1
|
Kartvelishvili T, Sapojnikova N, Asatiani N, Asanishvili L, Sokhadze V, Sichinava N, Chikovani Z. Comparative Analysis of Blood MMP-9 Concentration in Alcohol- and Opioid-Addicted Patients. Diseases 2025; 13:30. [PMID: 39997037 PMCID: PMC11853769 DOI: 10.3390/diseases13020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES In brain physiology and disease, MMP-9 is a significant and apparently peculiar factor. Numerous studies have implicated neuroinflammatory processes involving MMP-9 in the pathophysiology of addiction. This study aims to evaluate plasma MMP-9 level as a biomarker for the stages of alcohol and opioid addiction. METHODS The case subjects were patients with opioid and alcohol addiction. The quantitative assessment of MMP-9 plasma concentration was performed using monoclonal antibodies against human MMP-9. RESULTS MMP-9 levels in the plasma of patients with alcohol and opioid dependence differ from MMP-9 concentrations in apparently healthy donors. During the intoxication stage, MMP-9 concentrations in individuals with alcohol and opioid dependence are similar and higher than in the control group. While the MMP-9 level is close to the control level after alcohol withdrawal, it stays increased during opioid withdrawal. When MMP-9 levels in plasma were measured in three distinct intoxicated states (light, moderate, and heavy) in cases of alcohol addiction, the results were all similar. Two distinct opioid intoxicated states (methadone and buprenorphine) and three withdrawals-following methadone, buprenorphine, and heroin abuse-were associated with high MMP-9 levels.
Collapse
Affiliation(s)
- Tamar Kartvelishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Nelly Sapojnikova
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Nino Asatiani
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Lali Asanishvili
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | - Victor Sokhadze
- Andronikashvili Institute of Physics, I. Javakhishvili Tbilisi State University, Tbilisi 0162, Georgia
| | | | - Zaza Chikovani
- Narcological Clinic “Nishati”, Tbilisi 0186, Georgia (Z.C.)
| |
Collapse
|
2
|
Low JJL, Tan BJW, Yi LX, Zhou ZD, Tan EK. Genetic susceptibility to caffeine intake and metabolism: a systematic review. J Transl Med 2024; 22:961. [PMID: 39438936 PMCID: PMC11515775 DOI: 10.1186/s12967-024-05737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Coffee and tea consumption account for most caffeine intake and 2-3 billion cups are taken daily around the world. Caffeine dependence is a widespread but under recognized problem. OBJECTIVES To conduct a systematic review on the genetic susceptibility factors affecting caffeine metabolism and caffeine reward and their association with caffeine intake. METHODOLOGY We conducted PubMed and Embase searches using the terms "caffeine", "reward", "gene", "polymorphism", "addiction", "dependence" and "habit" from inception till 2024. The demographics, genetic and clinical data from included studies were extracted and analyzed. Only case-control studies on habitual caffeine drinkers with at least 100 in each arm were included. RESULTS A total of 2552 studies were screened and 26 studies involving 1,851,428 individuals were included. Several genes that were involved with caffeine metabolism such as CYP1A2, ADORA2A, AHR, POR, ABCG2, CYP2A6, PDSS2 and HECTD4 rs2074356 (A allele specific to East Asians and monomorphic in Europeans, Africans and Americans) were associated with habitual caffeine consumption with effect size difference of 3% to 32% in number of cups of caffeinated drink per day per effect allele. In addition, ALDH2 was linked to the Japanese population. Genes associated with caffeine reward included BDNF, SLC6A4, GCKR, MLXIPL and dopaminergic genes such as DRD2 and DAT1 which had around 2-5% effect size difference in number of cups of caffeinated drink for each allele per day. CONCLUSION Several genes that were involved in caffeine metabolism and reward were associated with up to 30% effect size difference in number of cups of caffeinated drink per day, and some associations were specific to certain ethnicities. Identification of at-risk caffeine dependence individuals can lead to early diagnosis and stratification of at-risk vulnerable individuals such as pregnant women and children, and can potentially lead to development of drug targets for dependence to caffeine.
Collapse
Affiliation(s)
- Jazreel Ju-Li Low
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Brendan Jen-Wei Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
| | - Ling-Xiao Yi
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Zhi-Dong Zhou
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
3
|
Olsen MB, Sannes AC, Yang K, Nielsen MB, Einarsen SV, Christensen JO, Pallesen S, Bjørås M, Gjerstad J. Mapping of pituitary stress-induced gene regulation connects Nrcam to negative emotions. iScience 2022; 25:104953. [PMID: 36060062 PMCID: PMC9437855 DOI: 10.1016/j.isci.2022.104953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023] Open
Abstract
Environmental stressors such as repeated social defeat may initiate powerful activation of subconscious parts of the brain. Here, we examine the consequences of such stress (induced by resident-intruder paradigm) on the pituitary gland. In male stressed vs. control rats, by RNA- and bisulfite DNA sequencing, we found regulation of genes involved in neuron morphogenesis and communication. Among these, Neuronal cell adhesion molecule (Nrcam) showed reduced transcription and reduced DNA methylation in a region corresponding to intron 1 in human NRCAM. Also, genetic variability in this area was associated with altered stress response in male humans exposed to repeated social defeat in the form of abusive supervision. Thus, our data show that the pituitary gene expression may be affected by social stress and that genetic variability in NRCAM intron 1 region influences stress-induced negative emotions. We hope our shared datasets will facilitate further exploration of the motions triggered by social stressors. Social stress-induced pituitary gene regulation was characterized in rats Here, genes involved in neuron morphogenesis and communication were regulated Both expression and methylation of the Nrcam gene were affected Genetic variability in NRCAM in humans influenced stress-induced negative emotions
Collapse
Affiliation(s)
- Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Corresponding author
| | | | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Morten Birkeland Nielsen
- National Institute of Occupational Health, Oslo, Norway
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | | | | | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
4
|
Prefrontal Cortex Response to Prenatal Insult and Postnatal Opioid Exposure. Genes (Basel) 2022; 13:genes13081371. [PMID: 36011282 PMCID: PMC9407090 DOI: 10.3390/genes13081371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
The influence of proinflammatory challenges, such as maternal immune activation (MIA) or postnatal exposure to drugs of abuse, on brain molecular pathways has been reported. On the other hand, the simultaneous effects of MIA and drugs of abuse have been less studied and sometimes offered inconsistent results. The effects of morphine exposure on a pig model of viral-elicited MIA were characterized in the prefrontal cortex of males and females using RNA-sequencing and gene network analysis. Interacting and main effects of morphine, MIA, and sex were detected in approximately 2000 genes (false discovery rate-adjusted p-value < 0.05). Among the enriched molecular categories (false discovery rate-adjusted p-value < 0.05 and −1.5 > normalized enrichment score > 1.5) were the cell adhesion molecule pathways associated with inflammation and neuronal development and the long-term depression pathway associated with synaptic strength. Gene networks that integrate gene connectivity and expression profiles displayed the impact of morphine-by-MIA interaction effects on the pathways. The cell adhesion molecules and long-term depression networks presented an antagonistic effect between morphine and MIA. The differential expression between the double-challenged group and the baseline saline-treated Controls was less extreme than the individual challenges. The previous findings advance the knowledge about the effects of prenatal MIA and postnatal morphine exposure on the prefrontal cortex pathways.
Collapse
|
5
|
Ray MH, Williams BR, Kuppe MK, Bryant CD, Logan RW. A Glitch in the Matrix: The Role of Extracellular Matrix Remodeling in Opioid Use Disorder. Front Integr Neurosci 2022; 16:899637. [PMID: 35757099 PMCID: PMC9218427 DOI: 10.3389/fnint.2022.899637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Opioid use disorder (OUD) and deaths from drug overdoses have reached unprecedented levels. Given the enormous impact of the opioid crisis on public health, a more thorough, in-depth understanding of the consequences of opioids on the brain is required to develop novel interventions and pharmacological therapeutics. In the brain, the effects of opioids are far reaching, from genes to cells, synapses, circuits, and ultimately behavior. Accumulating evidence implicates a primary role for the extracellular matrix (ECM) in opioid-induced plasticity of synapses and circuits, and the development of dependence and addiction to opioids. As a network of proteins and polysaccharides, including cell adhesion molecules, proteases, and perineuronal nets, the ECM is intimately involved in both the formation and structural support of synapses. In the human brain, recent findings support an association between altered ECM signaling and OUD, particularly within the cortical and striatal circuits involved in cognition, reward, and craving. Furthermore, the ECM signaling proteins, including matrix metalloproteinases and proteoglycans, are directly involved in opioid seeking, craving, and relapse behaviors in rodent opioid models. Both the impact of opioids on the ECM and the role of ECM signaling proteins in opioid use disorder, may, in part, depend on biological sex. Here, we highlight the current evidence supporting sex-specific roles for ECM signaling proteins in the brain and their associations with OUD. We emphasize knowledge gaps and future directions to further investigate the potential of the ECM as a therapeutic target for the treatment of OUD.
Collapse
Affiliation(s)
- Madelyn H. Ray
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Madeline K. Kuppe
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Camron D. Bryant
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ryan W. Logan
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Moore A, Chinnaiya K, Kim DW, Brown S, Stewart I, Robins S, Dowsett GKC, Muir C, Travaglio M, Lewis JE, Ebling F, Blackshaw S, Furley A, Placzek M. Loss of Function of the Neural Cell Adhesion Molecule NrCAM Regulates Differentiation, Proliferation and Neurogenesis in Early Postnatal Hypothalamic Tanycytes. Front Neurosci 2022; 16:832961. [PMID: 35464310 PMCID: PMC9022636 DOI: 10.3389/fnins.2022.832961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hypothalamic tanycytes are neural stem and progenitor cells, but little is known of how they are regulated. Here we provide evidence that the cell adhesion molecule, NrCAM, regulates tanycytes in the adult niche. NrCAM is strongly expressed in adult mouse tanycytes. Immunohistochemical and in situ hybridization analysis revealed that NrCAM loss of function leads to both a reduced number of tanycytes and reduced expression of tanycyte-specific cell markers, along with a small reduction in tyrosine hydroxylase-positive arcuate neurons. Similar analyses of NrCAM mutants at E16 identify few changes in gene expression or cell composition, indicating that NrCAM regulates tanycytes, rather than early embryonic hypothalamic development. Neurosphere and organotypic assays support the idea that NrCAM governs cellular homeostasis. Single-cell RNA sequencing (scRNA-Seq) shows that tanycyte-specific genes, including a number that are implicated in thyroid hormone metabolism, show reduced expression in the mutant mouse. However, the mild tanycyte depletion and loss of markers observed in NrCAM-deficient mice were associated with only a subtle metabolic phenotype.
Collapse
Affiliation(s)
- Alex Moore
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Kavitha Chinnaiya
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Brown
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah Robins
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Georgina K. C. Dowsett
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte Muir
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Marco Travaglio
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jo E. Lewis
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fran Ebling
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew Furley
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity. Am J Hum Genet 2022; 109:518-532. [PMID: 35108495 DOI: 10.1016/j.ajhg.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.
Collapse
|
8
|
Moseley-Alldredge M, Sheoran S, Yoo H, O’Keefe C, Richmond JE, Chen L. A role for the Erk MAPK pathway in modulating SAX-7/L1CAM-dependent locomotion in Caenorhabditis elegans. Genetics 2022; 220:iyab215. [PMID: 34849872 PMCID: PMC9097276 DOI: 10.1093/genetics/iyab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
L1CAMs are immunoglobulin cell adhesion molecules that function in nervous system development and function. Besides being associated with autism and schizophrenia spectrum disorders, impaired L1CAM function also underlies the X-linked L1 syndrome, which encompasses a group of neurological conditions, including spastic paraplegia and congenital hydrocephalus. Studies on vertebrate and invertebrate L1CAMs established conserved roles that include axon guidance, dendrite morphogenesis, synapse development, and maintenance of neural architecture. We previously identified a genetic interaction between the Caenorhabditis elegans L1CAM encoded by the sax-7 gene and RAB-3, a GTPase that functions in synaptic neurotransmission; rab-3; sax-7 mutant animals exhibit synthetic locomotion abnormalities and neuronal dysfunction. Here, we show that this synergism also occurs when loss of SAX-7 is combined with mutants of other genes encoding key players of the synaptic vesicle (SV) cycle. In contrast, sax-7 does not interact with genes that function in synaptogenesis. These findings suggest a postdevelopmental role for sax-7 in the regulation of synaptic activity. To assess this possibility, we conducted electrophysiological recordings and ultrastructural analyses at neuromuscular junctions; these analyses did not reveal obvious synaptic abnormalities. Lastly, based on a forward genetic screen for suppressors of the rab-3; sax-7 synthetic phenotypes, we determined that mutants in the ERK Mitogen-activated Protein Kinase (MAPK) pathway can suppress the rab-3; sax-7 locomotion defects. Moreover, we established that Erk signaling acts in a subset of cholinergic neurons in the head to promote coordinated locomotion. In combination, these results suggest a modulatory role for Erk MAPK in L1CAM-dependent locomotion in C. elegans.
Collapse
Affiliation(s)
- Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seema Sheoran
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Hayoung Yoo
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Calvin O’Keefe
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Tan CX, Eroglu C. Cell adhesion molecules regulating astrocyte-neuron interactions. Curr Opin Neurobiol 2021; 69:170-177. [PMID: 33957433 PMCID: PMC8387342 DOI: 10.1016/j.conb.2021.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
A tripartite synapse comprises a neuronal presynaptic axon and a postsynaptic dendrite, which are closely ensheathed by a perisynaptic astrocyte process. Through their structural and functional association with thousands of neuronal synapses, astrocytes regulate synapse formation and function. Recent work revealed a diverse range of cell adhesion-based mechanisms that mediate astrocyte-synapse interactions at tripartite synapses. Here, we will review some of these findings unveiling a highly dynamic bidirectional signaling between astrocytes and synapses, which orchestrates astrocyte morphological maturation and synapse development. Moreover, we will discuss the roles of these newly discovered molecular pathways in brain physiology and function both in health and disease.
Collapse
Affiliation(s)
- Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA; Duke Institute for Brain Sciences, Durham, NC, 27710, USA; Regeneration Next Initiative, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Tian L, Chen Y, Chang S, Xu L, Zhou X, Mao Q, Liang L. Antisense oligonucleotides targeting alternative splicing of Nrcam exon 10 suppress neurite outgrowth of ganglion sensory neurons in vitro. Neuroreport 2021; 32:548-554. [PMID: 33850082 DOI: 10.1097/wnr.0000000000001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuron-glial-related cell adhesion molecule (NrCAM) is a neuronal cell adhesion molecule that has been shown to be involved in several cellular processes in the peripheral nervous system, including neurite outgrowth. We recently reported that alternative splicing of Nrcam mRNA at exon 10 in the dorsal root ganglion (DRG) contributes to the peripheral mechanism of neuropathic pain. Specially, Nrcam antisense oligonucleotides (ASO) targeting Nrcam exon 10, attenuated neuropathic pain hypersensitivities in mice. Here, we investigated the effect of Nrcam ASO on neurite outgrowth of DRG neurons in vitro. By immunostaining DRG neurons with different DRG markers, Nrcam ASO significantly reduced neurite lengths in neurofilament 200-, calcitonin gene-related peptide and isolectin B4-positive neurons in primary DRG neuronal culture. Moreover, Nrcam ASO activates epidermal growth factor receptor, which may mediate the effect of Nrcam ASO on neurite outgrowth of cultured DRG neurons. These results provide evidence that Nrcam ASO suppresses neurite outgrowth in DRG neurons by regulating alternative splicing of Nrcam gene at exon 10 and activation of epidermal growth factor receptor signaling, indicating the differential roles of NrCAM variants/isoforms in neurite outgrowth.
Collapse
Affiliation(s)
- Lixia Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi
| | - Yu Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences
| | - Shuyang Chang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi
| | - Xiaoqiong Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing
| | - Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China
| |
Collapse
|
11
|
Hall FS, Chen Y, Resendiz-Gutierrez F. The Streetlight Effect: Reappraising the Study of Addiction in Light of the Findings of Genome-wide Association Studies. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:230-246. [PMID: 33849024 DOI: 10.1159/000516169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022]
Abstract
Drug dependence has long been thought to have a genetic component. Research seeking to identify the genetic basis of addiction has gone through important transitions over its history, in part based upon the emergence of new technologies, but also as the result of changing perspectives. Early research approaches were largely dictated by available technology, with technological advancements having highly transformative effects on genetic research, but the limitations of technology also affected modes of thinking about the genetic causes of disease. This review explores these transitions in thinking about the genetic causes of addiction in terms of the "streetlight effect," which is a type of observational bias whereby people search for something only where it is easiest to search. In this way, the genes that were initially studied in the field of addiction genetics were chosen because they were the most "obvious," and formed current understanding of the biological mechanisms underlying the actions of drugs of abuse and drug dependence. The problem with this emphasis is that prior to the genomic era the vast majority of genes and proteins had yet to be identified, much less studied. This review considers how these initial choices, as well as subsequent choices that were also driven by technological limitations, shaped the study of the genetic basis of drug dependence. While genome-wide approaches overcame the initial biases regarding which genes to choose to study inherent in candidate gene studies and other approaches, genome-wide approaches necessitated other assumptions. These included additive genetic causation and limited allelic heterogeneity, which both appear to be incorrect. Thus, the next stage of advancement in this field must overcome these shortcomings through approaches that allow the examination of complex interactive effects, both gene × gene and gene × environment interactions. Techniques for these sorts of studies have recently been developed and represent the next step in our understanding of the genetic basis of drug dependence.
Collapse
Affiliation(s)
- F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, Toledo, Ohio, USA
| | - Yu Chen
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, Toledo, Ohio, USA
| | - Federico Resendiz-Gutierrez
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacology and Pharmacological Science, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
12
|
Semick SA, Collado-Torres L, Markunas CA, Shin JH, Deep-Soboslay A, Tao R, Huestis M, Bierut LJ, Maher BS, Johnson EO, Hyde TM, Weinberger DR, Hancock DB, Kleinman JE, Jaffe AE. Developmental effects of maternal smoking during pregnancy on the human frontal cortex transcriptome. Mol Psychiatry 2020; 25:3267-3277. [PMID: 30131587 PMCID: PMC6438764 DOI: 10.1038/s41380-018-0223-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)-these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Stephen A. Semick
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Center for Computational Biology, Johns Hopkins University,
Baltimore, MD, 21205, USA
| | - Christina A. Markunas
- Behavioral and Urban Health Program, Behavioral Health and
Criminal Justice Division, RTI International, Research Triangle Park, NC, 27709,
USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA
| | - Marilyn Huestis
- The Lambert Center for the Study of Medicinal Cannabis and
Hemp, Institute of Emerging Health Professions, Thomas Jefferson University,
Philadelphia, PA, USA
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO 63110, USA
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD, 21205, USA
| | - Eric O. Johnson
- Fellow Program and Behavioral Health and Criminal Justice
Division, RTI International, Research Triangle Park, NC, 27709, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Department of Psychiatry and Behavioral Sciences, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA,Department of Neurology, Johns Hopkins School of Medicine,
Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Department of Psychiatry and Behavioral Sciences, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA,Department of Neurology, Johns Hopkins School of Medicine,
Baltimore, MD, 21205, USA,Department of Neuroscience, Johns Hopkins School of
Medicine, Baltimore, MD, 21205, USA,McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dana B. Hancock
- Behavioral and Urban Health Program, Behavioral Health and
Criminal Justice Division, RTI International, Research Triangle Park, NC, 27709,
USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Department of Psychiatry and Behavioral Sciences, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA,Contact: Lieber Institute for Brain Development,
855 N Wolfe St, Ste 300. Baltimore MD 21205. Ph: 1-410-955-1000
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Center for Computational Biology, Johns Hopkins University,
Baltimore, MD, 21205, USA,Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD, 21205, USA,McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA,Department of Biostatistics, Johns Hopkins Bloomberg
School of Public Health, Baltimore, MD, 21205, USA,Contact: Lieber Institute for Brain Development, 855
N Wolfe St, Ste 300. Baltimore MD 21205. Ph: 1-410-955-1000
| |
Collapse
|
13
|
Chen ZH, Luo XC, Yu CR, Huang L. Matrix metalloprotease-mediated cleavage of neural glial-related cell adhesion molecules activates quiescent olfactory stem cells via EGFR. Mol Cell Neurosci 2020; 108:103552. [PMID: 32918999 DOI: 10.1016/j.mcn.2020.103552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/23/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Quiescent stem cells have been found in multiple adult organs, and activation of these stem cells is critical to the restoration of damaged tissues in response to injury or stress. Existing evidence suggests that extrinsic cues from the extracellular matrix or supporting cells of various stem cell niches may interact with intrinsic components to initiate stem cell differentiation, but the molecular and cellular mechanisms regulating their activation are not fully understood. In the present study, we find that olfactory horizontal basal cells (HBCs) are stimulated by neural glial-related cell adhesion molecules (NrCAMs). NrCAM activation requires matrix metalloproteases (MMPs) and epidermal growth factor receptors (EGFRs). Inhibiting MMP activity or EGFR activation not only blocks HBC proliferation in the cultured olfactory organoids, but also severely suppresses HBC proliferation in the olfactory epithelium following methimazole-induced injury, resulting in a delay of olfactory mucosa reconstitution and functional recovery of the injured mice. Both NrCAMs and EGFR are expressed by the HBCs and their expression increases upon injury. Our data indicate that MMP-mediated cleavage of NrCAMs serves as an autocrine or paracrine signal that activates EGFRs on HBCs to trigger HBC proliferation and differentiation to reconstruct the entire olfactory epithelium following injury.
Collapse
Affiliation(s)
- Zhen-Huang Chen
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Cui Luo
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - C Ron Yu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Liquan Huang
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310027, China; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Liang L, Wu S, Lin C, Chang YJ, Tao YX. Alternative Splicing of Nrcam Gene in Dorsal Root Ganglion Contributes to Neuropathic Pain. THE JOURNAL OF PAIN 2020; 21:892-904. [PMID: 31917219 DOI: 10.1016/j.jpain.2019.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 01/23/2023]
Abstract
NrCAM, a neuronal cell adhesion molecule in the L1 family of the immunoglobulin superfamily, is subjected to extensively alternative splicing and involved in neural development and some disorders. The aim of this study was to explore the role of Nrcam mRNA alternative splicing in neuropathic pain. A next generation RNA sequencing analysis of dorsal root ganglions (DRGs) showed the differential expression of two splicing variants of Nrcam, Nrcam+10 and Nrcam-10, in the injured DRG after the fourth lumbar spinal nerve ligation (SNL) in mice. SNL increased the exon 10 insertion, resulting in an increase in the amount of Nrcam+10 and a corresponding decrease in the level of Nrcam-10 in the injured DRG. An antisense oligonucleotide (ASO) that specifically targeted exon 10 of Nrcam gene (Nrcam ASO) repressed RNA expression of Nrcam+10 and increased RNA expression of Nrcam-10 in in vitro DRG cell culture. Either DRG microinjection or intrathecal injection of Nrcam ASO attenuated SNL-induced the development of mechanical allodynia, thermal hyperalgesia, or cold allodynia. Nrcam ASO also relieved SNL- or chronic compression of DRG (CCD)-induced the maintenance of pain hypersensitivities in male and female mice. PERSPECTIVE: We conclude that the relative levels of alternatively spliced Nrcam variants are critical for neuropathic pain genesis. Targeting Nrcam alternative splicing via the antisense oligonucleotides may be a new potential avenue in neuropathic pain management.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Corinna Lin
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yun-Juan Chang
- Office of advanced research computing, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
15
|
Kruyer A, Chioma VC, Kalivas PW. The Opioid-Addicted Tetrapartite Synapse. Biol Psychiatry 2020; 87:34-43. [PMID: 31378302 PMCID: PMC6898767 DOI: 10.1016/j.biopsych.2019.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
Opioid administration in preclinical models induces long-lasting adaptations in reward and habit circuitry. The latest research demonstrates that in the nucleus accumbens, opioid-induced excitatory synaptic plasticity involves presynaptic and postsynaptic elements as well as adjacent astroglial processes and the perisynaptic extracellular matrix. We outline opioid-induced modifications within each component of the tetrapartite synapse and provide a neurobiological perspective on how these adaptations converge to produce addiction-related behaviors in rodent models. By incorporating changes observed at each of the excitatory synaptic compartments into a unified framework of opioid-induced glutamate dysregulation, we highlight new avenues for restoring synaptic homeostasis that might limit opioid craving and relapse vulnerability.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Vivian C Chioma
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
16
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
17
|
Alteration of miRNA-mRNA interactions in lymphocytes of individuals with schizophrenia. J Psychiatr Res 2019; 112:89-98. [PMID: 30870714 DOI: 10.1016/j.jpsychires.2019.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
The aetiology of schizophrenia is complex, heterogeneous, and involves interplay of many genetic and environmental influences. While significant progress has been made in the understanding the common heritable component, we are still grappling with the genomic encoding of environmental risk. One class of molecule that has tremendous potential is miRNA. These molecules are regulated by genetic and environmental factors associated with schizophrenia and have a very significant impact on temporospatial patterns of gene expression. To better understand the relationship between miRNA and gene expression in the disorder we analysed these molecules in RNA isolated from peripheral blood mononuclear cells (PBMCs) obtained from an Australian cohort of 36 individuals with schizophrenia and 15 healthy controls using next-generation RNA sequencing. Significant changes in both mRNA and miRNA expression profiles were observed implicating important interaction networks involved in immune activity and development. We also observed sexual dimorphism, particularly in relation to variation in mRNA, with males showing significantly more differentially expressed genes. Interestingly, while we explored expression in lymphocytes, the systems biology of miRNA-mRNA interactions was suggestive of significant pleiotropy with enrichment of networks related to neuronal activity.
Collapse
|
18
|
Uhl GR, Martinez MJ. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann N Y Acad Sci 2019; 1451:112-129. [PMID: 30648269 PMCID: PMC6629525 DOI: 10.1111/nyas.14002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
Receptor-type protein tyrosine phosphatase, receptor type D (PTPRD) has likely roles as a neuronal cell adhesion molecule and synaptic specifier. Interest in its neurobiology and genomics has been stimulated by results from human genetics and mouse models for phenotypes related to addiction, restless leg syndrome, neurofibrillary pathology in Alzheimer's disease, cognitive impairment/intellectual disability, mood lability, and obsessive-compulsive disorder. We review PTPRD's discovery, gene family, candidate homomeric and heteromeric binding partners, phosphatase activities, brain distribution, human genetic associations with nervous system phenotypes, and mouse model data relevant to these phenotypes. We discuss the recently reported discovery of the first small molecule inhibitor of PTPRD phosphatase, the identification of its addiction-related effects, and the implications of these findings for the PTPRD-associated brain phenotypes. In assembling PTPRD neurobiology, human genetics, and mouse genetic and pharmacological datasets, we provide a compelling picture of the roles played by PTPRD, its variation, and its potential as a target for novel therapeutics.
Collapse
Affiliation(s)
- George R Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico.,Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico.,Biomedical Research Institute of New Mexico, Albuquerque, New Mexico.,Departments of Neurology, Neuroscience and Mental Health, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Maria J Martinez
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico.,Biomedical Research Institute of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
19
|
Ishiguro H, Miyake K, Tabata K, Mochizuki C, Sakurai T, Onaivi ES. Neuronal cell adhesion molecule regulating neural systems underlying addiction. Neuropsychopharmacol Rep 2018; 39:10-16. [PMID: 30549257 PMCID: PMC7292301 DOI: 10.1002/npr2.12038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Aims The human NRCAM gene is associated with polysubstance use. Nrcam knockout mice do not acquire a preference for addictive substances. We aimed to elucidate the role of Nrcam in specific neural circuits underlying congenital preference for substances and the acquisition of addiction. Methods We analyzed gene expression patterns of neural molecules to find a common addiction pathway dependent on Nrcam function. We examined monoaminergic, glutamatergic, and GABAergic systems in the brains of Nrcam knockout mice following treatment with methamphetamine (METH) or saline (SAL) using micro‐array gene expression analysis, which was replicated using TaqMan gene expression analysis. To find a common addiction pathway, we examined similarities and differences between the expression patterns of molecules in METH‐treated mice and in Nrcam knockout mice treated with cocaine (COC). Results Glutaminase expression in brain was reduced in Nrcam heterozygous mice after METH and COC treatment, consistent with our previous study. Metabotropic glutamate receptor 2 expression was reduced in Nrcam heterozygous mice that received either METH or COC treatment. Several other molecules could act in independent addiction pathways involving METH or COC. We also found that GABA receptor subunit g2 expression was reduced in Nrcam heterozygous mice that underwent SAL treatment, and that METH treatment attenuated this reduction. Conclusion Nrcam differentially regulates glutamatergic and GABAergic molecules in naive brains and in brains of animals with acquired addiction. Elucidating the complex neural mechanisms underlying polysubstance use will uncover biological features of addiction and may contribute to the development of effective pharmaceutical treatments. The human/mice NRCAM is involved in specific neural circuits underlying congenital preference for substances and the acquisition of addiction. Mice Nrcam differentially regulates glutamatergic and GABAergic molecules in naive brains and in brains of animals with acquired addiction. Elucidating the complex neural mechanisms underlying polysubstance use will uncover biological features of addiction and may contribute to the development of effective pharmaceutical treatments.
![]()
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, University of Yamanashi, Chuo, Japan
| | - Kunio Miyake
- Department of Health Sciences, University of Yamanashi, Chuo, Japan
| | - Koichi Tabata
- Department of Neuropsychiatry and Clinical Ethics, University of Yamanashi, Chuo, Japan
| | - Chiaki Mochizuki
- Department of Neuropsychiatry and Clinical Ethics, University of Yamanashi, Chuo, Japan
| | | | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, New Jersey
| |
Collapse
|
20
|
Cocaine reward is reduced by decreased expression of receptor-type protein tyrosine phosphatase D (PTPRD) and by a novel PTPRD antagonist. Proc Natl Acad Sci U S A 2018; 115:11597-11602. [PMID: 30348770 DOI: 10.1073/pnas.1720446115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Receptor-type protein tyrosine phosphatase D (PTPRD) is a neuronal cell-adhesion molecule/synaptic specifier that has been implicated in addiction vulnerability and stimulant reward by human genomewide association and mouse cocaine-conditioned place-preference data. However, there have been no reports of effects of reduced expression on cocaine self-administration. There have been no reports of PTPRD targeting by any small molecule. There are no data about behavioral effects of any PTPRD ligand. We now report (i) robust effects of heterozygous PTPRD KO on cocaine self-administration (These data substantially extend prior conditioned place-preference data and add to the rationale for PTPRD as a target for addiction therapeutics.); (ii) identification of 7-butoxy illudalic acid analog (7-BIA) as a small molecule that targets PTPRD and inhibits its phosphatase with some specificity; (iii) lack of toxicity when 7-BIA is administered to mice acutely or with repeated dosing; (iv) reduced cocaine-conditioned place preference when 7-BIA is administered before conditioning sessions; and (v) reductions in well-established cocaine self-administration when 7-BIA is administered before a session (in WT, not PTPRD heterozygous KOs). These results add to support for PTPRD as a target for medications to combat cocaine use disorders. 7-BIA provides a lead compound for addiction therapeutics.
Collapse
|
21
|
Mao S, Zhang S, Zhou Z, Shi X, Huang T, Feng W, Yao C, Gu X, Yu B. Alternative RNA splicing associated with axon regeneration after rat peripheral nerve injury. Exp Neurol 2018; 308:80-89. [DOI: 10.1016/j.expneurol.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
22
|
Nehlig A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol Rev 2018; 70:384-411. [PMID: 29514871 DOI: 10.1124/pr.117.014407] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most individuals adjust their caffeine intake according to the objective and subjective effects induced by the methylxanthine. However, to reach the desired effects, the quantity of caffeine consumed varies largely among individuals. It has been known for decades that the metabolism, clearance, and pharmacokinetics of caffeine is affected by many factors such as age, sex and hormones, liver disease, obesity, smoking, and diet. Caffeine also interacts with many medications. All these factors will be reviewed in the present document and discussed in light of the most recent data concerning the genetic variability affecting caffeine levels and effects at the pharmacokinetic and pharmacodynamic levels that both critically drive the level of caffeine consumption. The pharmacokinetics of caffeine are highly variable among individuals due to a polymorphism at the level of the CYP1A2 isoform of cytochrome P450, which metabolizes 95% of the caffeine ingested. Moreover there is a polymorphism at the level of another critical enzyme, N-acetyltransferase 2. At the pharmacodynamic level, there are several polymorphisms at the main brain target of caffeine, the adenosine A2A receptor or ADORA2. Genetic studies, including genome-wide association studies, identified several loci critically involved in caffeine consumption and its consequences on sleep, anxiety, and potentially in neurodegenerative and psychiatric diseases. We start reaching a better picture on how a multiplicity of biologic mechanisms seems to drive the levels of caffeine consumption, although much more knowledge is still required to understand caffeine consumption and effects on body functions.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 1129, Pediatric Neurology, Necker-Enfants Malades Hospital, University of Paris Descartes, Inserm U1129, Paris, France
| |
Collapse
|
23
|
The Role of Cell Adhesion Molecule Genes Regulating Neuroplasticity in Addiction. Neural Plast 2018; 2018:9803764. [PMID: 29675039 PMCID: PMC5838467 DOI: 10.1155/2018/9803764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/10/2017] [Indexed: 01/06/2023] Open
Abstract
A variety of genetic approaches, including twin studies, linkage studies, and candidate gene studies, has established a firm genetic basis for addiction. However, there has been difficulty identifying the precise genes that underlie addiction liability using these approaches. This situation became especially clear in genome-wide association studies (GWAS) of addiction. Moreover, the results of GWAS brought into clarity many of the shortcomings of those early genetic approaches. GWAS studies stripped away those preconceived notions, examining genes that would not previously have been considered in the study of addiction, consequently creating a shift in our understanding. Most importantly, those studies implicated a class of genes that had not previously been considered in the study of addiction genetics: cell adhesion molecules (CAMs). Considering the well-documented evidence supporting a role for various CAMs in synaptic plasticity, axonal growth, and regeneration, it is not surprising that allelic variation in CAM genes might also play a role in addiction liability. This review focuses on the role of various cell adhesion molecules in neuroplasticity that might contribute to addictive processes and emphasizes the importance of ongoing research on CAM genes that have been implicated in addiction by GWAS.
Collapse
|
24
|
Morelli KH, Seburn KL, Schroeder DG, Spaulding EL, Dionne LA, Cox GA, Burgess RW. Severity of Demyelinating and Axonal Neuropathy Mouse Models Is Modified by Genes Affecting Structure and Function of Peripheral Nodes. Cell Rep 2017; 18:3178-3191. [PMID: 28355569 DOI: 10.1016/j.celrep.2017.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited polyneuropathies. Mutations in 80 genetic loci can cause forms of CMT, resulting in demyelination and axonal dysfunction. The clinical presentation, including sensory deficits, distal muscle weakness, and atrophy, can vary greatly in severity and progression. Here, we used mouse models of CMT to demonstrate genetic interactions that result in a more severe neuropathy phenotype. The cell adhesion molecule Nrcam and the Na+ channel Scn8a (NaV1.6) are important components of nodes. Homozygous Nrcam and heterozygous Scn8a mutations synergized with both an Sh3tc2 mutation, modeling recessive demyelinating Charcot-Marie-Tooth type 4C, and mutations in Gars, modeling dominant axonal Charcot-Marie-Tooth type 2D. We conclude that genetic variants perturbing the structure and function of nodes interact with mutations affecting the cable properties of axons by thinning myelin or reducing axon diameter. Therefore, genes integral to peripheral nodes are candidate modifiers of peripheral neuropathy.
Collapse
Affiliation(s)
- Kathryn H Morelli
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | | | | | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | | | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
25
|
Sakurai T. The role of cell adhesion molecules in brain wiring and neuropsychiatric disorders. Mol Cell Neurosci 2017; 81:4-11. [PMID: 27561442 DOI: 10.1016/j.mcn.2016.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) in the nervous system have long been a research focus, but many mice lacking CAMs show very subtle phenotypes, giving an impression that CAMs may not be major players in constructing the nervous system. However, recent human genetic studies suggest CAM involvement in many neuropsychiatric disorders, implicating that they must have significant functions in nervous system development, namely in circuitry formation. As CAMs can provide specificity through their molecular interactions, this review summarizes possible mechanisms on how alterations of CAMs can result in neuropsychiatric disorders through circuitry modification.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
26
|
Lokapally A, Metikala S, Hollemann T. Xenopus laevis neuronal cell adhesion molecule (nrcam): plasticity of a CAM in the developing nervous system. Dev Genes Evol 2017; 227:61-67. [PMID: 27942869 DOI: 10.1007/s00427-016-0569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Neuron-glial-related cell adhesion molecule (NRCAM) is a neuronal cell adhesion molecule of the L1 immunoglobulin superfamily, which plays diverse roles during nervous system development including axon growth and guidance, synapse formation, and formation of the myelinated nerve. Perturbations in NRCAM function cause a wide variety of disorders, which can affect wiring and targeting of neurons, or cause psychiatric disorders as well as cancers through abnormal modulation of signaling events. In the present study, we characterize the Xenopus laevis homolog of nrcam. Expression of Xenopus nrcam is most abundant along the dorsal midline throughout the developing brain and in the outer nuclear layer of the retina.
Collapse
Affiliation(s)
- Ashwin Lokapally
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sanjeeva Metikala
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- National Xenopus Resource Centre, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Thomas Hollemann
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
27
|
Márquez J, Campos-Sandoval JA, Peñalver A, Matés JM, Segura JA, Blanco E, Alonso FJ, de Fonseca FR. Glutamate and Brain Glutaminases in Drug Addiction. Neurochem Res 2016; 42:846-857. [DOI: 10.1007/s11064-016-2137-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
28
|
Mulholland PJ, Chandler LJ, Kalivas PW. Signals from the Fourth Dimension Regulate Drug Relapse. Trends Neurosci 2016; 39:472-485. [PMID: 27173064 PMCID: PMC4930682 DOI: 10.1016/j.tins.2016.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Despite the enormous societal burden of alcohol and drug addiction and abundant research describing drug-induced maladaptive synaptic plasticity, there are few effective strategies for treating substance use disorders. Recent awareness that synaptic plasticity involves astroglia and the extracellular matrix is revealing new possibilities for understanding and treating addiction. We first review constitutive corticostriatal adaptations that are elicited by and shared between all abused drugs from the perspective of tetrapartite synapses, and integrate recent discoveries regarding cell type-specificity in striatal neurons. Next, we describe recent discoveries that drug-seeking is associated with transient synaptic plasticity that requires all four synaptic elements and is shared across drug classes. Finally, we prognosticate how considering tetrapartite synapses can provide new treatment strategies for addiction.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, 67 President Street, Charleston, SC, 29425, USA.
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, 67 President Street, Charleston, SC, 29425, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
29
|
Hess JL, Kawaguchi DM, Wagner KE, Faraone SV, Glatt SJ. The influence of genes on "positive valence systems" constructs: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:92-110. [PMID: 26365619 DOI: 10.1002/ajmg.b.32382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Abstract
In 2009, the U.S. National Institute of Mental Health (NIMH) proposed an approach toward the deconstruction of psychiatric nosology under the research domain criteria (RDoC) framework. The overarching goal of RDoC is to identify robust, objective measures of behavior, emotion, cognition, and other domains that are more closely related to neurobiology than are diagnoses. A preliminary framework has been constructed, which has connected molecules, genes, brain circuits, behaviors, and other elements to dimensional psychiatric constructs. Although the RDoC framework has salience in emerging studies, foundational literature that pre-dated this framework requires synthesis and translation to the evolving objectives and nomenclature of RDoC. Toward this end, we review the candidate-gene association, linkage, and genome-wide studies that have implicated a variety of loci and genetic polymorphisms in selected Positive Valence Systems (PVS) constructs. Our goal is to review supporting evidence to currently listed genes implicated in this domain and novel candidates. We systematically searched and reviewed literature based on keywords listed under the June, 2011, edition of the PVS matrix on the RDoC website (http://www.nimh.nih.gov/research-priorities/rdoc/positive-valence-systems-workshop-proceedings.shtml), which were supplemented with de novo keywords pertinent to the scope of our review. Several candidate genes linked to the PVS framework were identified from candidate-gene association studies. We also identified novel candidates with loose association to PVS traits from genome-wide studies. There is strong evidence suggesting that PVS constructs, as currently conceptualized under the RDoC initiative, index genetically influenced traits; however, future research, including genetic epidemiological, and psychometric analyses, must be performed.
Collapse
Affiliation(s)
- Jonathan L Hess
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel M Kawaguchi
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Kayla E Wagner
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Psychology, Syracuse University, Syracuse, New York
| | - Stephen V Faraone
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stephen J Glatt
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
30
|
Yarosh HL, Meda SA, de Wit H, Hart AB, Pearlson GD. Multivariate analysis of subjective responses to d-amphetamine in healthy volunteers finds novel genetic pathway associations. Psychopharmacology (Berl) 2015; 232:2781-94. [PMID: 25843748 PMCID: PMC4504822 DOI: 10.1007/s00213-015-3914-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/06/2015] [Indexed: 11/24/2022]
Abstract
RATIONALE Researchers studying behavioral and physiologic effects of d-amphetamine have explored individual response differences to the drug. Concurrently, genome-wide analyses have identified several single-nucleotide polymorphisms (SNPs) associated with these traits. Univariate methods can identify SNPs associated with behavioral and physiological traits, but multivariate analyses allow identification of clusters of related biologically relevant SNPs and behavioral components. OBJECTIVES The aim of the study was to identify clusters of related biologically relevant SNPs and behavioral components in the responses of healthy individuals to d-amphetamine using multivariate analysis. METHODS Individuals (N = 375) without substance abuse histories completed surveys and detailed cardiovascular monitoring during randomized, blinded sessions: d-amphetamine (10 and 20 mg) and placebo. We applied parallel independent component analysis (Para-ICA) to data previously analyzed with univariate approaches, revealing new associations between genes and behavioral responses to d-amphetamine. RESULTS Three significantly associated (p < .001) phenotype-genotype pairs emerged. The first component included physiologic measures of systolic and diastolic blood pressure (BP) and mean arterial pressure (MAP) along with SNPs in calcium and glutamatergic signaling pathways. The second associated components included the "Anger" items from the Profile of Mood States (POMS) questionnaire and the marijuana effects from the Addiction Research Center Inventory (Cuyas, Verdejo-Garcia et al.), with enriched genetic pathways involved in cardiomyopathy and MAPK signaling. The final pair included "Anxious," "Fatigue," and "Confusion" items from the POMS questionnaire, plus functional pathways related to cardiac muscle contraction and cardiomyopathy. CONCLUSIONS Multifactorial genetic networks related to calcium signaling, glutamatergic and dopaminergic synapse function, and amphetamine addiction appear to mediate common behavioral and cardiovascular responses to d-amphetamine.
Collapse
Affiliation(s)
- Haley L. Yarosh
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Shashwath A. Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| | - Amy B. Hart
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
31
|
Drgonova J, Walther D, Wang KJ, Hartstein GL, Lochte B, Troncoso J, Uetani N, Iwakura Y, Uhl GR. Mouse Model for Protein Tyrosine Phosphatase D ( PTPRD) Associations with Restless Leg Syndrome or Willis-Ekbom Disease and Addiction: Reduced Expression Alters Locomotion, Sleep Behaviors and Cocaine-Conditioned Place Preference. Mol Med 2015; 21:717-725. [PMID: 26181631 DOI: 10.2119/molmed.2015.00017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
The receptor type protein tyrosine phosphatase D (PTPRD) gene encodes a cell adhesion molecule likely to influence development and connections of addiction-, locomotion- and sleep-related brain circuits in which it is expressed. The PTPRD gene harbors genome-wide association signals in studies of restless leg syndrome (Willis-Ekbom disease [WED]/restless leg syndrome [RLS]; p < 10-8) and addiction-related phenotypes (clusters of nearby single nucleotide polymorphisms [SNPs] with 10-2 > p > 10-8 associations in several reports). We now report work that seeks (a) association between PTPRD genotypes and expression of its mRNA in postmortem human brains and (b) RLS-related, addiction-related and comparison behavioral phenotypes in hetero- and homozygous PTPRD knockout mice. We identify associations between PTPRD SNPs and levels of PTPRD mRNA in human brain samples that support validity of mouse models with altered PTPRD expression. Knockouts display less behaviorally defined sleep at the end of their active periods. Heterozygotes move more despite motor weakness/impersistence. Heterozygotes display shifted dose-response relationships for cocaine reward. They display greater preference for places paired with 5 mg/kg cocaine and less preference for places paired with 10 or 20 mg/kg. The combined data provide support for roles for common, level-of-expression PTPRD variation in locomotor, sleep and drug reward phenotypes relevant to RLS and addiction. Taken together, mouse and human results identify PTPRD as a novel therapeutic target for RLS and addiction phenotypes.
Collapse
Affiliation(s)
- Jana Drgonova
- Molecular Neurobiology Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH)-Intramural Research Program (IRP), Baltimore, Maryland, United States of America
| | - Donna Walther
- Molecular Neurobiology Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH)-Intramural Research Program (IRP), Baltimore, Maryland, United States of America
| | - Katherine J Wang
- Molecular Neurobiology Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH)-Intramural Research Program (IRP), Baltimore, Maryland, United States of America
| | - G Luke Hartstein
- Molecular Neurobiology Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH)-Intramural Research Program (IRP), Baltimore, Maryland, United States of America
| | - Bryson Lochte
- Molecular Neurobiology Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH)-Intramural Research Program (IRP), Baltimore, Maryland, United States of America
| | - Juan Troncoso
- Division of Neuropathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Canada
| | - Yoichiro Iwakura
- Center for Experimental Medicine, University of Tokyo, Tokyo, Japan
| | - George R Uhl
- Molecular Neurobiology Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH)-Intramural Research Program (IRP), Baltimore, Maryland, United States of America.,Research, New Mexico VA Health Care System, Albuquerque, New Mexico, United States of America
| |
Collapse
|
32
|
Drgonova J, Walther D, Singhal S, Johnson K, Kessler B, Troncoso J, Uhl GR. Altered CSMD1 Expression Alters Cocaine-Conditioned Place Preference: Mutual Support for a Complex Locus from Human and Mouse Models. PLoS One 2015; 10:e0120908. [PMID: 26171607 PMCID: PMC4501703 DOI: 10.1371/journal.pone.0120908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/28/2015] [Indexed: 11/19/2022] Open
Abstract
The CUB and sushi multiple domains 1 (CSMD1) gene harbors signals provided by clusters of nearby SNPs with 10-2 > p > 10-8 associations in genome wide association (GWAS) studies of addiction-related phenotypes. A CSMD1 intron 3 SNP displays p < 10-8 association with schizophrenia and more modest associations with individual differences in performance on tests of cognitive abilities. CSDM1 encodes a cell adhesion molecule likely to influence development, connections and plasticity of brain circuits in which it is expressed. We tested association between CSMD1 genotypes and expression of its mRNA in postmortem human brains (n = 181). Expression of CSMD1 mRNA in human postmortem cerebral cortical samples differs 15-25%, in individuals with different alleles of simple sequence length and SNP polymorphisms located in the gene's third/fifth introns, providing nominal though not Bonferroni-corrected significance. These data support mice with altered CSMD1 expression as models for common human CSMD1 allelic variation. We tested baseline and/or cocaine-evoked addiction, emotion, motor and memory-related behaviors in +/- and -/- csmd1 knockout mice on mixed and on C57-backcrossed genetic backgrounds. Initial csmd1 knockout mice on mixed genetic backgrounds displayed a variety of coat colors and sizable individual differences in responses during behavioral testing. Backcrossed mice displayed uniform black coat colors. Cocaine conditioned place preference testing revealed significant influences of genotype (p = 0.02). Homozygote knockouts displayed poorer performance on aspects of the Morris water maze task. They displayed increased locomotion in some, though not all, environments. The combined data thus support roles for common level-of-expression CSMD1 variation in a drug reward phenotype relevant to addiction and in cognitive differences that might be relevant to schizophrenia. Mouse model results can complement data from human association findings of modest magnitude that identify likely polygenic influences.
Collapse
Affiliation(s)
- Jana Drgonova
- Molecular Nuropsychiatry Research Branch, NIH-IRP, NIDA, Baltimore, Maryland, United States of America
| | - Donna Walther
- Molecular Nuropsychiatry Research Branch, NIH-IRP, NIDA, Baltimore, Maryland, United States of America
| | - Sulabh Singhal
- Molecular Nuropsychiatry Research Branch, NIH-IRP, NIDA, Baltimore, Maryland, United States of America
| | - Kennedy Johnson
- Molecular Nuropsychiatry Research Branch, NIH-IRP, NIDA, Baltimore, Maryland, United States of America
| | - Brice Kessler
- Molecular Nuropsychiatry Research Branch, NIH-IRP, NIDA, Baltimore, Maryland, United States of America
| | - Juan Troncoso
- Division of Neuropathology, Johns Hopkins School of Medicine, Baltimore MD, United States of America
| | - George R. Uhl
- Office of Research & Development, New Mexico VA Healthcare System, Albuquerque, NM, United States of America
| |
Collapse
|
33
|
Zhong X, Drgonova J, Li CY, Uhl GR. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes. Ann N Y Acad Sci 2015; 1349:83-95. [PMID: 25988664 DOI: 10.1111/nyas.12776] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cell adhesion molecules (CAMs) are essential for proper development, modulation, and maintenance of interactions between cells and cell-to-cell (and matrix-to-cell) communication about these interactions. Despite the differential functional significance of these roles, there have been surprisingly few systematic studies to enumerate the universe of CAMs and identify specific CAMs in distinct functions. In this paper, we update and review the set of human genes likely to encode CAMs with searches of databases, literature reviews, and annotations. We describe likely CAMs and functional subclasses, including CAMs that have a primary function in information exchange (iCAMs), CAMs involved in focal adhesions, CAM gene products that are preferentially involved with stereotyped and morphologically identifiable connections between cells (e.g., adherens junctions, gap junctions), and smaller numbers of CAM genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing iCAM binding partners. We also discuss data from genetic and genomic studies of addiction in humans and mouse models to highlight the ways in which CAM variation may contribute to a specific brain-based disorder such as addiction. Specific examples include changes in CAM mRNA splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 and CAM expression in dopamine neurons.
Collapse
Affiliation(s)
- Xiaoming Zhong
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jana Drgonova
- Molecular Neurobiology, NIH-IRP (NIDA), Baltimore, Maryland
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - George R Uhl
- Molecular Neurobiology, NIH-IRP (NIDA), Baltimore, Maryland.,Research Office, New Mexico VA Health Care System, Albuquerque, New Mexico
| |
Collapse
|
34
|
Neural cell adhesion molecule NrCAM is expressed in the mammalian inner ear and modulates spiral ganglion neurite outgrowth in an in vitro alternate choice assay. J Mol Neurosci 2014; 55:836-44. [PMID: 25407819 DOI: 10.1007/s12031-014-0436-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
Neuron-glial-related cell adhesion molecule (NrCAM) is a neuronal cell adhesion molecule involved in neuron-neuron and neuron-glial adhesion as well as directional signaling during axonal cone growth. NrCAM has been shown to be involved in several cellular processes in the central and peripheral nervous systems, including neurite outgrowth, axonal pathfinding and myelination, fasciculation of nerve fibers, and cell migration. This includes sensory systems such as the eye and olfactory system. However, there are no reports on the expression/function of NrCAM in the auditory system. The aim of the present study was to elucidate the occurrence of NrCAM in the mammalian cochlea and its role in innervation of the auditory end organ. Our work indicates that NrCAM is highly expressed in the developing mammalian cochlea (position consistent with innervation). Moreover, we found that NrCAM, presented in stripe micropatterns, provide directional cues to neonatal rat inner ear spiral ganglion neurites in vitro. Our results are consistent with a role for NrCAM in the pathfinding of spiral ganglion dendrites toward their hair cell targets in the sensory epithelium.
Collapse
|
35
|
Ishiguro H, Hall FS, Horiuchi Y, Sakurai T, Hishimoto A, Grumet M, Uhl GR, Onaivi ES, Arinami T. NrCAM-regulating neural systems and addiction-related behaviors. Addict Biol 2014; 19:343-53. [PMID: 22780223 DOI: 10.1111/j.1369-1600.2012.00469.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously shown that a haplotype associated with decreased NrCAM expression in brain is protective against addiction vulnerability for polysubstance abuse in humans and that Nrcam knockout mice do not develop conditioned place preferences for morphine, cocaine or amphetamine. In order to gain insight into NrCAM involvement in addiction vulnerability, which may involve specific neural circuits underlying behavioral characteristics relevant to addiction, we evaluated several behavioral phenotypes in Nrcam knockout mice. Consistent with a potential general reduction in motivational function, Nrcam knockout mice demonstrated less curiosity for novel objects and for an unfamiliar conspecific, showed also less anxiety in the zero maze. Nrcam heterozygote knockout mice reduced alcohol preference and buried fewer marbles in home cage. These observations provide further support for a role of NrCAM in substance abuse including alcoholism vulnerability, possibly through its effects on behavioral traits that may affect addiction vulnerability, including novelty seeking, obsessive compulsion and responses to aversive or anxiety-provoking stimuli. Additionally, in order to prove glutamate homeostasis hypothesis of addiction, we analyzed glutamatergic molecules regulated by NRCAM expression. Glutaminase appears to be involved in NrCAM-related molecular pathway in two different tissues from human and mouse. An inhibitor of the enzyme, prolyl-leucyl-glycinamide, treatment produced, at least, some of the phenotypes of mice shown in alcohol preference and in anxiety-like behavior. Thus, NrCAM could affect addiction-related behaviors via at least partially modulation of some glutamatergic pathways and neural function in brain.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics; Graduate School of Medical Science; University of Yamanashi; Chuo Yamanashi Japan
- Department of Medical Genetics; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Ibaraki Japan
| | - Frank S. Hall
- Molecular Neurobiology Branch; NIDA-IRP, NIH; Baltimore MD USA
| | - Yasue Horiuchi
- Department of Medical Genetics; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Ibaraki Japan
| | - Takeshi Sakurai
- Departments of Psychiatry and Pharmacology; Seaver Autism Center, and Black Family Stem Cell Institute; Mount Sinai School of Medicine; New York NY USA
| | - Akitoyo Hishimoto
- Department of Neuropsychiatry; Graduate School of Medical Science; Kobe University; Kobe Hyogo Japan
| | - Martin Grumet
- W.M. Keck Center for Collaborative Neuroscience; Rutgers University; Piscataway NJ USA
| | - George R. Uhl
- Molecular Neurobiology Branch; NIDA-IRP, NIH; Baltimore MD USA
| | | | - Tadao Arinami
- Department of Medical Genetics; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Ibaraki Japan
| |
Collapse
|
36
|
Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK. The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 2014; 156:195-207. [PMID: 24439376 DOI: 10.1016/j.cell.2013.11.048] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin-nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here, we have identified a large family of potential WRC ligands, consisting of ∼120 diverse membrane proteins, including protocadherins, ROBOs, netrin receptors, neuroligins, GPCRs, and channels. Structural, biochemical, and cellular studies reveal that a sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton and have broad physiological and pathological ramifications in metazoans.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Klaus Brinkmann
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | - Zhucheng Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chi W Pak
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yuxing Liao
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shuoyong Shi
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany.
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
37
|
Uhl GR, Drgonova J. Cell adhesion molecules: druggable targets for modulating the connectome and brain disorders? Neuropsychopharmacology 2014; 39:235. [PMID: 24317312 PMCID: PMC3857667 DOI: 10.1038/npp.2013.240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Baltimore, Maryland, USA,E-mail:
| | - Jana Drgonova
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Uhl GR, Drgonova J, Hall FS. Curious cases: Altered dose-response relationships in addiction genetics. Pharmacol Ther 2013; 141:335-46. [PMID: 24189489 DOI: 10.1016/j.pharmthera.2013.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Dose-response relationships for most addictive substances are "inverted U"-shaped. Addictive substances produce both positive features that include reward, euphoria, anxiolysis, withdrawal-relief, and negative features that include aversion, dysphoria, anxiety and withdrawal symptoms. A simple model differentially associates ascending and descending limbs of dose-response curves with rewarding and aversive influences, respectively. However, Diagnostic and Statistical Manual (DSM) diagnoses of substance dependence fail to incorporate dose-response criteria and don't directly consider balances between euphoric and dysphoric drug effects. Classical genetic studies document substantial heritable influences on DSM substance dependence. Linkage and genome-wide association studies identify modest-sized effects at any locus. Nevertheless, clusters of SNPs within selected genes display 10(-2)>p>10(-8) associations with dependence in many independent samples. For several of these genes, evidence for cis-regulatory, level-of-expression differences supports the validity of mouse models in which levels of expression are also altered. This review documents surprising, recently defined cases in which convergent evidence from humans and mouse models supports central influences of altered dose-response relationships in mediating the impact of relevant genomic variation on addiction phenotypes. For variation at loci for the α5 nicotinic acetylcholine receptor, cadherin 13, receptor type protein tyrosine phosphatase Δ and neuronal cell adhesion molecule genes, changed dose-response relationships conferred by gene knockouts in mice are accompanied by supporting human data. These observations emphasize desirability of carefully elucidating dose-response relationships for both rewarding and aversive features of abused substances wherever possible. They motivate consideration of individual differences in dose-response relationships in addiction nosology and therapeutics.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, United States.
| | - Jana Drgonova
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, United States
| | - F Scott Hall
- Molecular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, United States
| |
Collapse
|
40
|
Dai J, Buhusi M, Demyanenko GP, Brennaman LH, Hruska M, Dalva MB, Maness PF. Neuron glia-related cell adhesion molecule (NrCAM) promotes topographic retinocollicular mapping. PLoS One 2013; 8:e73000. [PMID: 24023801 PMCID: PMC3759449 DOI: 10.1371/journal.pone.0073000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022] Open
Abstract
NrCAM (Neuron-glial related cell adhesion molecule), a member of the L1 family of cell adhesion molecules, reversibly binds ankyrin and regulates axon growth, but it has not been studied for a role in retinotopic mapping. During development of retino-collicular topography, NrCAM was expressed uniformly in retinal ganglion cells (RGCs) along both mediolateral and anteroposterior retinal axes, and was localized on RGC axons within the optic tract and superior colliculus (SC). Anterograde tracing of RGC axons in NrCAM null mutant mice at P10, when the map resembles its mature form, revealed laterally displaced ectopic termination zones (eTZs) of axons from the temporal retina, indicating defective mediolateral topography, which is governed by ephrinB/EphBs. Axon tracing at P2 revealed that interstitial branch orientation of ventral-temporal RGC axons in NrCAM null mice was compromised in the medial direction, likely accounting for displacement of eTZs. A similar retinocollicular targeting defect in EphB mutant mice suggested that NrCAM and EphB interact to regulate mediolateral retino-collicular targeting. We found that EphB2 tyrosine kinase but not an EphB2 kinase dead mutant, phosphorylated NrCAM at a conserved tyrosine residue in the FIGQY ankyrin binding motif, perturbing ankyrin recruitment in NrCAM transfected HEK293 cells. Furthermore, the phosphorylation of NrCAM at FIGQY in SC was decreased in EphB1/3 and EphB1/2/3 null mice compared to WT, while phospho-FIGQY of NrCAM in SC was increased in EphB2 constitutively active (F620D/F620D) mice. These results demonstrate that NrCAM contributes to mediolateral retinocollicular axon targeting by regulating RGC branch orientation through a likely mechanism in which ephrinB/EphB phosphorylates NrCAM to modulate linkage to the actin cytoskeleton.
Collapse
Affiliation(s)
- Jinxia Dai
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Mona Buhusi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Galina P. Demyanenko
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Leann H. Brennaman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Martin Hruska
- Thomas Jefferson University, Department of Neuroscience, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Matthew B. Dalva
- Thomas Jefferson University, Department of Neuroscience, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, United States of America
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
Yoo BK, Shim JC, Lee BD, Kim C, Chung YI, Park JM, Kim SG, Kim JH, Lee YM, Moon ES, Kwon DH. Association of the Neuronal Cell Adhesion Molecule (NrCAM) Gene Variants with Personality Traits and Addictive Symptoms in Methamphetamine Use Disorder. Psychiatry Investig 2012; 9:400-7. [PMID: 23251206 PMCID: PMC3521118 DOI: 10.4306/pi.2012.9.4.400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 03/08/2012] [Accepted: 05/08/2012] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE 1) To investigate the relationship between NrCAM polymorphisms and methamphetamine abuse in an ethnically homogenous Korean population. 2) To further support our findings by investigating the association among NrCAM gene variants, certain personality traits, and addictive symptoms of methamphetamine abusers. METHODS Thirty-seven male methamphetamine abusers (age=43.3±7.8) and30 non-users (16 men, 14 women; age=59.8±10.4) were recruited. Ten single nucleotide polymorphisms (SNPs) in the NrCAM gene were assayed to compare genotype distributions between the 2 groups. Personality characteristics were measured using the Temperament and Character Inventory (TCI) and the NEO Personality Inventory, Revised (NEO PI-R). Addictive symptoms were assessed using the Diagnostic Interview for Genetic Studies (DIGS) and reviews of the subject's medical records. RESULTS Among the 10 SNPs in the NrCAM gene, the frequency of the TA genotype at rs1990162 was significantly lower in methamphetamine abusers compared to non-users (p=0.042). In the 3 NrCAM gene SNPs (rs381318, rs2072546, and rs6954366), the distribution of genotypes and alleles were significantly associated with some traits in the TCI and NEO PI-R. Genotypes and alleles at 5 gene SNPs (rs2142325, rs381318, rs1269621, rs1269634, and rs1990162) were associated with certain addictive symptom dimensions in the patients. CONCLUSION These findings support the idea that NrCAM is associated with genetic susceptibility of methamphetamine abuse and is also associated with certain personality characteristics that may increase disturbed addictive behavior.
Collapse
Affiliation(s)
- Byung Kuk Yoo
- Department of Psychiatry, Armed Force Capital Hospital, Seongnam, Republic of Korea
| | - Joo Cheol Shim
- Department of Psychiatry, Inje Paik Hospital, Busan, Republic of Korea
| | - Byung Dae Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea
- Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Choongrak Kim
- Department of Statistics, Pusan National University, Busan, Republic of Korea
| | - Young In Chung
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea
| | - Je Min Park
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea
| | - Sung Gon Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea
| | - Ji Hoon Kim
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea
| | - Young Min Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea
| | - Eun Soo Moon
- Department of Psychiatry, Pusan National University Hospital, Busan, Republic of Korea
| | - Do Hoon Kwon
- Department of Psychiatry, Jindong Taebong Hospital, Changwon, Republic of Korea
| |
Collapse
|
42
|
Amin N, Byrne E, Johnson J, Chenevix-Trench G, Walter S, Nolte IM, kConFab Investigators 6, Vink JM, Rawal R, Mangino M, Teumer A, Keers JC, Verwoert G, Baumeister S, Biffar R, Petersmann A, Dahmen N, Doering A, Isaacs A, Broer L, Wray NR, Montgomery GW, Levy D, Psaty BM, Gudnason V, Chakravarti A, Sulem P, Gudbjartsson DF, Kiemeney LA, Thorsteinsdottir U, Stefansson K, van Rooij FJA, Aulchenko YS, Hottenga JJ, Rivadeneira FR, Hofman A, Uitterlinden AG, Hammond CJ, Shin SY, Ikram A, Witteman JCM, Janssens ACJW, Snieder H, Tiemeier H, Wolfenbuttel BHR, Oostra BA, Heath AC, Wichmann E, Spector TD, Grabe HJ, Boomsma DI, Martin NG, van Duijn CM. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry 2012; 17:1116-29. [PMID: 21876539 PMCID: PMC3482684 DOI: 10.1038/mp.2011.101] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/28/2011] [Accepted: 07/07/2011] [Indexed: 12/18/2022]
Abstract
Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10(-11) and 2.7 × 10(-11)), which were also in strong linkage disequilibrium (r(2)=0.7) with each other, lie in the 23-kb long commonly shared 5' flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10(-09)) near NRCAM-a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10(-09))-an SNP associated with blood pressure-in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10(-05)) and Parkinson's disease pathways (P-value=3.6 × 10(-05)).
Collapse
Affiliation(s)
- N Amin
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Byrne
- Department of Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - J Johnson
- Department of Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - G Chenevix-Trench
- Department of Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - S Walter
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I M Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - kConFab Investigators6
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Twin Research and Genetic Epidemiology, St Thomas' Hospital Campus, King's College London, London, UK
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald, Germany
- LifeLines Cohort Study and Biobank, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Institute for Community Medicine, University of Greifswald, Greifswald, Germany
- Department of Prosthodontics, Gerodontology and Dental Materials, Center of Oral Health, University of Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University of Greifswald, Greifswald, Germany
- Department of Psychiatry, University of Mainz, Mainz, Germany
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Center for Population Studies, NHLBI, Bethesda, MD, USA
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
- deCODE Genetics, Reykjavik, Iceland
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Comprehensive Cancer Center East, BG Nijmegen, The Netherlands
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Washington University, St Louis, MI, USA
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry and Psychotherapy, University of Greifswald, Stralsund, Germany
- Centre of Medical Systems Biology, Netherlands Consortium on Healthy Aging, Leiden and National Genomics Initiative, The Hague, The Netherlands
| | - J M Vink
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - R Rawal
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - M Mangino
- Department of Twin Research and Genetic Epidemiology, St Thomas' Hospital Campus, King's College London, London, UK
| | - A Teumer
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald, Germany
| | - J C Keers
- LifeLines Cohort Study and Biobank, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G Verwoert
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S Baumeister
- Institute for Community Medicine, University of Greifswald, Greifswald, Germany
| | - R Biffar
- Department of Prosthodontics, Gerodontology and Dental Materials, Center of Oral Health, University of Greifswald, Greifswald, Germany
| | - A Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University of Greifswald, Greifswald, Germany
| | - N Dahmen
- Department of Psychiatry, University of Mainz, Mainz, Germany
| | - A Doering
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - A Isaacs
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - L Broer
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N R Wray
- Department of Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - G W Montgomery
- Department of Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - D Levy
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Center for Population Studies, NHLBI, Bethesda, MD, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - V Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - A Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - P Sulem
- deCODE Genetics, Reykjavik, Iceland
| | | | - L A Kiemeney
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Comprehensive Cancer Center East, BG Nijmegen, The Netherlands
| | - U Thorsteinsdottir
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - K Stefansson
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - F J A van Rooij
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Y S Aulchenko
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J J Hottenga
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - F R Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C J Hammond
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - S-Y Shin
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - A Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J C M Witteman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A C J W Janssens
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- LifeLines Cohort Study and Biobank, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H Tiemeier
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - B H R Wolfenbuttel
- LifeLines Cohort Study and Biobank, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B A Oostra
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A C Heath
- Department of Psychiatry, Washington University, St Louis, MI, USA
| | - E Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - T D Spector
- Department of Twin Research and Genetic Epidemiology, St Thomas' Hospital Campus, King's College London, London, UK
| | - H J Grabe
- Department of Psychiatry and Psychotherapy, University of Greifswald, Stralsund, Germany
| | - D I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - N G Martin
- Department of Genetics, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - C M van Duijn
- Unit of Genetic Epidemiology, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Centre of Medical Systems Biology, Netherlands Consortium on Healthy Aging, Leiden and National Genomics Initiative, The Hague, The Netherlands
| |
Collapse
|
43
|
Brown JN, Ortiz GM, Angel TE, Jacobs JM, Gritsenko M, Chan EY, Purdy DE, Murnane RD, Larsen K, Palermo RE, Shukla AK, Clauss TR, Katze MG, McCune JM, Smith RD. Morphine produces immunosuppressive effects in nonhuman primates at the proteomic and cellular levels. Mol Cell Proteomics 2012; 11:605-18. [PMID: 22580588 DOI: 10.1074/mcp.m111.016121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. To explore how these changes interact with lentiviral infections in vivo, animals from two nonhuman primate species (African green monkeys and pigtailed macaques) were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g. lymph node, colon, cerebrospinal fluid, and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an interorgan, interindividual, and interspecies basis. In both species, morphine was associated with decreased levels of Ki-67(+) T-cell activation but with only minimal changes in overall T-cell counts, neutrophil counts, and NK cell counts. Although changes in T-cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in lymph nodes, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have direct relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the potential interplay between opioid abuse and the immunological response to an infective agent.
Collapse
Affiliation(s)
- Joseph N Brown
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Sakurai T. The role of NrCAM in neural development and disorders--beyond a simple glue in the brain. Mol Cell Neurosci 2011; 49:351-63. [PMID: 22182708 DOI: 10.1016/j.mcn.2011.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/03/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022] Open
Abstract
NrCAM is a neuronal cell adhesion molecule of the L1 family of immunoglobulin super family. It plays a wide variety of roles in neural development, including cell proliferation and differentiation, axon growth and guidance, synapse formation, and the formation of the myelinated nerve structure. NrCAM functions in cell adhesion and modulates signaling pathways in neural development through multiple molecular interactions with guidance and other factors. Alterations in NrCAM structure/expression are associated with psychiatric disorders such as autism and drug addiction and with tumor progression. The mechanisms of NrCAM participation in development and how these might be perturbed in disorders are reviewed.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
46
|
Simonson MA, Wills AG, Keller MC, McQueen MB. Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk. BMC MEDICAL GENETICS 2011; 12:146. [PMID: 22029572 PMCID: PMC3213201 DOI: 10.1186/1471-2350-12-146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Traditional genome-wide association studies are generally limited in their ability explain a large portion of genetic risk for most common diseases. We sought to use both traditional GWAS methods, as well as more recently developed polygenic genome-wide analysis techniques to identify subsets of single-nucleotide polymorphisms (SNPs) that may be involved in risk of cardiovascular disease, as well as estimate the heritability explained by common SNPs. METHODS Using data from the Framingham SNP Health Association Resource (SHARe), three complimentary methods were applied to examine the genetic factors associated with the Framingham Risk Score, a widely accepted indicator of underlying cardiovascular disease risk. The first method adopted a traditional GWAS approach - independently testing each SNP for association with the Framingham Risk Score. The second two approaches involved polygenic methods with the intention of providing estimates of aggregate genetic risk and heritability. RESULTS While no SNPs were independently associated with the Framingham Risk Score based on the results of the traditional GWAS analysis, we were able to identify cardiovascular disease-related SNPs as reported by previous studies. A predictive polygenic analysis was only able to explain approximately 1% of the genetic variance when predicting the 10-year risk of general cardiovascular disease. However, 20% to 30% of the variation in the Framingham Risk Score was explained using a recently developed method that considers the joint effect of all SNPs simultaneously. CONCLUSION The results of this study imply that common SNPs explain a large amount of the variation in the Framingham Risk Score and suggest that future, better-powered genome-wide association studies, possibly informed by knowledge of gene-pathways, will uncover more risk variants that will help to elucidate the genetic architecture of cardiovascular disease.
Collapse
Affiliation(s)
- Matthew A Simonson
- Department of Psychology, University of Colorado Boulder, USA
- Department of Integrative Physiology, University of Colorado Boulder, USA
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO 80303, USA
| | - Amanda G Wills
- Department of Psychology, University of Colorado Boulder, USA
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO 80303, USA
| | - Matthew C Keller
- Department of Psychology, University of Colorado Boulder, USA
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO 80303, USA
| | - Matthew B McQueen
- Department of Integrative Physiology, University of Colorado Boulder, USA
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO 80303, USA
| |
Collapse
|
47
|
Demyanenko GP, Riday TT, Tran TS, Dalal J, Darnell EP, Brennaman LH, Sakurai T, Grumet M, Philpot BD, Maness PF. NrCAM deletion causes topographic mistargeting of thalamocortical axons to the visual cortex and disrupts visual acuity. J Neurosci 2011; 31:1545-58. [PMID: 21273439 PMCID: PMC3037548 DOI: 10.1523/jneurosci.4467-10.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/02/2010] [Accepted: 11/20/2010] [Indexed: 01/06/2023] Open
Abstract
NrCAM is a neural cell adhesion molecule of the L1 family that has been linked to autism spectrum disorders, a disease spectrum in which abnormal thalamocortical connectivity may contribute to visual processing defects. Here we show that NrCAM interaction with neuropilin-2 (Npn-2) is critical for semaphorin 3F (Sema3F)-induced guidance of thalamocortical axon subpopulations at the ventral telencephalon (VTe), an intermediate target for thalamic axon sorting. Genetic deletion of NrCAM or Npn-2 caused contingents of embryonic thalamic axons to misproject caudally in the VTe. The resultant thalamocortical map of NrCAM-null mutants showed striking mistargeting of motor and somatosensory thalamic axon contingents to the primary visual cortex, but retinogeniculate targeting and segregation were normal. NrCAM formed a molecular complex with Npn-2 in brain and neural cells, and was required for Sema3F-induced growth cone collapse in thalamic neuron cultures, consistent with a vital function for NrCAM in Sema3F-induced axon repulsion. NrCAM-null mice displayed reduced responses to visual evoked potentials recorded from layer IV in the binocular zone of primary visual cortex (V1), particularly when evoked from the ipsilateral eye, indicating abnormal visual acuity and ocularity. These results demonstrate that NrCAM is required for normal maturation of cortical visual acuity, and suggest that the aberrant projection of thalamic motor and somatosensory axons to the visual cortex in NrCAM-null mutant mice impairs cortical functions.
Collapse
Affiliation(s)
| | | | - Tracy S. Tran
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | - Takeshi Sakurai
- Department of Psychiatry, Seaver Autism Center, Mount Sinai School of Medicine, New York, New York 10029, and
| | - Martin Grumet
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Nelson Laboratory, Rutgers University, Piscataway, New Jersey 08854
| | - Benjamin D. Philpot
- Cell and Molecular Physiology, and
- Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Patricia F. Maness
- Departments of Biochemistry and Biophysics and
- Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
48
|
Abstract
The dystrophin protein complex, an important regulator of muscle membrane integrity, also maintains neural organization through interactions with the L1CAM family member SAX-7. The dystrophin protein complex (DPC), composed of dystrophin and associated proteins, is essential for maintaining muscle membrane integrity. The link between mutations in dystrophin and the devastating muscle failure of Duchenne’s muscular dystrophy (DMD) has been well established. Less well appreciated are the accompanying cognitive impairment and neuropsychiatric disorders also presented in many DMD patients, which suggest a wider role for dystrophin in membrane–cytoskeleton function. This study provides genetic evidence of a novel role for DYS-1/dystrophin in maintaining neural organization in Caenorhabditis elegans. This neuronal function is distinct from the established role of DYS-1/dystrophin in maintaining muscle integrity and regulating locomotion. SAX-7, an L1 cell adhesion molecule (CAM) homologue, and STN-2/γ-syntrophin also function to maintain neural integrity in C. elegans. This study provides biochemical data that show that SAX-7 associates with DYS-1 in an STN-2/γ-syntrophin–dependent manner. These results reveal a recruitment of L1CAMs to the DPC to ensure neural integrity is maintained.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
49
|
Moy SS, Nonneman RJ, Young NB, Demyanenko GP, Maness PF. Impaired sociability and cognitive function in Nrcam-null mice. Behav Brain Res 2009; 205:123-31. [PMID: 19540269 PMCID: PMC2753746 DOI: 10.1016/j.bbr.2009.06.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 05/12/2009] [Accepted: 06/10/2009] [Indexed: 11/24/2022]
Abstract
NRCAM (Neuronal Cell Adhesion Molecule) has an important role in axonal guidance and the organization of neural circuitry during brain development. Association analyses in human populations have identified NRCAM as a candidate gene for autism susceptibility. In the present study, we evaluated Nrcam-null mice for sociability, social novelty preference, and reversal learning as a model for the social deficits, repetitive behavior, and cognitive rigidity characteristic of autism. Prepulse inhibition of acoustic startle responses was also measured, to reflect sensorimotor-gating deficits in autism spectrum disorders. Assays for anxiety-like behavior in an elevated plus maze and open field, motor coordination, and olfactory ability in a buried food test were conducted to provide control measures for the interpretation of results. Overall, the loss of Nrcam led to behavioral alterations in sociability, acquisition of a spatial task, and reversal learning, dependent on sex. In comparison to male wild type mice, male Nrcam-null mutants had significantly decreased sociability in a three-chambered choice task. Low sociability in the male null mutants was not associated with changes in anxiety-like behavior, activity, or motor coordination. Male, but not female, Nrcam-null mice had small decreases in prepulse inhibition. Nrcam deficiency in female mice led to impaired acquisition of spatial learning in the Morris water maze task. Reversal learning deficits were observed in both male and female Nrcam-null mice. These results provide evidence that NRCAM mediates domains of function relevant to symptoms observed in autism.
Collapse
Affiliation(s)
- Sheryl S Moy
- Neurodevelopmental Disorders Research Center, CB#7146, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The L1 family of CAMs (cell adhesion molecules) has long aroused the interest of researchers, but primarily the extracellular interactions of these proteins have been elucidated. More recently, attention has turned to the intracellular signalling potentiated by transmembrane proteins and the cytoplasmic proteins with which they can interact. The present review brings up to date the current body of published knowledge for the intracellular interactions of L1-CAM family proteins and the potential importance of these interactions for the mechanisms of L1-CAM action.
Collapse
|