1
|
Ahmad S, Ahmad L, Adil M, Sharma R, Khan S, Hasan N, Aqil M. Emerging nano-derived therapy for the treatment of dementia: a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01863-3. [PMID: 40268841 DOI: 10.1007/s13346-025-01863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Dementia includes a variety of neurodegenerative diseases that affect and target the brain's fundamental cognitive functions. It is undoubtedly one of the diseases that affects people globally. The ameliorating the disease is still not known; the symptoms, however, can be prevented to an extent. Dementia encompasses Alzheimer's disease, Parkinson's disease, Huntington's disease, Lewy body dementia, mixed dementia, and various other diseases. The aggregation of β-amyloid protein plaques and the formation of neurofibrillary tangles have been concluded as the foremost cause for the onset of the disease. As the cases climb, new neuroprotective methods are being developed in the form of new drug delivery systems that provide targeted delivery. Herbal drugs like Ashwagandha, Brahmi, and Cannabis have shown satisfactory results by not only treating the symptoms but have also been shown to reduce and ameliorate the formation of amyloid plaque formation. This article explores the intricate possibilities of drug delivery and the absolute use of herbal drugs to target neurodegenerative diseases. The various possibilities of nanotechnology currently available with new emerging techniques are also discussed.
Collapse
Affiliation(s)
- Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lubna Ahmad
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ritu Sharma
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saara Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Aazad AA, Choudhury A, Hussain A, AlAjmi MF, Mohammad T, Prabha S, Sharma MK, Shamsi A, Hassan MI. Exploring phytochemical inhibitors of protein kinase C alpha for therapeutic targeting of Alzheimer's disease. J Alzheimers Dis 2024; 102:703-719. [PMID: 39523500 DOI: 10.1177/13872877241289620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neurodegeneration linked to amyloid-β (Aβ) plaques and tau protein tangles. Protein kinase C alpha (PKCα) plays a crucial role in modulating amyloid-β protein precursor (AβPP) processing, potentially mitigating AD progression. Consequently, PKCα stands out as a promising target for AD therapy. OBJECTIVE Despite the identification of numerous inhibitors, the pursuit of more effective and precisely targeted PKCα inhibitors remains crucial. METHODS In this study, we employed an integrated virtual screening approach of molecular docking and molecular dynamics (MD) simulations to identify phytochemical inhibitors of PKCα from the IMPPAT database. RESULTS Molecular docking screening via InstaDock identified compounds with strong binding affinities to PKCα. Subsequent ADMET and PASS analyses filtered out compounds with favorable pharmacokinetic profiles. Interaction analysis using Discovery Studio Visualizer and PyMOL further elucidated binding conformations of selected compounds with PKCα. Top hits underwent 200 ns MD simulations using GROMACS to validate stability of the interactions. Finally, we propose two phytochemicals, Kammogenin and Imperialine, with appreciable drug-likeliness and binding potential with PKCα. CONCLUSIONS Taken together, the findings suggest Kammogenin and Imperialine as potential PKCα inhibitors, highlighting their therapeutic promise for AD after further validation.
Collapse
Affiliation(s)
- A A Aazad
- Department of Bioinformatics, JV College, Baraut, Baghpat, Uttar Pradesh, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Bioinformatics, JV College, Baraut, Baghpat, Uttar Pradesh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Galvão F, Rode MP, de Campos PS, Bruch GE, Carregal VM, Massensini AR, Matte BF, Lamers ML, Creczynski-Pasa TB, Siqueira IR. MiRNAs that target amyloid precursor protein processing machinery in extracellular vesicles and particles derived from oral squamous cells carcinoma. J Oral Pathol Med 2023; 52:877-884. [PMID: 37549991 DOI: 10.1111/jop.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Considering that microRNAs (miRNAs), extracellular vesicles and particles (EVPs) and the amyloid precursor protein (APP) processing have been shown to be altered in oral squamous cells carcinoma (OSCC), it is possible that miRNAs that target APP processing pathways in EVPs are impacted in tumor cells. Our aim was to evaluate miRNAs that target APP itself or disintegrin and metalloproteinase domain 10 (ADAM10), which generate a trophic compound, sAPPα, in EVPs derived from OSCC cell lines, an aggressive and non-invasive, compared to normal keratinocytes. METHODS We used two OSCC cell lines, an aggressive human oral squamous cell carcinoma cell line (SCC09) and a less aggressive cell line (CAL27) compared with a keratinocyte lineage (HaCaT). Cells were maintained in cell media, from which we isolated EVPs. EVPs were evaluated regarding their size and concentration using Nanotracking Analysis. We measured the levels of miRNAs which had as potential downstream target APP or ADAM10, specifically miR-20a-5p, miR-103a-3p, miR-424-5p, miR-92b-3p, miR-31-5p, and miR-93-5. RESULTS There were no differences on size distributions and concentration of isolated EVPs. OSCC cell lines-derived EVPs miR-20a-5p, miR-92b-3p, and miR-93-5p were upregulated in comparison to HaCaT-derived EVPs; while miR-31-5p was reduced in EVPs obtained from CAL27 cells. CONCLUSION Our results indicate changes in miRNAs that target APP machinery processing in EVPs derived from OSCC cell lines of different aggressiveness, which may be involved with abnormal miRNA expression in OSCC tissue and/or releasing tumor suppressor miRNA.
Collapse
Affiliation(s)
- Fernando Galvão
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Michele Patricia Rode
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Paloma Santos de Campos
- Programa de Pós-Graduação em Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Eva Bruch
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Virgínia Mendes Carregal
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Ricardo Massensini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bibiana Franzen Matte
- Programa de Pós-Graduação em Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Lazzaron Lamers
- Programa de Pós-Graduação em Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Programa de Pós-Graduação em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Linciano P, Nasti R, Listro R, Amadio M, Pascale A, Potenza D, Vasile F, Minneci M, Ann J, Lee J, Zhou X, Mitchell GA, Blumberg PM, Rossi D, Collina S. Chiral 2-phenyl-3-hydroxypropyl esters as PKC-alpha modulators: HPLC enantioseparation, NMR absolute configuration assignment, and molecular docking studies. Chirality 2021; 34:498-513. [PMID: 34962318 DOI: 10.1002/chir.23406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. In our previous work, we identified in racemate 1-2, based on the 2-benzyl-3-hydroxypropyl ester scaffold, two new potent and promising PKCα and PKCδ ligands, targeting the C1 domain of these two kinases. Herein, we report the resolution of the racemates by enantioselective semi-preparative HPLC. The attribution of the absolute configuration (AC) of homochirals 1 was performed by NMR, via methoxy-α-trifluoromethyl-α-phenylacetic acid derivatization (MTPA or Mosher's acid). Moreover, the match between the experimental and predicted electronic circular dichroism (ECD) spectra confirmed the assigned AC. These results proved that Mosher's esters can be properly exploited for the determination of the AC also for chiral primary alcohols. Lastly, homochiral 1 and 2 were assessed for binding affinity and functional activity against PKCα. No significative differences in the Ki of the enantiopure compounds was observed, thus suggesting that chirality does not seem to play a significant role in targeting PKC C1 domain. These results are in accordance with the molecular docking studies performed using a new homology model for the human PKCαC1B domain.
Collapse
Affiliation(s)
| | - Rita Nasti
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Roberta Listro
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Alessia Pascale
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | | | - Marco Minneci
- Department of Chemistry, University of Milan, Milan, Italy
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xiaoling Zhou
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Lordén G, Newton A. Conventional protein kinase C in the brain: repurposing cancer drugs for neurodegenerative treatment? Neuronal Signal 2021; 5:NS20210036. [PMID: 34737895 PMCID: PMC8536831 DOI: 10.1042/ns20210036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Protein Kinase C (PKC) isozymes are tightly regulated kinases that transduce a myriad of signals from receptor-mediated hydrolysis of membrane phospholipids. They play an important role in brain physiology, and dysregulation of PKC activity is associated with neurodegeneration. Gain-of-function mutations in PKCα are associated with Alzheimer's disease (AD) and mutations in PKCγ cause spinocerebellar ataxia (SCA) type 14 (SCA14). This article presents an overview of the role of the conventional PKCα and PKCγ in neurodegeneration and proposes repurposing PKC inhibitors, which failed in clinical trials for cancer, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gema Lordén
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037, U.S.A
| |
Collapse
|
6
|
Galvão F, Grokoski KC, da Silva BB, Lamers ML, Siqueira IR. The amyloid precursor protein (APP) processing as a biological link between Alzheimer's disease and cancer. Ageing Res Rev 2019; 49:83-91. [PMID: 30500566 DOI: 10.1016/j.arr.2018.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023]
Abstract
Aging is a risk factor for several illnesses, such as Alzheimer's Disease and various cancers. However, an inverse correlation between malignancies and Alzheimer's Disease has been suggested. This review addressed the potential role of non-amyloidogenic and amyloidogenic pathways of amyloid precursor protein processing as a relevant biochemical mechanism to clarify this association. Amyloidogenic and non-amyloidogenic pathways have been related to Alzheimer's Disease and certain malignancies, respectively. Several known molecules involved in APP processing, including its regulation and final products, were summarized. Among them some candidate mechanisms emerged, such as extracellular-regulated kinase (Erk) and protein kinase C (PKC). Therefore, the imbalance of APP processing may be involved with the negative correlation between cancer and Alzheimer Disease.
Collapse
|
7
|
Ashraf J, Ahmad J, Ali A, Ul-Haq Z. Analyzing the Behavior of Neuronal Pathways in Alzheimer's Disease Using Petri Net Modeling Approach. Front Neuroinform 2018; 12:26. [PMID: 29875647 PMCID: PMC5974338 DOI: 10.3389/fninf.2018.00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's Disease (AD) is the most common neuro-degenerative disorder in the elderly that leads to dementia. The hallmark of AD is senile lesions made by abnormal aggregation of amyloid beta in extracellular space of brain. One of the challenges in AD treatment is to better understand the mechanism of action of key proteins and their related pathways involved in neuronal cell death in order to identify adequate therapeutic targets. This study focuses on the phenomenon of aggregation of amyloid beta into plaques by considering the signal transduction pathways of Calpain-Calpastatin (CAST) regulation system and Amyloid Precursor Protein (APP) processing pathways along with Ca2+ channels. These pathways are modeled and analyzed individually as well as collectively through Stochastic Petri Nets for comprehensive analysis and thorough understating of AD. The model predicts that the deregulation of Calpain activity, disruption of Calcium homeostasis, inhibition of CAST and elevation of abnormal APP processing are key cytotoxic events resulting in an early AD onset and progression. Interestingly, the model also reveals that plaques accumulation start early (at the age of 40) in life but symptoms appear late. These results suggest that the process of neuro-degeneration can be slowed down or paused by slowing down the degradation rate of Calpain-CAST Complex. In the light of this study, the suggestive therapeutic strategy might be the prevention of the degradation of Calpain-CAST complexes and the inhibition of Calpain for the treatment of neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Javaria Ashraf
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amjad Ali
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
8
|
Tam JHK, Cobb MR, Seah C, Pasternak SH. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway. PLoS One 2016; 11:e0161445. [PMID: 27776132 PMCID: PMC5077117 DOI: 10.1371/journal.pone.0161445] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/07/2016] [Indexed: 01/18/2023] Open
Abstract
The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer’s disease.
Collapse
Affiliation(s)
- Joshua H. K. Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6A 5B7
| | - M. Rebecca Cobb
- Program in Neuroscience, Western University, London, Ontario, Canada, N6A 5B7
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
| | - Stephen H. Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6A 5B7
- Program in Neuroscience, Western University, London, Ontario, Canada, N6A 5B7
- Department of Clinical Neurological Sciences, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
- * E-mail:
| |
Collapse
|
9
|
Libro R, Giacoppo S, Soundara Rajan T, Bramanti P, Mazzon E. Natural Phytochemicals in the Treatment and Prevention of Dementia: An Overview. Molecules 2016; 21:518. [PMID: 27110749 PMCID: PMC6274085 DOI: 10.3390/molecules21040518] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/04/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
The word dementia describes a class of heterogeneous diseases which etiopathogenetic mechanisms are not well understood. There are different types of dementia, among which, Alzheimer's disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD) are the more common. Currently approved pharmacological treatments for most forms of dementia seem to act only on symptoms without having profound disease-modifying effects. Thus, alternative strategies capable of preventing the progressive loss of specific neuronal populations are urgently required. In particular, the attention of researchers has been focused on phytochemical compounds that have shown antioxidative, anti-amyloidogenic, anti-inflammatory and anti-apoptotic properties and that could represent important resources in the discovery of drug candidates against dementia. In this review, we summarize the neuroprotective effects of the main phytochemicals belonging to the polyphenol, isothiocyanate, alkaloid and cannabinoid families in the prevention and treatment of the most common kinds of dementia. We believe that natural phytochemicals may represent a promising sources of alternative medicine, at least in association with therapies approved to date for dementia.
Collapse
Affiliation(s)
- Rosaliana Libro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Thangavelu Soundara Rajan
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
10
|
Panmanee J, Nopparat C, Chavanich N, Shukla M, Mukda S, Song W, Vincent B, Govitrapong P. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J Pineal Res 2015; 59:308-20. [PMID: 26123100 DOI: 10.1111/jpi.12260] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/26/2015] [Indexed: 12/17/2022]
Abstract
Melatonin is involved in the control of various physiological functions, such as sleep, cell growth and free radical scavenging. The ability of melatonin to behave as an antioxidant, together with the fact that the Alzheimer-related amyloid β-peptide (Aβ) triggers oxidative stress through hydroxyl radical-induced cell death, suggests that melatonin could reduce Alzheimer's pathology. Although the exact etiology of Alzheimer's disease (AD) remains to be established, excess Aβ is believed to be the primary contributor to the dysfunction and degeneration of neurons that occurs in AD. Aβ peptides are produced via the sequential cleavage of β-secretase β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase (PS1/PS2), while α-secretase (ADAM10) prevents the production of Aβ peptides. We hypothesized that melatonin could inhibit BACE1 and PS1/PS2 and enhance ADAM10 expression. Using the human neuronal SH-SY5Y cell line, we found that melatonin inhibited BACE1 and PS1 and activated ADAM10 mRNA level and protein expression in a concentration-dependent manner and mediated via melatonin G protein-coupled receptors. Melatonin inhibits BACE1 and PS1 protein expressions through the attenuation of nuclear factor-κB phosphorylation (pNF-κB). Moreover, melatonin reduced BACE1 promoter transactivation and consequently downregulated β-secretase catalytic activity. The present data show that melatonin is not only a potential regulator of β/γ-secretase but also an activator of α-secretase expression through the activation of protein kinase C, thereby favoring the nonamyloidogenic pathway over the amyloidogenic pathway. Altogether, our findings suggest that melatonin may be a potential therapeutic agent for reducing the risk of AD in humans.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Chutikorn Nopparat
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Napapit Chavanich
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Mayuri Shukla
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bruno Vincent
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
- Centre National de la Recherche Scientifique, Paris, France
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
- Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Amadio M, Scapagnini G, Davinelli S, Calabrese V, Govoni S, Pascale A. Involvement of ELAV RNA-binding proteins in the post-transcriptional regulation of HO-1. Front Cell Neurosci 2015; 8:459. [PMID: 25642166 PMCID: PMC4295526 DOI: 10.3389/fncel.2014.00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible rate-controlling enzyme of heme catabolism. The cytoprotective function of HO-1 activity has been verified in multiple studies, and together with its by-products is considered a key component of the cellular stress response. The transcriptional induction of HO-1 has been largely studied in response to multiple forms of stressful stimuli but our understanding of HO-1 post-transcriptional control mechanisms in neuronal cells is currently lacking. In the present report we show the involvement of the RNA-binding proteins (RBPs) embryonic lethal abnormal vision (ELAV) in the regulation of HO-1 gene expression. Our study demonstrates a specific binding between HO-1 messenger RNA (mRNA) and ELAV proteins, accompanied by an increased expression of HO-1 at protein level, in a human neuroblastoma cell line treated with hemin. Clarifying the induction of HO-1 expression at post-transcriptional level may open therapeutic perspectives for treatments associated with the modulation of HO-1 expression.
Collapse
Affiliation(s)
- Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia Pavia, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy ; Inter-University Consortium "SannioTech" Benevento, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Vittorio Calabrese
- Inter-University Consortium "SannioTech" Benevento, Italy ; Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia Pavia, Italy
| |
Collapse
|
12
|
Tanabe F, Nakajima T, Ito M. Involvement of diacylglycerol produced by phospholipase D activation in Aβ-induced reduction of sAPPα secretion in SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 2014; 446:933-9. [PMID: 24650665 DOI: 10.1016/j.bbrc.2014.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 01/13/2023]
Abstract
We previously reported that the thiol proteinase inhibitor, E-64-d, ameliorated amyloid β (Aβ)-induced reduction of soluble amyloid precursor protein α (sAPPα) secretion by reversing ceramide-induced protein kinase C down-regulation in SH-SY5Y neuroblastoma cells. In the present study, we showed that Aβ (1-42) peptide enhanced diacylglycerol (DAG) production by phospholipase D (PLD) activation in these cells. We subsequently examined whether PLD was involved in Aβ-induced reduction of sAPPα secretion and showed that 2 μM CAY10593, which selectively inhibits PLD2, ameliorated reduction of sAPPα secretion, whereas 50 nM CAY10593, which selectively inhibits PLD1, did not. Moreover, 50 µM propranolol, a phosphatidic acid phosphohydrolase inhibitor, also ameliorated Aβ-induced reduction of sAPPα secretion, suggesting that DAG may be responsible for Aβ-induced reduction of sAPPα. We subsequently examined whether DAG affects sAPPα secretion and showed that a DAG analog reduced sAPPα secretion in SH-SY5Y cells. In addition, DAG enhanced ceramide production by stimulating neutral sphingomyelinase (N-SMase) activity. We previously demonstrated that Aβ stimulates N-SMase activity in SH-SY5Y cells. Here, we showed that inhibition of PLD2 by 2 μM CAY10593 suppressed Aβ-induced N-SMase activation. Taken together, the results suggest that DAG produced through the PLD pathway is involved in Aβ-induced reduction of sAPPα secretion in SH-SY5Y cells.
Collapse
Affiliation(s)
- Fuminori Tanabe
- Department of Human Science, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Tomoko Nakajima
- Department of Human Science, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masahiko Ito
- Department of Microbiology, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
13
|
Tanabe F, Nakajima T, Ito M. The thiol proteinase inhibitor E-64-d ameliorates amyloid-β-induced reduction of sAPPα secretion by reversing ceramide-induced protein kinase C down-regulation in SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 2013; 441:256-61. [PMID: 24141119 DOI: 10.1016/j.bbrc.2013.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
In Alzheimer's disease (AD), enhancing α-secretase processing of amyloid precursor protein (APP) is an important pathway to decrease neurotoxic amyloid β (Aβ) secretion. The α-secretase is reported to be regulated by protein kinase C (PKC) and various endogenous proteins or cell surface receptors. In this report, we first examined whether Aβ reduces α-secretase activity, and showed that Aβ peptide 1-40 (0.001 and 0.01 μM) reduced the secretion of soluble amyloid precursor protein α (sAPPα) in carbachol-stimulated SH-SY5Y neuroblastoma cells. E-64-d (3 μM), which is a potent calpain inhibitor that prevents PKC degradation, ameliorated the Aβ-induced reduction of sAPPα secretion. In addition, we observed that Aβ significantly enhanced ceramide production by activating neutral sphingomyelinase. The cell-permeable ceramide analog, C2-ceramide (1 μg/mL), also reduced sAPPα secretion, and in addition, E-64-d eliminated the observed decrease of sAPPα secretion. C2-ceramide induced down-regulation of PKC-α, -β1, and -β2 isozymes in SH-SY5Y cells. These findings suggest that ceramide may play an important role in sAPPα processing by modulating PKC activity.
Collapse
Affiliation(s)
- Fuminori Tanabe
- Department of Human Science, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | | | | |
Collapse
|
14
|
Munc13 genotype regulates secretory amyloid precursor protein processing via postsynaptic glutamate receptors. Int J Dev Neurosci 2012; 31:36-45. [PMID: 23070049 DOI: 10.1016/j.ijdevneu.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) can be proteolytically degraded via non-amyloidogenic α-secretase and amyloidogenic β-secretase pathways. Previously, we have identified the presynaptic protein Munc13-1 as a diacylglycerol/phorbolester (DAG/PE) receptor that contributes to secretory, non-amyloidogenic APP processing after PE stimulation. Here, we used organotypic brain slice cultures from wild-type mice and from Munc13-1 knock-out (KO), Munc13-2 KO and Munc13-1/2 double KO (DKO) mice for pharmacological stimulation experiments. First, we demonstrate that neuronal populations and synaptic components important for secretory APP processing develop normally in organotypic brain slice cultures of all genotypes analyzed. Blockade of voltage-gated Na(+) channels by tetrodotoxin reduced the PE-stimulated secretory APP processing, whereas depolarization by high extracellular K(+) concentration evoked APP secretion. Additionally, the PE-stimulated APP secretion from Munc13-1 KO brain slices was significantly lower than that from wild-type brain slices. This effect was not observed in brain slices from Munc13-2 KO mice, which is consistent with the lower abundance and subpopulation-specific distribution of Munc13-2 in presynaptic elements. In Munc13-1/2 DKO brain slices, the deficiency of Munc13-1 dominated the effect of APP processing. The Munc13-1 KO effect on APP processing could be rescued by the stimulation of postsynaptic glutamatergic receptors. This indicates that lack of postsynaptic glutamate receptor stimulation in Munc13-1 KO brain slice cultures but not presynaptic mechanisms account for compromised APP processing. We conclude that organotypic brain slices cultures are a valuable tool for studying APP processing pathways in intact neuronal circuits and that neuronal activity is important for maintenance of the non-amyloidogenic APP processing.
Collapse
|
15
|
Yi P, Schrott L, Castor TP, Alexander JS. Bryostatin-1 vs. TPPB: dose-dependent APP processing and PKC-α, -δ, and -ε isoform activation in SH-SY5Y neuronal cells. J Mol Neurosci 2012; 48:234-44. [PMID: 22700373 PMCID: PMC3413820 DOI: 10.1007/s12031-012-9816-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/16/2012] [Indexed: 01/17/2023]
Abstract
Activation of the α-secretase processing pathway of amyloid precursor protein (APP) is recognized as an important mechanism which diverts APP processing from production of beta-amyloid (Aβ) to non toxic sAPPα, decreasing Alzheimer’s disease (AD) plaque formation and AD-associated cognitive deficits. Two potent classes of PKC modulators can activate the α-secretase pathway, the benzo/indolactams and bryostatin/bryologues. While both modulate PKC-dependent APP processing, no direct comparisons of their relative pharmacological potencies have been accomplished which could assist in the development of AD therapies. In this study, we measured the activation of α-secretase APP processing and PKC-α, -δ, and -ε induced by the benzolactam-APP modulator TPPB and bryostatin-1 in the neuroblastoma cell line SH-SY5Y which expresses APP and α- and β-secretase processing mechanisms. Bryostatin-1 produced a more rapid, potent, and sustained activation of α-secretase APP processing than TPPB and selectively activated PKC-δ and PKC-ε. Although TPPB also activated α-secretase, its potency was approximately 10- to 100-fold lower, possibly reflecting lower PKC-δ and -ε activation. Because bryostatin-1 is a highly potent PKC-δ and -ε activator which activates α-secretase APP processing, further characterization of bryostatin-1/bryologues may help refine their use as important tools for the clinical management of AD.
Collapse
Affiliation(s)
- P. Yi
- Department of Molecular and Cellular Physiology, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| | - L. Schrott
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| | | | - J. S. Alexander
- Department of Molecular and Cellular Physiology, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| |
Collapse
|
16
|
Ratia M, Giménez-Llort L, Camps P, Muñoz-Torrero D, Pérez B, Clos MV, Badia A. Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with Alzheimer's disease in triple transgenic mice (3xTg-AD). NEURODEGENER DIS 2012; 11:129-40. [PMID: 22626981 DOI: 10.1159/000336427] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Different studies have established that cholinergic neurodegeneration could be a major pathological feature of Alzheimer's disease (AD). Thus, enhancement of the central cholinergic neurotransmission has been regarded as one of the most promising strategies for the symptomatic treatment of AD, mainly by means of reversible acetylcholinesterase inhibitors (AChEIs). The cognitive-enhancing properties of both huprine X, a new AChEI, and the structurally related huperzine A, as well as their effects on the regulation of several neurochemical processes related to AD have been studied in triple transgenic mice (3xTg-AD). METHODS Seven-month-old homozygous 3xTg-AD male mice, which received chronic intraperitoneal treatment with either saline, huprine X (0.12 µmol·kg(-1)) or huperzine A (0.8 µmol·kg(-1)) were subjected to a battery of behavioural tests after 3 weeks of treatment and thereafter the brains were dissected to study the neurochemical effects induced by the two AChEIs. RESULTS Treatments with huprine X and huperzine A improved learning and memory in the Morris water maze and some indicators of emotionality without inducing important adverse effects. Moreover, huprine X and huperzine A activate protein kinase C/mitogen-activated protein kinase pathway signalling, α-secretases (ADAM 10 and TACE) and increase the fraction of phospho-glycogen synthase kinase 3-β. CONCLUSION Results obtained herein using a sample of 3xTg-AD animals strongly suggest that the treatment with the two AChEIs not only improves the cognitive performance of the animals but also induces some neurochemical changes that could contribute to the beneficial effects observed.
Collapse
Affiliation(s)
- M Ratia
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Universitat Autònoma de Barcelona, Barcelona, España
| | | | | | | | | | | | | |
Collapse
|
17
|
Pascale A, Govoni S. The complex world of post-transcriptional mechanisms: is their deregulation a common link for diseases? Focus on ELAV-like RNA-binding proteins. Cell Mol Life Sci 2012; 69:501-17. [PMID: 21909784 PMCID: PMC11114966 DOI: 10.1007/s00018-011-0810-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 12/14/2022]
Abstract
Post-transcriptional mechanisms are key determinants in the modulation of the expression of final gene products. Within this context, fundamental players are RNA-binding proteins (RBPs), and among them ELAV-like proteins. RBPs are able to affect every aspect in the processing of transcripts, from alternative splicing, polyadenylation, and nuclear export to cytoplasmic localization, stability, and translation. Of interest, more than one RBP can bind simultaneously the same mRNA; therefore, since each RBP is endowed with different properties, the balance of these interactions dictates the ultimate fate of the transcript, especially in terms of both stability and rate of translation. Besides RBPs, microRNAs are also important contributors to the post-transcriptional control of gene expression. Within this general context, the present review focuses on ELAV-like proteins describing their roles in the nucleus and in the cytoplasm, also highlighting some examples of interactions with other RBPs and with microRNAs. We also examine the putative role and the observed changes of ELAV-like proteins and of their interactions with other regulatory elements in Alzheimer's disease, cancer, and inflammation. The changes in the expression of proteins involved in these diseases are examples of how a derangement in the mRNA stabilization process may be associated with disease development and contribute to pathology. Overall, we hope that the topics handled in the present manuscript provide a hint to look at ELAV-like-mediated mRNA stabilization as a mechanism relevant to disease as well as a novel putative drug target.
Collapse
Affiliation(s)
- Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Via Taramelli 14, 27100, Pavia, Italy.
| | | |
Collapse
|
18
|
Osera C, Fassina L, Amadio M, Venturini L, Buoso E, Magenes G, Govoni S, Ricevuti G, Pascale A. Cytoprotective Response Induced by Electromagnetic Stimulation on SH-SY5Y Human Neuroblastoma Cell Line. Tissue Eng Part A 2011; 17:2573-82. [DOI: 10.1089/ten.tea.2011.0071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cecilia Osera
- Dipartimento di Scienze del Farmaco-Sez. Farmacologia, Università di Pavia, Pavia, Italy
| | - Lorenzo Fassina
- Dipartimento di Informatica e Sistemistica, Università di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale (C.I.T.), Università di Pavia, Pavia, Italy
| | - Marialaura Amadio
- Dipartimento di Scienze del Farmaco-Sez. Farmacologia, Università di Pavia, Pavia, Italy
| | - Letizia Venturini
- Dipartimento di Medicina Interna e Terapia Medica—Sez. Gerontologia e Geriatria—IDR S. Margherita, Università di Pavia, Pavia, Italy
- Laboratorio di Fisiopatologia Cellulare e Immunologia Clinica—IRCCS S. Matteo, Università di Pavia, Pavia, Italy
| | - Erica Buoso
- Dipartimento di Scienze del Farmaco-Sez. Farmacologia, Università di Pavia, Pavia, Italy
| | - Giovanni Magenes
- Dipartimento di Informatica e Sistemistica, Università di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale (C.I.T.), Università di Pavia, Pavia, Italy
| | - Stefano Govoni
- Dipartimento di Scienze del Farmaco-Sez. Farmacologia, Università di Pavia, Pavia, Italy
| | - Giovanni Ricevuti
- Dipartimento di Medicina Interna e Terapia Medica—Sez. Gerontologia e Geriatria—IDR S. Margherita, Università di Pavia, Pavia, Italy
- Laboratorio di Fisiopatologia Cellulare e Immunologia Clinica—IRCCS S. Matteo, Università di Pavia, Pavia, Italy
| | - Alessia Pascale
- Dipartimento di Scienze del Farmaco-Sez. Farmacologia, Università di Pavia, Pavia, Italy
| |
Collapse
|
19
|
Cui H, Hung AC, Klaver DW, Suzuki T, Freeman C, Narkowicz C, Jacobson GA, Small DH. Effects of heparin and enoxaparin on APP processing and Aβ production in primary cortical neurons from Tg2576 mice. PLoS One 2011; 6:e23007. [PMID: 21829577 PMCID: PMC3146518 DOI: 10.1371/journal.pone.0023007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 07/11/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is caused by accumulation of Aβ, which is produced through sequential cleavage of β-amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE1) and γ-secretase. Enoxaparin, a low molecular weight form of the glycosaminoglycan (GAG) heparin, has been reported to lower Aβ plaque deposition and improve cognitive function in AD transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS We examined whether heparin and enoxaparin influence APP processing and inhibit Aβ production in primary cortical cell cultures. Heparin and enoxaparin were incubated with primary cortical cells derived from Tg2576 mice, and the level of APP and proteolytic products of APP (sAPPα, C99, C83 and Aβ) was measured by western blotting. Treatment of the cells with heparin or enoxaparin had no significant effect on the level of total APP. However, both GAGs decreased the level of C99 and C83, and inhibited sAPPα and Aβ secretion. Heparin also decreased the level of β-secretase (BACE1) and α-secretase (ADAM10). In contrast, heparin had no effect on the level of ADAM17. CONCLUSIONS/SIGNIFICANCE The data indicate that heparin and enoxaparin decrease APP processing via both α- and β-secretase pathways. The possibility that GAGs may be beneficial for the treatment of AD needs further study.
Collapse
Affiliation(s)
- Hao Cui
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- School of Pharmacy, University of Tasmania, Hobart, Tasmania, Australia
| | - Amos C. Hung
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - David W. Klaver
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Craig Freeman
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | - Glenn A. Jacobson
- School of Pharmacy, University of Tasmania, Hobart, Tasmania, Australia
| | - David H. Small
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
20
|
Cysteine 27 variant of the delta-opioid receptor affects amyloid precursor protein processing through altered endocytic trafficking. Mol Cell Biol 2011; 31:2326-40. [PMID: 21464208 DOI: 10.1128/mcb.05015-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agonist-induced activation of the δ-opioid receptor (δOR) was recently shown to augment β- and γ-secretase activities, which increased the production of β-amyloid peptide (Aβ), known to accumulate in the brain tissues of Alzheimer's disease (AD) patients. Previously, the δOR variant with a phenylalanine at position 27 (δOR-Phe27) exhibited more efficient receptor maturation and higher stability at the cell surface than did the less common cysteine (δOR-Cys27) variant. For this study, we expressed these variants in human SH-SY5Y and HEK293 cells expressing exogenous or endogenous amyloid precursor protein (APP) and assessed the effects on APP processing. Expression of δOR-Cys27, but not δOR-Phe27, resulted in a robust accumulation of the APP C83 C-terminal fragment and the APP intracellular domain, while the total soluble APP and, particularly, the β-amyloid 40 levels were decreased. These changes upon δOR-Cys27 expression coincided with decreased localization of APP C-terminal fragments in late endosomes and lysosomes. Importantly, a long-term treatment with a subset of δOR-specific ligands or a c-Src tyrosine kinase inhibitor suppressed the δOR-Cys27-induced APP phenotype. These data suggest that an increased constitutive internalization and/or concurrent signaling of the δOR-Cys27 variant affects APP processing through altered endocytic trafficking of APP.
Collapse
|
21
|
Kim T, Hinton DJ, Choi DS. Protein kinase C-regulated aβ production and clearance. Int J Alzheimers Dis 2011; 2011:857368. [PMID: 21274428 PMCID: PMC3026967 DOI: 10.4061/2011/857368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloid β-peptide (Aβ) in the brain. A growing body of recent studies suggests that protein kinase C (PKC) promotes the production of the secretory form of amyloid precursor protein (sAPPα) via the activation of α-secretase activity, which reduces the accumulation of pathogenic Aβ levels in the brain. Moreover, activation of PKCα and mitogen-activated protein kinase (MAPK) is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβ degrading activity of endothelin converting enzyme type 1 (ECE-1), which might be mediated via the MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβ levels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in Aβ production and clearance and its implication in AD.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
22
|
Peng Y, Hu Y, Xu S, Feng N, Wang L, Wang X. l-3-n-Butylphthalide regulates amyloid precursor protein processing by PKC and MAPK pathways in SK-N-SH cells over-expressing wild type human APP695. Neurosci Lett 2011; 487:211-6. [DOI: 10.1016/j.neulet.2010.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/27/2010] [Accepted: 10/11/2010] [Indexed: 11/27/2022]
|
23
|
Irie K, Yanagita RC, Nakagawa Y. Challenges to the development of bryostatin-type anticancer drugs based on the activation mechanism of protein kinase Cδ. Med Res Rev 2010; 32:518-35. [DOI: 10.1002/med.20220] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto Japan
| | - Ryo C. Yanagita
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-cho, Sakyo-ku Kyoto Japan
| | - Yu Nakagawa
- Synthetic Cellular Chemistry Laboratory; Advanced Science Institute; RIKEN; Wako-shi Saitama Japan
| |
Collapse
|
24
|
Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 2010; 13:1051-85. [PMID: 20136499 DOI: 10.1089/ars.2009.2825] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hormones, growth factors, electrical stimulation, and cell-cell interactions regulate numerous cellular processes by altering the levels of second messengers, thus influencing biochemical reactions inside the cells. The Protein Kinase C family (PKCs) is a group of serine/threonine kinases that are dependent on calcium (Ca(2+)), diacylglycerol, and phospholipids. Signaling pathways that induce variations on the levels of PKC activators have been implicated in the regulation of diverse cellular functions and, in turn, PKCs are key regulators of a plethora of cellular processes, including proliferation, differentiation, and tumorigenesis. Importantly, PKCs contain regions, both in the N-terminal regulatory domain and in the C-terminal catalytic domain, that are susceptible to redox modifications. In several pathophysiological conditions when the balance between oxidants, antioxidants, and alkylants is compromised, cells undergo redox stress. PKCs are cell-signaling proteins that are particularly sensitive to redox stress because modification of their redox-sensitive regions interferes with their activity and, thus, with their biological effects. In this review, we summarize the involvement of PKCs in health and disease and the importance of redox signaling in the regulation of this family of kinases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), BioPharmaNet, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nelson TJ, Cui C, Luo Y, Alkon DL. Reduction of beta-amyloid levels by novel protein kinase C(epsilon) activators. J Biol Chem 2009; 284:34514-21. [PMID: 19850930 PMCID: PMC2787312 DOI: 10.1074/jbc.m109.016683] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/20/2009] [Indexed: 12/12/2022] Open
Abstract
Isoform-specific protein kinase C (PKC) activators may be useful as therapeutic agents for the treatment of Alzheimer disease. Three new epsilon-specific PKC activators, made by cyclopropanation of polyunsaturated fatty acids, have been developed. These activators, AA-CP4, EPA-CP5, and DHA-CP6, activate PKCepsilon in a dose-dependent manner. Unlike PKC activators that bind to the 1,2-diacylglycerol-binding site, such as bryostatin and phorbol esters, which produce prolonged down-regulation, the new activators produced sustained activation of PKC. When applied to cells expressing human APPSwe/PS1delta, which produce large quantities of beta-amyloid peptide (Abeta), DCP-LA and DHA-CP6 reduced the intracellular and secreted levels of Abeta by 60-70%. In contrast to the marked activation of alpha-secretase produced by PKC activators in fibroblasts, the PKC activators produced only a moderate and transient activation of alpha-secretase in neuronal cells. However, they activated endothelin-converting enzyme to 180% of control levels, suggesting that the Abeta-lowering ability of these PKCepsilon activators is caused by increasing the rate of Abeta degradation by endothelin-converting enzyme and not by activating nonamyloidogenic amyloid precursor protein metabolism.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia 26506, USA.
| | | | | | | |
Collapse
|
26
|
Pákáski M, Hugyecz M, Sántha P, Jancsó G, Bjelik A, Domokos Á, Janka Z, Kálmán J. Capsaicin promotes the amyloidogenic route of brain amyloid precursor protein processing. Neurochem Int 2009; 54:426-30. [DOI: 10.1016/j.neuint.2009.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/13/2009] [Accepted: 01/20/2009] [Indexed: 01/11/2023]
|
27
|
da Cruz e Silva OAB, Rebelo S, Vieira SI, Gandy S, da Cruz e Silva EF, Greengard P. Enhanced generation of Alzheimer's amyloid-beta following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C. J Neurochem 2009; 108:319-30. [PMID: 19012746 PMCID: PMC2911029 DOI: 10.1111/j.1471-4159.2008.05770.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alzheimer's amyloid precursor protein (APP) sorting and processing are modulated through signal transduction mechanisms regulated by protein phosphorylation. Notably, protein kinase C (PKC) appears to be an important component in signaling pathways that control APP metabolism. PKCs exist in at least 11 conventional and unconventional isoforms, and PKCalpha and PKCepsilon isoforms have been specifically implicated in controlling the generation of soluble APP and amyloid-beta (Abeta) fragments of APP, although identification of the PKC substrate phospho-state-sensitive effector proteins remains challenging. In the current study, we present evidence that chronic application of phorbol esters to cultured cells in serum-free medium is associated with several phenomena, namely: (i) PKCalpha down-regulation; (ii) PKCepsilon up-regulation; (iii) accumulation of APP and/or APP carboxyl-terminal fragments in the trans Golgi network; (iv) disappearance of fluorescence from cytoplasmic vesicles bearing a green fluorescent protein tagged form of APP; (v) insensitivity of soluble APP release following acute additional phorbol application; and (vi) elevated cellular APP mRNA levels and holoprotein, and secreted Abeta. These data indicate that, unlike acute phorbol ester application, which is accompanied by lowered Abeta generation, chronic phorbol ester treatment causes differential regulation of PKC isozymes and increased Abeta generation. These data have implications for the design of amyloid-lowering strategies based on modulating PKC activity.
Collapse
|
28
|
Pinweha S, Wanikiat P, Sanvarinda Y, Supavilai P. The signaling cascades of Ganoderma lucidum extracts in stimulating non-amyloidogenic protein secretion in human neuroblastoma SH-SY5Y cell lines. Neurosci Lett 2008; 448:62-6. [PMID: 18938219 DOI: 10.1016/j.neulet.2008.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 11/15/2022]
Abstract
Ganoderma lucidum (GL) is a medicinal mushroom that possesses various pharmacological properties which are also documented in the ancient reports where GL is praised for its effects on the promotion of health and longevity. In this study, we have investigated the effect of GL mycelia extracts on the non-amyloidogenic protein secretion (sAPPalpha) and the amyloid precursor protein (APP) expression in SH-SY5Y neuroblastoma cells. In order to characterize the signaling pathway which mediates GL-enhanced sAPPalpha secretion, we used inhibitors of nerve growth factor (NGF) signaling pathways, phosphatidylinositol 3 kinase (PI3K), phospholipase Cgamma1 (PLCgamma1), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK1/2), to block GL-mediated sAPPalpha secretion as well as ERK1/2 and PKC activation by using Western blot analysis. Our results provided for the first time evidence that GL mycelia extracts increased APP expression and promoted sAPPalpha secretion. In addition, GL extracts activated ERK1/2 and PKC phosphorylation. The complex signaling cascades of PI3K and ERK may be responsible for GL-mediated sAPPalpha secretion.
Collapse
Affiliation(s)
- Sirinthorn Pinweha
- Department of Pharmacology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | | | | | | |
Collapse
|
29
|
Amadio M, Scapagnini G, Lupo G, Drago F, Govoni S, Pascale A. PKCbetaII/HuR/VEGF: A new molecular cascade in retinal pericytes for the regulation of VEGF gene expression. Pharmacol Res 2007; 57:60-6. [PMID: 18206386 DOI: 10.1016/j.phrs.2007.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 11/18/2022]
Abstract
Vascular endothelial growth factor (VEGF)-induced new vessels formation is a key event in diabetic retinopathy, a severe progressive multistage pathology. Literature data indicate that protein kinase C (PKC) is involved in the control of VEGF expression, but, so far, no data are available on the molecular pathway underlying this process. Within this context, we suggest the existence of a new molecular cascade, operating in retinal bovine pericytes and involving PKCbetaII, the mRNA-stabilizing protein HuR, and VEGF. In particular we show that PKCbetaII activation is responsible, through the RNA-binding protein HuR, for the increase of VEGF protein content and its release in the medium. The specificity of the PKCbetaII involvement is confirmed by experiments performed with the LY379196 compound, a selective PKCbetaII inhibitor. Following acute high-glucose insult this pathway seems still functioning, suggesting that a brief exposure to glucose does not compromise this molecular cascade in pericytes. A better understanding on this new pathway could open novel opportunities for the development of innovative pharmacological therapies useful in pathologies where VEGF plays a key role such as in diabetic retinopathy.
Collapse
Affiliation(s)
- Marialaura Amadio
- Department of Experimental and Applied Pharmacology, Via Taramelli 14, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Yang HQ, Pan J, Ba MW, Sun ZK, Ma GZ, Lu GQ, Xiao Q, Chen SD. New protein kinase C activator regulates amyloid precursor protein processing in vitro by increasing alpha-secretase activity. Eur J Neurosci 2007; 26:381-91. [PMID: 17650113 DOI: 10.1111/j.1460-9568.2007.05648.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The beta amyloid (Abeta) cascade has been at the forefront of the hypothesis used to describe the pathogenesis of Alzheimer's disease (AD). It is generally accepted that drugs that can regulate the processing of the amyloid precursor protein (APP) toward the non-amyloidogenic pathway may have a therapeutic potential. Previous studies have shown that protein kinase C (PKC) hypofunction has an important role in AD pathophysiology. Therefore, the effects of a new PKC activator, alpha-APP modulator [(2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB)], on APP processing were investigated. Using PC12 cells and SH-SY5Y(APP695) cells, it was found that TPPB promoted the secretion of sAPPalpha without affecting full-length expression of APP. The increase in sAPPalpha by TPPB was blocked by inhibitors of PKC, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and tyrosine kinase, suggesting the involvement of these signal transduction pathways. TPPB increased alpha-secretase activity [a disintegrin and metalloproteinase (ADAM)10 and 17], as shown by direct fluorescence activity detection and Western blot analysis. TPPB-induced sAPPalpha release was blocked by the metalloproteinase inhibitor TAPI-2, furin inhibitor CMK and by the protein-trafficking inhibitor brefeldin. The results also showed that TPPB decreased beta-secretase activity, Abeta40 release and beta site APP-cleaving enzyme 1 (BACE1) expression, but did not significantly affect neprilysin (NEP) and insulin-degrading enzyme (IDE) expression. Our data indicate that TPPB could direct APP processing towards the non-amyloidogenic pathway by increasing alpha-secretase activity, and suggest its therapeutic potential in AD.
Collapse
Affiliation(s)
- Hong-Qi Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang HQ, Ba MW, Ren RJ, Zhang YH, Ma JF, Pan J, Lu GQ, Chen SD. Mitogen activated protein kinase and protein kinase C activation mediate promotion of sAPPα secretion by deprenyl. Neurochem Int 2007; 50:74-82. [PMID: 16973242 DOI: 10.1016/j.neuint.2006.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/29/2006] [Accepted: 07/10/2006] [Indexed: 12/14/2022]
Abstract
The beta amyloid cascade plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Therefore, drugs that regulate amyloid precursor protein (APP) processing toward the nonamyloidgenic pathway may have therapeutic potential. Many anti-dementia drugs can regulate APP processing in addition to their pharmacological properties. Deprenyl is a neuroprotective agent used to treat some neurodegenerative diseases, including AD. In the present study, the effects of deprenyl on APP processing were investigated. Using SK-N-SH and PC12 cells, it was demonstrated that deprenyl stimulated the release of the nonamyloidogenic alpha-secretase form of soluble APP (sAPPalpha) in a dose-dependent manner without affecting cellular APP expression. The increase of sAPPalpha secretion by deprenyl was blocked by the mitogen activated protein (MAP) kinase inhibitor U0126 and PD98059, and by the protein kinase C (PKC) inhibitor GF109203X and staurosporine, suggesting the involvement of these signal transduction pathways. Deprenyl induced phosphorylation of p42/44 MAP kinase, which was abolished by specific inhibitors of MAP kinase and PKC. Deprenyl also phosphorylated PKC and its major substrate, and myristoylated alanine-rich C kinase (MARCKS) at specific amino acid residues. The data also indicated that 10microM deprenyl successfully induced two PKC isoforms involved in the pathogenesis of AD, PKCalpha and PKCepsilon, to translocate from the cytosolic to the membrane fraction. This phenomenon was substantiated by immunocytochemistry staining. These data suggest a novel pharmacological mechanism in which deprenyl regulates the processing of APP via activation of the MAP kinase and PKC pathways, and that this mechanism may underlie the clinical efficacy of the drug in some AD patients.
Collapse
Affiliation(s)
- Hong-Qi Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer's disease. J Neural Transm (Vienna) 2006; 113:1625-44. [PMID: 17039298 DOI: 10.1007/s00702-006-0579-2] [Citation(s) in RCA: 384] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/27/2006] [Indexed: 12/11/2022]
Abstract
Acetylcholine is widely distributed in the nervous system and has been implicated to play a critical role in cerebral cortical development, cortical activity, controlling cerebral blood flow and sleep-wake cycle as well as in modulating cognitive performances and learning and memory processes. Cholinergic neurons of the basal forebrain complex have been described to undergo moderate degenerative changes during aging, resulting in cholinergic hypofunction that has been related to the progressing memory deficits with aging. Basal forebrain cholinergic cell loss is also a consistent feature of Alzheimer's disease, which has been suggested to cause, at least partly, the cognitive deficits observed, and has led to the formulation of the cholinergic hypotheses of geriatric memory dysfunction. Impaired cortical cholinergic neurotransmission may also contribute to beta-amyloid plaque pathology and increase phosphorylation of tau protein the main component of neurofibrillar tangles in Alzheimer's disease. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, beta-amyloid formation and deposition, and tau pathology in Alzheimer's disease, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.
Collapse
Affiliation(s)
- R Schliebs
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
33
|
Fuentealba RA, Farias G, Scheu J, Bronfman M, Marzolo MP, Inestrosa NC. Signal transduction during amyloid-β-peptide neurotoxicity: role in Alzheimer disease. ACTA ACUST UNITED AC 2004; 47:275-89. [PMID: 15572177 DOI: 10.1016/j.brainresrev.2004.07.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive dementia accompanied by two main structural changes in the brain: intracellular protein deposits termed neurofibrillary tangles (NFT) and extracellular amyloid protein deposits surrounded by dystrophic neurites that constitutes the senile plaques. Currently, it is widely accepted that amyloid beta-peptide (A beta) metabolism disbalance is crucial for AD progression. A beta deposition may be enhanced by molecular chaperones, including metals like copper and proteins like acetylcholinesterase (AChE). At the neuronal level, several AD-related proteins interact with transducers of the Wnt/beta-catenin signaling pathway, including beta-catenin and glycogen synthase kinase 3 beta (GSK-3 beta) and both in vitro and in vivo studies suggest that Wnt/beta-catenin signaling is a target for A beta toxicity. Accordingly, activation of this signaling by lithium or Wnt ligands in AD-experimental animal models or in primary hippocampal neurons attenuate A beta neurotoxicity by recovering beta-catenin levels and Wnt-target gene expression of survival genes such as bcl-2. On the other hand, peroxisomal proliferator-activated receptor gamma (PPAR gamma) and muscarinic acetylcholine receptor (mAChR) agonists also activate Wnt/beta-catenin signaling and they have neuroprotective effects on hippocampal neurons. Our studies are consistent with the idea that a sustained loss of function of Wnt signaling components would trigger a series of events, determining the onset and development of AD and that modulation of this pathway through the activation of cross-talking signaling cascades should be considered as a possible therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Rodrigo A Fuentealba
- Centro FONDAP de Regulación Celular y Patología Joaquín Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
34
|
Züchner T, Perez-Polo JR, Schliebs R. Beta-secretase BACE1 is differentially controlled through muscarinic acetylcholine receptor signaling. J Neurosci Res 2004; 77:250-7. [PMID: 15211591 DOI: 10.1002/jnr.20152] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The beta-amyloid peptides derived by proteolytic cleavage from the amyloid precursor protein (APP) play a major role in the pathogenesis of Alzheimer's disease (AD) by forming aggregated, fibrillary complexes that have been shown to be neurotoxic. The beta-site APP-cleaving enzyme (BACE1) has been identified as the key enzyme leading to beta-amyloid formation, and cholinergic mechanisms have been shown to control APP processing. The present study sought to determine whether BACE1 expression is controlled by muscarinic acetylcholine receptor (mAChR) subtypes in the neuroblastoma cell line SK-SH-SY5Y. Stimulation of cells with the M1/M3-selective mAChR agonist talsaclidine for 1 hr resulted in a dose-dependent increase in BACE1 expression up to twofold over basal levels. Similar effects of BACE1 up-regulation were observed when protein kinase C was directly activated by phorbol esters. However, when the MAP kinases MEK/ERK were inhibited, BACE1 expression was no longer up-regulated by the activation of M1-mAChR. In contrast, BACE1 expression was suppressed by stimulation of M2-mediated pathways via selective M2-agonist binding or direct activation of adenylate cyclase with forskolin, an effect that was prevented by inhibiting protein kinase A. These results may explain the observed deterioration of AD patients after initial improvements with AChE inhibitor or M1-mAChR agonist treatment.
Collapse
Affiliation(s)
- Thole Züchner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
35
|
Zha Q, Ruan Y, Hartmann T, Beyreuther K, Zhang D. GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 2004; 9:946-52. [PMID: 15052275 DOI: 10.1038/sj.mp.4001509] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plaques containing amyloid beta-peptides (Abeta) are a major feature in Alzheimer's disease (AD), and GM1 ganglioside is an important component of cellular plasma membranes and especially enriched in lipid raft. GM1-bound Abeta (GM1/Abeta), found in brains exhibiting early pathological changes of AD including diffuse plaques, has been suggested to be involved in the initiation of amyloid fibril formation in vivo by acting as a seed. However, the role of GM1 in amyloid beta-protein precursor (APP) processing is not yet defined. In this study, we report that exogenous GM1 ganglioside promotes Abeta biogenesis and decreases sAPPalpha secretion in SH-SY5Y and COS7 cells stably transfected with human APP695 cDNA without affecting full-length APP and the sAPPbeta levels. We also observe that GM1 increases extracellular levels of Abeta in primary cultures of mixed rat cortical neurons transiently transfected with human APP695 cDNA. These findings suggest a regulatory role for GM1 in APP processing pathways.
Collapse
Affiliation(s)
- Q Zha
- 1Department of Biochemistry, Institute of Mental Health, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
36
|
Lanni C, Mazzucchelli M, Porrello E, Govoni S, Racchi M. Differential involvement of protein kinase C alpha and epsilon in the regulated secretion of soluble amyloid precursor protein. ACTA ACUST UNITED AC 2004; 271:3068-75. [PMID: 15233804 DOI: 10.1111/j.1432-1033.2004.04240.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the differential role of protein kinase C (PKC) isoforms in the regulated proteolytic release of soluble amyloid precursor protein (sAPPalpha) in SH-SY5Y neuroblastoma cells. We used cells stably transfected with cDNAs encoding either PKCalpha or PKCepsilon in the antisense orientation, producing a reduction of the expression of PKCalpha and PKCepsilon, respectively. Reduced expression of PKCalpha and/or PKCepsilon did not modify the response of the kinase to phorbol ester stimulation, demonstrating translocation of the respective isoforms from the cytosolic fraction to specific intracellular compartments with an interesting differential localization of PKCalpha to the plasma membrane and PKCepsilon to Golgi-like structures. Reduced expression of PKCalpha significantly impaired the secretion of sAPPalpha induced by treatment with phorbol esters. Treatment of PKCalpha-deficient cells with carbachol induced a significant release of sAPPalpha. These results suggest that the involvement of PKCalpha in carbachol-induced sAPPalpha release is negligible. The response to carbachol is instead completely blocked in PKCepsilon-deficient cells suggesting the importance of PKCepsilon in coupling cholinergic receptors with APP metabolism.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology and School of Pharmacy, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|