1
|
Zhang A, Luo X, Li Y, Yan L, Lai X, Yang Q, Zhao Z, Huang G, Li Z, Wu Q, Wang J. Epigenetic changes driven by environmental pollutants in lung carcinogenesis: a comprehensive review. Front Public Health 2024; 12:1420933. [PMID: 39440184 PMCID: PMC11493668 DOI: 10.3389/fpubh.2024.1420933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, with environmental pollutants identified as significant risk factors, especially for nonsmokers. The intersection of these pollutants with epigenetic mechanisms has emerged as a critical area of interest for understanding the etiology and progression of lung cancer. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs, can induce alterations in gene expression without affecting the DNA sequence and are influenced by environmental factors, contributing to the transformation of normal cells into malignant cells. This review assessed the literature on the influence of environmental pollutants on lung cancer epigenetics. A comprehensive search across databases such as PubMed, Web of Science, Cochrane Library, and Embase yielded 3,254 publications, with 22 high-quality papers included for in-depth analysis. These studies demonstrated the role of epigenetic markers, such as DNA methylation patterns of genes like F2RL3 and AHRR and alterations in the miRNA expression profiles, as potential biomarkers for lung cancer diagnosis and treatment. The review highlights the need to expand research beyond homogenous adult male groups typically found in high-risk occupational environments to broader population demographics. Such diversification can reduce biases and enhance the relevance of findings to various clinical contexts, fostering the development of personalized preventive and therapeutic measures. In conclusion, our findings underscore the potential of innovative epigenetic therapies, such as DNA demethylating drugs and histone modification agents, to counter environmental toxins' carcinogenic effects. The growing interest in miRNA therapies and studies aiming to correct aberrant methylation patterns indicate significant strides toward better lung cancer management and a healthier future for global communities.
Collapse
Affiliation(s)
- Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yu Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Lunchun Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Department of Comprehensive Surgery, Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin, China
| | - Xin Lai
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianxu Yang
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
He F, Feng G, Ma N, Midorikawa K, Oikawa S, Kobayashi H, Zhang Z, Huang G, Takeuchi K, Murata M. GDF10 inhibits cell proliferation and epithelial-mesenchymal transition in nasopharyngeal carcinoma by the transforming growth factor-β/Smad and NF-κB pathways. Carcinogenesis 2021; 43:94-103. [PMID: 34922336 DOI: 10.1093/carcin/bgab122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Growth differentiation factor-10 (GDF10) belongs to a member of the transforming growth factor-β (TGF-β) superfamily. Dysfunction of the TGF-β pathway can lead to carcinoma progression. Previous studies have shown that GDF10 acts as a tumor suppressor gene in some cancers. However, the molecular mechanisms of the association between GDF10 and cell functions in nasopharyngeal carcinoma (NPC) remain unclear. In this study, the expression and methylation levels of GDF10 were studied in human subjects and cell lines. Furthermore, overexpression of GDF10 was used to explore its biological function and potential mechanism in NPC cell lines. GDF10 was downregulated in NPC owing to its aberrant promoter methylation. After treatment with 5-aza-2'-deoxycytidine, the expression of GDF10 in NPC cells was reversed. We also confirmed that the overexpression of GDF10 significantly inhibited cell proliferation and tumor growth both in vitro and in vivo, respectively. Additionally, GDF10 overexpression in NPC cells attenuated migration and invasion and inhibited epithelial-to-mesenchymal transition with a decrease in nuclear Smad2 and NF-κB protein accumulation. GDF10 was silenced owing to its promoter hypermethylation, and it might originally act as a functional tumor suppressor via TGF-β/Smad and NF-κB signaling pathways in NPC.
Collapse
Affiliation(s)
- Feng He
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Guofei Feng
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Japan.,Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, China
| | - Kazuhiko Takeuchi
- Department of Otolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
3
|
Shi YX, Wang Y, Li X, Zhang W, Zhou HH, Yin JY, Liu ZQ. Genome-wide DNA methylation profiling reveals novel epigenetic signatures in squamous cell lung cancer. BMC Genomics 2017; 18:901. [PMID: 29169318 PMCID: PMC5701423 DOI: 10.1186/s12864-017-4223-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Abstract
Background Epigenetic alterations are strongly associated with the development of cancer. The aim of this study was to identify epigenetic pattern in squamous cell lung cancer (LUSC) on a genome-wide scale. Results Here we performed DNA methylation profiling on 24 LUSC and paired non-tumor lung (NTL) tissues by Illumina Human Methylation 450 K BeadArrays, and identified 5214 differentially methylated probes. By integrating DNA methylation and mRNA expression data, 449 aberrantly methylated genes accompanied with altered expression were identified. Ingenuity Pathway analysis highlighted these genes which were closely related to the carcinogenesis of LUSC, such as ERK family, NFKB signaling pathway, Hedgehog signaling pathway, providing new clues for understanding the molecular mechanisms of LUSC pathogenesis. To verify the results of high-throughput screening, we used 56 paired independent tissues for clinical validation by pyrosequencing. Subsequently, another 343 tumor tissues from the Cancer Genome Atlas (TCGA) database were utilized for further validation. Then, we identified a panel of DNA methylation biomarkers (CLDN1, TP63, TBX5, TCF21, ADHFE1 and HNF1B) in LUSC. Furthermore, we performed receiver operating characteristics (ROC) analysis to assess the performance of biomarkers individually, suggesting that they could be suitable as potential diagnostic biomarkers for LUSC. Moreover, hierarchical clustering analysis of the DNA methylation data identified two tumor subgroups, one of which showed increased DNA methylation. Conclusions Collectively, these results suggest that DNA methylation plays critical roles in lung tumorigenesis and may potentially be proposed as a diagnostic biomarker. Trial registration ChiCTR-RCC-12002830 Date of registration: 2012–12-17. Electronic supplementary material The online version of this article (10.1186/s12864-017-4223-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Ying Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China. .,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China. .,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
4
|
Soozangar N, Sadeghi MR, Jeddi F, Somi MH, Shirmohamadi M, Samadi N. Comparison of genome‐wide analysis techniques to DNA methylation analysis in human cancer. J Cell Physiol 2017; 233:3968-3981. [DOI: 10.1002/jcp.26176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Narges Soozangar
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad R. Sadeghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Farhad Jeddi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Mohammad H. Somi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Nasser Samadi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Department of Biochemistry, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Vaz M, Hwang SY, Kagiampakis I, Phallen J, Patil A, O'Hagan HM, Murphy L, Zahnow CA, Gabrielson E, Velculescu VE, Easwaran HP, Baylin SB. Chronic Cigarette Smoke-Induced Epigenomic Changes Precede Sensitization of Bronchial Epithelial Cells to Single-Step Transformation by KRAS Mutations. Cancer Cell 2017; 32:360-376.e6. [PMID: 28898697 PMCID: PMC5596892 DOI: 10.1016/j.ccell.2017.08.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
We define how chronic cigarette smoke-induced time-dependent epigenetic alterations can sensitize human bronchial epithelial cells for transformation by a single oncogene. The smoke-induced chromatin changes include initial repressive polycomb marking of genes, later manifesting abnormal DNA methylation by 10 months. At this time, cells exhibit epithelial-to-mesenchymal changes, anchorage-independent growth, and upregulated RAS/MAPK signaling with silencing of hypermethylated genes, which normally inhibit these pathways and are associated with smoking-related non-small cell lung cancer. These cells, in the absence of any driver gene mutations, now transform by introducing a single KRAS mutation and form adenosquamous lung carcinomas in mice. Thus, epigenetic abnormalities may prime for changing oncogene senescence to addiction for a single key oncogene involved in lung cancer initiation.
Collapse
Affiliation(s)
- Michelle Vaz
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen Y Hwang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ioannis Kagiampakis
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jillian Phallen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashwini Patil
- Krieger School of Arts and Sciences, Baltimore, MD 21218, USA
| | - Heather M O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Lauren Murphy
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward Gabrielson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E Velculescu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hariharan P Easwaran
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
6
|
Fish TJ, Benninghoff AD. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons. Food Chem Toxicol 2017; 109:703-713. [PMID: 28476633 DOI: 10.1016/j.fct.2017.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs.
Collapse
Affiliation(s)
- Trevor J Fish
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; School of Veterinary Medicine, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
7
|
Kuo IY, Jen J, Hsu LH, Hsu HS, Lai WW, Wang YC. A prognostic predictor panel with DNA methylation biomarkers for early-stage lung adenocarcinoma in Asian and Caucasian populations. J Biomed Sci 2016; 23:58. [PMID: 27484806 PMCID: PMC4969679 DOI: 10.1186/s12929-016-0276-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023] Open
Abstract
Background The incidence of lung adenocarcinoma (LUAD) is increasing worldwide with different prognosis even in early-stage patients. We aimed to identify a prognostic panel with multiple DNA methylation biomarkers to predict survival in early-stage LUAD patients of different racial groups. Methods The methylation array, pyrosequencing methylation assay, Cox regression and Kaplan-Meier analyses were conducted to build the risk score equations of selected probes in a training cohort of 69 Asian LUAD patients. The risk score model was verified in another cohort of 299 Caucasian LUAD patients in The Cancer Genome Atlas (TCGA) database. Results We performed a Cox regression analysis, in which the regression coefficients were obtained for eight probes corresponding to eight genes (AGTRL1, ALDH1A3, BDKRB1, CTSE, EFNA2, NFAM1, SEMA4A and TMEM129). The risk score was derived from sum of each methylated probes multiplied by its corresponding coefficient. Patients with the risk score greater than the median value showed poorer overall survival compared with other patients (p = 0.007). Such a risk score significantly predicted patients showing poor survival in TCGA cohort (p = 0.036). A multivariate analysis was further performed to demonstrate that the eight-probe panel association with poor outcome in early-stage LUAD patients remained significant even after adjusting for different clinical variables including staging parameters (hazard ratio, 2.03; p = 0.039). Conclusions We established a proof-of-concept prognostic panel consisting of eight-probe signature to predict survival of early-stage LUAD patients of Asian and Caucasian populations. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0276-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Jayu Jen
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Lien-Huei Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pulmonary Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Taipei Veterans General Hospital; Institute of Emergency and Critical Care Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan.
| | - Yi-Ching Wang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan.
| |
Collapse
|
8
|
Scherf DB, Sarkisyan N, Jacobsson H, Claus R, Bermejo JL, Peil B, Gu L, Muley T, Meister M, Dienemann H, Plass C, Risch A. Epigenetic screen identifies genotype-specific promoter DNA methylation and oncogenic potential of CHRNB4. Oncogene 2012; 32:3329-38. [PMID: 22945651 PMCID: PMC3710305 DOI: 10.1038/onc.2012.344] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/21/2012] [Accepted: 06/20/2012] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies have highlighted three major lung cancer susceptibility regions at 15q25.1, 5p15.33 and 6p21.33. To gain insight into the possible mechanistic relevance of the genes in these regions, we investigated the regulation of candidate susceptibility gene expression by epigenetic alterations in healthy and lung tumor tissues. For genes up- or downregulated in lung tumors the influence of genetic variants on DNA methylation was investigated and in vitro studies were performed. We analyzed 394 CpG units within 19 CpG islands in the susceptibility regions in a screening set of 34 patients. Significant findings were validated in an independent patient set (n=50) with available DNA and RNA. The most consistent overall DNA methylation difference between tumor and adjacent normal tissue on 15q25 was tumor hypomethylation in the promoter region of CHRNB4 with a median difference of 8% (p<0.001) which resulted in overexpression of the transcript in tumors (p<0.001). Confirming previous studies we also found hypermethylation in CHRNA3 and TERT with significant expression changes. Decitabine treatment of H1299 cells resulted in reduced methylation levels in gene promoters, elevated transcript levels of CHRNB4 and CHRNA3 and a slight downregulation of TERT demonstrating epigenetic regulation of lung cancer cells. SNPs rs421629 on 5p15.33 and rs1948, rs660652, rs8040868 and rs2036527 on 15q25.1, previously identified as lung cancer risk or nicotine addiction modifiers were associated with tumor DNA methylation levels in the promoters of TERT and CHRNB4 (p<0.001) respectively in two independent sample sets (n=82; n=150). In addition, CHRNB4 knock down in two different cell lines (A549 and H1299) resulted in reduced proliferation (pA549<0.05;pH1299L<0.001) and propensity to form colonies in H1299 cells. These results suggest epigenetic deregulation of nicotinic acetylcholinereceptor subunit (nAChR) genes which in the case of CHRNB4 is strongly associated with genetic lung cancer susceptibility variants and a functional impact on tumorigenic potential.
Collapse
Affiliation(s)
- D B Scherf
- Division of Epigenomics and Cancer Risk Factors (C010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tandon M, Gokul K, Ali SA, Chen Z, Lian J, Stein GS, Pratap J. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer 2012; 11:27. [PMID: 22537242 PMCID: PMC3377538 DOI: 10.1186/1476-4598-11-27] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/26/2012] [Indexed: 12/31/2022] Open
Abstract
Background The Runt-related transcription factor Runx2 is essential for bone development but is also implicated in progression of several cancers of breast, prostate and bone, where it activates cancer-related genes and promotes invasive properties. The transforming growth factor β (TGF-β) family member bone morphogenetic protein-3B (BMP-3B/GDF10) is regarded as a tumor growth inhibitor and a gene silenced in lung cancers; however the regulatory mechanisms leading to its silencing have not been identified. Results Here we show that Runx2 is highly expressed in lung cancer cells and downregulates BMP-3B. This inverse relationship between Runx2 and BMP-3B expression is further supported by increased expression of BMP-3B in mesenchymal cells from Runx2 deficient mice. The ectopic expression of Runx2, but not DNA binding mutant Runx2, in normal lung fibroblast cells and lung cancer cells resulted in suppression of BMP-3B levels. The chromatin immunoprecipitation studies identified that the mechanism of Runx2-mediated suppression of BMP-3B is due to the recruitment of Runx2 and histone H3K9-specific methyltransferase Suv39h1 to BMP-3B proximal promoter and a concomitant increase in histone methylation (H3K9) status. The knockdown of Runx2 in H1299 cells resulted in decreased histone H3K9 methylation on BMP-3B promoter and increased BMP-3B expression levels. Furthermore, co-immunoprecipitation studies showed a direct interaction of Runx2 and Suv39h1 proteins. Phenotypically, Runx2 overexpression in H1299 cells increased wound healing response to TGFβ treatment. Conclusions Our studies identified BMP-3B as a new Runx2 target gene and revealed a novel function of Runx2 in silencing of BMP-3B in lung cancers. Our results suggest that Runx2 is a potential therapeutic target to block tumor suppressor gene silencing in lung cancer cells.
Collapse
Affiliation(s)
- Manish Tandon
- Department of Anatomy and Cell Biology, Rush University Medical Center, Armour Academic Center, 600 S, Paulina St, Suite 507, Chicago, IL, 60612, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Qiu X, Qiao Y, Liu B, Li Y, You J, Zhou Q. [Advances of DNA methylation in early diagnosis of lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:234-41. [PMID: 22510510 PMCID: PMC5999983 DOI: 10.3779/j.issn.1009-3419.2012.04.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung cancer is the leading cause of cancer-related death and thus a major health problem nowadays. No early diagnostic method is ideal up to now. Changes in DNA methylation occur on early stage of lung cancer. Detection of DNA methylation is expected to be an important method in early diagosis of lung cancer.
Collapse
Affiliation(s)
- Xiaoming Qiu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | | | | | | | | |
Collapse
|
11
|
West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, Bueno R, Dennis PA, Otterson GA, Salgia R. A novel classification of lung cancer into molecular subtypes. PLoS One 2012; 7:e31906. [PMID: 22363766 PMCID: PMC3283716 DOI: 10.1371/journal.pone.0031906] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/15/2012] [Indexed: 11/19/2022] Open
Abstract
The remarkably heterogeneous nature of lung cancer has become more apparent over the last decade. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. The discovery of multiple molecular mechanisms underlying the development, progression, and prognosis of lung cancer, however, has created new opportunities for targeted therapy and improved outcome. In this paper, we define "molecular subtypes" of lung cancer based on specific actionable genetic aberrations. Each subtype is associated with molecular tests that define the subtype and drugs that may potentially treat it. We hope this paper will be a useful guide to clinicians and researchers alike by assisting in therapy decision making and acting as a platform for further study. In this new era of cancer treatment, the 'one-size-fits-all' paradigm is being forcibly pushed aside-allowing for more effective, personalized oncologic care to emerge.
Collapse
Affiliation(s)
- Lisandra West
- CollabRx Inc., Palo Alto, California, United States of America
| | | | - Nicholas P. Campbell
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jeff Shrager
- CollabRx Inc., Palo Alto, California, United States of America
- Symbolic Systems Program (Consulting), Stanford University, Stanford, California, United States of America
| | - George R. Simon
- Department of Medicine, Section of Hematology/Oncology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Phillip A. Dennis
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - Gregory A. Otterson
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Ravi Salgia
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
12
|
Clinical implications of epigenetic alterations in human thoracic malignancies: epigenetic alterations in lung cancer. Methods Mol Biol 2012; 863:221-39. [PMID: 22359296 DOI: 10.1007/978-1-61779-612-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Besides known genetic aberrations, epigenetic alterations have emerged as common hallmarks of many cancer types, including lung cancer. Epigenetics is a process involved in gene regulation, mediated via DNA methylation, histone modification, chromatin remodeling, and functional noncoding RNAs, which influences the accessibility of the underlying DNA to transcriptional regulatory factors that activate or repress expression. Studies have shown that epigenetic dysregulation is associated with multiple steps during carcinogenesis. Since epigenetic therapy is now in clinical use in hematopoietic diseases and undergoing trials for lung cancer, a better understanding of epigenetic abnormalities is desired. Recent technologies for high-throughput genome-wide analyses for epigenetic modifications are promising and potent tools for understanding the global dysregulation of cancer epigenetics. In this chapter, studies of epigenetic abnormality and its clinical implication in lung cancers are discussed.
Collapse
|
13
|
Abstract
Lung cancer is a heterogeneous disease clinically, biologically, histologically, and molecularly. Understanding the molecular causes of this heterogeneity, which might reflect changes occurring in different classes of epithelial cells or different molecular changes occurring in the same target lung epithelial cells, is the focus of current research. Identifying the genes and pathways involved, determining how they relate to the biological behavior of lung cancer, and their utility as diagnostic and therapeutic targets are important basic and translational research issues. This article reviews current information on the key molecular steps in lung cancer pathogenesis, their timing, and clinical implications.
Collapse
Affiliation(s)
- Jill E Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, 6000 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | |
Collapse
|
14
|
Selamat SA, Galler JS, Joshi AD, Fyfe MN, Campan M, Siegmund KD, Kerr KM, Laird-Offringa IA. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS One 2011; 6:e21443. [PMID: 21731750 PMCID: PMC3121768 DOI: 10.1371/journal.pone.0021443] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/28/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation is common in lung adenocarcinoma, but its timing in the phases of tumor development is largely unknown. Delineating when abnormal DNA methylation arises may provide insight into the natural history of lung adenocarcinoma and the role that DNA methylation alterations play in tumor formation. METHODOLOGY/PRINCIPAL FINDINGS We used MethyLight, a sensitive real-time PCR-based quantitative method, to analyze DNA methylation levels at 15 CpG islands that are frequently methylated in lung adenocarcinoma and that we had flagged as potential markers for non-invasive detection. We also used two repeat probes as indicators of global DNA hypomethylation. We examined DNA methylation in 249 tissue samples from 93 subjects, spanning the putative spectrum of peripheral lung adenocarcinoma development: histologically normal adjacent non-tumor lung, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS, formerly known as bronchioloalveolar carcinoma), and invasive lung adenocarcinoma. Comparison of DNA methylation levels between the lesion types suggests that DNA hypermethylation of distinct loci occurs at different time points during the development of lung adenocarcinoma. DNA methylation at CDKN2A ex2 and PTPRN2 is already significantly elevated in AAH, while CpG islands at 2C35, EYA4, HOXA1, HOXA11, NEUROD1, NEUROD2 and TMEFF2 are significantly hypermethylated in AIS. In contrast, hypermethylation at CDH13, CDX2, OPCML, RASSF1, SFRP1 and TWIST1 and global DNA hypomethylation appear to be present predominantly in invasive cancer. CONCLUSIONS/SIGNIFICANCE The gradual increase in DNA methylation seen for numerous loci in progressively more transformed lesions supports the model in which AAH and AIS are sequential stages in the development of lung adenocarcinoma. The demarcation of DNA methylation changes characteristic for AAH, AIS and adenocarcinoma begins to lay out a possible roadmap for aberrant DNA methylation events in tumor development. In addition, it identifies which DNA methylation changes might be used as molecular markers for the detection of preinvasive lesions.
Collapse
Affiliation(s)
- Suhaida A. Selamat
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Janice S. Galler
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amit D. Joshi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - M. Nicky Fyfe
- Department of Pathology, Aberdeen Royal Infirmary, University of Aberdeen, Aberdeen, United Kingdom
| | - Mihaela Campan
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly D. Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Keith M. Kerr
- Department of Pathology, Aberdeen Royal Infirmary, University of Aberdeen, Aberdeen, United Kingdom
| | - Ite A. Laird-Offringa
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Park YJ, Claus R, Weichenhan D, Plass C. Genome-wide epigenetic modifications in cancer. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:25-49. [PMID: 21141723 PMCID: PMC3066002 DOI: 10.1007/978-3-7643-8989-5_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epigenetic alterations in cancer include changes in DNA methylation and associated histone modifications that influence the chromatin states and impact gene expression patterns. Due to recent technological advantages, the scientific community is now obtaining a better picture of the genome-wide epigenetic changes that occur in a cancer genome. These epigenetic alterations are associated with chromosomal instability and changes in transcriptional control which influence the overall gene expression differences seen in many human malignancies. In this review, we will briefly summarize our current knowledge of the epigenetic patterns and mechanisms of gene regulation in healthy tissues and relate this to what is known for cancer genomes. Our focus will be on DNA methylation. We will review the current standing of technologies that have been developed over recent years. This field is experiencing a revolution in the strategies used to measure epigenetic alterations, which includes the incorporation of next generation sequencing tools. We also will review strategies that utilize epigenetic information for translational purposes, with a special emphasis on the potential use of DNA methylation marks for early disease detection and prognosis. The review will close with an outlook on challenges that this field is facing.
Collapse
Affiliation(s)
- Yoon Jung Park
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
16
|
Zhang Y, Chen L. [DNA methylation and non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:821-6. [PMID: 20704826 PMCID: PMC6000552 DOI: 10.3779/j.issn.1009-3419.2010.08.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
基因组DNA甲基化是目前发现的最主要的一种表观遗传修饰形式,高甲基化(hypermethylation)的DNA染色质构象发生改变,导致抑癌基因转录失活,在肿瘤发生发展中具有重要意义。近年来,DNA甲基化在肺癌,主要是非小细胞肺癌(non-small cell lung cancer, NSCLC)的研究中取得较大进展,为NSCLC早期诊断、风险评估、预后判断和干预治疗提供了新的靶点。
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | | |
Collapse
|
17
|
Samuelsson JK, Alonso S, Yamamoto F, Perucho M. DNA fingerprinting techniques for the analysis of genetic and epigenetic alterations in colorectal cancer. Mutat Res 2010; 693:61-76. [PMID: 20851135 PMCID: PMC2974039 DOI: 10.1016/j.mrfmmm.2010.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/07/2010] [Accepted: 08/24/2010] [Indexed: 01/03/2023]
Abstract
Genetic somatic alterations are fundamental hallmarks of cancer. In addition to point and other small mutations targeting cancer genes, solid tumors often exhibit aneuploidy as well as multiple chromosomal rearrangements of large fragments of the genome. Whether somatic chromosomal alterations and aneuploidy are a driving force or a mere consequence of tumorigenesis remains controversial. Recently it became apparent that not only genetic but also epigenetic alterations play a major role in carcinogenesis. Epigenetic regulation mechanisms underlie the maintenance of cell identity crucial for development and differentiation. These epigenetic regulatory mechanisms have been found substantially altered during cancer development and progression. In this review, we discuss approaches designed to analyze genetic and epigenetic alterations in colorectal cancer, especially DNA fingerprinting approaches to detect changes in DNA copy number and methylation. DNA fingerprinting techniques, despite their modest throughput, played a pivotal role in significant discoveries in the molecular basis of colorectal cancer. The aim of this review is to revisit the fingerprinting technologies employed and the oncogenic processes that they unveiled.
Collapse
Affiliation(s)
- Johanna K. Samuelsson
- Sandford-Burnham Medical Research Institute (SBMRI), 10901 N. Torrey Pines Rd, La Jolla, California 92037., Phone: 858 646 3112
| | | | | | - Manuel Perucho
- Sandford-Burnham Medical Research Institute (SBMRI), 10901 N. Torrey Pines Rd, La Jolla, California 92037., Phone: 858 646 3112
| |
Collapse
|
18
|
Chari R, Thu KL, Wilson IM, Lockwood WW, Lonergan KM, Coe BP, Malloff CA, Gazdar AF, Lam S, Garnis C, MacAulay CE, Alvarez CE, Lam WL. Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev 2010; 29:73-93. [PMID: 20108112 DOI: 10.1007/s10555-010-9199-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
Collapse
Affiliation(s)
- Raj Chari
- Genetics Unit - Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
DNA methylation as part of the epigenetic gene-silencing complex is a universal occurring change in lung cancer. Numerous studies investigated methylation of specific genes in primary tumors, in serum or plasma samples, and in specimens from the aerodigestive tract epithelium of lung cancer patients. In most studies, single genes or small numbers of genes were analyzed. Moreover, it has been observed that methylation of certain genes can already be detected in samples from the upper aerodigestive tract epithelium of cancer-free heavy smokers. These findings indicated that methylation of certain genes may be a useful biomarker for prognosis, disease recurrence, early detection, and lung cancer risk assessment. So far, several genes were identified which seem to be of worse prognostic relevance when they were found to be methylated. In addition, it has been shown that a panel of markers may be relevant to predict disease recurrence after surgery. In comparison to analysis of single or small numbers of genes, methods for genome-wide detection of methylation were developed recently. These approaches are focused on either pharmacological re-activation of methylated genes followed by expression microarray analysis or on microarray analysis of sodium bisulfite-treated or affinity-enriched methylated DNA sequences. With currently available methods for the simultaneous detection of methylation, up to 28,000 CpG islands can be analyzed. Overall, we are just at the beginning of translating these findings into the clinic and there is hope that future patients will benefit from these results.
Collapse
|
20
|
Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 2010; 6:127-48. [PMID: 20021214 DOI: 10.2217/fon.09.145] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor metabolism consists of complex interactions between oxygenation states, metabolites, ions, the vascular network and signaling cascades. Accumulation of lactate within tumors has been correlated with poor clinical outcomes. While its production has negative implications, potentially contributing to tumor progression, the implications of the ability of tumors to utilize lactate can offer new therapeutic targets for the future. Monocarboxylate transporters (MCTs) of the SLC16A gene family influence substrate availability, the metabolic path of lactate and pH balance within the tumor. CD147, a chaperone to some MCT subtypes, contributes to tumor progression and metastasis. The implications and consequences of lactate utilization by tumors are currently unknown; therefore future research is needed on the intricacies of tumor metabolism. The possibility of metabolic modification of the tumor microenvironment via regulation or manipulation of MCT1 and CD147 may prove to be promising avenues of therapeutic options.
Collapse
Affiliation(s)
- Kelly M Kennedy
- Pathology department, Research Drive, Duke University Medical Center, NC 27710, USA
| | | |
Collapse
|
21
|
Bresson E, Seaborn T, Côté M, Cormier G, Provost PR, Piedboeuf B, Tremblay Y. Gene expression profile of androgen modulated genes in the murine fetal developing lung. Reprod Biol Endocrinol 2010; 8:2. [PMID: 20064212 PMCID: PMC2822783 DOI: 10.1186/1477-7827-8-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/08/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. METHODS To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. RESULTS Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. CONCLUSION Our results show clearly that there is a real delay in lung maturation between male and female in this period, the latter pursuing already lung maturation while the proper is not yet fully engaged in the differentiation processes at GD17. In addition, this study provides a list of genes which are under the control of androgens within the lung at the moment of surge of surfactant production in murine fetal lung.
Collapse
Affiliation(s)
- Eva Bresson
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Tommy Seaborn
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
- INSERM U413/EA4310, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP), International Associated Laboratory Samuel de Champlain, University of Rouen, France
| | - Mélissa Côté
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Geneviève Cormier
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Pierre R Provost
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| | - Bruno Piedboeuf
- Department of Pediatrics, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Yves Tremblay
- Laboratory of Ontogeny and Reproduction, CHUQ, CHUL, Laval University, Quebec City, Quebec, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
22
|
Abstract
DNA methylation plays a crucial role in the regulation of gene expression and chromatin organization within normal eukaryotic cells. In cancer, however, global patterns of DNA methylation are altered with global hypomethylation of repeat-rich intergenic regions and hypermethylation of a subset of CpG-dense gene-associated regions (CpG islands). Extensive research has revealed the cellular machinery that catalyzes DNA methylation, as well as several large protein complexes that mediate the transcriptional repression of hypermethylated genes. However, research is only just beginning to uncover the molecular mechanisms underlying the origins of cancer-specific DNA methylation. Herein, we present several recent advances regarding these mechanisms and discuss the relationship between histone modifications (i.e., H3K4me2/3, H4K16Ac, H3K9me2/3, H3K27me3, H4K20me3), chromatin-modifying enzymes (G9a, EZH2, hMOF, SUV4-20H), and aberrant DNA methylation. Additionally, the role played by inflammation, DNA damage, and miRNAs in the etiology of aberrant DNA methylation is considered. Finally, we discuss the clinical implications of aberrant DNA methylation and the utility of methylated biomarkers in cancer diagnosis and management.
Collapse
Affiliation(s)
- Michael T. McCabe
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Johann C. Brandes
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Paula M. Vertino
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
| |
Collapse
|
23
|
Abstract
Lung cancer has become a global public health burden, further substantiating the need for early diagnosis and more effective targeted therapies. The key to accomplishing both these goals is a better understanding of the genes and pathways disrupted during the initiation and progression of this disease. Gene promoter hypermethylation is an epigenetic modification of DNA at promoter CpG islands that together with changes in histone structure culminates in loss of transcription. The fact that gene promoter hypermethylation is a major mechanism for silencing genes in lung cancer has stimulated the development of screening approaches to identify additional genes and pathways that are disrupted within the epigenome. Some of these approaches include restriction landmark scanning, methylation CpG island amplification coupled with representational difference analysis, and transcriptome-wide screening. Genes identified by these approaches, their function, and prevalence in lung cancer are described. Recently, we used global screening approaches to interrogate 43 genes in and around the candidate lung cancer susceptibility locus, 6q23-25. Five genes, TCF21, SYNE1, AKAP12, IL20RA, and ACAT2, were methylated at 14 to 81% prevalence, but methylation was not associated with age at diagnosis or stage of lung cancer. These candidate tumor suppressor genes likely play key roles in contributing to sporadic lung cancer. The realization that methylation is a dominant mechanism in lung cancer etiology and its reversibility by pharmacologic agents has led to the initiation of translational studies to develop biomarkers in sputum for early detection and the testing of demethylating and histone deacetylation inhibitors for treatment of lung cancer.
Collapse
|
24
|
Costello JF, Hong C, Plass C, Smiraglia DJ. Restriction landmark genomic scanning: analysis of CpG islands in genomes by 2D gel electrophoresis. Methods Mol Biol 2009; 507:131-48. [PMID: 18987812 DOI: 10.1007/978-1-59745-522-0_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Restriction landmark genomic scanning (RLGS) is a method that provides a quantitative genetic and epigenetic (cytosine methylation) assessment of thousands of CpG islands in a single gel without prior knowledge of gene sequence. The method is based on two-dimensional separation of radiolabeled genomic DNA into nearly 2,000 discrete fragments that have a high probability of containing gene sequences. Genomic DNA is digested with an infrequently cutting restriction enzyme, such as NotI or AscI, radiolabeled at the cleaved ends, digested with a second restriction enzyme, and then electrophoresed through a narrow, 60-cm-long agarose tube-shaped gel. The DNA in the tube gel is then digested by a third, more frequently cutting restriction enzyme and electrophoresed, in a direction perpendicular to the first separation, through a 5% nondenaturing polyacrylamide gel, and the gel is autoradiographed. Radiolabeled NotI or AscI sites are frequently used as "landmarks" because NotI or AscI cannot cleave methylated sites and since an estimated 89% and 83% of the recognition sites, respectively, are found within CpG islands. Using a methylation-sensitive enzyme, the technique has been termed RLGS-M. The resulting RLGS profile displays both the copy number and methylation status of the CpG islands. Integrated with high-resolution gene copy-number analyses, RLGS enables one to define genetic or epigenetic alteration in cells. These profiles are highly reproducible and are therefore amenable to inter- and intraindividual DNA sample comparisons. RLGS was the first of many technologies to allow large-scale DNA methylation analysis of CpG islands.
Collapse
Affiliation(s)
- Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | | | | | | |
Collapse
|
25
|
Anglim PP, Alonzo TA, Laird-Offringa IA. DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer 2008; 7:81. [PMID: 18947422 PMCID: PMC2585582 DOI: 10.1186/1476-4598-7-81] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/23/2008] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the number one cancer killer in the United States. This disease is clinically divided into two sub-types, small cell lung cancer, (10–15% of lung cancer cases), and non-small cell lung cancer (NSCLC; 85–90% of cases). Early detection of NSCLC, which is the more common and less aggressive of the two sub-types, has the highest potential for saving lives. As yet, no routine screening method that enables early detection exists, and this is a key factor in the high mortality rate of this disease. Imaging and cytology-based screening strategies have been employed for early detection, and while some are sensitive, none have been demonstrated to reduce lung cancer mortality. However, mortality might be reduced by developing specific molecular markers that can complement imaging techniques. DNA methylation has emerged as a highly promising biomarker and is being actively studied in multiple cancers. The analysis of DNA methylation-based biomarkers is rapidly advancing, and a large number of potential biomarkers have been identified. Here we present a detailed review of the literature, focusing on DNA methylation-based markers developed using primary NSCLC tissue. Viable markers for clinical diagnosis must be detectable in 'remote media' such as blood, sputum, bronchoalveolar lavage, or even exhaled breath condensate. We discuss progress on their detection in such media and the sensitivity and specificity of the molecular marker panels identified to date. Lastly, we look to future advancements that will be made possible with the interrogation of the epigenome.
Collapse
Affiliation(s)
- Paul P Anglim
- Departments of Surgery and of Biochemistry and Molecular Biology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-9176, USA.
| | | | | |
Collapse
|
26
|
Taniguchi A, Nemoto Y, Yokoyama A, Kotani N, Imai S, Shuin T, Daibata M. Promoter methylation of the bone morphogenetic protein-6 gene in association with adult T-cell leukemia. Int J Cancer 2008; 123:1824-31. [PMID: 18688853 DOI: 10.1002/ijc.23749] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic proteins (BMP), belonging to the transforming growth factor-beta superfamily, are multifunctional regulators of cell proliferation, differentiation and apoptosis in various types of malignant cells. In this study, we investigated BMP-6 promoter methylation in patients with various types of leukemias. The BMP-6 methylation was found preferentially in adult T-cell leukemia (ATL) (49 of 60, 82%) compared with other types of leukemias studied including acute myeloid leukemia (3 of 67, 5%), acute lymphoblastic leukemia (6 of 38, 16%) and chronic lymphocytic leukemia (1 of 21, 5%). Among subtypes of ATL, the BMP-6 gene was more frequently methylated in aggressive ATL forms of acute (96%) and lymphoma (94%) types than less malignant chronic ATL (44%) and smoldering ATL (20%). We also analyzed the methylation status of peripheral blood mononuclear cells from healthy donors and nonmalignant lymph nodes with reactive lymphadenopathy, none of which showed detectable BMP-6 methylation in this study. The BMP-6 methyaltion was correlated with decreased mRNA transcript and protein expression. Expression of BMP-6 was restored by the demethylating agent 5-aza-2'-deoxycytidine, suggesting that methylation was associated with the transcriptional silencing. Serial analysis demonstrated an increasing methylation of CpG sites in the BMP-6 promoter and the resultant suppression of BMP-6 expression as ATL progressed. These findings suggested that BMP-6 promoter methylation is likely to be a common epigenetic event at later stages of ATL and that the methylation profiles may be useful for the staging of ATL as well as for evaluation of the individual risk of developing the disease.
Collapse
Affiliation(s)
- Ayuko Taniguchi
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Anglim PP, Galler JS, Koss MN, Hagen JA, Turla S, Campan M, Weisenberger DJ, Laird PW, Siegmund KD, Laird-Offringa IA. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol Cancer 2008; 7:62. [PMID: 18616821 PMCID: PMC2483990 DOI: 10.1186/1476-4598-7-62] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 07/10/2008] [Indexed: 02/06/2023] Open
Abstract
Background Lung cancer is the leading cause of cancer death in men and women in the United States and Western Europe. Over 160,000 Americans die of this disease every year. The five-year survival rate is 15% – significantly lower than that of other major cancers. Early detection is a key factor in increasing lung cancer patient survival. DNA hypermethylation is recognized as an important mechanism for tumor suppressor gene inactivation in cancer and could yield powerful biomarkers for early detection of lung cancer. Here we focused on developing DNA methylation markers for squamous cell carcinoma of the lung. Using the sensitive, high-throughput DNA methylation analysis technique MethyLight, we examined the methylation profile of 42 loci in a collection of 45 squamous cell lung cancer samples and adjacent non-tumor lung tissues from the same patients. Results We identified 22 loci showing significantly higher DNA methylation levels in tumor tissue than adjacent non-tumor lung. Of these, eight showed highly significant hypermethylation in tumor tissue (p < 0.0001): GDNF, MTHFR, OPCML, TNFRSF25, TCF21, PAX8, PTPRN2 and PITX2. Used in combination on our specimen collection, this eight-locus panel showed 95.6% sensitivity and specificity. Conclusion We have identified 22 DNA methylation markers for squamous cell lung cancer, several of which have not previously been reported to be methylated in any type of human cancer. The top eight markers show great promise as a sensitive and specific DNA methylation marker panel for squamous cell lung cancer.
Collapse
Affiliation(s)
- Paul P Anglim
- Department of Surgery, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089-9176, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang SS, Smiraglia DJ, Wu YZ, Ghosh S, Rader JS, Cho KR, Bonfiglio TA, Nayar R, Plass C, Sherman ME. Identification of novel methylation markers in cervical cancer using restriction landmark genomic scanning. Cancer Res 2008; 68:2489-97. [PMID: 18381458 DOI: 10.1158/0008-5472.can-07-3194] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant methylation of CpG islands in gene promoters often represents an early clonal event in carcinogenesis. Accordingly, defining methylation profiles may be useful for developing marker panels for early detection or predicting the risk of cancer precursors. To identify specific genes frequently methylated in cervical cancer, we conducted methylation profiling of 20 primary human cervical cancers using NotI-based restriction landmark genomic scanning (RLGS). Of 2,172 RLGS fragments analyzed (average, 1,753 CpG islands per patient), 186 RLGS fragments were lost in at least one tumor and 40 were lost in three or more. Methylation was identified in 19 (95%) of 20 tumor samples compared with normal DNA. Bisulfite sequencing was conducted to confirm RLGS results. Of the confirmed markers frequently methylated, we developed Methylight assays for two corresponding genes, nucleolar protein 4 (NOL4), and lipoma HMGIC fusion partner-like protein 4 (LHFPL4), which were methylated in 85% and 55% of cancers, respectively. Using these assays, we further confirmed frequent CpG island methylation in the original cancers and in another independent series of 15 cervical cancers. We also showed methylation at a reduced frequency in a set of carefully reviewed cytology specimens demonstrating cells exfoliated from cancer precursor lesions. In summary, we identified, for the first time, NOL4 and LHFPL4 as novel methylation targets specific for cervical cancer. Inclusion of NOL4 and LHFPL4 in evaluating methylation panels for early detection, risk prediction, and etiologic research on cervical cancer is warranted.
Collapse
Affiliation(s)
- Sophia S Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20852-7234, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zou H, Harrington JJ, Shire AM, Rego RL, Wang L, Campbell ME, Oberg AL, Ahlquist DA. Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomarkers Prev 2008; 16:2686-96. [PMID: 18086775 DOI: 10.1158/1055-9965.epi-07-0518] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Discriminant markers are required for accurate cancer screening. We evaluated genes frequently methylated in colorectal neoplasia to identify the most discriminant ones. Four genes specifically methylated in colorectal cancer [bone morphogenetic protein 3 (BMP3), EYA2, aristaless-like homeobox-4 (ALX4), and vimentin] were selected from 41 candidate genes and evaluated on 74 cancers, 62 adenomas, and 70 normal epithelia. Methylation status was analyzed qualitatively and quantitatively and confirmed by bisulfite genomic sequencing. Effect of methylation on gene expression was evaluated in five colon cancer cell lines. K-ras and BRAF mutations were detected by sequencing. Methylation of BMP3, EYA2, ALX4, or vimentin was detected respectively in 66%, 66%, 68%, and 72% of cancers; 74%, 48%, 89%, and 84% of adenomas; and 7%, 5%, 11%, and 11% of normal epithelia (P < 0.01, cancer or adenoma versus normal). Based on area under the curve analyses, discrimination was not significantly improved by combining markers. Comethylation was frequent (two genes or more in 72% of cancers and 84% of adenomas), associated with proximal neoplasm site (P < 0.001), and linked with both BRAF and K-ras mutations (P < 0.01). Cell line experiments supported silencing of expression by methylation in all four study genes. This study shows BMP3, EYA2, ALX4, and vimentin genes are methylated in most colorectal neoplasms but rarely in normal epithelia. Comethylation of these genes is common, and pursuit of complementary markers for methylation-negative neoplasms is a rational strategy to optimize screening sensitivity.
Collapse
Affiliation(s)
- Hongzhi Zou
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Restriction landmark genomic scanning (RLGS) spot identification by second generation virtual RLGS in multiple genomes with multiple enzyme combinations. BMC Genomics 2007; 8:446. [PMID: 18053125 PMCID: PMC2235865 DOI: 10.1186/1471-2164-8-446] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022] Open
Abstract
Background Restriction landmark genomic scanning (RLGS) is one of the most successfully applied methods for the identification of aberrant CpG island hypermethylation in cancer, as well as the identification of tissue specific methylation of CpG islands. However, a limitation to the utility of this method has been the ability to assign specific genomic sequences to RLGS spots, a process commonly referred to as "RLGS spot cloning." Results We report the development of a virtual RLGS method (vRLGS) that allows for RLGS spot identification in any sequenced genome and with any enzyme combination. We report significant improvements in predicting DNA fragment migration patterns by incorporating sequence information into the migration models, and demonstrate a median Euclidian distance between actual and predicted spot migration of 0.18 centimeters for the most complex human RLGS pattern. We report the confirmed identification of 795 human and 530 mouse RLGS spots for the most commonly used enzyme combinations. We also developed a method to filter the virtual spots to reduce the number of extra spots seen on a virtual profile for both the mouse and human genomes. We demonstrate use of this filter to simplify spot cloning and to assist in the identification of spots exhibiting tissue-specific methylation. Conclusion The new vRLGS system reported here is highly robust for the identification of novel RLGS spots. The migration models developed are not specific to the genome being studied or the enzyme combination being used, making this tool broadly applicable. The identification of hundreds of mouse and human RLGS spot loci confirms the strong bias of RLGS studies to focus on CpG islands and provides a valuable resource to rapidly study their methylation.
Collapse
|
32
|
Abstract
Genetic and epigenetic mechanisms contribute to the development of human tumors. However, the conventional analysis of neoplasias has preferentially focused on only one of these processes. This approach has led to a biased, primarily genetic view, of human tumorigenesis. Epigenetic alterations, such as aberrant DNA methylation, are sufficient to induce tumor formation, and can modify the incidence, and determine the type of tumor which will arise in genetic models of cancer. These observations raise important questions about the degree to which genetic and epigenetic mechanisms cooperate in human tumorigenesis, the identity of the specific cooperating genes and how these genes interact functionally to determine the diverse biological and clinical paths to tumor initiation and progression. These gaps in our knowledge are, in part, due to the lack of methods for full-scale integrated genetic and epigenetic analyses. The ultimate goal to fill these gaps would include sequencing relevant regions of the 3-billion nucleotide genome, and determining the methylation status of the 28-million CpG dinucleotide methylome at single nucleotide resolution in different types of neoplasias. Here, we review the emergence and advancement of technologies to map ever larger proportions of the cancer methylome, and the unique discovery potential of integrating these with cancer genomic data. We discuss the knowledge gained from these large-scale analyses in the context of gene discovery, therapeutic application and building a more widely applicable mechanism-based model of human tumorigenesis.
Collapse
Affiliation(s)
- Romulo M Brena
- Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | |
Collapse
|
33
|
Opavsky R, Wang SH, Trikha P, Raval A, Huang Y, Wu YZ, Rodriguez B, Keller B, Liyanarachchi S, Wei G, Davuluri RV, Weinstein M, Felsher D, Ostrowski M, Leone G, Plass C. CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells. PLoS Genet 2007; 3:1757-69. [PMID: 17907813 PMCID: PMC1994712 DOI: 10.1371/journal.pgen.0030167] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 08/16/2007] [Indexed: 12/31/2022] Open
Abstract
Hypermethylation of CpG islands is a common epigenetic alteration associated with cancer. Global patterns of hypermethylation are tumor-type specific and nonrandom. The biological significance and the underlying mechanisms of tumor-specific aberrant promoter methylation remain unclear, but some evidence suggests that this specificity involves differential sequence susceptibilities, the targeting of DNA methylation activity to specific promoter sequences, or the selection of rare DNA methylation events during disease progression. Using restriction landmark genomic scanning on samples derived from tissue culture and in vivo models of T cell lymphomas, we found that MYC overexpression gave rise to a specific signature of CpG island hypermethylation. This signature reflected gene transcription profiles and was detected only in advanced stages of disease. The further inactivation of the Pten, p53, and E2f2 tumor suppressors in MYC-induced lymphomas resulted in distinct and diagnostic CpG island methylation signatures. Our data suggest that tumor-specific DNA methylation in lymphomas arises as a result of the selection of rare DNA methylation events during the course of tumor development. This selection appears to be driven by the genetic configuration of tumor cells, providing experimental evidence for a causal role of DNA hypermethylation in tumor progression and an explanation for the tremendous epigenetic heterogeneity observed in the evolution of human cancers. The ability to predict genome-wide epigenetic silencing based on relatively few genetic alterations will allow for a more complete classification of tumors and understanding of tumor cell biology. Genetic and epigenetic alterations of the genome are common features of cancers. The relationship between these two types of alterations, however, remains unclear. One type of epigenetic modification—DNA methylation in promoter sequences of genes—is of particular interest, since tumor cells have different patterns of promoter methylation than normal cells. Previous studies on human tumor samples have suggested a link between genetic alterations and the induction of aberrant DNA methylation; however, this link has been difficult to rigorously assess because of the incredible genetic heterogeneity found in human cancer. In this study, a mouse model of T cell lymphoma was used to explore the relationship between genetic and epigenetic modifications experienced by tumor cells. By introducing defined genetic changes into preneoplastic T cells of mice, such as the overexpression of the MYC oncogene and the ablation of tumor suppressor genes, we could carefully evaluate how these genetic changes impacted promoter methylation profiles during development of lymphomas in vivo. We found that the introduction of different genetic insults resulted in unique and diagnostic profiles of promoter methylation. Understanding how these methylation signatures contribute to tumor progression could eventually have diagnostic, prognostic, and therapeutic value for human cancers.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- CpG Islands/genetics
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- DNA, Neoplasm/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Epigenesis, Genetic
- Fibroblasts/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Genes, Tumor Suppressor
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Mice
- Mice, Nude
- Mice, Transgenic
- Neoplasm Transplantation
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-myc/genetics
- Transgenes
Collapse
Affiliation(s)
- Rene Opavsky
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Shu-Huei Wang
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Prashant Trikha
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Aparna Raval
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuan Huang
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Yue-Zhong Wu
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Benjamin Rodriguez
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Benjamin Keller
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Guo Wei
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramana V Davuluri
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael Weinstein
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Dean Felsher
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Michael Ostrowski
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Gustavo Leone
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- To whom correspondence should be addressed. E-mail: (GL); (CP)
| | - Christoph Plass
- Human Cancer Genetics Program, Department of Molecul\ar Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
- To whom correspondence should be addressed. E-mail: (GL); (CP)
| |
Collapse
|
34
|
Daibata M, Nemoto Y, Bandobashi K, Kotani N, Kuroda M, Tsuchiya M, Okuda H, Takakuwa T, Imai S, Shuin T, Taguchi H. Promoter Hypermethylation of the Bone Morphogenetic Protein-6 Gene in Malignant Lymphoma. Clin Cancer Res 2007; 13:3528-35. [PMID: 17575215 DOI: 10.1158/1078-0432.ccr-06-2766] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Bone morphogenetic proteins (BMP), belonging to the transforming growth factor-beta superfamily, are important regulators of cell growth, differentiation, and apoptosis. The biological effects of BMPs on malignant lymphoma, however, remain unknown. Promoter methylation of the BMP-6 gene in lymphomas was investigated. EXPERIMENTAL DESIGN We investigated BMP-6 promoter methylation and its gene expression in various histologic types of 90 primary lymphomas and 30 lymphoma cell lines. The effect of BMP-6 promoter hypermethylation on clinical outcome was also evaluated. RESULTS BMP-6 was epigenetically inactivated in subsets of lymphomas. The silencing occurred with high frequency in diffuse large B-cell lymphoma (DLBCL) and Burkitt's lymphoma in association with aberrant BMP-6 promoter methylation. The methylation was observed in 60% (21 of 35) of DLBCL cases and 100% (7 of 7) of DLBCL cell lines, and in 83% (5 of 6) of Burkitt's lymphoma cases and 86% (12 of 14) of Burkitt's lymphoma cell lines. In contrast, other histologic types of primary lymphomas studied had little or no detectable methylation (1 of 49; 2%). The presence of BMP-6 promoter hypermethylation in DLBCL statistically correlated with a decrease in disease-free survival (P = 0.014) and overall survival (P = 0.038). Multivariate analysis showed that the methylation profile was an independent prognostic factor in predicting disease-free survival (P = 0.022) and overall survival (P = 0. 046). CONCLUSION BMP-6 promoter was hypermethylated more often in aggressive types of lymphomas, and the hypermethylation is likely to be related to the histologic type of lymphomas. BMP-6 promoter methylation may be a potential new biomarker of risk prediction in DLBCL.
Collapse
Affiliation(s)
- Masanori Daibata
- Department of Hematology, Kochi Medical School, Kochi University, Kochi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brena RM, Morrison C, Liyanarachchi S, Jarjoura D, Davuluri RV, Otterson GA, Reisman D, Glaros S, Rush LJ, Plass C. Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med 2007; 4:e108. [PMID: 17388669 PMCID: PMC1831740 DOI: 10.1371/journal.pmed.0040108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/31/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. Currently, tumor, node, metastasis (TNM) staging provides the most accurate prognostic parameter for patients with non-small cell lung cancer (NSCLC). However, the overall survival of patients with resectable tumors varies significantly, indicating the need for additional prognostic factors to better predict the outcome of the disease, particularly within a given TNM subset. METHODS AND FINDINGS In this study, we investigated whether adenocarcinomas and squamous cell carcinomas could be differentiated based on their global aberrant DNA methylation patterns. We performed restriction landmark genomic scanning on 40 patient samples and identified 47 DNA methylation targets that together could distinguish the two lung cancer subgroups. The protein expression of one of those targets, oligodendrocyte transcription factor 1 (OLIG1), significantly correlated with survival in NSCLC patients, as shown by univariate and multivariate analyses. Furthermore, the hazard ratio for patients negative for OLIG1 protein was significantly higher than the one for those patients expressing the protein, even at low levels. CONCLUSIONS Multivariate analyses of our data confirmed that OLIG1 protein expression significantly correlates with overall survival in NSCLC patients, with a relative risk of 0.84 (95% confidence interval 0.77-0.91, p < 0.001) along with T and N stages, as indicated by a Cox proportional hazard model. Taken together, our results suggests that OLIG1 protein expression could be utilized as a novel prognostic factor, which could aid in deciding which NSCLC patients might benefit from more aggressive therapy. This is potentially of great significance, as the addition of postoperative adjuvant chemotherapy in T2N0 NSCLC patients is still controversial.
Collapse
Affiliation(s)
- Romulo M Brena
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Carl Morrison
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sandya Liyanarachchi
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - David Jarjoura
- Division of Biostatistics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramana V Davuluri
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Gregory A Otterson
- Department of Internal Medicine, Division of Hematology and Oncology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - David Reisman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Selina Glaros
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laura J Rush
- Department of Veterinary Biosciences and the Comprehensive Cancer Center, The Ohio State University Columbus, Ohio, United States of America
| | - Christoph Plass
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N, Song F, Ghosh S, Held WA, Yoshida-Noro C, Nagase H. Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics 2006; 89:326-37. [PMID: 17188838 PMCID: PMC1847344 DOI: 10.1016/j.ygeno.2006.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/26/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Alterations in DNA methylation have been implicated in mammalian development. Hence, the identification of tissue-specific differentially methylated regions (TDMs) is indispensable for understanding its role. Using restriction landmark genomic scanning of six mouse tissues, 150 putative TDMs were identified and 14 were further analyzed. The DNA sequences of the 14 mouse TDMs are analyzed in this study. Six of the human homologous regions show TDMs to both mouse and human and genes in five of these regions have conserved tissue-specific expression: preferential expression in testis. A TDM, DDX4, is further analyzed in nine testis tissues. An increase in methylation of the promoter region is significantly associated with a marked reduction of the gene expression and defects in spermatogenesis, suggesting that hypomethylation of the DDX4 promoter region regulates DDX4 gene expression in spermatogenic cells. Our results indicate that some genomic regions with tissue-specific methylation and expression are conserved between mouse and human and suggest that DNA methylation may have an important role in regulating differentiation and tissue-/cell-specific gene expression of some genes.
Collapse
Affiliation(s)
- Eiko Kitamura
- Life Science, Advanced Research Institute for the Sciences and Humanities, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Jun Igarashi
- Life Science, Advanced Research Institute for the Sciences and Humanities, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Aiko Morohashi
- Life Science, Advanced Research Institute for the Sciences and Humanities, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Naoko Hida
- Life Science, Advanced Research Institute for the Sciences and Humanities, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Toshinori Oinuma
- Department of Pathology, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Norimichi Nemoto
- Department of Pathology, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Fei Song
- Department of Molecular and Cellular Biology, Elm and Carlton Streets, Buffalo, NY 14263
| | - Srimoyee Ghosh
- Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
| | - William A. Held
- Department of Molecular and Cellular Biology, Elm and Carlton Streets, Buffalo, NY 14263
| | - Chikako Yoshida-Noro
- Life Science, Advanced Research Institute for the Sciences and Humanities, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Hiroki Nagase
- Life Science, Advanced Research Institute for the Sciences and Humanities, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
- Cancer Genetics, Nihon, University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
- Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263
- *Corresponding author. Life Science, Advanced Research Institute for the Sciences and Humanities, Cancer Genetics, Nihon University School of Medicine, 30-1 Oyaguchi, Kami-cho, Itabashi-ku, Tokyo, 173-8610. Tel/Fax: +81-3-3972-8337. E-mail address: (H. Nagase)
| |
Collapse
|
37
|
Plass C, Smiraglia DJ. Genome-wide Analysis of DNA Methylation Changes in Human Malignancies. Curr Top Microbiol Immunol 2006; 310:179-98. [PMID: 16909911 DOI: 10.1007/3-540-31181-5_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic modification of the DNA sequence and thus does not change the genetic code but affects chromosomal stability and gene expression. DNA methylation patterns are heritable and can be passed on to the daughter cell. In this review, we briefly summarize our current knowledge on normal DNA methylation patterns and move on to discuss the current state of the field with respect to altered DNA methylation in cancer. We make a special attempt to address current questions relating to genome-wide DNA methylation patterns. Since DNA methylation is used as a therapeutic target in clinical studies, it is of utmost importance to define potential target sequences that could be used as diagnostic or prognostic markers. We conclude the review by outlining possible scenarios that may explain tumor type-specific DNA methylation patterns described by assays evaluating genome-wide levels of DNA methylation.
Collapse
Affiliation(s)
- C Plass
- Division of Human Cancer Genetics, The Ohio State University, Tzagournis Medical Research Facility, Columbus 43210, USA.
| | | |
Collapse
|
38
|
Kazhiyur-Mannar R, Smiraglia DJ, Plass C, Wenger R. Contour area filtering of two-dimensional electrophoresis images. Med Image Anal 2006; 10:353-65. [PMID: 16531098 DOI: 10.1016/j.media.2006.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 01/20/2006] [Accepted: 01/24/2006] [Indexed: 11/22/2022]
Abstract
We describe an algorithm, Contour Area Filtering, for separating background from foreground in gray scale images. The algorithm is based on the area contained within gray scale contour lines. It can be viewed as a form of local thresholding, or as a seed growing algorithm, or as a type of watershed segmentation. The most important feature of the algorithm is that it uses object area to determine the segmentation. Thus, it is relatively impervious to brightness and contrast variations across an image or between different images. Contour Area Filtering was designed specifically for image analysis of 2D electrophoresis gels, although it can be applied to other gray scale images. A typical gel image is an electrophoretogram or a phosphor image of 1000-2500 spots representing protein or DNA restriction fragments. The images are quantitative with spot intensities reflective of the number of proteins or the DNA fragment copy number. The background intensity can vary widely across the image caused both by variation in spot density and by the physical laboratory process of creating a gel. Analyzing and comparing gel images entails extracting and segmenting spots, registering images and matching spots, and measuring differences between spots. We present experimental results which show that Contour Area Filtering is a quick, efficient method for separating electrophoresis gel background from foreground with extremely high accuracy.
Collapse
Affiliation(s)
- Ramakrishnan Kazhiyur-Mannar
- Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
39
|
Brena RM, Huang THM, Plass C. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med (Berl) 2006; 84:365-77. [PMID: 16416310 DOI: 10.1007/s00109-005-0034-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/29/2005] [Indexed: 12/31/2022]
Abstract
Deregulation of the epigenome is now recognized as a major mechanism involved in the development and progression of human diseases such as cancer. As opposed to the irreversible nature of genetic events, which introduce changes in the primary DNA sequence, epigenetic modifications are reversible and leave the original DNA sequence intact. There is now evidence that the epigenetic landscape in humans undergoes modifications as the result of normal aging, with older individuals exhibiting higher levels of promoter hypermethylation compared to younger ones. Thus, it has been proposed that the higher incidence of certain disease in older individuals might be, in part, a consequence of an inherent change in the control and regulation of the epigenome. These observations are of remarkable clinical significance since the aberrant epigenetic changes characteristic of disease provide a unique platform for the development of new therapeutic approaches. In this review, we address the significance of DNA methylation changes that result or lead to disease, occur with aging, or may be the result of environmental exposure. We provide a detailed description of quantitative techniques currently available for the detection and analysis of DNA methylation and provide a comprehensive framework that may allow for the incorporation of protocols which include DNA methylation as a tool for disease diagnosis and classification, which could lead to the tailoring of therapeutic approaches designed to individual patient needs.
Collapse
Affiliation(s)
- Romulo Martin Brena
- Division of Human Cancer Genetics, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
40
|
Hong C, Maunakea A, Jun P, Bollen AW, Hodgson JG, Goldenberg DD, Weiss WA, Costello JF. Shared epigenetic mechanisms in human and mouse gliomas inactivate expression of the growth suppressor SLC5A8. Cancer Res 2005; 65:3617-23. [PMID: 15867356 DOI: 10.1158/0008-5472.can-05-0048] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumors arise in part from the deleterious effects of genetic and epigenetic mechanisms on gene expression. In several mouse models of human tumors, the tumorigenic phenotype is reversible, suggesting that epigenetic mechanisms also contribute significantly to tumorigenesis in mice. It is not known whether these are the same epigenetic mechanisms in human and mouse tumors or whether they affect homologous genes. Using an integrated approach for genome-wide methylation and copy number analyses, we identified SLC5A8 on chromosome 12q23.1 that was affected frequently by aberrant methylation in human astrocytomas and oligodendrogliomas. SLC5A8 encodes a sodium monocarboxylate cotransporter that was highly expressed in normal brain but was significant down-regulated in primary gliomas. Bisulfite sequencing analysis showed that the CpG island was unmethylated in normal brain but frequently localized methylated in brain tumors, consistent with the tumor-specific loss of gene expression. In glioma cell lines, SLC5A8 expression was also suppressed but could be reactivated with a methylation inhibitor. Expression of exogenous SLC5A8 in LN229 and LN443 glioma cells inhibited colony formation, suggesting that it may function as a growth suppressor in normal brain cells. Remarkably, 9 of 10 murine oligodendroglial tumors (from p53+/- or ink4a/arf+/- animals transgenic for S100beta-v-erbB) showed a similar tumor-specific down-regulation of mSLC5A8, the highly conserved mouse homologue. Taken together, these data suggest that SLC5A8 functions as a growth suppressor gene in vitro and that it is silenced frequently by epigenetic mechanisms in primary gliomas. The shared epigenetic inactivation of mSLC5A8 in mouse gliomas indicates an additional degree of commonality in the origin and/or pathway to tumorigenesis between primary human tumors and these mouse models of gliomas.
Collapse
Affiliation(s)
- Chibo Hong
- Department of Neurological Surgery, Brain Tumor Research Center, University of California-San Francisco, San Francisco, California 94143-0875, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yu L, Liu C, Bennett K, Wu YZ, Dai Z, Vandeusen J, Opavsky R, Raval A, Trikha P, Rodriguez B, Becknell B, Mao C, Lee S, Davuluri RV, Leone G, Van den Veyver IB, Caligiuri MA, Plass C. A NotI-EcoRV promoter library for studies of genetic and epigenetic alterations in mouse models of human malignancies. Genomics 2005; 84:647-60. [PMID: 15475242 DOI: 10.1016/j.ygeno.2004.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 06/23/2004] [Indexed: 12/31/2022]
Abstract
Aberrant promoter methylation and associated chromatin changes are primarily studied in human malignancies. Thus far, mouse models for human cancer have been rarely utilized to study the role of DNA methylation in tumor onset and progression. It would be advantageous to use mouse tumor models to a greater extent to study the role and mechanism of DNA methylation in cancer because mouse models allow manipulation of the genome, study of samples/populations with a homogeneous genetic background, the possibility of modulating gene expression in vivo, the statistical power of using large numbers of tumor samples, access to various tumor stages, and the possibility of preclinical trials. Therefore, it is likely that the mouse will emerge as an increasingly utilized model to study DNA methylation in cancer. To foster the use of mouse models, we developed an arrayed mouse NotI-EcoRV genomic library, with clones from three commonly used mouse strains (129SvIMJ, FVB/NJ, and C57BL/6J). A total of 23,040 clones representing an estimated three- to fourfold coverage of the mouse genome were arrayed in 60 x 384-well plates. We developed restriction landmark genomic scanning (RLGS) mixing gels with 32 plates to enable the cloning of methylated sequences from RLGS profiles run with NotI-EcoRV-HinfI. RLGS was used to study aberrant methylation in two mouse models that overexpressed IL-15 or c-Myc and developed either T/NK-cell leukemia or T-cell lymphomas, respectively. Careful analysis of 198 sequences showed that 188 (94.9%) identified CpG-island sequences, 132 sequences (66.7%) had homology to the 5' regions of known genes or mRNAs, and all 132 NotI-EcoRV clones were located at the same CpG islands with the predicted promoter sequences. We have also developed a modified pGL3-based luciferase vector that now contains the NotI, AscI, and EcoRV restriction sites and allows the rapid cloning of NotI-EcoRV library fragments in both orientations. Luciferase assays using NotI-EcoRV clones confirmed that the library is enriched for promoter sequences. Thus, this library will support future genetic and epigenetic studies in mouse models.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- CpG Islands/genetics
- DNA Methylation
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Gene Expression Regulation, Neoplastic/genetics
- Gene Library
- Genome, Human
- Humans
- Interleukin-15/genetics
- Interleukin-15/physiology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Luciferases/metabolism
- Lymphoma/genetics
- Lymphoma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Animal
- Promoter Regions, Genetic/genetics
- Restriction Mapping
Collapse
Affiliation(s)
- Li Yu
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, Raval A, Liu TH, Ding W, Mao C, Liu S, Smith LT, Lee S, Rassenti L, Marcucci G, Byrd J, Caligiuri MA, Plass C. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 2005; 37:265-74. [PMID: 15723065 DOI: 10.1038/ng1521] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 01/24/2005] [Indexed: 02/07/2023]
Abstract
DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.
Collapse
Affiliation(s)
- Li Yu
- Internal Medicine, Division of Hematology/Oncology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Motiwala T, Kutay H, Ghoshal K, Bai S, Seimiya H, Tsuruo T, Suster S, Morrison C, Jacob ST. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci U S A 2004; 101:13844-9. [PMID: 15356345 PMCID: PMC518843 DOI: 10.1073/pnas.0405451101] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous study in our laboratory demonstrated suppression of the gene for protein tyrosine phosphatase receptor-type O (PTPRO) in primary and established rat hepatomas. The present study showed methylation-mediated silencing of this gene in primary human lung tumors and in several human lung cancer cell lines, one of the characteristics of many tumor-suppressor genes. The reduced expression of PTPRO in the primary lung tumors correlated with the methylation status of its CpG island. Demethylation of the gene by deoxy-5-azacytidine treatment led to its reactivation in a lung cancer line (A549). Overexpression of PTPRO in A549 cells inhibited anchorage-independent growth, delayed reentry of the cells into the cell cycle after release from cell-cycle arrest, and increased susceptibility of the cells to apoptosis. These data have demonstrated the growth-suppressor characteristics of PTPRO that are unique to a classical tumor suppressor.
Collapse
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Silencing of genes by aberrant promoter hypermethylation is now recognized as a crucial component in cancer initiation and progression. Highly sensitive assays have been developed to assess gene-promoter methylation in biological fluids. The detection of methylated genes in sputum could lead to the development of a screening test to non-invasively identify early cancer in high-risk people.
Collapse
Affiliation(s)
- Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA.
| |
Collapse
|
45
|
Dai Z, Popkie AP, Zhu WG, Timmers CD, Raval A, Tannehill-Gregg S, Morrison CD, Auer H, Kratzke RA, Niehans G, Amatschek S, Sommergruber W, Leone GW, Rosol T, Otterson GA, Plass C. Bone morphogenetic protein 3B silencing in non-small-cell lung cancer. Oncogene 2004; 23:3521-9. [PMID: 15116090 DOI: 10.1038/sj.onc.1207441] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein 3B (BMP3B) is a member of the TGF-beta superfamily. The BMP3B promoter sequence was previously identified as a target for aberrant DNA methylation in non-small-cell lung cancer (NSCLC). Aberrant DNA hypermethylation in the BMP3B promoter is associated with downregulation of BMP3B transcription in both primary human lung cancers as well as lung cancer cell lines. In order to understand the mechanisms of BMP3B silencing in lung cancer, a sample set of 91 primary NSCLCs was used to detect aberrant BMP3B promoter methylation, mutations in the coding sequence of BMP3B, and loss of heterozygosity (LOH). Our results showed that 45 of 91 (or 49.5%) tested primary NSCLCs exhibited increased promoter methylation, and 40% demonstrated LOH in at least one of the flanking microsatellite markers sJRH and D10S196 (63 kb upstream or 3.338 Mbp downstream of BMP3B). The lung cancer cell line A549, a type II alveolar epithelial human lung cancer cell line, is characterized by aberrant DNA promoter methylation. We used retroviral vector constructs containing the BMP3B cDNA to re-express the gene in A549 cells and to investigate the effects on cell growth. No change in the cell growth rate was observed after BMP3B re-expression, as compared to the vector controls. Although the number of colonies formed in anchorage-dependent assays was only slightly decreased, the colony-forming ability of A549 cells after BMP3B expression in anchorage-independent assays in soft agar was significantly reduced to 10% (P<0.005, t-test). Moreover, the in vivo tumorigenicity assay in nude mice indicated that cells re-expressing BMP3B grew significantly slower than cells not expressing BMP3B (P<0.05, t-test). In conclusion, this study provides evidence that BMP3B expression is repressed by different mechanisms in lung cancer, and that the silencing of BMP3B promotes lung tumor development.
Collapse
Affiliation(s)
- Zunyan Dai
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM, Bembea M, Liu TH, Heerema NA, Rassenti L, Liyanarachchi S, Davuluri R, Byrd JC, Plass C. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res 2004; 64:2424-33. [PMID: 15059895 DOI: 10.1158/0008-5472.can-03-2870] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CpG island methylation is an epigenetic alteration that contributes to tumorigenesis by transcriptional inactivation of genes. Little is known about the overall levels of CpG island methylation in chronic lymphocytic leukemia (CLL). To provide a baseline estimate of global aberrant methylation and identify target sequences for additional investigation, we performed Restriction Landmark Genomic Scanning on 10 CLL samples. Two methylation-sensitive landmark enzymes were used (NotI and AscI), allowing assessment of over 3000 CpG islands in each sample. Tumor-derived Restriction Landmark Genomic Scanning profiles were compared with profiles from CD19-selected B cells from normal volunteers and matched normal neutrophils from 4 CLL patients. We found 2.5-8.1% (mean 4.8%) of the CpG islands in CLL samples were aberrantly methylated compared with controls, and the methylation events had a nonrandom distribution (P < 0.0001). Furthermore, we identified 193 aberrantly methylated sequences, of which 93% have CpG island characteristics and 90% have homology to genes or expressed sequences. One such gene, the G protein-coupled metabotropic glutamate receptor 7 (GRM7), possibly inhibits cyclic AMP signaling in the induction of apoptosis. Bisulfite sequencing of GRM7 confirmed extensive CpG island methylation, and treatment with 5-aza-2'-deoxycytidine (decitabine) resulted in up-regulated expression of several genes in vitro with concurrent cellular depletion of DNMT1 protein. Our dual-enzyme global methylation study shows that CLL is characterized by widespread nonrandom CpG island methylation similar to other tumors and provides a panel of novel methylation targets that can be used in larger studies designed to assess impact on disease progression and survival.
Collapse
Affiliation(s)
- Laura J Rush
- Department of Veterinary Biosciences, Comprehensive Cancer Center and The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Motiwala T, Ghoshal K, Das A, Majumder S, Weichenhan D, Wu YZ, Holman K, James SJ, Jacob ST, Plass C. Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 2003; 22:6319-31. [PMID: 14508512 PMCID: PMC3020652 DOI: 10.1038/sj.onc.1206750] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 04/23/2003] [Accepted: 04/26/2003] [Indexed: 11/09/2022]
Abstract
A diet lacking folic acid and choline and low in methionine (folate/methyl deficient diet, FMD diet) fed to rats is known to produce preneoplastic nodules (PNNs) after 36 weeks and hepatocellular carcinomas (tumors) after 54 weeks. FMD diet-induced tumors exhibit global hypomethylation and regional hypermethylation. Restriction landmark genome scanning analysis with methylation-sensitive enzyme NotI (RLGS-M) of genomic DNA isolated from control livers, PNNs and tumor tissues was performed to identify the genes that are differentially methylated or amplified during multistage hepatocarcinogenesis. Out of the 1250 genes analysed, 2 to 5 genes were methylated in the PNNs, whereas 5 to 45 genes were partially or completely methylated in the tumors. This analysis also showed amplification of 3 to 12 genes in the primary tumors. As a first step towards identifying the genes methylated in the PNNs and primary hepatomas, we generated a rat NotI-EcoRV genomic library in the pBluescriptKS vector. Here, we describe identification of one methylated and downregulated gene as the rat protein tyrosine phosphatase receptor type O (PTPRO) and one amplified gene as rat C-MYC. Methylation of PTPRO at the NotI site located immediate upstream of the trancription start site in the PNNs and tumors, and amplification of C-MYC gene in the tumors were confirmed by Southern blot analyses. Bisulfite genomic sequencing of the CpG island encompassing exon 1 of the PTPRO gene revealed dense methylation in the PNNs and tumors, whereas it was methylation free in the livers of animals on normal diet. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed significant decrease in the expression of PTPRO in the tumors and in a transplanted rat hepatoma. The expression of PTPRO mRNA in the transplanted hepatoma after demethylation with 5-azacytidine, a potent inhibitor of DNA methyltransferases, further confirmed the role of methylation in PTPRO gene expression. These results demonstrate alteration in methylation profile and expression of specific genes during tumor progression in the livers of rats in response to folate/methyl deficiency, and further implicate the potential role of PTPRO as a novel growth regulatory gene at least in the hepatocellular carcinomas.
Collapse
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Kalpana Ghoshal
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Anindita Das
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dieter Weichenhan
- Medizinische Universität zu Lübeck, Institut für Biologie, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Yue-Zhong Wu
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristen Holman
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - S Jill James
- Division of Biochemical Toxicology, Food and Drug administration, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Samson T Jacob
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christoph Plass
- Division of Human Cancer Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Zhu WG, Srinivasan K, Dai Z, Duan W, Druhan LJ, Ding H, Yee L, Villalona-Calero MA, Plass C, Otterson GA. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol 2003; 23:4056-65. [PMID: 12773551 PMCID: PMC156121 DOI: 10.1128/mcb.23.12.4056-4065.2003] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA methylation in the promoter of certain genes is associated with transcriptional silencing. Methylation affects gene expression directly by interfering with transcription factor binding and/or indirectly by recruiting histone deacetylases through methyl-DNA-binding proteins. In this study, we demonstrate that the human lung cancer cell line H719 lacks p53-dependent and -independent p21(Cip1) expression. p53 response to treatment with gamma irradiation or etoposide is lost due to a mutation at codon 242 of p53 (C-->W). Treatment with depsipeptide, an inhibitor of histone deacetylase, was unable to induce p53-independent p21(Cip1) expression because the promoter of p21(Cip1) in these cells is hypermethylated. By analyzing luciferase activity of transfected p21(Cip1) promoter vectors, we demonstrate that depsipeptide functions on Sp1-binding sites to induce p21(Cip1) expression. We hypothesize that hypermethylation may interfere with Sp1/Sp3 binding. By using an electrophoretic mobility shift assay, we show that, although methylation within the consensus Sp1-binding site did not reduce Sp1/Sp3 binding, methylation outside of the consensus Sp1 element induced a significant decrease in Sp1/Sp3 binding. Depsipeptide induced p21(Cip1) expression was reconstituted when cells were pretreated with 5-aza-2'-deoxycytidine. Our data suggest, for the first time, that hypermethylation around the consensus Sp1-binding sites may directly reduce Sp1/Sp3 binding, therefore leading to a reduced p21(Cip1) expression in response to depsipeptide treatment.
Collapse
Affiliation(s)
- Wei-Guo Zhu
- Department of Internal Medicine. Department of Pathology, The Ohio State University-Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Patel A, Groopman JD, Umar A. DNA methylation as a cancer-specific biomarker: from molecules to populations. Ann N Y Acad Sci 2003; 983:286-97. [PMID: 12724233 DOI: 10.1111/j.1749-6632.2003.tb05983.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer contributes to a large proportion of the mortality and morbidity in the United States and worldwide. Despite advances in diagnosis and treatment of various cancers, early detection and treatment of cancer remain a challenge. Diagnosis of cancer often occurs once the disease has progressed to a point where currently available intervention options provide limited success. Therefore, techniques that enable early detection followed by targeted interventions would influence stage at diagnosis and, in turn, mortality associated with cancer. Identification of molecular biomarkers, especially those that are associated with cancer initiation and progression, shows promise as an effective strategy in this regard. One potential early detection biomarker is DNA methylation of the promoter region of certain cancer-associated genes, which results in gene inactivation. Examination of serum for circulating tumor DNA with abnormal methylation patterns offers a possible method for early detection of several cancers and serves as a point for early intervention and prevention strategies. Additionally, it is imperative to consider how such a screening mechanism can be implemented in populations at risk, especially in resource-poor settings. Thus, the challenge is to validate DNA methylation as a cancer-specific biomarker, with the ultimate goal of designing a research plan that integrates the current knowledge base regarding cancer detection and diagnosis into specific prevention and intervention strategies that can be applied at a population level.
Collapse
Affiliation(s)
- Arti Patel
- Cancer Prevention Fellowship Program, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
50
|
Zardo G, Tiirikainen MI, Hong C, Misra A, Feuerstein BG, Volik S, Collins CC, Lamborn KR, Bollen A, Pinkel D, Albertson DG, Costello JF. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 2002; 32:453-8. [PMID: 12355068 DOI: 10.1038/ng1007] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Accepted: 08/20/2002] [Indexed: 11/09/2022]
Abstract
Aberrant methylation of CpG islands and genomic deletion are two predominant mechanisms of gene inactivation in tumorigenesis, but the extent to which they interact is largely unknown. The lack of an integrated approach to study these mechanisms has limited the understanding of tumor genomes and cancer genes. Restriction landmark genomic scanning (RLGS; ref. 1) is useful for global analysis of aberrant methylation of CpG islands, but has not been amenable to alignment with deletion maps because the identity of most RLGS fragments is unknown. Here, we determined the nucleotide sequence and exact chromosomal position of RLGS fragments throughout the genome using the whole chromosome of origin of the fragments and in silico restriction digestion of the human genome sequence. To study the interaction of these gene-inactivation mechanisms in primary brain tumors, we integrated RLGS-based methylation analysis with high-resolution deletion maps from microarray-based comparative genomic hybridization (array CGH; ref. 3). Certain subsets of gene-associated CpG islands were preferentially affected by convergent methylation and deletion, including genes that exhibit tumor-suppressor activity, such as CISH1 (encoding SOCS1; ref. 4), as well as genes such as COE3 that have been missed by traditional non-integrated approaches. Our results show that most aberrant methylation events are focal and independent of deletions, and the rare convergence of these mechanisms can pinpoint biallelic gene inactivation without the use of positional cloning.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|