1
|
Chi F, Griffiths JI, Nath A, Bild AH. Paradoxical cancer cell proliferation after FGFR inhibition through decreased p21 signaling in FGFR1-amplified breast cancer cells. Breast Cancer Res 2024; 26:54. [PMID: 38553760 PMCID: PMC10979625 DOI: 10.1186/s13058-024-01808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Fibroblast growth factors (FGFs) control various cellular functions through fibroblast growth factor receptor (FGFR) activation, including proliferation, differentiation, migration, and survival. FGFR amplification in ER + breast cancer patients correlate with poor prognosis, and FGFR inhibitors are currently being tested in clinical trials. By comparing three-dimensional spheroid growth of ER + breast cancer cells with and without FGFR1 amplification, our research discovered that FGF2 treatment can paradoxically decrease proliferation in cells with FGFR1 amplification or overexpression. In contrast, FGF2 treatment in cells without FGFR1 amplification promotes classical FGFR proliferative signaling through the MAPK cascade. The growth inhibitory effect of FGF2 in FGFR1 amplified cells aligned with an increase in p21, a cell cycle inhibitor that hinders the G1 to S phase transition in the cell cycle. Additionally, FGF2 addition in FGFR1 amplified cells activated JAK-STAT signaling and promoted a stem cell-like state. FGF2-induced paradoxical effects were reversed by inhibiting p21 or the JAK-STAT pathway and with pan-FGFR inhibitors. Analysis of patient ER + breast tumor transcriptomes from the TCGA and METABRIC datasets demonstrated a strong positive association between expression of FGF2 and stemness signatures, which was further enhanced in tumors with high FGFR1 expression. Overall, our findings reveal a divergence in FGFR signaling, transitioning from a proliferative to stemness state driven by activation of JAK-STAT signaling and modulation of p21 levels. Activation of these divergent signaling pathways in FGFR amplified cancer cells and paradoxical growth effects highlight a challenge in the use of FGFR inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Feng Chi
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, 1218 S Fifth Ave, Monrovia, CA, 91016, USA
| | - Jason I Griffiths
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, 1218 S Fifth Ave, Monrovia, CA, 91016, USA
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, 1218 S Fifth Ave, Monrovia, CA, 91016, USA
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, 1218 S Fifth Ave, Monrovia, CA, 91016, USA.
| |
Collapse
|
2
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Tarczykowska A, Engström N, Dobermann D, Powell J, Scheers N. Differential Effects of Iron Chelates vs. Iron Salts on Induction of Pro-Oncogenic Amphiregulin and Pro-Inflammatory COX-2 in Human Intestinal Adenocarcinoma Cell Lines. Int J Mol Sci 2023; 24:ijms24065507. [PMID: 36982582 PMCID: PMC10051564 DOI: 10.3390/ijms24065507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
We previously showed that two iron compounds that are orally ingested by humans, namely ferric EDTA and ferric citrate, can induce an oncogenic growth factor (amphiregulin) in human intestinal epithelial adenocarcinoma cell lines. Here, we further screened these iron compounds, plus four other iron chelates and six iron salts (i.e., 12 oral iron compounds in total), for their effects on biomarkers of cancer and inflammation. Ferric pyrophosphate and ferric EDTA were the main inducers of amphiregulin and its receptor monomer, IGFr1. Moreover, at the maximum iron concentrations investigated (500 µM), the highest levels of amphiregulin were induced by the six iron chelates, while four of these also increased IGfr1. In addition, we observed that ferric pyrophosphate promoted signaling via the JAK/STAT pathway by up-regulating the cytokine receptor subunit IFN-γr1 and IL-6. For pro-inflammatory cyclooxygenase-2 (COX-2), ferric pyrophosphate but not ferric EDTA elevated intracellular levels. This, however, did not drive the other biomarkers based on COX-2 inhibition studies and was probably downstream of IL-6. We conclude that of all oral iron compounds, iron chelates may particularly elevate intracellular amphiregulin. Ferric pyrophosphate additionally induced COX-2, probably because of the high IL-6 induction that was observed with this compound.
Collapse
Affiliation(s)
- Agata Tarczykowska
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Niklas Engström
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Darja Dobermann
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Jonathan Powell
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Nathalie Scheers
- Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
4
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Alasady MJ, Terry AR, Pierce AD, Cavalier MC, Blaha CS, Adipietro KA, Wilder PT, Weber DJ, Hay N. The calcium-binding protein S100B reduces IL6 production in malignant melanoma via inhibition of RSK cellular signaling. PLoS One 2021; 16:e0256238. [PMID: 34411141 PMCID: PMC8376063 DOI: 10.1371/journal.pone.0256238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.
Collapse
Affiliation(s)
- Milad J. Alasady
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Alexander R. Terry
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Adam D. Pierce
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Michael C. Cavalier
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Catherine S. Blaha
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Kaylin A. Adipietro
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul T. Wilder
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States of America
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
6
|
Ismerim AB, de Oliveira Araújo IB, de Aquino Xavier FC, Rocha CAG, Macedo CL, Cangussu MCT, Freitas VS, Della Coletta R, Cury PR, Santos JN. Mast Cells and Proteins Related to Myofibroblast Differentiation (PAR-2, IL-6, and TGFβ1) in Salivary Cancers: A Preliminary Study. Appl Immunohistochem Mol Morphol 2021; 29:e57-e67. [PMID: 33797435 DOI: 10.1097/pai.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/27/2021] [Indexed: 11/26/2022]
Abstract
Salivary gland neoplasms represent an important group of cancers in the head and neck and myoepithelial cells play a key role on the development these tumors. This study evaluated the distribution of mast cells and related proteins (PAR-2, TGFβ1, IL-6) to the myofibroblastic differentiation in malignant tumors of salivary glands with and without myoepithelial differentiation. Immunohistochemical assessement for tryptase mast cells, SMA, PAR-2, TGFβ1, IL-6 was performed in 10 cases of polymorphous low-grade adenocarcinoma, 14 cases of mucoepidermoid carcinoma (MEC) and 10 cases of adenoid cystic carcinoma. When the density of mast cells were compared between tumors, their density was significantly higher in MEC (P=0.08). Tumors with high expression of PAR-2 (79.4%) exhibited a high density of mast cells. Myofibroblasts were more frequent in malignant tumors with low expression (<50%) of cell masts. Individual analysis of the tumors showed no significant difference between the expression of PAR-2, IL-6, TGFβ1, and myofibroblasts. When the density of mast cells, myofibroblasts and the expression of PAR-2 protein, IL-6, and TGFβ1 were compared, it was no statistically significant difference between tumors with and without myoepithelial differentiation. The results of present study suggest a possible participation of mast cells and especially of PAR-2 in the development and progression of malignant salivary cancers, regardless of myoepithelial content.
Collapse
Affiliation(s)
- Adna B Ismerim
- Department of Health, School of Dentistry, Southwestern State University of Bahia, Jequié
| | | | | | | | | | - Maria C T Cangussu
- Department of Dental Public Health, School of Dentistry, Federal University of Bahia
| | - Valéria S Freitas
- Department of Health, School of Dentistry, State University of Feira de Santana, Feira de Santana
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Patrícia R Cury
- Department of Periodontic, School of Dentistry, State University of Feira de Santana, Feira de Santana, Bahia
| | | |
Collapse
|
7
|
Pawlikowska M, Jędrzejewski T, Slominski AT, Brożyna AA, Wrotek S. Pigmentation Levels Affect Melanoma Responses to Coriolus versicolor Extract and Play a Crucial Role in Melanoma-Mononuclear Cell Crosstalk. Int J Mol Sci 2021; 22:ijms22115735. [PMID: 34072104 PMCID: PMC8198516 DOI: 10.3390/ijms22115735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma, the malignancy originating from pigment-producing melanocytes, is the most aggressive form of skin cancer and has a poor prognosis once the disease starts to metastasize. The process of melanin synthesis generates an immunosuppressive and mutagenic environment, and can increase melanoma cell resistance to different treatment modalities, including chemo-, radio- or photodynamic therapy. Recently, we have shown that the presence of melanin pigment inhibits the melanoma cell response to bioactive components of Coriolus versicolor (CV) Chinese fungus. Herein, using the same human melanoma cell line in which the level of pigmentation can be controlled by the L-tyrosine concentration in culture medium, we tested the effect of suppression of melanogenesis on the melanoma cell response to CV extract and investigated the cell death pathway induced by fungus extract in sensitized melanoma cells. Our data showed that susceptibility to CV-induced melanoma cell death is significantly increased after cell depigmentation. To the best of our knowledge, we are the first to demonstrate that CV extract can induce RIPK1/RIPK3/MLKL-mediated necroptosis in depigmented melanoma cells. Moreover, using the co-culture system, we showed that inhibition of the tyrosinase activity in melanoma cells modulates cytokine expression in co-cultured mononuclear cells, indicating that depigmentation of melanoma cells may activate immune cells and thereby influence a host anticancer response.
Collapse
Affiliation(s)
- Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
- Correspondence: ; Tel.: +48-(56)-611-25-15
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Laboratory Service of the VA Medical Center, Birmingham, AL 35294, USA
| | - Anna A. Brożyna
- Department of Human Biology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
| |
Collapse
|
8
|
Gharibi T, Babaloo Z, Hosseini A, Abdollahpour-alitappeh M, Hashemi V, Marofi F, Nejati K, Baradaran B. Targeting STAT3 in cancer and autoimmune diseases. Eur J Pharmacol 2020; 878:173107. [DOI: 10.1016/j.ejphar.2020.173107] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
9
|
Zu T, Wen J, Xu L, Li H, Mi J, Li H, Brakebusch C, Fisher DE, Wu X. Up-Regulation of Activating Transcription Factor 3 in Human Fibroblasts Inhibits Melanoma Cell Growth and Migration Through a Paracrine Pathway. Front Oncol 2020; 10:624. [PMID: 32373541 PMCID: PMC7187895 DOI: 10.3389/fonc.2020.00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
The treatment of melanoma has remained a difficult challenge. Targeting the tumor stroma has recently attracted attention for developing novel strategies for melanoma therapy. Activating transcription factor 3 (ATF3) plays a crucial role in regulating tumorigenesis and development, but whether the expression of ATF3 in human dermal fibroblasts (HDFs) can affect melanoma development hasn't been studied. Our results show that ATF3 expression is downregulated in stromal cells of human melanoma. HDFs expressing high levels of ATF3 suppressed the growth and migration of melanoma cells in association with downregulation of different cytokines including IL-6 in vitro. In vivo, HDFs with high ATF3 expression reduced tumor formation. Adding recombinant IL-6 to melanoma cells reversed those in vitro and in vivo effects, suggesting that ATF3 expression by HDFs regulates melanoma progression through the IL-6/STAT3 pathway. More importantly, HDFs pretreated with cyclosporine A or phenformin to induce ATF3 expression inhibited melanoma cell growth in vitro and in vivo. In summary, our study reveals that ATF3 suppresses human melanoma growth and that inducing the expression of ATF3 in HDFs can inhibit melanoma growth, a new potential melanoma therapeutic approach.
Collapse
Affiliation(s)
- Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Orthodontics, Liaocheng People's Hospital, Liaocheng, China
| | - Hui Li
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Jiang S, Wang S, Zhang L, Tian L, Li L, Liu Z, Dong Q, Lv X, Mu H, Zhang Q, Wang B. Hesperetin as an adjuvant augments protective anti-tumour immunity responses in B16F10 melanoma by stimulating cytotoxic CD8 + T cells. Scand J Immunol 2020; 91:e12867. [PMID: 31975405 DOI: 10.1111/sji.12867] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Hesperetin (HES) is a dihydroflavone with the molecular formula of C16H14O6. It has been reported that Hesperetin has antioxidant and anticancer effects. Recent studies showed that it can also regulate immune responses. To assess its potential function as a vaccine adjuvant, we formulated HES with inactivated B16F10 melanoma cells and determined whether it would enhance the activation of antigen-presenting cells by experiments in vivo and in vitro. We found that HES activated the PI3K-Akt signalling pathway in antigen-presenting cells (APCs), enhanced cytotoxic T lymphocyte (CTL) responses and deactivated tolerogenic T cells. We also observed that inactivated B16F10 cells in combination with HES vaccine inhibited the growth of mice tumours, resulting in improved overall survival compared to the effects of inactivated B16F10 cell vaccine. To verify that CD8+ T cells play a key role in inhibiting the development of melanoma, we transferred the sorted CD8+ T cells from immunized mice to B16F10 challenged models and found that the survival rate of tumour-bearing mice was significantly prolonged. Taken together, these results suggest that hesperetin can be used as a potential adjuvant to improve tumour immune responses and antigen immunogenicity.
Collapse
Affiliation(s)
- Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuang Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lina Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Le Tian
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ling Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zeyuan Liu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qiwen Dong
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xue Lv
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haiyu Mu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qianwen Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
12
|
Mori R, Wauman J, Icardi L, Van der Heyden J, De Cauwer L, Peelman F, De Bosscher K, Tavernier J. TYK2-induced phosphorylation of Y640 suppresses STAT3 transcriptional activity. Sci Rep 2017; 7:15919. [PMID: 29162862 PMCID: PMC5698428 DOI: 10.1038/s41598-017-15912-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
STAT3 is a pleiotropic transcription factor involved in homeostatic and host defense processes in the human body. It is activated by numerous cytokines and growth factors and generates a series of cellular effects. Of the STAT-mediated signal transduction pathways, STAT3 transcriptional control is best understood. Jak kinase dependent activation of STAT3 relies on Y705 phosphorylation triggering a conformational switch that is stabilized by intermolecular interactions between SH2 domains and the pY705 motif. We here show that a second tyrosine phosphorylation within the SH2 domain at position Y640, induced by Tyk2, negatively controls STAT3 activity. The Y640F mutation leads to stabilization of activated STAT3 homodimers, accelerated nuclear translocation and superior transcriptional activity following IL-6 and LIF stimulation. Moreover, it unlocks type I IFN-dependent STAT3 signalling in cells that are normally refractory to STAT3 transcriptional activation.
Collapse
Affiliation(s)
- Raffaele Mori
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Joris Wauman
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Laura Icardi
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Università vita-salute San Raffaele, Via Olgettina Milano, 58, 20132, Milano, Italy
| | - José Van der Heyden
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lode De Cauwer
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Argenx BVBA Industriepark Zwijnaarde 7, 9052 Zwijnaarde, Ghent, Belgium
| | - Frank Peelman
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Cytokine Receptor Lab, VIB-UGent Center for Medical Biotechnology, 9000, Ghent, Belgium.
- Department of Biochemistry, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
13
|
Siavash H, Nikitakis N, Sauk J. Signal Transducers and Activators of Transcription: Insights into the Molecular Basis of Oral Cancer. ACTA ACUST UNITED AC 2016; 15:298-307. [DOI: 10.1177/154411130401500505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent efforts on developing more direct and effective targets for cancer therapy have revolved around a family of transcription factors known as STATs (signal transducers and activators of transcription). STAT proteins are latent cytoplasmic transcription factors that become activated in response to extracellular signaling proteins. STAT proteins have been convincingly reported to possess oncogenic properties in a plethora of human cancers, including oral and oropharyngeal cancer. Signal transduction pathways mediated by these oncogenic transcription factors and their regulation in oral cancer are the focus of this review.
Collapse
Affiliation(s)
- H. Siavash
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| | - N.G. Nikitakis
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| | - J.J. Sauk
- Department of Biomedical Sciences and
- Department of Diagnostic Sciences and Pathology, University of Maryland, Dental School, 666 West Baltimore Street, Room 4-C-02, Baltimore, MD 21201; and
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
14
|
Tocilizumab unmasks a stage-dependent interleukin-6 component in statin-induced apoptosis of metastatic melanoma cells. Melanoma Res 2016; 25:284-94. [PMID: 26020489 PMCID: PMC4492793 DOI: 10.1097/cmr.0000000000000172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The interleukin (IL)-6 inhibits the growth of early-stage melanoma cells, but not metastatic cells. Metastatic melanoma cells are susceptible to statin-induced apoptosis, but this is not clear for early-stage melanoma cells. This study aimed to investigate the IL-6 susceptibility of melanoma cells from different stages in the presence of simvastatin to overcome loss of growth arrest. ELISA was used to detect secreted IL-6 in human melanoma cells. The effects of IL-6 were measured by western blots for STAT3 and Bcl-2 family proteins. Apoptosis and proliferation were measured by caspase 3 activity, Annexin V staining, cell cycle analysis, and a wound-healing assay. Human metastatic melanoma cells A375 and 518A2 secrete high amounts of IL-6, in contrast to early-stage WM35 cells. Canonical IL-6 signaling is intact in these cells, documented by transient phosphorylation of STAT3. Although WM35 cells are highly resistant to simvastatin-induced apoptosis, coadministration with IL-6 enhanced the susceptibility to undergo apoptosis. This proapoptotic effect of IL-6 might be explained by a downregulation of Bcl-XL, observed only in WM35 cells. Furthermore, the IL-6 receptor blocking antibody tocilizumab was coadministered and unmasked an IL-6-sensitive proportion in the simvastatin-induced caspase 3 activity of metastatic melanoma cells. These results confirm that simvastatin facilitates apoptosis in combination with IL-6. Although endogenous IL-6 secretion is sufficient in metastatic melanoma cells, exogenously added IL-6 is needed for WM35 cells. This effect may explain the failure of simvastatin to reduce melanoma incidence in clinical trials and meta-analyses.
Collapse
|
15
|
Abstract
The STAT3 is often dysregulated in genitourinary tumors. In prostate cancer, STAT3 activation correlates with Gleason score and pathological stage and modulates cancer stem cells and epithelial-mesenchymal transition. In addition, STAT3 promotes the progression from carcinoma in situ to invasive bladder cancer and modulates renal cell carcinoma angiogenesis by increasing the expression of HIF1α and VEGF. STAT3 is also involved in the response to tyrosine kinase inhibitors sunitinib and axitinib, in patients with metastatic renal cell carcinoma, and to second-generation androgen receptor inhibitor enzalutamide in patients with advanced prostate cancer. In this review, we describe the role of STAT3 in genitourinary tumors, thus describing its potential for future therapeutic strategies.
Collapse
|
16
|
Rescigno T, Capasso A, Tecce MF. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree. J Cell Physiol 2015; 231:1226-36. [PMID: 26480024 DOI: 10.1002/jcp.25217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case.
Collapse
Affiliation(s)
- Tania Rescigno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | |
Collapse
|
17
|
Magnussen GI, Emilsen E, Giller Fleten K, Engesæter B, Nähse-Kumpf V, Fjær R, Slipicevic A, Flørenes VA. Combined inhibition of the cell cycle related proteins Wee1 and Chk1/2 induces synergistic anti-cancer effect in melanoma. BMC Cancer 2015; 15:462. [PMID: 26054341 PMCID: PMC4460948 DOI: 10.1186/s12885-015-1474-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/26/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Malignant melanoma has an increasing incidence rate and the metastatic disease is notoriously resistant to standard chemotherapy. Loss of cell cycle checkpoints is frequently found in many cancer types and makes the cells reliant on compensatory mechanisms to control progression. This feature may be exploited in therapy, and kinases involved in checkpoint regulation, such as Wee1 and Chk1/2, have thus become attractive therapeutic targets. METHODS In the present study we combined a Wee1 inhibitor (MK1775) with Chk1/2 inhibitor (AZD7762) in malignant melanoma cell lines grown in vitro (2D and 3D cultures) and in xenografts models. RESULTS Our in vitro studies showed that combined inhibition of Wee1 and Chk1/2 synergistically decreased viability and increased apoptosis (cleavage of caspase 3 and PARP), which may be explained by accumulation of DNA-damage (increased expression of γ-H2A.X)--and premature mitosis of S-phase cells. Compared to either inhibitor used as single agents, combined treatment reduced spheroid growth and led to greater tumour growth inhibition in melanoma xenografts. CONCLUSIONS These data provide a rationale for further evaluation of the combination of Wee1 and Chk1/2 inhibitors in malignant melanoma.
Collapse
Affiliation(s)
- Gry Irene Magnussen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway.
| | - Elisabeth Emilsen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway.
| | - Karianne Giller Fleten
- Department of Tumour Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.
| | - Birgit Engesæter
- Department of Tumour Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.
| | - Viola Nähse-Kumpf
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.
| | - Roar Fjær
- Department of Medical Genetics, Ullevål University Hospital, Oslo, Norway.
| | - Ana Slipicevic
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway.
| | - Vivi Ann Flørenes
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway.
| |
Collapse
|
18
|
Sabatino ME, Petiti JP, Sosa LDV, Pérez PA, Gutiérrez S, Leimgruber C, Latini A, Torres AI, De Paul AL. Evidence of cellular senescence during the development of estrogen-induced pituitary tumors. Endocr Relat Cancer 2015; 22:299-317. [PMID: 25792544 DOI: 10.1530/erc-14-0333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
Although pituitary adenomas represent 25% of intracranial tumors, they are usually benign, with the mechanisms by which these tumors usually avoid an invasive profile and metastatic growth development still remaining unclear. In this context, cellular senescence might constitute a plausible explanation for the benign nature of pituitary adenomas. In this study, we investigated the emergence of cellular senescence as a growth control mechanism during the progression of estrogen-induced pituitary tumors. The quantification of Ki67-immunopositive cells in the pituitaries of estrogenized male rats after 10, 20, 40, and 60 days revealed that the mitogenic potential rate was not sustained for the whole period analyzed and successively decreased after 10 days of estrogen exposure. In addition, the expression of cellular senescence features, such as the progressive rise in the enzymatic senescence-associated b-galactosidase (SA-b-gal) activity, IL6, IL1b, and TGFb expression, was observed throughout pituitary tumor development. Furthermore, tumoral pituitary cells also displayed nuclear pATM expression, indicating activated DNA damage signaling, with a significant increase in p21 expression also being detected. The associations among DNA damage signaling activation, SA-b-gal expression, and p21 may provide a reliable combination of senescence-associated markers for in vivo pituitary senescence detection. These results suggest a role for this cellular process in the regulation of pituitary cell growth. Thus, cellular senescence should be conceived as a contributing component to the benign nature of pituitary adenomas, thereby influencing the capability of the pituitary gland to avoid unregulated cell proliferation.
Collapse
|
19
|
Santoni M, Massari F, Del Re M, Ciccarese C, Piva F, Principato G, Montironi R, Santini D, Danesi R, Tortora G, Cascinu S. Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer. Expert Opin Investig Drugs 2015; 24:809-24. [PMID: 25746129 DOI: 10.1517/13543784.2015.1020370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) mediates the expression of a variety of genes in response to cell stimuli and thus plays a key role in several cellular processes such as cell growth and apoptosis. Deregulation of the STAT3 activity has been shown in many malignancies, including breast, head and neck, prostate, pancreas, ovarian and brain cancers and melanoma. Thus, STAT3 may represent an ideal target for cancer therapy. AREAS COVERED The authors review recent data on the role of STAT3 in tumor initiation and progression, as well as the ongoing clinical trials in cancer patients. The content includes information derived from trial databases, regulatory authorities and scientific literature. EXPERT OPINION Targeting STAT3 activation leads to the inhibition of tumor growth and metastasis both in vitro and in vivo without affecting normal cells; this suggests that STAT3 could be a valid molecular target for cancer therapy. Extensive clinical research is trying to find anti-STAT3 agents with high single-agent activity. The identification and development of novel drugs that can target deregulated STAT3 activation effectively is both a scientific and clinical challenge that needs to be addressed in the near future.
Collapse
Affiliation(s)
- Matteo Santoni
- Polytechnic University of the Marche Region, Medical Oncology, AOU Ospedali Riuniti , via Conca 71, 60126 Ancona , Italy +39 0715964263 ; +39 0715964269 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zurgil U, Ben-Ari A, Atias K, Isakov N, Apte R, Livneh E. PKCη promotes senescence induced by oxidative stress and chemotherapy. Cell Death Dis 2014; 5:e1531. [PMID: 25412309 PMCID: PMC4260739 DOI: 10.1038/cddis.2014.481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Senescence is characterized by permanent cell-cycle arrest despite continued viability and metabolic activity, in conjunction with the secretion of a complex mixture of extracellular proteins and soluble factors known as the senescence-associated secretory phenotype (SASP). Cellular senescence has been shown to prevent the proliferation of potentially tumorigenic cells, and is thus generally considered a tumor suppressive process. However, some SASP components may act as pro-tumorigenic mediators on premalignant cells in the microenvironment. A limited number of studies indicated that protein kinase C (PKC) has a role in senescence, with different isoforms having opposing effects. It is therefore important to elucidate the functional role of specific PKCs in senescence. Here we show that PKCη, an epithelial specific and anti-apoptotic kinase, promotes senescence induced by oxidative stress and DNA damage. We further demonstrate that PKCη promotes senescence through its ability to upregulate the expression of the cell cycle inhibitors p21Cip1 and p27Kip1 and enhance transcription and secretion of interleukin-6 (IL-6). Moreover, we demonstrate that PKCη creates a positive loop for reinforcing senescence by increasing the transcription of both IL-6 and IL-6 receptor, whereas the expression of IL-8 is specifically suppressed by PKCη. Thus, the presence/absence of PKCη modulates major components of SASP. Furthermore, we show that the human polymorphic variant of PKCη, 374I, that exhibits higher kinase activity in comparison to WT-374V, is also more effective in IL-6 secretion, p21Cip1 expression and the promotion of senescence, further supporting a role for PKCη in senescence. As there is now considerable interest in senescence activation/elimination to control tumor progression, it is first crucial to reveal the molecular regulators of senescence. This will improve our ability to develop new strategies to harness senescence as a potential cancer therapy in the future.
Collapse
Affiliation(s)
- U Zurgil
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - A Ben-Ari
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - K Atias
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - N Isakov
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - R Apte
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - E Livneh
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
21
|
Tachibana S, Zhang X, Ito K, Ota Y, Cameron AM, Williams GM, Sun Z. Interleukin-6 is required for cell cycle arrest and activation of DNA repair enzymes after partial hepatectomy in mice. Cell Biosci 2014; 4:6. [PMID: 24484634 PMCID: PMC3922598 DOI: 10.1186/2045-3701-4-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022] Open
Abstract
Background Interleukin-6 (IL-6) has been shown to be vital for liver regeneration, however the specific mechanisms and factors involved remain incompletely defined. The present study aimed to investigate whether IL-6 exerts its protective effects via arresting the cell cycle allowing base excision and repair of oxidized DNA after hepatectomy. Results Following seventy percent partial hepatectomy (PH) in wild type (WT) mice IL-6 serum levels increased reaching peak levels at 3 hours. This was associated with markers of cell cycle arrest as p21 expression was increased and cyclin D1 and proliferating cell nuclear antigen (PCNA) expression decreased. In the absence of IL-6, markers of cell cycle arrest were absent and the number of bromodeoxyuridine (BrdU) positive cells was significantly higher at 28, 32 and 36 hours after PH. The mRNAs for DNA repair enzymes, including Neil-1, 8-oxodGTPase, OGG1, Apex1, and UDG (DNA glycosylase) were increased 2 to 4 fold in WT mice at 6 and/or 12 hours after PH compared to IL-6 knockout (KO) mice. The protein levels of Neil1 and OGG1 were also significantly increased in WT mice compared to KO mice. Pathological changes were far greater and survival was less in IL-6 KO mice than in WT mice. Administration of IL-6 in KO mice restored p21 and DNA repair enzyme expression to wild-type levels and survival was improved. Conclusions IL-6 caused cell cycle arrest and delayed proliferation during the first day after PH. This delay was associated with the activation of DNA repair enzymes resulting in accurate replication and restoration of hepatic mass.
Collapse
Affiliation(s)
- Shingo Tachibana
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA.,Department of Surgery, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Xiuying Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA.,School of Life Science, Tianjin University, Tianjin, China
| | - Kazushige Ito
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA.,Department of Surgery, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Yoshihiro Ota
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA
| | - George Melville Williams
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 771, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Shin DY, Jang KS, Kim BY, Choi JE, Yoon H, Ko YH, Jeong HS. Comparison of adenoid cystic carcinomas arising from the parotid gland vs. the submandibular gland: focus on systemic metastasis and tumor-associated blood vessels. J Oral Pathol Med 2014; 43:441-7. [PMID: 24456477 DOI: 10.1111/jop.12155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although several studies reported that distant metastasis occurs more frequently in the tumors of submandibular gland (SMG) than parotid gland (PG), why SMG tumors preferentially metastasize to distant organs is not fully understood. We aimed to identify the differential tumor microenvironment for distant metastasis and possible underlying mechanisms. METHODS We retrieved 27 cases of 1-4-cm-sized adenoid cystic carcinomas (ACCs) arising from the PG (n = 12) and SMG (n = 15). c-KIT, VEGF-R2, and CD31 staining were quantified by image-based analysis to define the positive expression or tumor-associated vessel areas in two representative sections per case. In addition, angiogenesis-related genomic expression profiling was carried out to explore the underlying mechanism, which was confirmed by RT-PCR and immunohistochemistry. RESULTS Earlier systemic dissemination within 2 years was detected exclusively in SMG ACCs (5/15). The area of tumor-associated blood vessels was larger in SMG ACCs than PG ACCs, and ACCs showing distant metastasis had greater blood vessel area than those without metastasis. Interestingly, normal SMG had more blood vessels per area than PG. Among angiogenesis-related signals, the level of IL-6 was significantly lower in SMG ACCs than PG ACCs. Moreover, IL-6 expression decreased significantly in SMG ACCs compared with that in normal SMG, whereas it was up-regulated in PG ACCs. CONCLUSION ACCs in the SMG microenvironment have more abundant tumor-associated blood vessels than PG ACCs, which may explain the higher risk of distant metastasis from SMG tumors.
Collapse
Affiliation(s)
- Da-Yong Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Mallampalli RK, Kaercher L, Snavely C, Pulijala R, Chen BB, Coon T, Zhao J, Agassandian M. Fbxl12 triggers G1 arrest by mediating degradation of calmodulin kinase I. Cell Signal 2013; 25:2047-59. [PMID: 23707388 DOI: 10.1016/j.cellsig.2013.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
Cell cycle progression through its regulatory control by changes in intracellular Ca(2+) levels at the G1/S transition mediates cellular proliferation and viability. Ca(2+)/CaM-dependent kinase 1 (CaMKI) appears critical in regulating the assembly of the cyclin D1/cdk4 complex essential for G1 progression, but how this occurs is unknown. Cyclin D1/cdk4 assembly in the early G1 phase is also regulated via binding to p27. Here, we show that a ubiquitin E3 ligase component, F-box protein Fbxl12, mediates CaMKI degradation via a proteasome-directed pathway leading to disruption of cyclin D1/cdk4 complex assembly and resultant G1 arrest in lung epithelia. We also demonstrate that i) CaMKI phosphorylates p27 at Thr(157) and Thr(198) in human cells and at Thr(170) and Thr(197) in mouse cells to modulate its subcellular localization; ii) Fbxl12-induced CaMKI degradation attenuates p27 phosphorylation at these sites in early G1 and iii) activation of CaMKI during G1 transition followed by p27 phosphorylation appears to be upstream to other p27 phosphorylation events, an effect abrogated by Fbxl12 overexpression. Lastly, known inducers of G1 arrest significantly increase Fbxl12 levels in cells. Thus, Fbxl12 may be a previously uncharacterized, functional growth inhibitor regulating cell cycle progression that might be used for mechanism-based therapy.
Collapse
Affiliation(s)
- Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Magnussen GI, Holm R, Emilsen E, Rosnes AKR, Slipicevic A, Flørenes VA. High expression of Wee1 is associated with poor disease-free survival in malignant melanoma: potential for targeted therapy. PLoS One 2012; 7:e38254. [PMID: 22719872 PMCID: PMC3373567 DOI: 10.1371/journal.pone.0038254] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/02/2012] [Indexed: 12/30/2022] Open
Abstract
Notoriously resistant malignant melanoma is one of the most increasing forms of cancer worldwide; there is thus a precarious need for new treatment options. The Wee1 kinase is a major regulator of the G2/M checkpoint, and halts the cell cycle by adding a negative phosphorylation on CDK1 (Tyr15). Additionally, Wee1 has a function in safeguarding the genome integrity during DNA synthesis. To assess the role of Wee1 in development and progression of malignant melanoma we examined its expression in a panel of paraffin-embedded patient derived tissue of benign nevi and primary- and metastatic melanomas, as well as in agarose-embedded cultured melanocytes. We found that Wee1 expression increased in the direction of malignancy, and showed a strong, positive correlation with known biomarkers involved in cell cycle regulation: Cyclin A (p<0.0001), Ki67 (p<0.0001), Cyclin D3 (p = 0.001), p21Cip1/WAF1 (p = 0.003), p53 (p = 0.025). Furthermore, high Wee1 expression was associated with thicker primary tumors (p = 0.001), ulceration (p = 0.005) and poor disease-free survival (p = 0.008). Transfections using siWee1 in metastatic melanoma cell lines; WM239WTp53, WM45.1MUTp53 and LOXWTp53, further support our hypothesis of a tumor promoting role of Wee1 in melanomas. Whereas no effect was observed in LOX cells, transfection with siWee1 led to accumulation of cells in G1/S and S phase of the cell cycle in WM239 and WM45.1 cells, respectively. Both latter cell lines displayed DNA damage and induction of apoptosis, in the absence of Wee1, indicating that the effect of silencing Wee1 may not be solely dependent of the p53 status of the cells. Together these results reveal the importance of Wee1 as a prognostic biomarker in melanomas, and indicate a potential role for targeted therapy, alone or in combination with other agents.
Collapse
Affiliation(s)
| | - Ruth Holm
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
| | - Elisabeth Emilsen
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Ana Slipicevic
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Vivi Ann Flørenes
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
26
|
Magnussen GI, Ree Rosnes AK, Shahzidi S, Dong HP, Emilsen E, Engesæter B, Flørenes VA. Synthetic retinoid CD437 induces apoptosis and acts synergistically with TRAIL receptor-2 agonist in malignant melanoma. Biochem Biophys Res Commun 2012; 420:516-22. [PMID: 22446330 DOI: 10.1016/j.bbrc.2012.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/09/2022]
Abstract
The novel synthetic retinoid, CD437, shows potent anti-tumor activity in a range of different cancer cell lines and now serves as a prototype for development of new retinoid related molecules (RRMs). The purpose of this study was to examine the effect and cellular targets of CD437 in the human metastatic melanoma cell lines FEMX-1 and WM239. We showed that treatment with CD437 led to cell cycle arrest and induced apoptosis through both the extrinsic- and intrinsic pathways (caspase 8, -9 and PARP cleavage) in both cell lines. Interestingly, apoptosis was induced independently of DNA-fragmentation in FEMX-1 cells, and appeared partially caspase-independent in the WM239 cells. Additionally, up-regulation of CHOP mRNA and cathepsin D protein expression, following retinoid treatment, suggests involvement of the endoplasmatic reticulum (ER) and lysosomes, respectively. Combination of suboptimal concentrations of CD437 and lexatumumab, a TRAIL death receptor-2 agonist, resulted in synergistic reduction of viable cells, along with increased PARP cleavage. These results indicate that CD437 has a strong anti-neoplastic effect alone and in combination with lexatumumab in melanoma cell lines.
Collapse
Affiliation(s)
- Gry Irene Magnussen
- Department of Pathology, Institute for Cancer Research, The Norwegian Radium Hospital, 0424 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
27
|
Nakasone Y, Fujimoto M, Matsushita T, Hamaguchi Y, Huu DL, Yanaba M, Sato S, Takehara K, Hasegawa M. Host-derived MCP-1 and MIP-1α regulate protective anti-tumor immunity to localized and metastatic B16 melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:365-74. [PMID: 22037251 DOI: 10.1016/j.ajpath.2011.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 08/30/2011] [Accepted: 09/08/2011] [Indexed: 12/23/2022]
Abstract
Leukocytic infiltration into malignant melanoma lesions is tightly regulated by chemokines. To assess the role of the CC chemokines monocyte chemotactic protein-1 (MCP-1/chemokine ligand 2) and macrophage inflammatory protein-1α (MIP-1α/chemokine ligand 3) in this process, s.c. primary and metastatic B16 F10 melanoma tumor growth levels were examined in mice lacking MCP-1 or MIP-1α. Primary s.c. B16 F10 melanoma growth was augmented by loss of MCP-1 or MIP-1α. Similarly, lung metastasis was enhanced by the deficiency of MCP-1 or MIP-1α. Enhanced tumor outgrowth was associated with decreased percentages of infiltrating CD4(+) T cells, CD8(+) T cells, and natural killer cells. In the absence of MCP-1 or MIP-1α, melanoma outgrowth was correlated with reduced local expression of interferon-γ, IL-6, tumor necrosis factor-α, and transforming growth factor-β. Among these cytokines, reduced expression levels of interferon-γ and tumor necrosis factor-α on leukocytes from the spleen were associated with the development of lung metastasis in chemokine-deficient mice. The local s.c. administration of these four cytokines significantly augmented another chemokine's expression and suppressed primary melanoma growth in mice deficient for MCP-1 or MIP-1α. The s.c. injection of MCP-1 or MIP-1α significantly inhibited the primary tumor growth in wild-type mice. These results indicate that host-derived MCP-1 and MIP-1α regulate protective anti-tumor immunity to B16 F10 melanoma by promoting lymphocyte infiltration into the tumor and subsequent cytokine production.
Collapse
Affiliation(s)
- Yuko Nakasone
- Department of Dermatology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
David E, Guihard P, Brounais B, Riet A, Charrier C, Battaglia S, Gouin F, Ponsolle S, Bot RL, Richards CD, Heymann D, Rédini F, Blanchard F. Direct anti-cancer effect of oncostatin M on chondrosarcoma. Int J Cancer 2011; 128:1822-35. [PMID: 21344373 DOI: 10.1002/ijc.25776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/22/2010] [Indexed: 12/24/2022]
Abstract
The cytokine Oncostatin M (OSM) is cytostatic, pro-apoptotic and induces differentiation of osteosarcoma cells into osteocytes, suggesting new adjuvant treatment for these bone-forming sarcomas. However, OSM systemic over-expression could lead to adverse side effects such as generalized inflammation, neoangiogenesis and osteolysis. We determine here the effect of OSM on chondrosarcoma, another primary bone sarcoma characterized by the production of cartilage matrix and altered bone remodelling. Chondrosarcomas are resistant to conventional chemotherapy and radiotherapy, and wide surgical excision remains the only available treatment. We found that OSM blocked the cell cycle in four of five chondrosarcoma cell lines, independently of p53 and presumably through the JAK3/STAT1 pathway. In two tested cell lines, OSM induced a hypertrophic chondrocyte differentiation, with an induced Cbfa1/SOX9 ratio and induced Coll10, matrix metalloproteinase 13 (MMP13) and RANKL expression. Adenoviral gene transfer of OSM (AdOSM) in the Swarm rat chondrosarcoma (SRC) model indicated that local intra-tumoral OSM over-expression reduces chondrosarcoma development not only with reduced tumor proliferation and enhanced apoptosis but also with enhanced RANKL expression, osteoclast formation and reduced bone volumes. Flu-like symptoms were induced by the AdOSM, but there was no effect on tumor angiogenesis. Therefore, OSM could be considered as a new adjuvant anti-cancer agent for chondrosarcomas. A local application of this cytokine is presumably needed to overcome the poor vascularization of these tumors and to limit the deleterious effect on other tissues. Its side effect on bone remodeling could be managed with anti-resorption agents, thus offering potential new lines of therapeutic interventions.
Collapse
|
29
|
Kawakami T, Inagi R, Wada T, Tanaka T, Fujita T, Nangaku M. Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress. Am J Physiol Renal Physiol 2010; 299:F568-76. [PMID: 20534867 DOI: 10.1152/ajprenal.00659.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Uremic toxins can deteriorate renal function, but little is known about its mechanism. Because tubular injury is central to progression of chronic kidney disease (CKD), we investigated the effects of a representative uremic toxin indoxyl sulfate (IS) on tubular cells. IS induced endoplasmic reticulum (ER) stress in cultured human proximal tubular cells, demonstrated by the increase in C/EBP homologous protein (CHOP) in the immunoblots. Moreover, administration of an oral adsorbent AST-120 reduced serum IS concentration and decreased tubular expression of CHOP in immunohistochemistry in 5/6-nephretomized, CKD model, rats. Furthermore, we disclosed that IS inhibited proliferation of tubular cells in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and 5-bromo-2'-deoxyuridine assay, whereas the results of trypan blue exclusion and lactate dehydrogenase assay showed that IS did not promote cell death. This inhibition was mitigated by small interfering (si) RNA against CHOP. Furthermore, IS increased the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21). Surprisingly, this was mediated by the inflammatory cytokine interleukin (IL)-6, the expression of which was decreased by siRNA against activating transcription factor 4, another ER stress marker; however, the induction of IL-6 and p21 by IS was not suppressed by siRNA targeted to CHOP, suggesting that they were downstream of ER stress, but independent of CHOP. Moreover, we found that their upregulation was dependent on ERK, using the ERK pathway inhibitor U-0126. Collectively, we demonstrated that IS induced ER stress in tubular cells and inhibited cell proliferation via two pathways downstream of ER stress, namely CHOP and ERK-IL-6-p21. These are possible targets for suppressing progression of CKD.
Collapse
|
30
|
Courapied S, Sellier H, de Carné Trécesson S, Vigneron A, Bernard AC, Gamelin E, Barré B, Coqueret O. The cdk5 kinase regulates the STAT3 transcription factor to prevent DNA damage upon topoisomerase I inhibition. J Biol Chem 2010; 285:26765-26778. [PMID: 20516069 DOI: 10.1074/jbc.m109.092304] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The STAT3 transcription factors are cytoplasmic proteins that induce gene activation in response to growth factor stimulation. Following tyrosine phosphorylation, STAT3 proteins dimerize, translocate to the nucleus, and activate specific target genes involved in cell-cycle progression. Despite its importance in cancer cells, the molecular mechanisms by which this protein is regulated in response to DNA damage remain to be characterized. In this study, we show that STAT3 is activated in response to topoisomerase I inhibition. Following treatment, STAT3 is phosphorylated on its C-terminal serine 727 residue but not on its tyrosine 705 site. We also show that topoisomerase I inhibition induced the up-regulation of the cdk5 kinase, a protein initially described in neuronal stress responses. In co-immunoprecipitations, cdk5 was found to associate with STAT3, and pulldown experiments indicated that it associates with the C-terminal activation domain of STAT3 upon DNA damage. Importantly, the cdk5-STAT3 pathway reduced DNA damage in response to topoisomerase I inhibition through the up-regulation of Eme1, an endonuclease involved in DNA repair. ChIP experiments indicated that STAT3 can be found associated with the Eme1 promoter when phosphorylated only on its serine 727 residue and not on tyrosine 705. We therefore propose that the cdk5-STAT3 oncogenic pathway plays an important role in the expression of DNA repair genes and that these proteins could be used as predictive markers of tumors that will fail to respond to chemotherapy.
Collapse
Affiliation(s)
- Sandy Courapied
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | - Hélène Sellier
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | | | - Arnaud Vigneron
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | | | - Erick Gamelin
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | - Benjamin Barré
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France
| | - Olivier Coqueret
- Paul Papin Cancer Center, INSERM U892, 2 rue Moll, 49933 Angers, France.
| |
Collapse
|
31
|
Lacreusette A, Barbieux I, Nguyen JM, Pandolfino MC, Dréno B, Jacques Y, Godard A, Blanchard F. Defective activations of STAT3 Ser727 and PKC isoforms lead to oncostatin M resistance in metastatic melanoma cells. J Pathol 2009; 217:665-76. [DOI: 10.1002/path.2490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
|
33
|
Blanchard F, Duplomb L, Baud'huin M, Brounais B. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev 2008; 20:19-28. [PMID: 19038573 DOI: 10.1016/j.cytogfr.2008.11.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many factors such as vitamins, hormones and cytokines, control bone metabolism and remodeling. Cytokines of the interleukin-6 family, by acting on bone cells (i.e. osteoblasts and osteoclasts), have an important role in the bone tissue but they recently appeared as double-edged swords. They sustain bone formation but they can also drive bone loss in various osteolytic pathologies. Similarly, development of bone cancers can be either prevented or enhanced by these cytokines, depending on the cell type, the stage of the tumor and the bone environment. This dual effect is also apparent at the level of the signal transducer and activator of transcription and the mitogen-activated protein kinases, the two main signaling pathways that mediate opposite effects in bone cells.
Collapse
Affiliation(s)
- Frédéric Blanchard
- INSERM, ERI, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France.
| | | | | | | |
Collapse
|
34
|
Lacreusette A, Lartigue A, Nguyen J, Barbieux I, Pandolfino M, Paris F, Khammari A, Dréno B, Jacques Y, Blanchard F, Godard A. Relationship between responsiveness of cancer cells to Oncostatin M and/or IL‐6 and survival of stage III melanoma patients treated with tumour‐infiltrating lymphocytes. J Pathol 2008; 216:451-9. [DOI: 10.1002/path.2416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- A Lacreusette
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - A Lartigue
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | | | - I Barbieux
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - M‐C Pandolfino
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Cell and Gene Therapy, CHU de Nantes, Nantes F‐44035, France
| | - F Paris
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - A Khammari
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Skin Cancer, CHU de Nantes, Nantes F‐44093, France
| | - B Dréno
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Cell and Gene Therapy, CHU de Nantes, Nantes F‐44035, France
- Unit of Skin Cancer, CHU de Nantes, Nantes F‐44093, France
| | - Y Jacques
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - F Blanchard
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- INSERM ERI7, Nantes F‐44035, France
| | - A Godard
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Laboratoire de Biochimie, CHU de Nantes, Nantes F‐44093, France
| |
Collapse
|
35
|
SOCS3 regulates p21 expression and cell cycle arrest in response to DNA damage. Cell Signal 2008; 20:2221-30. [PMID: 18793717 DOI: 10.1016/j.cellsig.2008.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/09/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Genotoxic agents such as ionizing radiation trigger cell cycle arrest at the G1/S and G2/M checkpoints, allowing cells to repair damaged DNA before entry into mitosis. DNA damage-induced G1 arrest involves p53-dependent expression of p21 (Cip1/Waf-1), which inhibits cyclin-dependent kinases and blocks S phase entry. While much of the core DNA damage response has been well-studied, other signaling proteins that intersect with and modulate this response remain uncharacterized. In this study, we identify Suppressor of Cytokine Signaling (SOCS)-3 as an important regulator of radiation-induced G1 arrest. SOCS3-deficient fibroblasts fail to undergo G1 arrest and accumulate in the G2/M phase of the cell cycle. SOCS3 knockout cells phosphorylate p53 and H2AX normally in response to radiation, but fail to upregulate p21 expression. In addition, STAT3 phosphorylation is elevated in SOCS3-deficient cells compared to WT cells. Normal G1 arrest can be restored in SOCS3 KO cells by retroviral transduction of WT SOCS3 or a dominant-negative mutant of STAT3. Our results suggest a novel function for SOCS3 in the control of genome stability by negatively regulating STAT3-dependent radioresistant DNA synthesis, and promoting p53-dependent p21 expression.
Collapse
|
36
|
Smirnova OV, Ostroukhova TY, Bogorad RL. JAK-STAT pathway in carcinogenesis: Is it relevant to cholangiocarcinoma progression. World J Gastroenterol 2007; 13:6478-91. [PMID: 18161917 PMCID: PMC4611286 DOI: 10.3748/wjg.v13.i48.6478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The features of JAK-STAT signaling in liver cells are discussed in the current review. The role of this signaling cascade in carcinogenesis is accentuated. The possible involvement of this pathway and alteration of its elements are compared for normal cholangiocytes, cholangiocarcinoma predisposition and development. Prolactin and interleukin-6 are described in detail as the best studied examples. In addition, the non-classical nuclear translocation of cytokine receptors is discussed in terms of its possible implication to cholangiocarcinoma development.
Collapse
|
37
|
Kim H, Jo C, Jang BG, Oh U, Jo SA. Oncostatin M induces growth arrest of skeletal muscle cells in G1 phase by regulating cyclin D1 protein level. Cell Signal 2007; 20:120-9. [PMID: 17976956 DOI: 10.1016/j.cellsig.2007.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 01/14/2023]
Abstract
Oncostatin M (OSM), an IL-6 family cytokine, either inhibits or enhances the growth of cells depending on cell type. Here, we report that OSM inhibits proliferation of skeletal muscle cells by blocking cell cycle progression from G(1) to S phase. OSM treatment significantly reduced levels of cyclin D1 protein and phosphorylation of retinoblastoma protein (Rb) at Ser-795, a CDK4-specific phosphorylation site. The OSM-induced cyclin D1 reduction correlated with decreased amount of the cyclin D1/p27 Kip1 complex and increased amounts of the CDK2/p27 Kip1 complex, resulting in inhibition of CDK2 activity. Results obtained with lactacystin, a proteasome inhibitor, demonstrated that cyclin D1 reduction occurred through ubiquitin/proteasome proteolysis. In addition, activation of STAT3, but not STAT1, is likely to regulate OSM-induced cyclin D1 reduction. Dominant negative (DN)-STAT3 blocked OSM-induced cyclin D1 reduction, and constitutively active-STAT3 also induced cyclin D1 reduction. These results suggest that OSM arrests skeletal muscle cell growth at the G1/S checkpoint and that this response occurs by an ubiquitin/proteasome-dependent cyclin D1 protein reduction which is regulated by STAT3.
Collapse
Affiliation(s)
- Hyuck Kim
- Division of Brain Disease, Center for Biomedical Sciences, National Institute of Health, Seoul 122-701, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Moran DM, Mattocks MA, Cahill PA, Koniaris LG, McKillop IH. Interleukin-6 mediates G(0)/G(1) growth arrest in hepatocellular carcinoma through a STAT 3-dependent pathway. J Surg Res 2007; 147:23-33. [PMID: 17574577 PMCID: PMC2587231 DOI: 10.1016/j.jss.2007.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 03/20/2007] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates diverse cell functions including proliferation and differentiation. Within the liver IL-6 signaling plays a central role during normal hepatic growth and regeneration yet can inhibit the proliferation of hepatocellular carcinoma (HCC) cells. The aim of the current study was to identify underlying mechanisms whereby IL-6 induces cell-cycle arrest in HCC cells. These studies demonstrate that IL-6 inhibits cell-cycle progression at the G(0)/G(1) interface through inhibition of cyclin-dependent kinase (cdk) 2 and cdk4 activity in the absence of changes in total cyclin (A, D1, D3, and E) or cdk (cdk2, 4, and cdc2 p34) expression. Inhibition of signal transduction pathways associated with IL-6 receptor activation demonstrates that IL-6-dependent inhibition of G(0)-G(1) progression occurs via Janus tyrosine kinase-signal transducers and activators of transcription-3 (Jak-STAT3)-dependent induction of p21(waf1/cip1) and is independent of ERK-MAPK signaling. These data demonstrate that, while IL-6 plays a central role in hepatocyte priming and proliferation in vivo, the pronounced inhibition of proliferation observed in HCC cells occurs due to IL-6-STAT3-dependent regulation of cdk2/cdk4 activity and p21(waf1/cip1) expression.
Collapse
Affiliation(s)
- Dairmuid M Moran
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | | | | | | | | |
Collapse
|
39
|
Barré B, Vigneron A, Perkins N, Roninson IB, Gamelin E, Coqueret O. The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol Med 2007; 13:4-11. [PMID: 17118707 DOI: 10.1016/j.molmed.2006.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/16/2006] [Accepted: 11/13/2006] [Indexed: 12/13/2022]
Abstract
Constitutive activation of STAT3 (signal transducer and activator of transcription) has been reported in several primary cancers and tumor cell lines where it induces cell transformation through a combined inhibition of apoptosis and cell-cycle activation. Several studies have suggested that STAT3 prevents cell-cycle arrest and cell death through upregulation of survival proteins and downregulation of tumor suppressors. As a consequence of anti-apoptotic and proliferative lesions, we propose that this oncogenic pathway is also involved in intrinsic drug resistance and that STAT3-expressing tumors are resistant to chemotherapeutic agents. If this hypothesis is correct, the detection of the activated form of this protein should help to define subsets of tumors that fail to respond to chemotherapy. Furthermore, interfering with the STAT3 oncogenic pathway might restore the sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- Benjamin Barré
- School of Life Sciences, Division of Gene Regulation and Expression, Dundee, DD1 5EH, Scotland, UK
| | | | | | | | | | | |
Collapse
|
40
|
Lacreusette A, Nguyen JM, Pandolfino MC, Khammari A, Dreno B, Jacques Y, Godard A, Blanchard F. Loss of oncostatin M receptor beta in metastatic melanoma cells. Oncogene 2006; 26:881-92. [PMID: 16909117 DOI: 10.1038/sj.onc.1209844] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oncostatin M (OSM) is an interleukin-6 (IL-6) type cytokine originally described by its capacity to inhibit melanoma proliferation in vitro. Here, the mechanisms involved in resistance to growth inhibition by OSM were analysed for the first time on a large panel of metastatic melanoma cell lines. OSM resistance did not strictly correlate with IL-6, interferon-gamma or tumor necrosis factor-alpha resistance. Rather, it correlated with a specific loss of the OSM receptor-beta (OSMRbeta) subunit, in conjunction with a lower level of histone acetylation in the OSMRbeta promoter region. Treatment of various OSM-resistant melanoma cells with the histone deacetylase inhibitor Trichostatin A increased activity and histone acetylation of the OSMRbeta promoter as well as expression of OSMRbeta mRNA and protein, allowing OSM to activate the signal transducer and activator of transcription 3 (STAT3) and to inhibit proliferation. Other defects associated with OSM resistance were identified at the level of OSMRbeta transcription or protein expression, as well as downstream of or parallel to STAT3 activation. Altogether, our results suggest a role for OSM in the prevention of melanoma progression and that metastatic melanoma cells could escape this growth control by the epigenetic silencing of OSMRbeta.
Collapse
Affiliation(s)
- A Lacreusette
- INSERM, U601, Groupe de Recherche Cytokines et Récepteurs, Institut de Biologie, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pinski J, Wang Q, Quek ML, Cole A, Cooc J, Danenberg K, Danenberg PV. Genistein-induced neuroendocrine differentiation of prostate cancer cells. Prostate 2006; 66:1136-43. [PMID: 16652383 DOI: 10.1002/pros.20440] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Neuroendocrine (NE) cells are present in normal prostate and their number appears to be increased in advanced prostate cancer (PCA). In this study, we studied the effect of the phytoestrogen, genistein, on NE differentiation of LNCaP cells in vitro. METHODS Neuroendocrine marker expression of LNCaP cells exposed to genistein was measured by immunohistochemistry, Western blot, and real-time PCR methods. Western blot analysis was used to study cell cycle and signaling pathways induced by genistein treatment. RESULTS Six days after continuous genistein treatment, the majority of genistein-surviving cancer cells underwent transdifferentiation into a NE-like phenotype overexpressing the NE markers chromogranin A, synaptophysin, serotonin, and beta-III tubulin. This NE differentiation process was associated with upregulation of the cell cycle modulators p21, p27, and p53, and activation of the MAPK and STAT3 pathways. CONCLUSION Our data indicate that genistein evokes not only apoptosis but also NE transdifferentiation of PCA cells.
Collapse
Affiliation(s)
- Jacek Pinski
- Division of Medical Oncology, University of Southern California Keck School of Medicine, USC/Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Wellbrock C, Weisser C, Hassel JC, Fischer P, Becker J, Vetter CS, Behrmann I, Kortylewski M, Heinrich PC, Schartl M. STAT5 contributes to interferon resistance of melanoma cells. Curr Biol 2006; 15:1629-39. [PMID: 16169484 DOI: 10.1016/j.cub.2005.08.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 06/28/2005] [Accepted: 08/05/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND Malignant melanoma is a highly aggressive neoplastic disease whose incidence is increasing rapidly. In recent years, the use of interferon alpha (IFNalpha) has become the most established adjuvant immunotherapy for melanoma of advanced stage. IFNalpha is a potent inhibitor of melanoma cell proliferation, and the signal transducer and activator of transcription STAT1 is crucial for its antiproliferative action. Although advanced melanomas clinically resistant to IFNalpha are frequently characterized by inefficient STAT1 signaling, the mechanisms underlying advanced-stage interferon resistance are poorly understood. RESULTS Here, we demonstrate that IFNalpha activates STAT5 in melanoma cells and that in IFNalpha-resistant cells STAT5 is overexpressed. Significantly, the knockdown of STAT5 in interferon-resistant melanoma cells restored the growth-inhibitory response to IFNalpha. When STAT5 was overexpressed in IFNalpha-sensitive cells, it counteracted interferon-induced growth inhibition. The overexpressed STAT5 diminished IFNalpha-triggered STAT1 activation, most evidently through upregulation of the inhibitor of cytokine-signaling CIS. CONCLUSIONS Our data demonstrate that overexpression and activation of STAT5 enable melanoma cells to overcome cytokine-mediated antiproliferative signaling. Thus, overexpression of STAT5 can counteract IFNalpha signaling in melanoma cells, and this finally can result in cytokine-resistant and progressively growing tumor cells. These findings have significant implications for the clinical failure of IFNalpha therapy of advanced melanoma because they demonstrate that IFNalpha induces the activation of STAT5 in melanoma cells, and in STAT5-overexpressing cells, this contributes to IFNalpha resistance.
Collapse
Affiliation(s)
- Claudia Wellbrock
- Department of Physiological Chemistry I, Biocenter, Theodor-Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vigneron A, Roninson IB, Gamelin E, Coqueret O. Src inhibits adriamycin-induced senescence and G2 checkpoint arrest by blocking the induction of p21waf1. Cancer Res 2005; 65:8927-35. [PMID: 16204065 DOI: 10.1158/0008-5472.can-05-0461] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DNA-damaging drugs stop tumor cell proliferation by inducing apoptosis, necrosis, or senescence. Cyclin-dependent kinase inhibitor p21waf1 is an important regulator of these responses, promoting senescence and preventing aberrant mitosis that leads to cell death. Because tumors expressing oncogenic tyrosine kinases are relatively resistant to DNA-damaging agents, the effects of Src on cellular responses to anticancer drug Adriamycin were investigated. Src expression increased drug survival in HT1080 fibrosarcoma cells, as measured by the colony formation assay, and strongly inhibited Adriamycin-induced senescence. Src also decreased the number of apoptotic cells while increasing the fraction of cells dying through necrosis. In addition, Src inhibited the G2 and G1 tetraploidy checkpoints of Adriamycin-treated cells, permitting these cells to proceed into mitosis and subsequently double their DNA content. Inhibition of senescence and G2-G1 checkpoints in Src-expressing cells was associated with the failure of these cells to up-regulate p21waf1 in response to Adriamycin. The failure of p21waf1 induction, despite increased expression of p53 and its binding to p21waf1 promoter, was mediated by the up-regulation of c-Myc, a negative regulator of p21waf1 transcription. Conversely, ectopic expression of p21waf1 inhibited Myc transcription in Src-expressing cells, an effect that was associated with the interaction of p21waf1 with the STAT3 transcription factor at the Myc promoter. These results reveal a complex effect of Src on cellular drug responses and provide an explanation for the effect of this oncogene on cellular drug resistance.
Collapse
Affiliation(s)
- Arnaud Vigneron
- Institut National de la Sante et de la Recherche Medicale U564, Cancer Center Paul Papin, Angers, France
| | | | | | | |
Collapse
|
44
|
von Felbert V, Córdoba F, Weissenberger J, Vallan C, Kato M, Nakashima I, Braathen LR, Weis J. Interleukin-6 gene ablation in a transgenic mouse model of malignant skin melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:831-41. [PMID: 15743795 PMCID: PMC1602365 DOI: 10.1016/s0002-9440(10)62304-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interleukin (IL)-6 is a pleiotropic cytokine that has been shown to inhibit the growth of early stage and to promote the proliferation of advanced stage melanoma cells in vitro. In patients with metastasizing melanomas, highly increased IL-6 blood levels correlate with a poor response to chemotherapy and a worse overall prognosis, suggesting that IL-6 promotes melanoma progression in vivo. Here, we analyzed the role of IL-6 in melanoma development and progression in a transgenic mouse model. We bred IL-6-deficient mice with MT-ret transgenic animals predisposed for melanomas. While MT-ret transgenic animals develop severe melanosis of the skin and subcutis and subsequent melanomas at an incidence of 80% during their first year of life, MT-ret mice devoid of IL-6 developed preneoplastic melanosis and consecutive melanomas significantly less frequently (47%; P < 0.05). Moreover, the tumors were significantly smaller in the groups of MT-ret mice lacking one (P < 0.05) or both (P < 0.01) copies of the IL-6 gene. Immunoblot analysis revealed that ret transgene expression was not reduced in the skin of mice lacking IL-6, indicating that the observed decrease of melanoma incidence and of tumor sizes was not because of a down-regulation of transgene expression. Taken together, these results indicate that IL-6 enhances both the development of melanoma precursor lesions and the subsequent growth of the resulting tumors in the MT-ret model of melanoma development.
Collapse
|
45
|
Moran DM, Mayes N, Koniaris LG, Cahill PA, McKillop IH. Interleukin-6 inhibits cell proliferation in a rat model of hepatocellular carcinoma. Liver Int 2005; 25:445-57. [PMID: 15780071 DOI: 10.1111/j.1478-3231.2005.01083.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) plays a critical role in normal hepatic growth and liver regeneration. The aims of the present study are to determine the expression of components of IL-6 signaling in an in vivo model of hepatocellular carcinoma (HCC) and address the role of IL-6 signaling in the progression of HCC. METHODS An in vivo rat HCC model was established and IL-6 receptor (IL-6R) and downstream signaling pathway expression and activity were determined in HCC and normal liver specimens. Tumorigenic HCC cells from resected HCC samples and normal hepatocytes were then isolated and cultured in the presence and absence of recombinant human IL-6 (rhIL-6). RESULTS HCC specimens demonstrated decreased IL-6Ralpha/gp130 expression as compared with the normal liver. In contrast, HCC samples had significantly increased IL-6 messenger RNA expression and signal transducers and activators of transcription (STAT)3 activity. Using in vitro cell cultures, we demonstrated that IL-6 stimulated STAT3 and extracellular regulated kinase (ERK) activity in both HCC cells and isolated hepatocytes. However, while STAT3 activation profiles were similar, IL-6 stimulated ERK activity in a biphasic manner in HCC cells and a monophasic, sustained ERK activation in hepatocytes. In HCC cells, a significant induction of cyclin-dependent kinase (CDK) inhibitors, p21(waf1/cip1) and p27(Kip1) occurred, an effect that was not observed in normal hepatocytes. Finally, we established that IL-6 acted to inhibit serum-stimulated DNA synthesis and cell mitogenesis in HCC cells in vitro. CONCLUSIONS These data demonstrate altered expression of components of IL-6 signaling in HCC in vivo. IL-6 treatment of HCC cells inhibits serum-stimulated mitogenesis, possibly via differences in activation profiles of intracellular signaling pathways and their effect on CDK inhibitor expression/activity.
Collapse
Affiliation(s)
- Diarmuid M Moran
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | | | | | | | | |
Collapse
|
46
|
Agesen TH, Flørenes VA, Molenaar WM, Lind GE, Berner JM, Plaat BEC, Komdeur R, Myklebost O, van den Berg E, Lothe RA. Expression patterns of cell cycle components in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors. J Neuropathol Exp Neurol 2005; 64:74-81. [PMID: 15715087 DOI: 10.1093/jnen/64.1.74] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The molecular biology underlying the development of highly malignant peripheral nerve sheath tumors (MPNSTs) remains mostly unknown. In the present study, the expression pattern of 10 selected cell cycle components is investigated in a series of 15 MPNSTs from patients with (n = 9) or without (n = 5) neurofibromatosis type 1 (NF1). Thirteen tumors did not express the cyclin-dependent kinase inhibitor, p16(INK4A), an observation that was related to homozygote gene deletions in three tumors, heterozygote deletions in five, and gross gene rearrangements in five. The absence of protein expression in the tumors with one seemingly intact allele was not caused by promoter hypermethylation of p16(INK4A) or p14(ARF). All tumor samples expressed normal sized RB1, cyclin D3, CDK2, CDK4, p21(CIP1), and p27(KlP1) proteins, and only a single tumor showed an aberrant protein band for one of these proteins, p21(CIP1). Cyclin D1 was absent in four tumors; all except one tumor showed expression of TP53 protein, and three of nine MPNSTs had expression of normal-sized MDM2. In conclusion, this study shows that the vast majority of MPNSTs had gross rearrangements of the p16(INK4A) gene, explaining the absence of the encoded protein in the same tumors. The level of expression was equally distributed between the familial (NF1) and sporadic cases, although it should be noted that the 2 cases with p16(INK4A) expression were sporadic. The data imply that the complete absence of p16(INK4A) is sufficient for activation of the cell cycle in most MPNSTs; thus, it is not necessary for tumor proliferation to further stimulate the cycle through alteration of other central components.
Collapse
Affiliation(s)
- Trude Holmeide Agesen
- Department of Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kalvakolanu DV. The GRIMs: a new interface between cell death regulation and interferon/retinoid induced growth suppression. Cytokine Growth Factor Rev 2004; 15:169-94. [PMID: 15110800 DOI: 10.1016/j.cytogfr.2004.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytokines and vitamins play a central role in controlling neoplastic cell growth. The interferon (IFN) family of cytokines regulates antiviral, anti-tumor, antimicrobial, differentiation, and immune responses in mammals. Significant advances have been made with respect to IFN-induced signal transduction pathways and antiviral responses. However, the IFN-induced anti-tumor actions are poorly defined. Although IFNs themselves inhibit tumor growth, combination of IFNs with retinoids (a class of Vitamin A related compounds) strongly potentiates the IFN-regulated anti-tumor action in a number of cell types. To define the molecular mechanisms involved in IFN/retinoid (RA)-induced apoptosis we have employed a genetic approach and identified several critical genes. In this review, I provide the current picture of IFN- RA- and IFN/RA-regulated growth suppressive pathways. In particular, I focus on a novel set of genes, the genes-associated with retinoid-interferon induced mortality (GRIM). GRIMs may be novel types of tumor suppressors, useful as biological response markers and potentially novel targets for drug development.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cell Biology Graduate Program, Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
48
|
Li Z, Metze D, Nashan D, Müller-Tidow C, Serve HL, Poremba C, Luger TA, Böhm M. Expression of SOCS-1, suppressor of cytokine signalling-1, in human melanoma. J Invest Dermatol 2004; 123:737-45. [PMID: 15373779 DOI: 10.1111/j.0022-202x.2004.23408.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytokine resistance is a well-established feature of melanoma cell progression and represents also a major obstacle in immunotherapy of patients with metastatic melanoma. To check whether suppressors of cytokine signalling (SOCS) play a role in cytokine resistance and tumor progression of melanoma, we investigated the expression and regulation of SOCS-1, an established negative regulator of interleukin-6 (IL-6) and interferon (IFN) signalling. In vitro SOCS-1 transcripts were detectable by RT-PCR in 8 out of 8 human melanoma cell lines derived from different tumor stages. Normal human melanocytes also expressed SOCS-1 mRNA in the presence or absence of artificial growth factors. Both IL-6 and alpha-IFN induced rapid and transient SOCS-1 mRNA expression in WM35 and WM9 melanoma cells. At the protein level, SOCS-1 was undetectable in normal human melanocytes whereas uniformly expressed in all tested melanoma cell lines. The aberrant SOCS-1 protein expression in melanoma cells was recapitalized in situ as shown by immunohistochemical analysis. SOCS-1 immunoreactivity was closely related to tumor invasion (Clark level), tumor thickness according to Breslow, and stage of the disease. In contrast, melanocytes in normal skin or melanocytic nevi lacked SOCS-1 protein expression. Our findings show that melanoma cells express a member of the SOCS family, SOCS-1, in vitro and in situ. SOCS-1 is a progression marker of human melanoma and may downregulate biological responses by endogenous and/or therapeutically administered cytokines.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Dermatology and Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rivat C, De Wever O, Bruyneel E, Mareel M, Gespach C, Attoub S. Disruption of STAT3 signaling leads to tumor cell invasion through alterations of homotypic cell-cell adhesion complexes. Oncogene 2004; 23:3317-27. [PMID: 15077188 DOI: 10.1038/sj.onc.1207437] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
STAT3 is frequently overexpressed and constitutively activated by tyrosine phosphorylation during malignant transformation. Despite the clear importance of STAT3 in cell proliferation and survival in diverse human cancers, its possible contribution to tumor cell adhesion, motility and invasion remains hypothetical. We therefore compared the transforming properties of STAT3wt, its constitutively activated dimeric form STAT3C, and the dominant negative mutant STAT3-Y705F in human colorectal HCT8/S11 cancer cells. Both STAT3wt and STAT3C exert a permissive action to the proinvasive activity of the scatter factor HGF in HCT8/S11 cells. In contrast, the monomeric and cytoplasmic mutant Y705F induces a constitutive invasive phenotype through Wnt/Rho-independent and EGFR/PI3-kinase-dependent pathways. Accordingly, Y705F decreases cell-cell homotypic adhesions, and increases cell motility and scattering, as well as lamellipodia-type cellular extensions. STAT3-Y705F-transfected HCT8/S11 cells display an increased tyrosine phosphorylation of the cell-cell adhesion regulator beta-catenin and its dissociation from the invasion suppressor E-cadherin at cell-cell contacts. Our data imply that both invasion promoter and repressor genes are controlled by the canonical STAT3 transcription pathways. Disruption of this cascade by Y705F reveals the proinvasive potential of altered forms of STAT3 as a persistent signaling adaptor in cytokine/transforming growth factor receptor scaffolds and oncogenic pathways.
Collapse
Affiliation(s)
- Christine Rivat
- INSERM U 482, Signal Transduction and Cellular Functions in Diabetes and Digestive Cancers, Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | |
Collapse
|
50
|
Davidson B, Alejandro E, Flørenes VA, Goderstad JM, Risberg B, Kristensen GB, Trope CG, Kohn EC. Granulin-epithelin precursor is a novel prognostic marker in epithelial ovarian carcinoma. Cancer 2004; 100:2139-47. [PMID: 15139056 DOI: 10.1002/cncr.20219] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The granulin-epithelin precursor (GEP) was preferentially expressed in invasive ovarian tumor epithelium specimens compared with specimens of borderline ovarian tumors. The objective of the current study was to evaluate the anatomic site-related and cellular expression of GEP and its association with clinicopathologic parameters and survival in patients with advanced-stage ovarian carcinoma. METHODS Effusions (n = 190), corresponding primary tumor specimens (n = 64), and specimens of metastatic lesions (n = 125) were analyzed using immunohistochemistry with a specific polyclonal antipeptide antibody. In addition, 36 effusions were analyzed using immunoblotting. RESULTS GEP was detected in tumor cells in 171 of 190 (90%) effusions and demonstrated both focal membrane and cytoplasmic localization. Mesothelial cells were often GEP positive (81%). GEP was found in carcinoma cells in 180 of 189 (95%) tumor biopsy specimens, with stromal and endothelial cell expression in 93 of 180 (52%) and 124 of 185 (67%) specimens, respectively. Lower GEP expression in stromal cells was observed in metastases sampled during or after chemotherapy (P = 0.034). The presence of GEP-positive stromal cells in untreated primary tumor specimens correlated with worse overall survival (P = 0.014). Significantly more frequent GEP expression was observed in tumor cells of both primary (P = 0.002) and metastatic (P < 0.001) tissue specimens compared with malignant effusions. CONCLUSIONS GEP expression was observed in primary and metastatic epithelial ovarian carcinoma specimens, with down-regulated expression in tumor cells of malignant effusions. The poor outcome associated with stromal GEP expression suggests a prognostic role for this growth factor in ovarian carcinoma.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/secondary
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/secondary
- Adult
- Aged
- Biomarkers, Tumor/metabolism
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/secondary
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/secondary
- Female
- Humans
- Immunoenzyme Techniques
- Intercellular Signaling Peptides and Proteins/metabolism
- Middle Aged
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Pleural Effusion, Malignant/metabolism
- Pleural Effusion, Malignant/pathology
- Prognosis
- Progranulins
- Stromal Cells/metabolism
- Stromal Cells/pathology
Collapse
Affiliation(s)
- Ben Davidson
- Molecular Signaling Section, Laboratory of Pathology, Center for Cancer Research, The National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|