1
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
2
|
CDK2-instigates C/EBPα degradation through SKP2 in Acute myeloid leukemia. Med Oncol 2021; 38:69. [PMID: 34002296 DOI: 10.1007/s12032-021-01523-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Transcription factor CCAAT/enhancer-binding protein-alpha (C/EBPα) regulates myelopoiesis by coupling growth arrest with differentiation of myeloid progenitors. Mutations in one or both alleles are observed in 10-14% AML cases that render C/EBPα functionally inactive. Besides, antagonistic protein-protein interactions also impair C/EBPα expression and function. In recent independent studies, we showed that CDK2 and SKP2 downregulated C/EBPα expression in an ubiquitin-dependent proteasome degradation manner leading to differentiation block in AML. Here, we demonstrate that CDK2-instigated C/EBPα downregulation is actually mediated by SKP2. Mechanistically, we show that CDK2 stabilizes SKP2 by phosphorylating it at Ser64 and thereby potentiates C/EBPα ubiquitination and subsequent degradation in AML cells. Immunoblot experiments showed that CDK2 inhibition downregulated SKP2 levels and concomitantly enhanced C/EBPα levels in myeloid cells. We further show that while CDK2 promoted C/EBPα ubiquitination and inhibited its protein levels, negatively affected its transactivation potential and DNA binding ability, simultaneous SKP2 depletion abrogated CDK2-promoted ubiquitination and restored C/EBPα expression and function. Taken together, these findings consolidate that CDK2 potentiates SKP2-mediated C/EBPα degradation in AML and targeting CDK2-SKP2 axis can be harnessed for therapeutic benefit in AML. Hypothetical model depicts that SKP2-mediated C/EBPα proteasomal degradation is reinforced by CDK2. CDK2 phopshorylates SKP2 leading to its enhanced stabilization which in turn exaggerates C/EBPα degradation leading to differentiation arrest in AML.
Collapse
|
3
|
Numata A, Kwok HS, Zhou QL, Li J, Tirado-Magallanes R, Angarica VE, Hannah R, Park J, Wang CQ, Krishnan V, Rajagopalan D, Zhang Y, Zhou S, Welner RS, Osato M, Jha S, Bohlander SK, Göttgens B, Yang H, Benoukraf T, Lough JW, Bararia D, Tenen DG. Lysine acetyltransferase Tip60 is required for hematopoietic stem cell maintenance. Blood 2020; 136:1735-1747. [PMID: 32542325 PMCID: PMC7544546 DOI: 10.1182/blood.2019001279] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have the potential to replenish the blood system for the lifetime of the organism. Their 2 defining properties, self-renewal and differentiation, are tightly regulated by the epigenetic machineries. Using conditional gene-knockout models, we demonstrated a critical requirement of lysine acetyltransferase 5 (Kat5, also known as Tip60) for murine HSC maintenance in both the embryonic and adult stages, which depends on its acetyltransferase activity. Genome-wide chromatin and transcriptome profiling in murine hematopoietic stem and progenitor cells revealed that Tip60 colocalizes with c-Myc and that Tip60 deletion suppress the expression of Myc target genes, which are associated with critical biological processes for HSC maintenance, cell cycling, and DNA repair. Notably, acetylated H2A.Z (acH2A.Z) was enriched at the Tip60-bound active chromatin, and Tip60 deletion induced a robust reduction in the acH2A.Z/H2A.Z ratio. These results uncover a critical epigenetic regulatory layer for HSC maintenance, at least in part through Tip60-dependent H2A.Z acetylation to activate Myc target genes.
Collapse
Affiliation(s)
- Akihiko Numata
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hui Si Kwok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Qi-Ling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | - Rebecca Hannah
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, and
- Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Jihye Park
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Deepa Rajagopalan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yanzhou Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Siqin Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Robert S Welner
- Hematology Oncology, Department of Medicine, The University of Alabama at Birmingham Comprehensive Cancer Center, Birmingham, AL
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Berthold Göttgens
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, and
- Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - John W Lough
- Department of Cell Biology, Neurobiology, and Anatomy, and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI; and
| | - Deepak Bararia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Humbert J, Salian S, Makrythanasis P, Lemire G, Rousseau J, Ehresmann S, Garcia T, Alasiri R, Bottani A, Hanquinet S, Beaver E, Heeley J, Smith ACM, Berger SI, Antonarakis SE, Yang XJ, Côté J, Campeau PM. De Novo KAT5 Variants Cause a Syndrome with Recognizable Facial Dysmorphisms, Cerebellar Atrophy, Sleep Disturbance, and Epilepsy. Am J Hum Genet 2020; 107:564-574. [PMID: 32822602 PMCID: PMC7477011 DOI: 10.1016/j.ajhg.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.
Collapse
Affiliation(s)
- Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Smrithi Salian
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Periklis Makrythanasis
- Biomedical Research Foundation of the Academy of Athens, Athens 115 27, Greece; Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Gabrielle Lemire
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Justine Rousseau
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Sophie Ehresmann
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Thomas Garcia
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Rami Alasiri
- Rosalind and Morris Goodman Cancer Research Centre, Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Armand Bottani
- Service of Genetic Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Sylviane Hanquinet
- Unit of Pediatric Radiology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Erin Beaver
- Mercy Kids Genetics, St. Louis, MO 63141, USA
| | | | - Ann C M Smith
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Seth I Berger
- Children's National Health System, Washington, DC 20010, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Centre, Department of Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du Centre Hospitalier Universitaire de Quebec-Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Philippe M Campeau
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
5
|
E3 ligase SCF SKP2 ubiquitinates and degrades tumor suppressor C/EBPα in acute myeloid leukemia. Life Sci 2020; 257:118041. [PMID: 32622945 DOI: 10.1016/j.lfs.2020.118041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
AIM Transcription factor CCAAT/Enhancer binding protein alpha (C/EBPα) is a key regulator of myeloid differentiation, granulopoiesis in particular. Although CEBPA mutations are found in more than 10% in AML, functional inhibition of C/EBPα protein is also widely observed in AML. Here, we sought to examine if SKP2, an aberrantly enhanced E3 ubiquitin ligase in primary AMLs inhibits C/EBPα stability to induce differentiation block. MAIN METHODS Here we employed cell based assays such as transfections, immunoblotting, co-immunoprecipitation, luciferase and gel shift assays along with differentiation assays to investigate SKP2 regulated C/EBPα protein stability in acute myeloid leukemia. KEY FINDINGS Here we discovered that oncogenic E3 ubiquitin ligase SCFskp2 ubiquitinates and destabilizes C/EBPα in a proteasome-dependent manner. Our data demonstrates that SKP2 physically interacts with C-terminal of C/EBPα and promotes its K48-linked ubiquitination-mediated degradation leading to its reduced transactivation potential, DNA binding ability and cellular functions. We further show that while overexpression of SKP2 inhibits both ectopic as well as endogenous C/EBPα in heterologous (HEK293T) as well as myeloid leukemia cells respectively, SKP2 depletion restores endogenous C/EBPα leading to reduced colony formation and enhanced myeloid differentiation of myeloid leukemia cells. Using Estradiol-inducible K562-C/EBPα-ER cells as yet another model of granulocytic differentiation, we further confirmed that SKP2 overexpression indeed inhibits granulocytic differentiation by mitigating C/EBPα stability. SIGNIFICANCE Our findings identify SKP2 as a potential negative regulator of C/EBPα stability and function in AML which suggests that SKP2 can be potentially targeted in AML to restore C/EBPα and overcome differentiation block.
Collapse
|
6
|
Liu J, Jin L, Chen X, Yuan Y, Zuo Y, Miao Y, Feng Q, Zhang H, Huang F, Guo T, Zhang L, Zhu L, Qian F, Zhu C, Zheng H. USP12 translocation maintains interferon antiviral efficacy by inhibiting CBP acetyltransferase activity. PLoS Pathog 2020; 16:e1008215. [PMID: 31899788 PMCID: PMC6961928 DOI: 10.1371/journal.ppat.1008215] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/15/2020] [Accepted: 11/13/2019] [Indexed: 01/25/2023] Open
Abstract
CREB-binding protein (CBP) participates in numerous transcription events. However, cell-intrinsic inhibitors of CBP are poorly defined. Here, we found that cellular USP12 interacts with the HAT domain of CBP and inhibits CBP’s acetyltransferase activity. Interestingly, USP12 positively regulates interferon (IFN) antiviral signaling independently of its deubiquitinase activity. Furthermore, we found that in IFN signaling USP12 translocates from the cytoplasm to the nucleus. The decrease in cytoplasmic USP12 facilitates CBP-induced acetylation and activation of IFN signaling proteins in the cytoplasm. Moreover, USP12 accumulation in the nucleus blocks CBP-induced acetylation of phosphorylated STAT1 (p-STAT1) and therefore inhibits the dephosphorylation effects of TCPTP on p-STAT1, which finally maintains nuclear p-STAT1 levels and IFN antiviral efficacy. USP12 nuclear translocation extends our understanding of the regulation of the strength of IFN antiviral signaling. Our study uncovers a cell-intrinsic regulation of CBP acetyltransferase activity and may provide potential strategies for IFN-based antiviral therapy. Activated p-STAT1 is a determinant for the strength of IFN antiviral signaling. We and other groups have demonstrated that activated p-STAT1 is regulated by multiple protein post-translational modifications, including phosphorylation, acetylation and ubiquitination. In this study, we revealed that CBP-mediated acetylation regulation of p-STAT1 is modulated by the deubiquitinase USP12 in a deubiquitinase activity-independent manner. USP12 translocates into the nucleus in IFN signaling, which critically regulates nuclear p-STAT1 levels and IFN antiviral activity by inhibiting CBP’s acetyltransferase activity. Importantly, we demonstrated that USP12 is a cell-intrinsic inhibitor of the acetyltransferase CBP. These findings promote the understanding of delicate regulation of both CBP-mediated acetylation and IFN antiviral signaling.
Collapse
Affiliation(s)
- Jin Liu
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.,The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Lincong Jin
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiangjie Chen
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yibo Zuo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qian Feng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hongguang Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fan Huang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Tingting Guo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Liting Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Li Zhu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Feng Qian
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Chuanwu Zhu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Zaini MA, Müller C, de Jong TV, Ackermann T, Hartleben G, Kortman G, Gührs KH, Fusetti F, Krämer OH, Guryev V, Calkhoven CF. A p300 and SIRT1 Regulated Acetylation Switch of C/EBPα Controls Mitochondrial Function. Cell Rep 2019; 22:497-511. [PMID: 29320743 DOI: 10.1016/j.celrep.2017.12.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/26/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP) transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα). Protein lysine acetylation is a key post-translational modification (PTM) that integrates cellular metabolic cues with other physiological processes. Here, we show that C/EBPα is acetylated by the lysine acetyl transferase (KAT) p300 and deacetylated by the lysine deacetylase (KDAC) sirtuin1 (SIRT1). SIRT1 is activated in times of energy demand by high levels of nicotinamide adenine dinucleotide (NAD+) and controls mitochondrial biogenesis and function. A hypoacetylated mutant of C/EBPα induces the transcription of mitochondrial genes and results in increased mitochondrial respiration. Our study identifies C/EBPα as a key mediator of SIRT1-controlled adaption of energy homeostasis to changes in nutrient supply.
Collapse
Affiliation(s)
- Mohamad A Zaini
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands; Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Tristan V de Jong
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Tobias Ackermann
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Götz Hartleben
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Gertrud Kortman
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Karl-Heinz Gührs
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Fabrizia Fusetti
- Department of Biochemistry, Netherlands Proteomics Centre, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Victor Guryev
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands.
| |
Collapse
|
8
|
Extracellular domain of EpCAM enhances tumor progression through EGFR signaling in colon cancer cells. Cancer Lett 2018; 433:165-175. [DOI: 10.1016/j.canlet.2018.06.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
|
9
|
Ghobashi AH, Kamel MA. Tip60: updates. J Appl Genet 2018; 59:161-168. [PMID: 29549519 DOI: 10.1007/s13353-018-0432-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
The maintenance of genome integrity is essential for organism survival. Therefore, eukaryotic cells possess many DNA repair mechanisms in response to DNA damage. Acetyltransferase, Tip60, plays a central role in ATM and p53 activation which are involved in DNA repair. Recent works uncovered the roles of Tip60 in ATM and p53 activation and how Tip60 is recruited to double-strand break sites. Moreover, recent works have demonstrated the role of Tip60 in cancer progression. Here, we review the current understanding of how Tip60 activates both ATM and p53 in response to DNA damage and his new roles in tumorigenesis.
Collapse
Affiliation(s)
- Ahmed H Ghobashi
- Human Genetics Department, Medical Research Institute, Alexandria University, 165 El Horreya Street, Alexandria, Egypt.
| | - Maher A Kamel
- Biochemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Ding D, Chen LL, Zhai YZ, Hou CJ, Tao LL, Lu SH, Wu J, Liu XP. Trichostatin A inhibits the activation of Hepatic stellate cells by Increasing C/EBP-α Acetylation in vivo and in vitro. Sci Rep 2018. [PMID: 29535398 PMCID: PMC5849734 DOI: 10.1038/s41598-018-22662-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reversal of activated hepatic stellate cells (HSCs) to a quiescent state and apoptosis of activated HSCs are key elements in the reversion of hepatic fibrosis. CCAAT/enhancer binding protein α (C/EBP-α) has been shown to inhibit HSC activation and promote its apoptosis. This study aims to investigate how C/EBP-α acetylation affects the fate of activated HSCs. Effects of a histone deacetylation inhibitor trichostatin A (TSA) on HSC activation were evaluated in a mouse model of liver fibrosis caused by carbon tetrachloride (CCl4) intoxication. TSA was found to ameliorate CCl4-induced hepatic fibrosis and improve liver function through increasing the protein level and enhancing C/EBP-α acetylation in the mouse liver. C/EBP-α acetylation was determined in HSC lines in the presence or absence of TSA, and the lysine residue K276 was identified as a main acetylation site in C/EBP-α protein. C/EBP-α acetylation increased its stability and protein level, and inhibited HSC activation. The present study demonstrated that C/EBP-α acetylation increases the protein level by inhibiting its ubiquitination-mediated degradation, and may be involved in the fate of activated HSCs. Use of TSA may confer an option in minimizing hepatic fibrosis by suppressing HSC activation, a key process in the initiation and progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Di Ding
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin-Lin Chen
- Department of Pathology, The Fifth People's Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Zhen Zhai
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Jian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li-Li Tao
- Department of Pathology, Peking University, Shenzhen Hospital, Shenzhen, 518036, China
| | - Shu-Han Lu
- Department of Nutrition, University of California at Davis, Davis, California, USA
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Disease, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Pathology, The Fifth People's Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
11
|
Wang SE, Ko SY, Kim YS, Jo S, Lee SH, Jung SJ, Son H. Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice. Exp Mol Med 2018. [PMID: 29520110 PMCID: PMC5898893 DOI: 10.1038/emm.2017.289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) affects mood and neuroplasticity in the brain, where its role is poorly understood. In the present study we investigated whether capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide), an agonist of TRPV1, induced chromatin remodeling and thereby altered gene expression related to synaptic plasticity. We found that capsaicin treatment resulted in upregulation of histone deacetylase 2 (HDAC2) in the mouse hippocampus and HDAC2 was enriched at Psd95, synaptophysin, GLUR1, GLUR2 promoters. Viral-mediated hippocampal knockdown of HDAC2 induced expression of Synapsin I and prevented the detrimental effects of capsaicin on Synapsin I expression in mice, supporting the role of HDAC2 in regulation of capsaicin-induced Synapsin I expression. Taken together, our findings implicate HDAC2 in capsaicin-induced transcriptional regulation of synaptic molecules and support the view that HDAC2 is a molecular link between TRPV1 activity and synaptic plasticity.
Collapse
Affiliation(s)
- Sung Eun Wang
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Seung Yeon Ko
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Yong-Seok Kim
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Hospital for Rheumatic Disease, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Sung Jun Jung
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Physiology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Hyeon Son
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
12
|
Su WP, Ho YC, Wu CK, Hsu SH, Shiu JL, Huang JC, Chang SB, Chiu WT, Hung JJ, Liu TL, Wu WS, Wu PY, Su WC, Chang JY, Liaw H. Chronic treatment with cisplatin induces chemoresistance through the TIP60-mediated Fanconi anemia and homologous recombination repair pathways. Sci Rep 2017; 7:3879. [PMID: 28634400 PMCID: PMC5478611 DOI: 10.1038/s41598-017-04223-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
The Fanconi anemia pathway in coordination with homologous recombination is essential to repair interstrand crosslinks (ICLs) caused by cisplatin. TIP60 belongs to the MYST family of acetyltransferases and is involved in DNA repair and regulation of gene transcription. Although the physical interaction between the TIP60 and FANCD2 proteins has been identified that is critical for ICL repair, it is still elusive whether TIP60 regulates the expression of FA and HR genes. In this study, we found that the chemoresistant nasopharyngeal carcinoma cells, derived from chronic treatment of cisplatin, show elevated expression of TIP60. Furthermore, TIP60 binds to the promoters of FANCD2 and BRCA1 by using the chromatin immunoprecipitation experiments and promote the expression of FANCD2 and BRCA1. Importantly, the depletion of TIP60 significantly reduces sister chromatid exchange, a measurement of HR efficiency. The similar results were also shown in the FNACD2-, and BRCA1-deficient cells. Additionally, these TIP60-deficient cells encounter more frequent stalled forks, as well as more DNA double-strand breaks resulting from the collapse of stalled forks. Taken together, our results suggest that TIP60 promotes the expression of FA and HR genes that are important for ICL repair and the chemoresistant phenotype under chronic treatment with cisplatin.
Collapse
Affiliation(s)
- Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan.
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan
| | - Sen-Huei Hsu
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Jheng-Cheng Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.35, Xiaodong Road, Tainan 704, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Science, National Cheng-Kung University, Tainan, 701, Taiwan
| | - Tsung-Lin Liu
- Department of Biotechnology and Bioindustry Science, National Cheng-Kung University, Tainan, 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pei-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jang-Yang Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No.1 University Road, Tainan, 701, Taiwan.
| |
Collapse
|
13
|
Kapoor I, Kanaujiya J, Kumar Y, Thota JR, Bhatt MLB, Chattopadhyay N, Sanyal S, Trivedi AK. Proteomic discovery of MNT as a novel interacting partner of E3 ubiquitin ligase E6AP and a key mediator of myeloid differentiation. Oncotarget 2016; 7:7640-56. [PMID: 26506232 PMCID: PMC4884944 DOI: 10.18632/oncotarget.6156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Perturbed stability of regulatory proteins is a major cause of transformations leading to cancer, including several leukemia subtypes. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase negatively targets MAX binding protein MNT for ubiquitin-mediated proteasome degradation and impedes ATRA mediated myeloid cell differentiation. MNT is a member of the Myc/Max/Mad network of transcription factor that regulates cell proliferation, differentiation, cellular transformation and tumorigenesis. Wild-type E6AP promoted proteasome dependent degradation of MNT, while catalytically inactive E6AP having cysteine replaced with alanine at amino-acid 843 position (E6APC843A) rather stabilized it. Further, these proteins physically associated with each other both in non-myeloid (HEK293T) and myeloid cells. MNT overexpression induced G0-G1 growth arrest and promoted myeloid differentiation while its knockdown mitigated even ATRA induced differentiation suggesting MNT to be crucial for myeloid differentiation. We further showed that ATRA inhibited E6AP and stabilized MNT expression by protecting it from E6AP mediated ubiquitin-proteasome degradation. Notably, E6AP knockdown in HL60 cells restored MNT expression and promoted myeloid differentiation. Taken together, our data demonstrated that E6AP negatively regulates granulocytic differentiation by targeting MNT for degradation which is required for growth arrest and subsequent myeloid differentiation by various differentiation inducing agents.
Collapse
Affiliation(s)
- Isha Kapoor
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Jitendra Kanaujiya
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Yogesh Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | | | - Madan L B Bhatt
- Department of Radiotherapy, King George's Medical University, Lucknow, UP, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| |
Collapse
|
14
|
Acetylation of C/EBPα inhibits its granulopoietic function. Nat Commun 2016; 7:10968. [PMID: 27005833 PMCID: PMC4814574 DOI: 10.1038/ncomms10968] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 02/07/2016] [Indexed: 01/01/2023] Open
Abstract
CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation. C/EBPα is an essential transcription factor for myeloid lineage commitment. Here, the authors show that acetylation of C/EBPα at K298 and K302, mediated at least in part by GCN5, impairs C/EBPα DNA binding ability and modulates C/EBPα transcriptional activity.
Collapse
|
15
|
Ellis K, Friedman C, Yedvobnick B. Drosophila domino Exhibits Genetic Interactions with a Wide Spectrum of Chromatin Protein-Encoding Loci. PLoS One 2015; 10:e0142635. [PMID: 26555684 PMCID: PMC4640824 DOI: 10.1371/journal.pone.0142635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
The Drosophila domino gene encodes protein of the SWI2/SNF2 family that has widespread roles in transcription, replication, recombination and DNA repair. Here, the potential relationship of Domino protein to other chromatin-associated proteins has been investigated through a genetic interaction analysis. We scored for genetic modification of a domino wing margin phenotype through coexpression of RNAi directed against a set of previously characterized and more newly characterized chromatin-encoding loci. A set of other SWI2/SNF2 loci were also assayed for interaction with domino. Our results show that the majority of tested loci exhibit synergistic enhancement or suppression of the domino wing phenotype. Therefore, depression in domino function sensitizes the wing margin to alterations in the activity of numerous chromatin components. In several cases the genetic interactions are associated with changes in the level of cell death measured across the dorsal-ventral margin of the wing imaginal disc. These results highlight the broad realms of action of many chromatin proteins and suggest significant overlap with Domino function in fundamental cell processes, including cell proliferation, cell death and cell signaling.
Collapse
Affiliation(s)
- Kaitlyn Ellis
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| | - Chloe Friedman
- Biology Department, Emory University, Atlanta, Georgia, United States of America
| | - Barry Yedvobnick
- Biology Department, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, Skucha A, Vittori S, Kuznetsova E, Smil D, Barsyte-Lovejoy D, Li F, Poda G, Schapira M, Wu H, Dong A, Senisterra G, Stukalov A, Huber KVM, Schönegger A, Marcellus R, Bilban M, Bock C, Brown PJ, Zuber J, Bennett KL, Al-awar R, Delwel R, Nerlov C, Arrowsmith CH, Superti-Furga G. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat Chem Biol 2015; 11:571-578. [PMID: 26167872 PMCID: PMC4511833 DOI: 10.1038/nchembio.1859] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/28/2015] [Indexed: 01/12/2023]
Abstract
The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short (30-kDa) CCAAT-enhancer binding protein-α (C/EBPα) translational isoform, termed p30, represents the most common type of CEBPA mutation in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL (SET-domain/mixed-lineage leukemia) histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as downregulation of the latter inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a new small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30 cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML.
Collapse
Affiliation(s)
- Florian Grebien
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna 1090, Austria
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Matthäus Getlik
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Roberto Giambruno
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Amit Grover
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| | - Roberto Avellino
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 GE, The Netherlands
| | - Anna Skucha
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Sarah Vittori
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ekaterina Kuznetsova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Gennadiy Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Kilian V. M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Andreas Schönegger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Core Facilities, Medical University Vienna, Vienna 1090, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna 1030, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Rima Al-awar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 GE, The Netherlands
| | - Claus Nerlov
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
17
|
Krishnan SR, Nair BC, Sareddy GR, Roy SS, Natarajan M, Suzuki T, Peng Y, Raj G, Vadlamudi RK. Novel role of PELP1 in regulating chemotherapy response in mutant p53-expressing triple negative breast cancer cells. Breast Cancer Res Treat 2015; 150:487-99. [PMID: 25788226 DOI: 10.1007/s10549-015-3339-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive breast cancer subtype, occurs in younger women and is associated with poor prognosis. Gain-of-function mutations in TP53 are a frequent occurrence in TNBC and have been demonstrated to repress apoptosis and up-regulate cell cycle progression. Even though TNBC responds to initial chemotherapy, resistance to chemotherapy develops and is a major clinical problem. Tumor recurrence eventually occurs and most patients die from their disease. An urgent need exists to identify molecular-targeted therapies that can enhance chemotherapy response. In the present study, we report that targeting PELP1, an oncogenic co-regulator molecule, could enhance the chemotherapeutic response of TNBC through the inhibition of cell cycle progression and activation of apoptosis. We demonstrate that PELP1 interacts with MTp53, regulates its recruitment, and alters epigenetic marks at the target gene promoters. PELP1 knockdown reduced MTp53 target gene expression, resulting in decreased cell survival and increased apoptosis upon genotoxic stress. Mechanistic studies revealed that PELP1 depletion contributes to increased stability of E2F1, a transcription factor that regulates both cell cycle and apoptosis in a context-dependent manner. Further, PELP1 regulates E2F1 stability in a KDM1A-dependent manner, and PELP1 phosphorylation at the S1033 residue plays an important role in mediating its oncogenic functions in TNBC cells. Accordingly, depletion of PELP1 increased the expression of E2F1 target genes and reduced TNBC cell survival in response to genotoxic agents. PELP1 phosphorylation was significantly greater in the TNBC tumors than in the other subtypes of breast cancer and in the normal tissues. These findings suggest that PELP1 is an important molecular target in TNBC, and that PELP1-targeted therapies may enhance response to chemotherapies.
Collapse
Affiliation(s)
- Samaya R Krishnan
- Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Friedman AD. C/EBPα in normal and malignant myelopoiesis. Int J Hematol 2015; 101:330-41. [PMID: 25753223 DOI: 10.1007/s12185-015-1764-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
CCAAT/enhancer binding protein α (C/EBPα) dimerizes via its leucine zipper (LZ) domain to bind DNA via its basic region and activate transcription via N-terminal trans-activation domains. The activity of C/EBPα is modulated by several serine/threonine kinases and via sumoylation, its gene is activated by RUNX1 and additional transcription factors, its mRNA stability is modified by miRNAs, and its mRNA is subject to translation control that affects AUG selection. In addition to inducing differentiation, C/EBPα inhibits cell cycle progression and apoptosis. Within hematopoiesis, C/EBPα levels increase as long-term stem cells progress to granulocyte-monocyte progenitors (GMP). Absence of C/EBPα prevents GMP formation, and higher levels are required for granulopoiesis compared to monopoiesis. C/EBPα interacts with AP-1 proteins to bind hybrid DNA elements during monopoiesis, and induction of Gfi-1, C/EBPε, KLF5, and miR-223 by C/EBPα enables granulopoiesis. The CEBPA ORF is mutated in approximately 10 % of acute myeloid leukemias (AML), leading to expression of N-terminally truncated C/EBPαp30 and C-terminal, in-frame C/EBPαLZ variants, which inhibit C/EBPα activities but also play additional roles during myeloid transformation. RUNX1 mutation, CEBPA promoter methylation, Trib1 or Trib2-mediated C/EBPαp42 degradation, and signaling pathways leading to C/EBPα serine 21 phosphorylation reduce C/EBPα expression or activity in additional AML cases.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Cancer Research Building I, Room 253, 1650 Orleans Street, Baltimore, MD, 21231, USA,
| |
Collapse
|
19
|
Schönheit J, Leutz A, Rosenbauer F. Chromatin Dynamics during Differentiation of Myeloid Cells. J Mol Biol 2015; 427:670-87. [DOI: 10.1016/j.jmb.2014.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 12/23/2022]
|
20
|
Yi J, Huang X, Yang Y, Zhu WG, Gu W, Luo J. Regulation of histone acetyltransferase TIP60 function by histone deacetylase 3. J Biol Chem 2014; 289:33878-86. [PMID: 25301942 DOI: 10.1074/jbc.m114.575266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The key member of the MOZ (monocyticleukaemia zinc finger protein), Ybf2/Sas3, Sas2, and TIP60 acetyltransferases family, Tat-interactive protein, 60 kD (TIP60), tightly modulates a wide array of cellular processes, including chromatin remodeling, gene transcription, apoptosis, DNA repair, and cell cycle arrest. The function of TIP60 can be regulated by SIRT1 through deacetylation. Here we found that TIP60 can also be functionally regulated by HDAC3. We identified six lysine residues as its autoacetylation sites. Mutagenesis of these lysines to arginines completely abolishes the autoacetylation of TIP60. Overexpression of HDAC3 increases TIP60 ubiquitination levels. However, unlike SIRT1, HDAC3 increased the half-life of TIP60. Further study found that HDAC3 colocalized with TIP60 both in the nucleus and the cytoplasm, which could be the reason why HDAC3 can stabilize TIP60. The deacetylation of TIP60 by both SIRT1 and HDAC3 reduces apoptosis induced by DNA damage. Knockdown of HDAC3 in cells increased TIP60 acetylation levels and increased apoptosis after DNA damage. Together, our findings provide a better understanding of TIP60 regulation mechanisms, which is a significant basis for further studies of its cellular functions.
Collapse
Affiliation(s)
- Jingjie Yi
- From the School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China, the Department of Medical and Research Technology and Department of Pathology, Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Xiangyang Huang
- the Department of Medical and Research Technology and Department of Pathology, Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, the Department of Rheumatology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, and
| | - Yuxia Yang
- the Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- the Peking University Health Science Center, Beijing 100191, China
| | - Wei Gu
- the Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Jianyuan Luo
- the Department of Medical and Research Technology and Department of Pathology, Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, Maryland 21201, the Peking University Health Science Center, Beijing 100191, China,
| |
Collapse
|
21
|
Giambruno R, Grebien F, Stukalov A, Knoll C, Planyavsky M, Rudashevskaya EL, Colinge J, Superti-Furga G, Bennett KL. Affinity purification strategies for proteomic analysis of transcription factor complexes. J Proteome Res 2013; 12:4018-27. [PMID: 23937658 PMCID: PMC3768224 DOI: 10.1021/pr4003323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Affinity purification (AP) coupled
to mass spectrometry (MS) has
been successful in elucidating protein molecular networks of mammalian
cells. These approaches have dramatically increased the knowledge
of the interconnectivity present among proteins and highlighted biological
functions within different protein complexes. Despite significant
technical improvements reached in the past years, it is still challenging
to identify the interaction networks and the subsequent associated
functions of nuclear proteins such as transcription factors (TFs).
A straightforward and robust methodology is therefore required to
obtain unbiased and reproducible interaction data. Here we present
a new approach for TF AP-MS, exemplified with the CCAAT/enhancer binding
protein alpha (C/EBPalpha). Utilizing the advantages of a double tag
and three different MS strategies, we conducted a total of six independent
AP-MS strategies to analyze the protein–protein interactions
of C/EBPalpha. The resultant data were combined to produce a cohesive
C/EBPalpha interactome. Our study describes a new methodology that
robustly identifies specific molecular complexes associated with transcription
factors. Moreover, it emphasizes the existence of TFs as protein complexes
essential for cellular biological functions and not as single, static
entities.
Collapse
Affiliation(s)
- Roberto Giambruno
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kanaujiya JK, Lochab S, Kapoor I, Pal P, Datta D, Bhatt MLB, Sanyal S, Behre G, Trivedi AK. Proteomic identification of Profilin1 as a corepressor of estrogen receptor alpha in MCF7 breast cancer cells. Proteomics 2013; 13:2100-12. [DOI: 10.1002/pmic.201200534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | - Savita Lochab
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Isha Kapoor
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Pooja Pal
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Dipak Datta
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Madan L. B. Bhatt
- Department of Radiation Oncology; Dr. Ram Manohar Lohia Institute of Medical Sciences (RMLIMS); Lucknow UP India
| | - Sabyasachi Sanyal
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Gerhard Behre
- Division of Hematology and Oncology; University Hospital of Leipzig; Leipzig Germany
| | - Arun Kumar Trivedi
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| |
Collapse
|
23
|
Sanders DA, Ross-Innes CS, Beraldi D, Carroll JS, Balasubramanian S. Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. Genome Biol 2013; 14:R6. [PMID: 23347430 PMCID: PMC3663086 DOI: 10.1186/gb-2013-14-1-r6] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/24/2012] [Accepted: 01/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The forkhead transcription factor FOXM1 is a key regulator of the cell cycle. It is frequently over-expressed in cancer and is emerging as an important therapeutic target. In breast cancer FOXM1 expression is linked with estrogen receptor (ERα) activity and resistance to endocrine therapies, with high levels correlated with poor prognosis. However, the precise role of FOXM1 in ER positive breast cancer is not yet fully understood. RESULTS The study utilizes chromatin immunoprecipitation followed by high-throughput sequencing to map FOXM1 binding in both ERα-positive and -negative breast cancer cell lines. The comparison between binding site distributions in the two cell lines uncovered a previously undescribed relationship between binding of FOXM1 and ERα. Further molecular analyses demonstrated that these two factors can bind simultaneously at genomic sites and furthermore that FOXM1 regulates the transcriptional activity of ERα via interaction with the coactivator CARM1. Inhibition of FOXM1 activity using the natural product thiostrepton revealed down-regulation of a set of FOXM1-regulated genes that are correlated with patient outcome in clinical breast cancer samples. CONCLUSIONS These findings reveal a novel role for FOXM1 in ERα transcriptional activity in breast cancer and uncover a FOXM1-regulated gene signature associated with ER-positive breast cancer patient prognosis.
Collapse
Affiliation(s)
- Deborah A Sanders
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Caryn S Ross-Innes
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Dario Beraldi
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jason S Carroll
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- School of Clinical Medicine, The University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
24
|
Kapoor I, Pal P, Lochab S, Kanaujiya JK, Trivedi AK. Proteomics approaches for myeloid leukemia drug discovery. Expert Opin Drug Discov 2012; 7:1165-75. [DOI: 10.1517/17460441.2012.724055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Lochab S, Pal P, Kanaujiya JK, Tripathi SB, Kapoor I, Bhatt MLB, Sanyal S, Behre G, Trivedi AK. Proteomic identification of E6AP as a molecular target of tamoxifen in MCF7 cells. Proteomics 2012; 12:1363-77. [PMID: 22589186 DOI: 10.1002/pmic.201100572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tamoxifen (Tam) is most widely used selective estrogen receptor modulator (SERM) for treatment of hormone-responsive breast cancer. Despite being regularly used in clinical therapy for breast cancer since 1971, the mechanism of Tam action remains largely unclear. In order to gain insights into Tam-mediated antibreast cancer actions, we applied 2DE and MS based proteomics approach to identify target proteins of Tam. We identified E6-associated protein, i.e. E6AP (UBE3A) among others to be regulated by Tam that otherwise is upregulated in breast tumors. We confirmed our 2DE finding by immunoblotting and further show that Tam leads to inhibition of E6AP expression presumably by promoting its autoubiquitination, which is coupled with nuclear export and subsequent proteasome-mediated degradation. Furthermore, we show that Tam- and siE6AP-mediated inhibition of E6AP leads to enhanced G0-G1 growth arrest and apoptosis, which is also evident from significant upregulation of cytochrome-c, Bax, p21, and PARP cleavage. Taken together, our data suggest that, Tam-targeted E6AP inhibition is in fact required for Tam-mediated antibreast cancer actions. Thus, E6AP may be a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Savita Lochab
- DTDD Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Koleva RI, Ficarro SB, Radomska HS, Carrasco-Alfonso MJ, Alberta JA, Webber JT, Luckey CJ, Marcucci G, Tenen DG, Marto JA. C/EBPα and DEK coordinately regulate myeloid differentiation. Blood 2012; 119:4878-88. [PMID: 22474248 PMCID: PMC3367892 DOI: 10.1182/blood-2011-10-383083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/10/2012] [Indexed: 11/20/2022] Open
Abstract
The transcription factor C/EBPα is a critical mediator of myeloid differentiation and is often functionally impaired in acute myeloid leukemia. Recent studies have suggested that oncogenic FLT3 activity disrupts wild-type C/EBPα function via phosphorylation on serine 21 (S21). Despite the apparent role of pS21 as a negative regulator of C/EBPα transcription activity, the mechanism by which phosphorylation tips the balance between transcriptionally competent and inhibited forms remains unresolved. In the present study, we used immuno-affinity purification combined with quantitative mass spectrometry to delineate the proteins associated with C/EBPα on chromatin. We identified DEK, a protein with genetic links to leukemia, as a member of the C/EBPα complexes, and demonstrate that this association is disrupted by S21 phosphorylation. We confirmed that DEK is recruited specifically to chromatin with C/EBPα to enhance GCSFR3 promoter activation. In addition, we demonstrated that genetic depletion of DEK reduces the ability of C/EBPα to drive the expression of granulocytic target genes in vitro and disrupts G-CSF-mediated granulocytic differentiation of fresh human BM-derived CD34(+) cells. Our data suggest that C/EBPα and DEK coordinately activate myeloid gene expression and that S21 phosphorylation on wild-type C/EBPα mediates protein interactions that regulate the differentiation capacity of hematopoietic progenitors.
Collapse
Affiliation(s)
- Rositsa I Koleva
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215-5450, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang SM, Song M, Yang TY, Fan R, Liu XD, Zhou PK. HIV-1 Tat impairs cell cycle control by targeting the Tip60, Plk1 and cyclin B1 ternary complex. Cell Cycle 2012; 11:1217-34. [PMID: 22391203 DOI: 10.4161/cc.11.6.19664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HIV-1 Tat triggers intrinsic and extrinsic apoptosis pathways in both infected and uninfected cells and plays an important role in the pathogenesis of AIDS. Knocking down Tip60, an interactive protein of Tat, leads to the impairment of cell cycle progression, indicating a key role of Tip60 in cell cycle control. We found that Tip60 interacts with Plk1 through its ZnFMYST domain, and that this interaction is enhanced in the G 2/M phase. In addition, cyclin B1 was confirmed to interact with the ZnF domain of Tip60. Immunofluorescence imaging showed that Tip60 co-localizes with both Plk1 and cyclin B1 at the centrosome during the mitotic phase and to the mid-body during cytokinesis. Further experiments revealed that Tip60 forms a ternary complex with Plk1 and cyclin B1 and acetylates Plk1 but not cyclin B1. HIV-1 Tat likely forms a quaternary complex with Tip60, cyclin B1 and Plk1. Fluorescent microscopy showed that Tat causes an unscheduled nuclear translocation of both cyclin B1 and Plk1, causing their co-localization with Tip60 in the nucleus. Tat, Tip60, cyclin B1 and Plk1 interactions provide new a mechanistic explanation for Tat-mediated cell cycle dysregulation and apoptosis.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
28
|
Zhao H, Jin S, Gewirtz AM. The histone acetyltransferase TIP60 interacts with c-Myb and inactivates its transcriptional activity in human leukemia. J Biol Chem 2011; 287:925-34. [PMID: 22110127 DOI: 10.1074/jbc.m111.279950] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The histone acetyltransferase TIP60 is a coregulator of transcription factors and is implicated in tumorigenesis. In this study, we explored potential regulatory relationships between TIP60 and the c-Myb oncoprotein in hematopoietic cells. We first showed that TIP60 is a c-Myb interacting protein and that the interaction is dependent on the TIP60 acetyltransferase domain and c-Myb transactivation domain. We then found that coexpressing TIP60 decreases the transcriptional activation ability of c-Myb in functional reporter assays. A ChIP assay also revealed that TIP60 binds to the c-Myb target gene c-Myc promoter in a c-Myb-dependent manner. Consistently, knockdown of Tip60 expression by siRNA increased endogenous c-Myc expression. Furthermore, coimmunoprecipitation of Jurkat cell lysates revealed that c-Myb is associated with histone deacetylases HDAC1 and HDAC2, known to interact with TIP60 and repress transcription. Finally, we compared Tip60 expression in six primary AML samples with three normal CD34(+) cell samples using quantitative RT-PCR. Tip60 expression was significantly (∼60%) lower in the AML samples. In summary, these studies demonstrate that TIP60 negatively modulates c-Myb transcriptional activity by recruiting histone deacetylases in human hematopoietic cells, leading us to hypothesize that TIP60 is a normal regulator of c-Myb function and that dysregulated or mutated TIP60 may contribute to c-Myb-driven leukemogenesis.
Collapse
Affiliation(s)
- Huiwu Zhao
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
29
|
Kanaujiya JK, Lochab S, Pal P, Christopeit M, Singh SM, Sanyal S, Behre G, Trivedi AK. Proteomic approaches in myeloid leukemia. Electrophoresis 2011; 32:357-67. [DOI: 10.1002/elps.201000428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 10/29/2010] [Accepted: 11/25/2010] [Indexed: 01/17/2023]
|
30
|
Abstract
Abstract
Introduction
The rational design of targeted therapies for acute myeloid leukemia (AML) requires the discovery of novel protein pathways in the systems biology of a specific AML subtype. We have shown that in the AML subtype with translocation t(8;21), the leukemic fusion protein AML1–ETO inhibits the function of transcription factors PU.1 and C/EBPα via direct protein–protein interaction. In addition, recently using proteomics, we have also shown that the AML subtypes differ in their proteome, interactome, and post-translational modifications.
Methods
We, therefore, hypothesized that the systematic identification of target proteins of AML1–ETO on a global proteome-wide level will lead to novel insights into the systems biology of t(8;21) AML on a post-genomic functional level. Thus, 6 h after inducible expression of AML1–ETO, protein expression changes were identified by two-dimensional gel electrophoresis and subsequent mass spectrometry analysis.
Results
Twenty-eight target proteins of AML1–ETO including prohibitin, NM23, HSP27, and Annexin1 were identified by MALDI-TOF mass spectrometry. AML1–ETO upregulated the differentiation inhibitory factor NM23 protein expression after 6 h, and the NM23 mRNA expression was also elevated in t(8;21) AML patient samples in comparison with normal bone marrow. AML1–ETO inhibited the ability of C/EBP transcription factors to downregulate the NM23 promoter. These data suggest a model in which AML1–ETO inhibits the C/EBP-induced downregulation of the NM23 promoter and thereby increases the protein level of differentiation inhibitory factor NM23.
Conclusions
Proteomic pathway discovery can identify novel functional pathways in AML, such as the AML1–ETO–C/EBP–NM23 pathway, as the main step towards a systems biology and therapy of AML.
Collapse
|
31
|
Li W, Li TT, Liu H, Zhao YY. [Screening and identification of interactive proteins of SH2D4A]. YI CHUAN = HEREDITAS 2010; 32:712-8. [PMID: 20650852 DOI: 10.3724/sp.j.1005.2010.00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SH2D4A is a member of SH2 signaling protein family, which is involved in the signal transduction mediated by protein tyrosine kinase-related receptor, cell growth, proliferation, differentiation, and thereby affects the development of human disorders. To determine the role of SH2D4A in the cell signal transduction pathway, SH2D4A interactive proteins were screened using yeast two-hybrid system, and yeast mating and GST pull-down assays were carried out to further confirm the interaction. We successfully generated a bait protein expression construct-pGBKT7-SH2D4A, screened the human kidney cDNA library, and obtained 46 positive yeast clones. After isolation of positive colonies, DNA sequencing, and sequence alignment analysis with BLAST software, we obtained 5 potential SH2D4A interactive proteins, AZGP1, DAD1, HSD17B10, KAT5, and PKM2, which were predicted by NetPhos 2.0 Server software and were all shown to be phosphorylated tyrosine (pY)-containing proteins except for HSD17B10. KAT5 and HSD17B10 were selected to perform yeast mating and GST pull-down experiments, indicating their direct binding to SH2D4A.
Collapse
Affiliation(s)
- Wei Li
- Department of Medical genetics, China Medical University, Shenyang 110001, China.
| | | | | | | |
Collapse
|
32
|
Fan Q, Tang T, Zhang X, Dai K. The role of CCAAT/enhancer binding protein (C/EBP)-alpha in osteogenesis of C3H10T1/2 cells induced by BMP-2. J Cell Mol Med 2010; 13:2489-2505. [PMID: 19120697 DOI: 10.1111/j.1582-4934.2008.00606.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The balance between osteogenesis and adipogenesis of mesenchymal stem cells is disrupted in various human diseases. Investigating the mechanisms that fine-tune this balance is of medical importance. Identification of potential target gene which can be used to study the relationship between them could be really helpful for this purpose. In the current study, we used C3H10T1/2 as model cells and through which two models of both osteogenesis induced by bone-morphogenetic protein (BMP)-2 and transdifferentiation from osteogenesis to adipogenesis were established. We investigated the role of CCAAT/enhancer binding protein (C/EBP)-alpha in these two systems. Then from epigenetic point of view, we elucidated the underlying molecular mechanisms preliminarily. The results showed that down-regulations of both C/EBP-alpha expression and its inducibility in response to insulin, fetal bovine serum, methylisobutylxanthine and dexamethasone (IFMD) adipogenic hormonal cocktail were observed in terminal stage of osteogenesis of C3H10T1/2 cells induced by BMP-2. And overexpression of C/EBP-alpha could lead to inhibition of osteogenesis differentiation and rescue attenuation of potential of adipogenic conversion in this process. Furthermore, we provided evidence that remarkable DNA hypermethylation and histones 3 and 4 hypoacetylation in -1286 bp/1065 bp promoter region of C/EBP-alpha were involved in both of down-regulations. Our data suggest that C/EBP-alpha functions as regulator in the balance between osteogenesis and adipogenesis of C3H10T1/2 cells and may be a therapeutic target.
Collapse
Affiliation(s)
- Qiming Fan
- Orthopaedic Cellular & Molecular Biology Laboratory, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Tingting Tang
- Department of Orthopaedics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoling Zhang
- Orthopaedic Cellular & Molecular Biology Laboratory, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Kerong Dai
- Department of Orthopaedics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Ha TY, Chang KA, Kim J, Kim HS, Kim S, Chong YH, Suh YH. S100a9 knockdown decreases the memory impairment and the neuropathology in Tg2576 mice, AD animal model. PLoS One 2010; 5:e8840. [PMID: 20098622 PMCID: PMC2809116 DOI: 10.1371/journal.pone.0008840] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/04/2010] [Indexed: 11/20/2022] Open
Abstract
Inflammation, insoluble protein deposition and neuronal cell loss are important features in the Alzheimer's disease (AD) brain. To investigate the regulatory genes responsible for the neuropathology in AD, we performed microarray analysis with APP(V717I)-CT100 transgenic mice, an animal model of AD, and isolated the S100a9 gene, which encodes an inflammation-associated calcium binding protein. In another AD animal model, Tg2576 mouse brain, and in human AD brain, induction of S100a9 was confirmed. The endogenous expression of S100a9 was induced by treatment with Abeta or CT peptides in a microglia cell line, BV2 cells. In these cells, silencing study of S100a9 showed that the induction of S100a9 increased the intracellular calcium level and up-regulated the inflammatory cytokines (IL-1beta and TNFalpha) and iNOS. S100a9 lentiviral short hairpin RNA (sh-S100a9) was injected into the hippocampus region of the brains of 13-month-old Tg2576 mice. At two months after injection, we found that knockdown of S100a9 expression had improved the cognition decline of Tg2576 mice in the water maze task, and had reduced amyloid plaque burden. These results suggest that S100a9 induced by Abeta or CT contributes to cause inflammation, which then affects the neuropathology including amyloid plaques burden and impairs cognitive function. Thus, the inhibition of S100a9 is a possible target for AD therapy.
Collapse
Affiliation(s)
- Tae-Young Ha
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, South Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, South Korea
| | - Jeong a Kim
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, South Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, South Korea
| | - Seonghan Kim
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, South Korea
| | - Young Hae Chong
- Department of Microbiology, School of Medicine, Ewha Womans University, Yangcheonku, Seoul, South Korea
| | - Yoo-Hun Suh
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Müller C, Bremer A, Schreiber S, Eichwald S, Calkhoven CF. Nucleolar retention of a translational C/EBPalpha isoform stimulates rDNA transcription and cell size. EMBO J 2010; 29:897-909. [PMID: 20075868 PMCID: PMC2810377 DOI: 10.1038/emboj.2009.404] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 12/08/2009] [Indexed: 11/25/2022] Open
Abstract
The messenger RNA of the intronless CEBPA gene is translated into distinct protein isoforms through the usage of consecutive translation initiation sites. These translational isoforms have distinct functions in the regulation of differentiation and proliferation due to the presence of different N-terminal sequences. Here, we describe the function of an N-terminally extended protein isoform of CCAAT enhancer-binding protein α (C/EBPα) that is translated from an alternative non-AUG initiation codon. We show that a basic amino-acid motif within its N-terminus is required for nucleolar retention and for interaction with nucleophosmin (NPM). In the nucleoli, extended-C/EBPα occupies the ribosomal DNA (rDNA) promoter and associates with the Pol I-specific factors upstream-binding factor 1 (UBF-1) and SL1 to stimulate rRNA synthesis. Furthermore, during differentiation of HL-60 cells, endogenous expression of extended-C/EBPα is lost concomitantly with nucleolar C/EBPα immunostaining probably reflecting the reduced requirement for ribosome biogenesis in differentiated cells. Finally, overexpression of extended-C/EBPα induces an increase in cell size. Altogether, our results suggest that control of rRNA synthesis is a novel function of C/EBPα adding to its role as key regulator of cell growth and proliferation.
Collapse
Affiliation(s)
- Christine Müller
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
| | | | | | | | | |
Collapse
|
35
|
Methylene tetrahydrofolate reductase gene polymorphism in Egyptian children with acute lymphoblastic leukemia. Blood Coagul Fibrinolysis 2010; 21:28-34. [DOI: 10.1097/mbc.0b013e32833135e9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Kwon MC, Koo BK, Kim YY, Lee SH, Kim NS, Kim JH, Kong YY. Essential role of CR6-interacting factor 1 (Crif1) in E74-like factor 3 (ELF3)-mediated intestinal development. J Biol Chem 2009; 284:33634-41. [PMID: 19801644 DOI: 10.1074/jbc.m109.059840] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although terminal differentiation of intestinal epithelium is essential for the efficient digestion and absorption of nutrients, little is known about the molecular mechanisms underlying this process. Recent studies have shown that Elf3 (E74-like factor 3), a member of the ETS transcription factor family, has an essential role in the terminal differentiation of absorptive enterocytes and mucus-secreting goblet cells. Here, we demonstrated that Crif1 (CR6-interacting factor 1) functions as transcriptional coactivator of Elf3 in intestinal epithelium differentiation. The intestinal epithelium-specific Crif1-deficient mice died soon after birth and displayed severe alterations of tissue architecture in the small intestine, including poor microvillus formation and abnormal differentiation of absorptive enterocytes. Strikingly, these phenotypes are largely similar to that of Elf3-deficient mice, suggesting that Elf3 signaling in the intestinal epithelium depends on the Crif1 expression. We dissected this relationship further and found that Crif1 indeed interacted with Elf3 through its ETS DNA binding domain and enhanced the transcriptional activity of Elf3 by regulating the DNA binding activity. Knockdown of Crif1 by RNA interference conversely attenuated the transcriptional activity of Elf3. Consistently, the expression level of Tgf-betaRII (transforming growth factor beta type II receptor), a critical target gene of Elf3, was dramatically reduced in the Crif1-deficient mice. Our results reveal that Crif1 is a novel and essential transcriptional coactivator of Elf3 for the terminal differentiation of absorptive enterocytes.
Collapse
Affiliation(s)
- Min-Chul Kwon
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, San 56-1, Silim-dong, Gwanak-gu, Seoul 151-747, South Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Liu Y, Nonnemacher MR, Wigdahl B. CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol 2009; 4:299-321. [PMID: 19327116 DOI: 10.2217/fmb.09.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies indicate that two upstream CCAAT/enhancer-binding protein (C/EBP) sites and C/EBPbeta are required for subtype B HIV-1 gene expression in cells of the monocyte-macrophage lineage. The mechanisms of C/EBP regulation of HIV-1 transcription and replication remain unclear. This review focuses on studies concerning the role of C/EBP factors in HIV-1, human T-cell leukemia virus type 1, and SIV transcription in various cell types and tissues cultured in vitro, animal models and during human infection. The structure and function of the C/EBPbeta gene and the related protein isoforms are discussed along with the transcription factors, coactivators, viral proteins, cytokines and chemokines that affect C/EBP function.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology & Immunology, Center for Molecular Virology & Neuroimmunology, Center for Cancer Biology, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
38
|
|