1
|
Rusiecka I, Gągało I, Kocić I. Neuroprotective Activity of a Non-Covalent Imatinib+TP10 Conjugate in HT-22 Neuronal Cells In Vitro. Pharmaceutics 2024; 16:778. [PMID: 38931899 PMCID: PMC11207969 DOI: 10.3390/pharmaceutics16060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study evaluated the probable relevance of a non-covalent conjugate of imatinib with TP10 in the context of a neuroprotective effect in Parkinson's disease. Through the inhibition of c-Abl, which is a non-receptor tyrosine kinase and an indicator of oxidative stress, imatinib has shown promise in preclinical animal models of this disease. The poor distribution of imatinib within the brain tissue triggered experiments in which a conjugate was obtained by mixing the drug with TP10, which is known for exhibiting high translocation activity across the cell membrane. The conjugate was tested on the HT-22 cell line with respect to its impact on MPP+-induced oxidative stress, apoptosis, necrosis, cytotoxicity, and mortality. Additionally, it was checked whether the conjugate activated the ABCB1 protein. The experiments indicated that imatinib+PEG4+TP10 reduced the post-MPP+ oxidative stress, apoptosis, and mortality, and these effects were more prominent than those obtained after the exposition of the HT-22 cells to imatinib alone. Its cytotoxicity was similar to that of imatinib itself. In contrast to imatinib, the conjugate did not activate the ABCB1 protein. These favorable qualities of imatinib+PEG4+TP10 make it a potential candidate for further in vivo research, which would confirm its neuroprotective action in PD-affected brains.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204 Gdańsk, Poland
| | | | | |
Collapse
|
2
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. NPJ Parkinsons Dis 2024; 10:83. [PMID: 38615030 PMCID: PMC11016112 DOI: 10.1038/s41531-024-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases and their second messenger cyclic (c)GMP support mitochondrial function, protecting against ROS and promoting cell survival in several tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) mouse model. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in SNpc DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Yuzawa S, Nakashio M, Ichimura S, Shimoda M, Nakashima A, Marukawa-Hashimoto Y, Kawano Y, Suzuki K, Yoshitomi K, Kawahara M, Tanaka KI. Ergothioneine Prevents Neuronal Cell Death Caused by the Neurotoxin 6-Hydroxydopamine. Cells 2024; 13:230. [PMID: 38334622 PMCID: PMC10854700 DOI: 10.3390/cells13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.
Collapse
Affiliation(s)
- Saho Yuzawa
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Motonari Nakashio
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Suzuna Ichimura
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ayaka Nakashima
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yuka Marukawa-Hashimoto
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Yusuke Kawano
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kengo Suzuki
- Euglena, Co., Ltd., 5-29-11 G-BASE Tamachi 2nd Floor Shiba, Minato-ku, Tokyo 108-0014, Japan; (A.N.); (Y.M.-H.); (K.S.)
| | - Kenichi Yoshitomi
- Sakichi, Co., Ltd., 5-531 Kuromaru-Machi, Omura, Nagasaki 856-0808, Japan;
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| | - Ken-ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan; (S.Y.); (M.N.); (S.I.); (M.S.); (M.K.)
| |
Collapse
|
4
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. RESEARCH SQUARE 2023:rs.3.rs-3416338. [PMID: 37886524 PMCID: PMC10602097 DOI: 10.21203/rs.3.rs-3416338/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases, and their second messengers cyclic (c)GMP, support mitochondrial function, protecting against ROS and promoting cell survival in a number of tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of neurodegeneration. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in nigral DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S. Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J. Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E. Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Zhu Z, Liu LF, Su CF, Liu J, Tong BCK, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Guan XJ, Kan YX, Xie WJ, Zhao CL, Cheung KH, Lu JH, Tan JQ, Zhang HJ, Song JX, Li M. Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy. Acta Pharmacol Sin 2022; 43:2511-2526. [PMID: 35217810 PMCID: PMC9525707 DOI: 10.1038/s41401-022-00871-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/17/2022] [Indexed: 01/18/2023]
Abstract
Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson's disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential use in treating PD. Thus we synthesized various derivatives of Cory B to find more potent autophagy inducers with improved brain bioavailability. In this study, we evaluated the autophagy-enhancing effect of CB6 derivative and its neuroprotective action against PD in vitro and in vivo. We showed that CB6 (5-40 μM) dose-dependently accelerated autophagy flux in cultured N2a neural cells through activating the PIK3C3 complex and promoting PI3P production. In MPP+-treated PC12 cells, CB6 inhibited cell apoptosis and increased cell viability by inducing autophagy. In MPTP-induced mouse model of PD, oral administration of CB6 (10, 20 mg· kg-1· d-1, for 21 days) significantly improved motor dysfunction and prevented the loss of dopaminergic neurons in the striatum and substantia nigra pars compacta. Collectively, compound CB6 is a brain-permeable autophagy enhancer via PIK3C3 complex activation, which may help the prevention or treatment of PD.
Collapse
Affiliation(s)
- Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Liang-Feng Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Limin Pharmaceutical Factory, Livzon Group Limited, Shaoguan, 512028, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Benjamin Chun-Kit Tong
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Yu-Xuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Wen-Jian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Chen-Liang Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China
| | - Jie-Qiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Animal Model for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ju-Xian Song
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Cuevas E, Guzman A, Burks SM, Ramirez-Lee A, Ali SF, Imam SZ. Autophagy and protein aggregation as a mechanism of dopaminergic degeneration in a primary human dopaminergic neuronal model. Toxicol Rep 2022; 9:806-813. [DOI: 10.1016/j.toxrep.2022.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/16/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
|
7
|
Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
Affiliation(s)
| | | | - Vladimir A. Vigont
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (D.A.G.); (E.V.K.)
| |
Collapse
|
8
|
Tran HT, Lucas MS, Ishikawa T, Shahmoradian SH, Padeste C. A Compartmentalized Neuronal Cell-Culture Platform Compatible With Cryo-Fixation by High-Pressure Freezing for Ultrastructural Imaging. Front Neurosci 2021; 15:726763. [PMID: 34566569 PMCID: PMC8455873 DOI: 10.3389/fnins.2021.726763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
The human brain contains a wide array of billions of neurons and interconnections, which are often simplified for analysis in vitro using compartmentalized microfluidic devices for neuronal cell culturing, to better understand neuronal development and disease. However, such devices are traditionally incompatible for high-pressure freezing and high-resolution nanoscale imaging and analysis of their sub-cellular processes by methods including electron microscopy. Here we develop a novel compartmentalized neuronal co-culture platform allowing reconstruction of neuronal networks with high variable spatial control, which is uniquely compatible for high-pressure freezing. This cryo-fixation method is well-established to enable high-fidelity preservation of the reconstructed neuronal networks and their sub-cellular processes in a near-native vitreous state without requiring chemical fixatives. To direct the outgrowth of neurites originating from two distinct groups of neurons growing in the two different compartments, polymer microstructures akin to microchannels are fabricated atop of sapphire disks. Two populations of neurons expressing either enhanced green fluorescent protein (EGFP) or mCherry were grown in either compartment, facilitating the analysis of the specific interactions between the two separate groups of cells. Neuronally differentiated PC12 cells, murine hippocampal and striatal neurons were successfully used in this context. The design of this device permits direct observation of entire neuritic processes within microchannels by optical microscopy with high spatial and temporal resolution, prior to processing for high-pressure freezing and electron microscopy. Following freeze substitution, we demonstrate that it is possible to process the neuronal networks for ultrastructural imaging by electron microscopy. Several key features of the embedded neuronal networks, including mitochondria, synaptic vesicles, axonal terminals, microtubules, with well-preserved ultrastructures were observed at high resolution using focused ion beam - scanning electron microscopy (FIB-SEM) and serial sectioning - transmission electron microscopy (TEM). These results demonstrate the compatibility of the platform with optical microscopy, high-pressure freezing and electron microscopy. The platform can be extended to neuronal models of brain disease or development in future studies, enabling the investigation of subcellular processes at the nanoscale within two distinct groups of neurons in a functional neuronal pathway, as well as pharmacological testing and drug screening.
Collapse
Affiliation(s)
- Hung Tri Tran
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Miriam S. Lucas
- Scientific Center for Optical and Electron Microscopy ScopeM, ETH Zürich, Zurich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Celestino Padeste
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
9
|
Mzezewa SC, Omoruyi SI, Zondagh LS, Malan SF, Ekpo OE, Joubert J. Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimer's disease agents. J Enzyme Inhib Med Chem 2021; 36:1607-1621. [PMID: 34281458 PMCID: PMC8291583 DOI: 10.1080/14756366.2021.1913137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Multitarget directed ligands (MTDLs) are emerging as promising treatment options for Alzheimer's disease (AD). Coumarin derivatives serve as a good starting point for designing MTDLs due to their inherent inhibition of monoamine oxidase (MAO) and cholinesterase enzymes, which are complicit in AD's complex pathophysiology. A preliminary series of 3,7-substituted coumarin derivatives were synthesised and evaluated for enzyme inhibitory activity, cytotoxicity as well as neuroprotective ability. The results indicated that the compounds are weak cholinesterase inhibitors with five compounds demonstrating relatively potent inhibition and selectivity towards MAO-B with IC50 values between 0.014 and 0.498 hx00B5;µM. Significant neuroprotective effects towards MPP+-compromised SH-SY5Y neuroblastoma cells were also observed, with no inherent cytotoxicity at 10 µM for all compounds. The overall results demonstrated that substitution of the phenylethyloxy moiety at the 7-position imparted superior general activity to the derivatives, with the propargylamine substitution at the 3-position, in particular, displaying the best MAO-B selectivity and neuroprotection.
Collapse
Affiliation(s)
- Sheunopa C Mzezewa
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Sylvester I Omoruyi
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Luke S Zondagh
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Sarel F Malan
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Okobi E Ekpo
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Jacques Joubert
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
10
|
Christensen C, Þorsteinsson H, Maier VH, Karlsson KÆ. Multi-parameter Behavioral Phenotyping of the MPP+ Model of Parkinson's Disease in Zebrafish. Front Behav Neurosci 2021; 14:623924. [PMID: 33390914 PMCID: PMC7775599 DOI: 10.3389/fnbeh.2020.623924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) has been modeled in several animal species using the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its oxidized product 1-methyl-4-phenylpyridinium (MPP+). MPP+ selectively kills dopaminergic neurons in pars compacta of the substantia nigra, inducing parkinsonian symptoms in animals. Typically, neurotoxicity models of PD in zebrafish assess acute drug effects on locomotion. In the present study, we examined the lasting effects of MPP+ exposure and drug treatment in zebrafish larvae. Larvae were incubated in 500 μM MPP+, from 1 to 5 days post fertilization (dpf), followed by 24 h drug-free acclimation. At 6 dpf, the behavior was analyzed for locomotion, thigmotaxis, and sleep. Next, in separate assays we assessed the drug effects of brain injected glial cell-derived neurotrophic factor (GDNF) and 4-phenylbutyrate (PBA), co-incubated with MPP+. We show that MPP+ exposure consistently reduces swim distance, movement frequency, and cumulative time of movement; thus mimicking a parkinsonian phenotype of reduced movement. In contrast, MPP+ exposed larvae demonstrate reduced anxiety-like behavior and exhibit a sleep phenotype inconsistent with human PD: the larvae display longer sleep bouts, less sleep fragmentation, and more sleep. Previously reported rescuing effects of PBA were not replicated in this study. Moreover, whereas GDNF attenuated the sleep phenotype induced by MPP+, PBA augmented it. The current data suggest that MPP+ exposure generates a multifaceted phenotype in zebrafish and highlights that analyzing a narrow window of data can reveal effects that may be inconsistent with longer multi-parameter approaches. It further indicates that the model generally captures motor symptoms more faithfully than non-motor symptoms.
Collapse
Affiliation(s)
| | | | | | - Karl Ægir Karlsson
- 3Z Ehf, Reykjavik, Iceland.,Biomedical Center, University of Iceland, Reykjavik, Iceland.,Department of Engineering, School of Technology, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
11
|
Evaluation of the neuroprotective potential of caffeic acid phenethyl ester in a cellular model of Parkinson's disease. Eur J Pharmacol 2020; 883:173342. [PMID: 32634439 DOI: 10.1016/j.ejphar.2020.173342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, and oxidative stress and mitochondrial dysfunction play a major role in the pathogenesis of PD. Since conventional therapeutics are not sufficient for the treatment of PD, the development of new agents with anti-oxidant potential is crucial. Caffeic Acid Phenethyl Ester (CAPE), a biologically active flavonoid of propolis, possesses several biological properties such as immunomodulatory, anti-inflammatory and anti-oxidative. In the present study, we investigated the neuroprotective effects of CAPE against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y cells. The neuroprotective effects were detected by using cell viability, Annexin V, Hoechst staining, total caspase activity, cell cycle, as well as western blotting. Besides, the anti-oxidative activity was measured by the production of reactive oxygen species and mitochondrial function was determined by measurement of mitochondrial membrane potential (ΔΨm). We found that CAPE significantly increased cell viability and decreased apoptotic cell death (~20%) after 150 μM 6-OHDA exposure following 24 h. 1.25 μM CAPE also prevented 6-OHDA-induced changes in condensed nuclear morphology. Furthermore, treatment with 1.25 μM CAPE increased mitochondrial membrane potential in 6-OHDA-exposed cells. CAPE inhibited 6-OHDA-induced caspase activity (~2 fold) and production of reactive oxygen species. In addition, 150 μM 6-OHDA-induced down-regulation of Bcl-2 and Akt levels and up-regulation of Bax and cleaved caspase-9/caspase-9 levels were partially restored by 1.25 μM CAPE treatment. These results revealed a neuroprotective potential of CAPE against 6-OHDA-induced apoptosis in an in vitro PD model and may be a potential therapeutic candidate for the prevention of neurodegeneration in Parkinson's Disease.
Collapse
|
12
|
Mahato AK, Kopra J, Renko J, Visnapuu T, Korhonen I, Pulkkinen N, Bespalov MM, Domanskyi A, Ronken E, Piepponen TP, Voutilainen MH, Tuominen RK, Karelson M, Sidorova YA, Saarma M. Glial cell line-derived neurotrophic factor receptor Rearranged during transfection agonist supports dopamine neurons in Vitro and enhances dopamine release In Vivo. Mov Disord 2020; 35:245-255. [PMID: 31840869 PMCID: PMC7496767 DOI: 10.1002/mds.27943] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. METHODS We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. RESULTS BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+ )-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. CONCLUSION The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Arun Kumar Mahato
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Juho‐Matti Renko
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Tanel Visnapuu
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Ilari Korhonen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Nita Pulkkinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Maxim M. Bespalov
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | - Andrii Domanskyi
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | | | - T. Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | - Merja H. Voutilainen
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | - Raimo K. Tuominen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5EUniversity of HelsinkiHelsinkiFinland
| | | | - Yulia A. Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| | - Mart Saarma
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, Helsinki Institute of Life Science, Viikinkaari 5DUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
13
|
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicol Sci 2019; 165:21-30. [PMID: 29982830 DOI: 10.1093/toxsci/kfy178] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is evidence that chemical exposure during development can cause irreversible impairments of the human developing nervous system. Therefore, testing compounds for their developmentally neurotoxic potential has high priority for different stakeholders: academia, industry, and regulatory bodies. Due to the resource-intensity of current developmental neurotoxicity (DNT) in vivo guidelines, alternative methods that are scientifically valid and have a high predictivity for humans are especially desired by regulators. Here, we review availability of stem-/progenitor cell-based in vitro methods for DNT evaluation that is based on the concept of neurodevelopmental process assessment. These test methods are assembled into a DNT in vitro testing battery. Gaps in this testing battery addressing research needs are also pointed out.
Collapse
Affiliation(s)
| | - Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Laura Nimtz
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Saskia Wuttke
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| |
Collapse
|
14
|
Spatial and temporal immunoreactivity in the rat brain using an affinity purified polyclonal antibody to DNSP-11. J Chem Neuroanat 2019; 100:101664. [PMID: 31394198 DOI: 10.1016/j.jchemneu.2019.101664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 01/21/2023]
Abstract
DNSP-11 antibody signal was investigated in perfusion fixated Fischer 344 rat brains by immunohistochemistry with a custom, affinity purified polyclonal antibody. The DNSP-11-antibody signal was differentially localized from the mature GDNF protein both spatially and temporally. In the mesencephalon of post-natal day 10 animals, when GDNF is maximally expressed, DNSP-11 and GDNF antibody immunoreactivities co-localize extensively but not exclusively. In adult 3-month-old animals, GDNF expression is markedly reduced while the DNSP-11 signal remains intense. DNSP-11-antibody signal was present in the 3-month-old rat brain with signal in the substantia nigra, ventral tegmental area, dentate gyrus of the hippocampus, with the strongest signal observed in the locus ceruleus where GDNF is not expressed. While amino acid sequence homologues such as NPY and Tfg do exist, binding patterns reported in the literature of do not recapitulate the immunoreactive patterns observed for the DNSP-11-antibody signal.
Collapse
|
15
|
Di Santo S, Seiler S, Ducray AD, Widmer HR. Conditioned medium from Endothelial Progenitor Cells promotes number of dopaminergic neurons and exerts neuroprotection in cultured ventral mesencephalic neuronal progenitor cells. Brain Res 2019; 1720:146330. [PMID: 31299185 DOI: 10.1016/j.brainres.2019.146330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
Transplantation of stem and progenitor cells offers a promising tool for brain repair in the context of neuropathological disorders including Parkinson's disease. There is growing proof that the capacity of adult stem and progenitor cells for tissue regeneration relies rather on the release of paracrine factors than on their cell replacement properties. In line with this notion, we have previously reported that conditioned medium (CM) collected from cultured Endothelial Progenitor Cells (EPC) stimulated survival of striatal neurons. In the present study we investigated whether EPC-CM promotes survival of cultured midbrain progenitor cells. For that purpose primary cultures from fetal rat embryonic ventral mesencephalon (VM) were prepared and grown for 7 days in vitro (DIV). EPC-CM was administered from DIV5-7. First, we found that EPC-CM treatment resulted in significantly increased cell densities of TH-ir neurons. Interestingly, this effect was no longer seen after proteolytic digestion of the EPC-CM. EPC-CM also significantly increased densities of beta-III-tubulin positive neurons and lba-1-ir microglial cells. The effect on dopaminergic neurons was not due to higher cell proliferation as no incorporation of EdU was observed in TH-ir cells. Importantly, EPC-CM exerted neuroprotection against MPP+ induced toxicity as in vitro model of Parkinson's disease. Taken together, our findings identified EPC-CM as a powerful tool to promote survival of cultured VM neurons and further support the importance of paracrine factors in the actions of stem and progenitor cells for brain repair.
Collapse
Affiliation(s)
- Stefano Di Santo
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
| | - Stefanie Seiler
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Angélique D Ducray
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Hans Rudolf Widmer
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|
16
|
Li J, Settivari R, LeBaron MJ, Marty MS. An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity. Neurotoxicology 2019; 73:17-30. [DOI: 10.1016/j.neuro.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
17
|
Hessel EVS, Staal YCM, Piersma AH. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicol Appl Pharmacol 2018; 354:136-152. [PMID: 29544899 DOI: 10.1016/j.taap.2018.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022]
Abstract
Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing.
Collapse
Affiliation(s)
- Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands.
| | - Yvonne C M Staal
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Abstract
The development of stem cell biology has revolutionized regenerative medicine and its clinical applications. Another aspect through which stem cells would benefit human health is their use in toxicology. In fact, owing to their ability to differentiate into all the lineages of the human body, including germ cells, stem cells, and, in particular, pluripotent stem cells, can be utilized for the assessment, in vitro, of embryonic, developmental, reproductive, organ, and functional toxicities, relevant to human physiology, without employing live animal tests and with the possibility of high throughput applications. Thus, stem cell toxicology would tremendously assist in the toxicological evaluation of the increasing number of synthetic chemicals that we are exposed to, of which toxicity information is limited. In this review, we introduce stem cell toxicology, as an emerging branch of in vitro toxicology, which offers quick and efficient alternatives to traditional toxicology assessments. We first discuss the development of stem cell toxicology, and we then emphasize its advantages and highlight the achievements of human pluripotent stem cell-based toxicity research.
Collapse
Affiliation(s)
- Shuyu Liu
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| |
Collapse
|
19
|
Pérez-Rodríguez M, García-Mendoza E, Farfán-García ED, Das BC, Ciprés-Flores FJ, Trujillo-Ferrara JG, Tamay-Cach F, Soriano-Ursúa MA. Not all boronic acids with a five-membered cycle induce tremor, neuronal damage and decreased dopamine. Neurotoxicology 2017; 62:92-99. [PMID: 28595910 DOI: 10.1016/j.neuro.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Several striatal toxins can be used to induce motor disruption. One example is MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), whose toxicity is accepted as a murine model of parkinsonism. Recently, 3-Thienylboronic acid (3TB) was found to produce motor disruption and biased neuronal damage to basal ganglia in mice. The aim of this study was to examine the toxic effects of four boronic acids with a close structural relationship to 3TB (all having a five-membered cycle), as well as boric acid and 3TB. These boron-containing compounds were compared to MPTP regarding brain access, morphological disruption of the CNS, and behavioral manifestations of such disruption. Data was collected through acute toxicity evaluations, motor behavior tests, necropsies, determination of neuronal survival by immunohistochemistry, Raman spectroscopic analysis of brain tissue, and HPLC measurement of dopamine in substantia nigra and striatum tissue. Each compound showed a distinct profile for motor disruption. For example, motor activity was not disrupted by boric acid, but was decreased by two boronic acids (caused by a sedative effect). 3TB, 2-Thienyl and 2-furanyl boronic acid gave rise to shaking behavior. The various manifestations generated by these compounds can be linked, in part, to different levels of dopamine (measured by HPLC) and degrees of neuronal damage in the basal ganglia and cerebellum. Clearly, motor disruption is not induced by all boronic acids with a five-membered cycle as substituent. Possible explanations are given for the diverse chemico-morphological changes and degrees of disruption of the motor system, considering the role of boron and the structure-toxicity relationship.
Collapse
Affiliation(s)
- Maribel Pérez-Rodríguez
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Esperanza García-Mendoza
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur No. 3877, Col. La Fama, Del. Tlalpan, México City, Mexico
| | - Eunice D Farfán-García
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Bhaskar C Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Madison Avenue, Box 1243 New York, NY 10029, USA
| | - Fabiola J Ciprés-Flores
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - José G Trujillo-Ferrara
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Feliciano Tamay-Cach
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamentos de Fisiología, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, Mexico.
| |
Collapse
|
20
|
Pistollato F, Canovas-Jorda D, Zagoura D, Price A. Protocol for the Differentiation of Human Induced Pluripotent Stem Cells into Mixed Cultures of Neurons and Glia for Neurotoxicity Testing. J Vis Exp 2017. [PMID: 28654077 PMCID: PMC5608344 DOI: 10.3791/55702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells can differentiate into various cell types that can be applied to human-based in vitro toxicity assays. One major advantage is that the reprogramming of somatic cells to produce human induced pluripotent stem cells (hiPSCs) avoids the ethical and legislative issues related to the use of human embryonic stem cells (hESCs). HiPSCs can be expanded and efficiently differentiated into different types of neuronal and glial cells, serving as test systems for toxicity testing and, in particular, for the assessment of different pathways involved in neurotoxicity. This work describes a protocol for the differentiation of hiPSCs into mixed cultures of neuronal and glial cells. The signaling pathways that are regulated and/or activated by neuronal differentiation are defined. This information is critical to the application of the cell model to the new toxicity testing paradigm, in which chemicals are assessed based on their ability to perturb biological pathways. As a proof of concept, rotenone, an inhibitor of mitochondrial respiratory complex I, was used to assess the activation of the Nrf2 signaling pathway, a key regulator of the antioxidant-response-element-(ARE)-driven cellular defense mechanism against oxidative stress.
Collapse
Affiliation(s)
- Francesca Pistollato
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre
| | - David Canovas-Jorda
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre
| | - Dimitra Zagoura
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre
| | - Anna Price
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre;
| |
Collapse
|
21
|
O'Rourke C, Lee-Reeves C, Drake RA, Cameron GW, Loughlin AJ, Phillips JB. Adapting tissue-engineered in vitro CNS models for high-throughput study of neurodegeneration. J Tissue Eng 2017; 8:2041731417697920. [PMID: 28507726 PMCID: PMC5415290 DOI: 10.1177/2041731417697920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/14/2017] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative conditions remain difficult to treat, with the continuing failure to see therapeutic research successfully advance to clinical trials. One of the obstacles that must be overcome is to develop enhanced models of disease. Tissue engineering techniques enable us to create organised artificial central nervous system tissue that has the potential to improve the drug development process. This study presents a replicable model of neurodegenerative pathology through the use of engineered neural tissue co-cultures that can incorporate cells from various sources and allow degeneration and protection of neurons to be observed easily and measured, following exposure to neurotoxic compounds – okadaic acid and 1-methyl-4-phenylpyridinium. Furthermore, the technology has been miniaturised through development of a mould with 6 mm length that recreates the advantageous features of engineered neural tissue co-cultures at a scale suitable for commercial research and development. Integration of human-derived induced pluripotent stem cells aids more accurate modelling of human diseases, creating new possibilities for engineered neural tissue co-cultures and their use in drug screening.
Collapse
Affiliation(s)
- Caitriona O'Rourke
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.,Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Charlotte Lee-Reeves
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | - A Jane Loughlin
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - James B Phillips
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
22
|
CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit. Neuropsychopharmacology 2017; 42:774-784. [PMID: 27534267 PMCID: PMC5240177 DOI: 10.1038/npp.2016.156] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/26/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Because of unavoidable confounding variables in the direct study of human subjects, it has been difficult to unravel the effects of prenatal cocaine exposure on the human fetal brain, as well as the cellular and biochemical mechanisms involved. Here, we propose a novel approach using a human pluripotent stem cell (hPSC)-based 3D neocortical organoid model. This model retains essential features of human neocortical development by encompassing a single self-organized neocortical structure, without including an animal-derived gelatinous matrix. We reported previously that prenatal cocaine exposure to rats during the most active period of neural progenitor proliferation induces cytoarchitectural changes in the embryonic neocortex. We also identified a role of CYP450 and consequent oxidative ER stress signaling in these effects. However, because of differences between humans and rodents in neocorticogenesis and brain CYP metabolism, translation of the research findings from the rodent model to human brain development is uncertain. Using hPSC 3D neocortical organoids, we demonstrate that the effects of cocaine are mediated through CYP3A5-induced generation of reactive oxygen species, inhibition of neocortical progenitor cell proliferation, induction of premature neuronal differentiation, and interruption of neural tissue development. Furthermore, knockdown of CYP3A5 reversed these cocaine-induced pathological phenotypes, suggesting CYP3A5 as a therapeutic target to mitigate the deleterious neurodevelopmental effects of prenatal cocaine exposure in humans. Moreover, 3D organoid methodology provides an innovative platform for identifying adverse effects of abused psychostimulants and pharmaceutical agents, and can be adapted for use in neurodevelopmental disorders with genetic etiologies.
Collapse
|
23
|
Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T, Leist M, Kobolák J, Dinnyés A. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 2016; 91:1-33. [PMID: 27492622 DOI: 10.1007/s00204-016-1805-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
Abstract
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Collapse
Affiliation(s)
- Béla Z Schmidt
- BioTalentum Ltd., Gödöllő, Hungary.,Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Martin Lehmann
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Erastus Nembo
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Forsby
- Swedish Toxicology Research Center (Swetox), Södertälje, Sweden.,Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary. .,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100, Hungary.
| |
Collapse
|
24
|
Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 2016; 158:137-160. [DOI: 10.1016/j.lfs.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
25
|
Lee CT, Bendriem RM, Freed WJ. A new technique for modeling neuronal connectivity using human pluripotent stem cells. Restor Neurol Neurosci 2016; 33:347-56. [PMID: 25835555 PMCID: PMC4702948 DOI: 10.3233/rnn-140488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: We describe a technique for independently differentiating neocortical and mesencephalic dopaminergic (mDA) neurons from a single human pluripotent stem cell (hPSC) line, and subsequently allowing the two cell types to interact and form connections. Methods: Dopaminergic and neocortical progenitors were differentiated in separate vessels, then separately seeded into the inner and outer compartments of specialized cell culture vessels designed for in vitro studies of wound healing. Cells were further differentiated using dopamine-specific and neocortex-specific trophic factors, respectively. The barrier was then removed, and differentiation was continued for three weeks in the presence of BDNF. Results: After three weeks of differentiation, neocortical and mDA cell bodies largely remained in the areas into which they had been seeded, and the gap between the mDA and neocortical neuron populations could still be discerned. Abundant tyrosine hydroxylase (TH)-positive projections had extended from the area of the inner chamber to the outer chamber neocortical area. Conclusions: We have developed a hPSC-based system for producing connections between neurons from two brain regions, neocortex and midbrain. Future experiments could employ modifications of this method to examine connections between any two brain regions or neuronal subtypes that can be produced from hPSCs in vitro.
Collapse
Affiliation(s)
- Chun-Ting Lee
- Correspondence to:Dr. Chun-Ting Lee, NIDA Intramural Research Program, 333 Cassell Drive, Triad Bldg, Room 3305, Baltimore, MD 21224, USA. Tel.: +1 443 740 2604; Fax: +1 443 740 2123;
| | | | | |
Collapse
|
26
|
Handral HK, Tong HJ, Islam I, Sriram G, Rosa V, Cao T. Pluripotent stem cells: An in vitro model for nanotoxicity assessments. J Appl Toxicol 2016; 36:1250-8. [PMID: 27241574 DOI: 10.1002/jat.3347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 12/18/2022]
Abstract
The advent of technology has led to an established range of engineered nanoparticles that are used in diverse applications, such as cell-cell interactions, cell-material interactions, medical therapies and the target modulation of cellular processes. The exponential increase in the utilization of nanomaterials and the growing number of associated criticisms has highlighted the potential risks of nanomaterials to human health and the ecosystem. The existing in vivo and in vitro platforms show limitations, with fluctuations being observed in the results of toxicity assessments. Pluripotent stem cells (PSCs) are viable source of cells that are capable of developing into specialized cells of the human body. PSCs can be efficiently used to screen new biomaterials/drugs and are potential candidates for studying impairments of biophysical morphology at both the cellular and tissue levels during interactions with nanomaterials and for diagnosing toxicity. Three-dimensional in vitro models obtained using PSC-derived cells would provide a realistic, patient-specific platform for toxicity assessments and in drug screening applications. The current review focuses on PSCs as an alternative in vitro platform for assessing the hazardous effects of nanomaterials on health systems and highlights the importance of PSC-derived in vitro platforms. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Harish K Handral
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Huei Jinn Tong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Intekhab Islam
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Experimental Dermatology Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vinicus Rosa
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Tong Cao
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore.,National University of Singapore, Graduate School for Integrative Sciences and Engineering, Singapore.,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
27
|
Ensuring the Quality of Stem Cell-Derived In Vitro Models for Toxicity Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:259-297. [DOI: 10.1007/978-3-319-33826-2_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders. Neuromolecular Med 2015; 17:404-22. [PMID: 26374113 DOI: 10.1007/s12017-015-8369-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022]
Abstract
The adult central nervous system is commonly known to have a very limited regenerative capacity. The presence of functional stem cells in the brain can therefore be seen as a paradox, since in other organs these are known to counterbalance cell loss derived from pathological conditions. This fact has therefore raised the possibility to stimulate neural stem cell differentiation and proliferation or survival by either stem cell replacement therapy or direct administration of neurotrophic factors or other proneurogenic molecules, which in turn has also originated regenerative medicine for the treatment of otherwise incurable neurodegenerative and neuropsychiatric disorders that take a huge toll on society. This may be facilitated by the fact that many of these disorders converge on similar pathophysiological pathways: excitotoxicity, oxidative stress, neuroinflammation, mitochondrial failure, excessive intracellular calcium and apoptosis. This review will therefore focus on the most promising achievements in promoting neuroprotection and neuroregeneration reported to date.
Collapse
|
29
|
Wenker SD, Casalía M, Candedo VC, Casabona JC, Pitossi FJ. Cell reprogramming and neuronal differentiation applied to neurodegenerative diseases: Focus on Parkinson's disease. FEBS Lett 2015; 589:3396-406. [PMID: 26226418 DOI: 10.1016/j.febslet.2015.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022]
Abstract
Adult cells from patients can be reprogrammed to induced pluripotent stem cells (iPSCs) which successively can be used to obtain specific cells such as neurons. This remarkable breakthrough represents a new way of studying diseases and brought new therapeutic perspectives in the field of regenerative medicine. This is particular true in the neurology field, where few techniques are amenable to study the affected tissue of the patient during illness progression, in addition to the lack of neuroprotective therapies for many diseases. In this review we discuss the advantages and unresolved issues of cell reprogramming and neuronal differentiation. We reviewed evidence using iPSCs-derived neurons from neurological patients. Focusing on data obtained from Parkinson's disease (PD) patients, we show that iPSC-derived neurons possess morphological and functional characteristics of this disease and build a case for the use of this technology to study PD and other neuropathologies while disease is in progress. These data show the enormous impact that this new technology starts to have on different purposes such as the study and design of future therapies of neurological disease, especially PD.
Collapse
|
30
|
Efremova L, Schildknecht S, Adam M, Pape R, Gutbier S, Hanf B, Bürkle A, Leist M. Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism. Br J Pharmacol 2015; 172:4119-32. [PMID: 25989025 DOI: 10.1111/bph.13193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Few neuropharmacological model systems use human neurons. Moreover, available test systems rarely reflect functional roles of co-cultured glial cells. There is no human in vitro counterpart of the widely used 1-methyl-4-phenyl-tetrahydropyridine (MPTP) mouse model of Parkinson's disease EXPERIMENTAL APPROACH We generated such a model by growing an intricate network of human dopaminergic neurons on a dense layer of astrocytes. In these co-cultures, MPTP was metabolized to 1-methyl-4-phenyl-pyridinium (MPP(+) ) by the glial cells, and the toxic metabolite was taken up through the dopamine transporter into neurons. Cell viability was measured biochemically and by quantitative neurite imaging, siRNA techniques were also used. KEY RESULTS We initially characterized the activation of PARP. As in mouse models, MPTP exposure induced (poly-ADP-ribose) synthesis and neurodegeneration was blocked by PARP inhibitors. Several different putative neuroprotectants were then compared in mono-cultures and co-cultures. Rho kinase inhibitors worked in both models; CEP1347, ascorbic acid or a caspase inhibitor protected mono-cultures from MPP(+) toxicity, but did not protect co-cultures, when used alone or in combination. Application of GSSG prevented degeneration in co-cultures, but not in mono-cultures. The surprisingly different pharmacological profiles of the models suggest that the presence of glial cells, and the in situ generation of the toxic metabolite MPP(+) within the layered cultures played an important role in neuroprotection. CONCLUSIONS AND IMPLICATIONS Our new model system is a closer model of human brain tissue than conventional cultures. Its use for screening of candidate neuroprotectants may increase the predictiveness of a test battery.
Collapse
Affiliation(s)
- Liudmila Efremova
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany.,Research Training Group 1331 (RTG1331), University of Konstanz, Konstanz, Germany
| | - Stefan Schildknecht
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Martina Adam
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Regina Pape
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany.,Research Training Group 1331 (RTG1331), University of Konstanz, Konstanz, Germany
| | - Benjamin Hanf
- Research Training Group 1331 (RTG1331), University of Konstanz, Konstanz, Germany.,Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| |
Collapse
|
31
|
Sisnaiske J, Hausherr V, Krug AK, Zimmer B, Hengstler JG, Leist M, van Thriel C. Acrylamide alters neurotransmitter induced calcium responses in murine ESC-derived and primary neurons. Neurotoxicology 2014; 43:117-126. [DOI: 10.1016/j.neuro.2014.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/28/2022]
|
32
|
Herrán E, Requejo C, Ruiz-Ortega JA, Aristieta A, Igartua M, Bengoetxea H, Ugedo L, Pedraz JL, Lafuente JV, Hernández RM. Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson's disease. Int J Nanomedicine 2014; 9:2677-87. [PMID: 24920904 PMCID: PMC4043720 DOI: 10.2147/ijn.s61940] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Current research efforts are focused on the application of growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), as neuroregenerative approaches that will prevent the neurodegenerative process in Parkinson’s disease. Continuing a previous work published by our research group, and with the aim to overcome different limitations related to growth factor administration, VEGF and GDNF were encapsulated in poly(lactic-co-glycolic acid) nanospheres (NS). This strategy facilitates the combined administration of the VEGF and GDNF into the brain of 6-hydroxydopamine (6-OHDA) partially lesioned rats, resulting in a continuous and simultaneous drug release. The NS particle size was about 200 nm and the simultaneous addition of VEGF NS and GDNF NS resulted in significant protection of the PC-12 cell line against 6-OHDA in vitro. Once the poly(lactic-co-glycolic acid) NS were implanted into the striatum of 6-OHDA partially lesioned rats, the amphetamine rotation behavior test was carried out over 10 weeks, in order to check for in vivo efficacy. The results showed that VEGF NS and GDNF NS significantly decreased the number of amphetamine-induced rotations at the end of the study. In addition, tyrosine hydroxylase immunohistochemical analysis in the striatum and the external substantia nigra confirmed a significant enhancement of neurons in the VEGF NS and GDNF NS treatment group. The synergistic effect of VEGF NS and GDNF NS allows for a reduction of the dose by half, and may be a valuable neurogenerative/neuroreparative approach for treating Parkinson’s disease.
Collapse
Affiliation(s)
- Enara Herrán
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain
| | - Catalina Requejo
- LaNCE, Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Asier Aristieta
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain
| | - Harkaitz Bengoetxea
- LaNCE, Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luisa Ugedo
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain
| | - Jose Vicente Lafuente
- LaNCE, Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosa Maria Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria, Spain ; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain
| |
Collapse
|
33
|
Lee JE, Lim MS, Park JH, Park CH, Koh HC. Nuclear NF-κB contributes to chlorpyrifos-induced apoptosis through p53 signaling in human neural precursor cells. Neurotoxicology 2014; 42:58-70. [DOI: 10.1016/j.neuro.2014.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023]
|
34
|
Watmuff B, Hartley BJ, Hunt CP, Pouton CW, Haynes JM. Pluripotent stem cell-derived dopaminergic neurons as models of neurodegeneration. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers utilize a number of models of Parkinson’s disease ranging in complexity from immortalized cell lines to nonhuman primates. These models are used to investigate everything from the mechanisms underlying neurodegeneration, to drugs that may improve patient outcomes. Each model system has advantages and disadvantages, depending on their application. In this review, the authors assess the potential value of embryonic stem and induced-pluripotent stem cells as additions to the crowded Parkinson’s disease in vitro model landscape.
Collapse
Affiliation(s)
- Bradley Watmuff
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brigham Jay Hartley
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Cameron Philip Hunt
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin William Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - John Michael Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
35
|
Gupta K, Chandran S, Hardingham GE. Human stem cell-derived astrocytes and their application to studying Nrf2-mediated neuroprotective pathways and therapeutics in neurodegeneration. Br J Clin Pharmacol 2013; 75:907-18. [PMID: 23126226 PMCID: PMC3612708 DOI: 10.1111/bcp.12022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/28/2012] [Indexed: 02/07/2023] Open
Abstract
Glia, including astrocytes, are increasingly at the forefront of neurodegenerative research for their role in the modulation of neuronal function and survival. Improved understanding of underlying disease mechanisms, including the role of the cellular environment in neurodegeneration, is central to therapeutic development for these currently untreatable diseases. In these endeavours, experimental models that more closely reproduce the human condition have the potential to facilitate the transition between experimental studies in model organisms and patient trials. In this review we discuss the growing role of astrocytes in neurodegenerative diseases, and how astrocytes generated from human pluripotent stem cells represent a useful tool for analyzing astrocytic signalling and influence on neuronal function.
Collapse
Affiliation(s)
- Kunal Gupta
- Anne McLaren Laboratory for Regenerative Medicine & Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | | | |
Collapse
|
36
|
Kiiski H, Aänismaa R, Tenhunen J, Hagman S, Ylä-Outinen L, Aho A, Yli-Hankala A, Bendel S, Skottman H, Narkilahti S. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks. Biol Open 2013; 2:605-12. [PMID: 23789111 PMCID: PMC3683163 DOI: 10.1242/bio.20134648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/12/2013] [Indexed: 12/19/2022] Open
Abstract
The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC)-derived neural cells could be cultured in human cerebrospinal fluid (CSF) in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.
Collapse
Affiliation(s)
- Heikki Kiiski
- Critical Care Medicine Research Group, Department of Intensive Care Unit, Tampere University Hospital , FI-33521 Tampere , Finland ; NeuroGroup, Institute of Biomedical Technology/BioMediTech, University of Tampere , FI-33520 Tampere , Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Herrán E, Ruiz-Ortega JÁ, Aristieta A, Igartua M, Requejo C, Lafuente JV, Ugedo L, Pedraz JL, Hernández RM. In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson's disease. Eur J Pharm Biopharm 2013; 85:1183-90. [PMID: 23639739 DOI: 10.1016/j.ejpb.2013.03.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/28/2013] [Accepted: 03/30/2013] [Indexed: 01/17/2023]
Abstract
In this work, the neuroregenerative potentials of microencapsulated VEGF, GDNF and their combination on a severely lesioned rat model were compared with the aim of developing a new strategy to treat advanced stages of Parkinson's disease. Both neurotrophic factors were separately encapsulated into polymeric microspheres (MSs) to obtain a continuous drug release over time. The regenerative effects of these growth factors were evaluated using a rotation behaviour test and quantified by the number of surviving TH+cells. The biological activities of encapsulated vascular endothelial growth factor (VEGF) and glial cell line-derived neurotrophic factor (GDNF) were investigated in HUVEC and PC12 cells, respectively. The treatment of 6-OHDA-lesioned rats with GDNF microspheres and with both VEGF and GDNF microspheres resulted in improved results in the rotation behaviour test. Both groups also showed higher levels of neuroregeneration/neuroreparation in the substantia nigra than the control group did. These results were confirmed by the pronounced TH+neuron recovery in the group receiving VEGF+GDNF-MS, demonstrating regenerative effects.
Collapse
Affiliation(s)
- Enara Herrán
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shukla A, Mohapatra TM, Agrawal AK, Parmar D, Seth K. Salsolinol induced apoptotic changes in neural stem cells: amelioration by neurotrophin support. Neurotoxicology 2013; 35:50-61. [PMID: 23261589 DOI: 10.1016/j.neuro.2012.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 11/20/2022]
Abstract
Salsolinol (SAL), a catechol isoquinoline has invited considerable attention due to its structural similarity with dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Its high endogenous presence in Parkinsonian brain implicated its possible association with the disease process. SAL is also present in alcohol beverages and certain food materials and can get access to brain especially in conditions of immature or impaired BBB. Besides this, the effect of SAL on neural stem cells (NSCs) which are potential candidates for adult neurogenesis and transplantation mediated rejuvenating attempts for Parkinson's disease (PD) brain has not been known so far. NSCs in both the cases have to overcome suppressive cues of diseased brain for their survival and function. In this study we explored the toxicity of SAL toward NSCs focusing on apoptosis and status of PI3K survival signaling. NSCs cultured from embryonic day 11 rat fetal brain including those differentiated to TH(+ve) colonies, when challenged with SAL (1-100μM), elicited a concentration and time dependent cell death/loss of mitochondrial viability. 10μM SAL on which significant mitochondrial impairment initiated was further used to study mechanism of toxicity. Morphological impairment, enhanced TUNEL positivity, cleaved caspase-3 and decreased Bcl-2:Bax suggested apoptosis. Sal toxicity coincided with reduced pAkt level and its downstream effectors: pCREB, pGSK-3β, Bcl-2 and neurotrophins GDNF, BDNF suggesting repressed PI3K/Akt signaling. Multiple neurotrophic factor support in the form of Olfactory Ensheathing Cell's Conditioned Media (OEC CM) potentially protected NSCs against SAL through activating PI3K/Akt pathway. This was confirmed on adding LY294002 the PI3K inhibitor which abolished the protection. We inferred that SAL exerts substantial toxicity toward NSCs. These findings will lead to better understanding of endogenous threats that might affect the fate of transplanted NSCs and their probable antidotes.
Collapse
Affiliation(s)
- A Shukla
- Indian Institute of Toxicology Research (CSIR), Developmental Toxicology Division, Mahatma Gandhi Marg, Post Box 80, Lucknow 226 001, India; Department of Microbiology, IMS, Banaras Hindu University, Varanasi 221 005, India
| | | | | | | | | |
Collapse
|
39
|
Peng J, Liu Q, Rao MS, Zeng X. Using human pluripotent stem cell-derived dopaminergic neurons to evaluate candidate Parkinson's disease therapeutic agents in MPP+ and rotenone models. ACTA ACUST UNITED AC 2013; 18:522-33. [PMID: 23364514 DOI: 10.1177/1087057112474468] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To begin to develop a high-throughput assay system to evaluate potential small-molecule therapy for Parkinson's disease (PD), we have performed a low-throughput assay with a small number of compounds using human pluripotent stem cell-derived dopaminergic neurons. We first evaluated the role of 44 compounds known to work in rodent systems in a 1-methyl-4-phenylpyridinium (MPP(+)) assay in a 96-well format using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay as a readout for neuroprotection. Glial cell-derived neurotrophic factor was used as a positive control because of its well-documented neuroprotective effect on dopaminergic neurons, and two concentrations of each drug were tested. Of 44 compounds screened, 16 showed a neuroprotective effect at one or both dosages tested. A dose-response curve of a subset of the 16 positives was established in the MPP(+) model. In addition, we validated neuroprotective effects of these compounds in a rotenone-induced dopaminergic neuronal cell death, another established model for PD. Our human primary dopaminergic neuron-based assays provide a platform for rapid screening and/or validation of potential neuroprotective agents in PD treatment using patient-specific cells and show the importance of using human cells for such assays.
Collapse
Affiliation(s)
- Jun Peng
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | |
Collapse
|
40
|
Stacey G. Sourcing and using stem cell lines for radiation research: Potential, challenges and good stem cell culture practice. Int J Radiat Biol 2012; 88:703-8. [PMID: 22823510 DOI: 10.3109/09553002.2012.714518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Exposition of best practice in management and experimental use of human stem cell lines in radiobiological research. This paper outlines the key challenges to be addressed by radiobiologists wishing to use human pluripotent stem cell (hPSC) lines in their research including human embryonic stem cell (hESC) lines and human induced pluirpotency stem (hiPSC) lines. It emphasises the importance of guidance already established for cell culture in general and outlines some further considerations specific to the culture of human pluripotent stem cell lines which may impact on the interpretation of data from radiobiological studies using these cells. Fundamental standards include obtaining cells from bona fide suppliers with suitable quality controls, screening cell lines to ensure absence of mycoplasma and authentication of cell lines by DNA profiling. For hESC and hiPSC lines, it is particularly important to recognise the significance of phenotypic and genetic stability and this paper will address approaches to reduce their impact. Quality assured banking of these two types of stem cell lines will facilitate reliable supply of quality controlled cells that can provide standardisation between laboratories and in the same laboratory over time. CONCLUSIONS hPSC lines could play an important role in future radiobiological research providing certain fundamental principles of good stem cell culture practice are adopted at the outset of such work.
Collapse
Affiliation(s)
- Glyn Stacey
- The National Institute for Biological Standards and Control-Health Protection Agency, DoReMi Workshop, Didcot, Oxfordshire, UK.
| |
Collapse
|
41
|
Swaroop M, Thorne N, Rao MS, Austin CP, McKew JC, Zheng W. Evaluation of cholesterol reduction activity of methyl-β-cyclodextrin using differentiated human neurons and astrocytes. JOURNAL OF BIOMOLECULAR SCREENING 2012; 17:1243-51. [PMID: 22923786 PMCID: PMC3530257 DOI: 10.1177/1087057112456877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent advances in stem cell technology have enabled large-scale production of human cells such as cardiomyocytes, hepatocytes, and neurons for evaluation of pharmacologic effect and toxicity of drug candidates. The assessment of compound efficacy and toxicity using human cells should lower the high clinical attrition rates of drug candidates by reducing the impact of species differences on drug efficacy and toxicity from animal studies. Methyl-β-cyclodextrin (MBCD) has been shown to reduce lysosomal cholesterol accumulation in skin fibroblasts derived from patients with Niemann Pick type C disease and in the NPC1-/- mouse model. However, the compound has never been tested in human differentiated neurons. We have determined the cholesterol reduction effect of MBCD in neurons differentiated from human neural stem cells (NSCs) and commercially available astrocytes. The use of NSCs for producing differentiated neurons in large quantities can significantly reduce the production time and enhance the reproducibility of screening results. The EC(50) values of MBCD on cholesterol reduction in human neurons and astrocytes were 66.9 and 110.7 µM, respectively. The results indicate that human neurons differentiated from the NSCs and human astrocytes are useful tools for evaluating pharmacologic activity and toxicity of drug candidates to predict their clinical efficacy.
Collapse
Affiliation(s)
- Manju Swaroop
- Therapeutics of Rare and Neglected Disease, National Center for Advancing Translational Sciences, Bethesda, MD 20892
| | - Natasha Thorne
- Therapeutics of Rare and Neglected Disease, National Center for Advancing Translational Sciences, Bethesda, MD 20892
| | - Mahendra S. Rao
- Center for Regenerative Medicine, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Christopher P. Austin
- Therapeutics of Rare and Neglected Disease, National Center for Advancing Translational Sciences, Bethesda, MD 20892
| | - John C. McKew
- Therapeutics of Rare and Neglected Disease, National Center for Advancing Translational Sciences, Bethesda, MD 20892
| | - Wei Zheng
- Therapeutics of Rare and Neglected Disease, National Center for Advancing Translational Sciences, Bethesda, MD 20892
| |
Collapse
|
42
|
Swistowski A, Zeng X. Scalable Production of Transplantable Dopaminergic Neurons from hESCs and iPSCs in Xeno‐Free Defined Conditions. ACTA ACUST UNITED AC 2012; Chapter 2:Unit2D.12. [DOI: 10.1002/9780470151808.sc02d12s22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrzej Swistowski
- Buck Institute for Age Research Novato California
- XCell Science Inc Novato California
| | - Xianmin Zeng
- Buck Institute for Age Research Novato California
| |
Collapse
|
43
|
Ylä-Outinen L, Joki T, Varjola M, Skottman H, Narkilahti S. Three-dimensional growth matrix for human embryonic stem cell-derived neuronal cells. J Tissue Eng Regen Med 2012; 8:186-94. [PMID: 22611014 DOI: 10.1002/term.1512] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 12/21/2022]
Abstract
The future of tissue engineering applications for neuronal cells will require a supportive 3D matrix. This particular matrix should be soft, elastic and supportive for cell growth. In this study, we characterized the suitability of a 3D synthetic hydrogel matrix, PuraMatrix™, as a growth platform for human embryonic stem cell (hESC)-derived neural cells. The viability of the cells grown on top of, inside and under the hydrogel was monitored. The maturation and electrical activity of the neuronal networks inside the hydrogel were further characterized. We showed that cells stayed viable on the top of the PuraMatrix™ surface and growth of the neural cells and neural processes was good. Further, hESC-derived neurons, astrocytes and oligodendrocytes all grew, matured and migrated when cultured inside the hydrogel. Importantly, neuronal cells were able to form electrically active connections that were verified using microelectrode array. Thus, PuraMatrix is a good supportive growth matrix for human neural cells and may serve as a matrix for neuronal scaffolds in neural tissue engineering.
Collapse
Affiliation(s)
- Laura Ylä-Outinen
- NeuroGroup, Institute of Biomedical Technology, University of Tampere, Tampere, Finland; BioMediTech, Tampere, Finland; The Science Center of Pirkanmaa Hospital District, Tampere University Hospital, Tampere, Finland
| | | | | | | | | |
Collapse
|
44
|
Stem cells as in vitro model of Parkinson's disease. Stem Cells Int 2012; 2012:980941. [PMID: 22619684 PMCID: PMC3350852 DOI: 10.1155/2012/980941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/13/2012] [Indexed: 01/05/2023] Open
Abstract
Progress in understanding neurodegenerative cell biology in Parkinson's disease (PD) has been hampered by a lack of predictive and relevant cellular models. In addition, the lack of an adequate in vitro human neuron cell-based model has been an obstacle for the uncover of new drugs for treating PD. The ability to generate induced pluripotent stem cells (iPSCs) from PD patients and a refined capacity to differentiate these iPSCs into DA neurons, the relevant disease cell type, promises a new paradigm in drug development that positions human disease pathophysiology at the core of preclinical drug discovery. Disease models derived from iPSC that manifest cellular disease phenotypes have been established for several monogenic diseases, but iPSC can likewise be used for phenotype-based drug screens in complex diseases for which the underlying genetic mechanism is unknown. Here, we highlight recent advances as well as limitations in the use of iPSC technology for modelling PD "in a dish" and for testing compounds against human disease phenotypes in vitro. We discuss how iPSCs are being exploited to illuminate disease pathophysiology, identify novel drug targets, and enhance the probability of clinical success of new drugs.
Collapse
|
45
|
Marine S, Freeman J, Riccio A, Axenborg ML, Pihl J, Ketteler R, Aspengren S. High-throughput transfection of differentiated primary neurons from rat forebrain. ACTA ACUST UNITED AC 2012; 17:692-6. [PMID: 22403411 DOI: 10.1177/1087057112439233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary neurons in culture are considered to be a highly relevant model in the study of neuronal development and activity. They can be cultivated and differentiated in vitro but are difficult to transfect using conventional methods. To address this problem, a capillary electroporation system called Cellaxess Elektra was developed for efficient and reproducible transfection of primary cortical and hippocampal neurons without significant impact on cell morphology and viability. The cells are transfected in any stage of differentiation and development, directly in cell culture plates. Genetic material is delivered in situ to as many as 384 samples at a time, which enables both high-throughput and high-quality screening for hard-to-transfect primary cells, meaning that gene function can be studied on a genome-wide scale in cells previously inaccessible to genetic manipulation.
Collapse
Affiliation(s)
- Shane Marine
- Department of Automated Biotechnology, Merck & Co., Inc., North Wales, PA, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Pistollato F, Bremer-Hoffmann S, Healy L, Young L, Stacey G. Standardization of pluripotent stem cell cultures for toxicity testing. Expert Opin Drug Metab Toxicol 2012; 8:239-57. [PMID: 22248265 DOI: 10.1517/17425255.2012.639763] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Pluripotent stem cell (PSC) lines offer a unique opportunity to derive various human cell types that can be exploited for human safety assessments in vitro and as such contribute to modern mechanistically oriented toxicity testing. AREAS COVERED This article reviews the two major types of PSC cultures that are currently most promising for toxicological applications: human embryonic stem cell lines and human induced PSC lines. Through the review, the article explains how these cell types will improve the current safety evaluations of chemicals and will allow a more efficient selection of drug candidates. Additionally, the article discusses the important issues of maintaining PSCs as well as their differentiation efficiency. EXPERT OPINION The demonstration of the reliability and relevance of in vitro toxicity tests for a given purpose is mandatory for their use in regulatory toxicity testing. Given the peculiar nature of PSCs, a high level of standardization of undifferentiated cell cultures as well as of the differentiation process is required in order to ensure the establishment of robust test systems. It is, therefore, of pivotal importance to define and internationally agree on crucial parameters to judge the quality of the cellular models before enrolling them for toxicity testing.
Collapse
Affiliation(s)
- Francesca Pistollato
- Institute for Health & Consumer Protection, Systems Toxicology Unit, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | | | | |
Collapse
|
47
|
Sison-Young RLC, Kia R, Heslop J, Kelly L, Rowe C, Cross MJ, Kitteringham NR, Hanley N, Park BK, Goldring CEP. Human pluripotent stem cells for modeling toxicity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:207-256. [PMID: 22776643 DOI: 10.1016/b978-0-12-398339-8.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The development of xenobiotics, driven by the demand for therapeutic, domestic and industrial uses continues to grow. However, along with this increasing demand is the risk of xenobiotic-induced toxicity. Currently, safety screening of xenobiotics uses a plethora of animal and in vitro model systems which have over the decades proven useful during compound development and for application in mechanistic studies of xenobiotic-induced toxicity. However, these assessments have proven to be animal-intensive and costly. More importantly, the prevalence of xenobiotic-induced toxicity is still significantly high, causing patient morbidity and mortality, and a costly impediment during drug development. This suggests that the current models for drug safety screening are not reliable in toxicity prediction, and the results not easily translatable to the clinic due to insensitive assays that do not recapitulate fully the complex phenotype of a functional cell type in vivo. Recent advances in the field of stem cell research have potentially allowed for a readily available source of metabolically competent cells for toxicity studies, derived using human pluripotent stem cells harnessed from embryos or reprogrammed from mature somatic cells. Pluripotent stem cell-derived cell types also allow for potential disease modeling in vitro for the purposes of drug toxicology and safety pharmacology, making this model possibly more predictive of drug toxicity compared with existing models. This article will review the advances and challenges of using human pluripotent stem cells for modeling metabolism and toxicity, and offer some perspectives as to where its future may lie.
Collapse
Affiliation(s)
- R L C Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85:79-117. [PMID: 21225242 PMCID: PMC3026927 DOI: 10.1007/s00204-010-0641-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
49
|
Ylä-Outinen L, Heikkilä J, Skottman H, Suuronen R, Aänismaa R, Narkilahti S. Human cell-based micro electrode array platform for studying neurotoxicity. FRONTIERS IN NEUROENGINEERING 2010; 3. [PMID: 20953240 PMCID: PMC2955435 DOI: 10.3389/fneng.2010.00111] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/30/2010] [Indexed: 12/15/2022]
Abstract
At present, most of the neurotoxicological analyses are based on in vitro and in vivo models utilizing animal cells or animal models. In addition, the used in vitro models are mostly based on molecular biological end-point analyses. Thus, for neurotoxicological screening, human cell-based analysis platforms in which the functional neuronal networks responses for various neurotoxicants can be also detected real-time are highly needed. Microelectrode array (MEA) is a method which enables the measurement of functional activity of neuronal cell networks in vitro for long periods of time. Here, we utilize MEA to study the neurotoxicity of methyl mercury chloride (MeHgCl, concentrations 0.5–500 nM) to human embryonic stem cell (hESC)-derived neuronal cell networks exhibiting spontaneous electrical activity. The neuronal cell cultures were matured on MEAs into networks expressing spontaneous spike train-like activity before exposing the cells to MeHgCl for 72 h. MEA measurements were performed acutely and 24, 48, and 72 h after the onset of the exposure. Finally, exposed cells were analyzed with traditional molecular biological methods for cell proliferation, cell survival, and gene and protein expression. Our results show that 500 nM MeHgCl decreases the electrical signaling and alters the pharmacologic response of hESC-derived neuronal networks in delayed manner whereas effects can not be detected with qRT-PCR, immunostainings, or proliferation measurements. Thus, we conclude that human cell-based MEA platform is a sensitive online method for neurotoxicological screening.
Collapse
Affiliation(s)
- Laura Ylä-Outinen
- Regea - Institute for Regenerative Medicine, University of Tampere and Tampere University Hospital Tampere, Finland
| | | | | | | | | | | |
Collapse
|
50
|
Hardingham GE, Patani R, Baxter P, Wyllie DJ, Chandran S. Human embryonic stem cell-derived neurons as a tool for studying neuroprotection and neurodegeneration. Mol Neurobiol 2010; 42:97-102. [PMID: 20431962 PMCID: PMC2948543 DOI: 10.1007/s12035-010-8136-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
The capacity to generate myriad differentiated cell types, including neurons, from human embryonic stem (hES) cell lines offers great potential for developing cell-based therapies and also for increasing our understanding of human developmental mechanisms. In addition, the emerging development of this technology as an experimental tool represents a potential opportunity for neuroscientists interested in mechanisms of neuroprotection and neurodegeneration. Potentially unlimited generation of well-defined functional neurons from hES and patient-specific induced pluripotent cells offers new systems to study disease mechanisms, signalling pathways and receptor pharmacology within a human cellular environment. Such systems may help in overcoming interspecies differences. Far from replacing rodent in vivo and primary culture systems, hES and induced disease-specific pluripotent stem cell-derived neurons offer a complementary resource to overcome issues of interspecies differences, accelerate drug discovery, study of disease mechanism and provide basic insight into human neuronal physiology.
Collapse
Affiliation(s)
- Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH89XD, UK.
| | | | | | | | | |
Collapse
|