The novel AKT inhibitor perifosine possesses myelopoiesis-stimulating effects in rodents. We studied the in vitro effects of the novel agents perifosine, bortezomib and lenalidomide in addition to adriamycin against normal human hematopoietic progenitor cells (HPC) using different clonogenic and non-clonogenic assays. All agents inhibited colony-forming unit (CFU) formation, perifosine inhibiting mainly CFU-granulocyte/macrophage formation and the other agents burst-forming unit-erythroid formation. Perifosine combined with lenalidomide or adriamycin tended to act antagonistically in suppressing CFU formation. Despite their inhibition of CFU formation, perifosine, bortezomib and lenalidomide induced only slight or moderate cytotoxicity in CD34(+) selected HPC, as assessed using different assays such as flow cytometry-based detection of activated caspases and immunohistochemistry studies (e.g., Ki-67 staining). In contrast to its myelopoiesis-stimulating effects in rodents, perifosine--like bortezomib and lenalidomide--suppresses the clonogenic potential of HPC from healthy donors in vitro and thus probably plays no role in preventing neutropenia or in shorting its duration after intensive chemotherapy. However, all these novel agents typically induce only slight or moderate suppression of the clonogenic potential or loss of viability of normal HPC at clinically achievable plasma concentrations, assuming that hematoxicity is manageable and functional HPC can be collected after treatment with these compounds.
Collapse
|
50
|
Abstract
MicroRNAs (miRNAs) are involved in almost every aspect of a mammalian cell's functionality, from stem cell differentiation to aging and pathogenesis; however, their role in immediate cell signaling is less defined. This has been recently demonstrated by the rapid increase or decrease of miR-21's abundance within minutes of activation or inhibition of the v-akt murine thymoma viral oncogene homolog 1 (AKT) pathway, respectively, which mediates its regulation of Fas ligand and phosphatase and tensin homologue deleted on chromosome 10 expression, among other targets. Conversely, AKT induces rapid downregulation of miR-199a-5p to effect upregulation of hypoxia-inducible factor 1α and sirtuin 1. This suggests that posttranscriptional mechanisms regulate miRNAs' processing and/or stability to induce the rapid fluctuation in their levels. In support, a growing number of studies are showing specific posttranscriptional regulation of miRNAs. The data potentially explain how AKT, and plausibly other signaling pathways, can specifically and promptly modulate a gene's translation while circumventing the need for transcription during transient signaling events.
Collapse
Affiliation(s)
- Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|