1
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
2
|
Ma Y, Li J, Dong H, Yang Z, Zhou L, Xu P. PML Body Component Sp100A Restricts Wild-Type Herpes Simplex Virus 1 Infection. J Virol 2022; 96:e0027922. [PMID: 35353002 PMCID: PMC9044927 DOI: 10.1128/jvi.00279-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Sp100 (speckled protein 100 kDa) is a constituent component of nuclear structure PML (promyelocytic leukemia) bodies, playing important roles in mediating intrinsic and innate immunity. The Sp100 gene encodes four isoforms with distinct roles in the transcriptional regulation of both cellular and viral genes. Since Sp100 is a primary intranuclear target of infected-cell protein 0 (ICP0), an immediate early E3 ligase encoded by herpes simplex virus 1 (HSV-1), previous investigations attempting to analyze the functions of individual Sp100 variants during HSV-1 infection mostly avoided using a wild-type virus. Therefore, the role of Sp100 under natural infection by HSV-1 remains to be clarified. Here, we reappraised the antiviral capacity of four Sp100 isoforms during infection by a nonmutated HSV-1, examined the molecular behavior of the Sp100 protein in detail, and revealed the following intriguing observations. First, Sp100 isoform A (Sp100A) inhibited wild-type HSV-1 propagation in HEp-2, Sp100-/-, and PML-/- cells. Second, endogenous Sp100 is located in both the nucleus and the cytoplasm. During HSV-1 infection, the nuclear Sp100 level decreased drastically upon the detection of ICP0 in the same subcellular compartment, but cytosolic Sp100 remained stable. Third, transfected Sp100A showed subcellular localizations similar to those of endogenous Sp100 and matched the protein size of endogenous cytosolic Sp100. Fourth, HSV-1 infection induced increased secretion of endogenous Sp100 and ectopically expressed Sp100A, which copurified with extracellular vesicles (EVs) but not infectious virions. Fifth, the Sp100A level in secreting cells positively correlated with its level in EVs, and EV-associated Sp100A restricted HSV-1 in recipient cells. IMPORTANCE Previous studies show that the PML body component Sp100 protein is immediately targeted by ICP0 of HSV-1 in the nucleus during productive infection. Therefore, extensive studies investigating the interplay of Sp100 isoforms with HSV-1 were conducted using a mutant virus lacking ICP0 or in the absence of infection. The role of Sp100 variants during natural HSV-1 infection remains blurry. Here, we report that Sp100A potently and independently inhibited wild-type HSV-1 and that during HSV-1 infection, cytosolic Sp100 remained stable and was increasingly secreted into the extracellular space, in association with EVs. Furthermore, the Sp100A level in secreting cells positively correlated with its level in EVs and the anti-HSV-1 potency of these EVs in recipient cells. In summary, this study implies an active antiviral role of Sp100A during wild-type HSV-1 infection and reveals a novel mechanism of Sp100A to restrict HSV-1 through extracellular communications.
Collapse
Affiliation(s)
- Yilei Ma
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingjing Li
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongchang Dong
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhaoxin Yang
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lingyue Zhou
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pei Xu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Swift ML, Azizkhan-Clifford J. DNA damage-induced sumoylation of Sp1 induces its interaction with RNF4 and degradation in S phase to remove 53BP1 from DSBs and permit HR. DNA Repair (Amst) 2022; 111:103289. [DOI: 10.1016/j.dnarep.2022.103289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023]
|
4
|
SUMOylation regulates the number and size of promyelocytic leukemia-nuclear bodies (PML-NBs) and arsenic perturbs SUMO dynamics on PML by insolubilizing PML in THP-1 cells. Arch Toxicol 2022; 96:545-558. [PMID: 35001170 DOI: 10.1007/s00204-021-03195-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 11/02/2022]
Abstract
The functional roles of protein modification by small ubiquitin-like modifier (SUMO) proteins are not well understood compared to ubiquitination. Promyelocytic leukemia (PML) proteins are good substrates for SUMOylation, and PML-nuclear bodies (PML-NBs) may function as a platform for the PML SUMOylation. PML proteins are rapidly modified both with SUMO2/3 and SUMO1 after exposure to arsenite (As3+) and SUMOylated PML are further ubiquitinated and degraded by proteasomes. However, effects of As3+ on SUMO dynamics on PML-NBs are not well investigated. In the present study, we report that (1) the number and size of PML-NBs were regulated by SUMO E1-activating enzyme, (2) SUMO2/3 co-localized with PML irrespective of As3+ exposure and was restricted to PML-nuclear bodies (PML-NBs) via covalent binding in response to As3+, and (3) As3+-induced biochemical changes in PML were not modulated by ubiquitin-proteasome system (UPS) in THP-1 cells. Undifferentiated and differentiated THP-1 cells responded to As3+ similarly and PML proteins were changed from the detergent soluble to the insoluble form and further SUMOylated with SUMO2/3 and SUMO1. ML792, a SUMO E1 inhibitor, decreased the number of PML-NBs and reciprocally increased the size irrespective of exposure to As3+, which itself slightly decrease both the number and size of PML-NBs. TAK243, a ubiquitin E1 inhibitor, did not change the PML-NBs, while SUMOylated proteins accumulated in the TAK243-exposed cells. Proteasome inhibitors did not change the As3+-induced SUMOylation levels of PML. Co-localization and further restriction of SUMO2/3 to PML-NBs were confirmed by PML-transfected CHO-K1 cells. Collectively, SUMOylation regulates PML-NBs and As3+ restricts SUMO dynamics on PML by changing its solubility.
Collapse
|
5
|
Bouchard D, Wang W, Yang WC, He S, Garcia A, Matunis MJ. SUMO paralogue-specific functions revealed through systematic analysis of human knockout cell lines and gene expression data. Mol Biol Cell 2021; 32:1849-1866. [PMID: 34232706 PMCID: PMC8684707 DOI: 10.1091/mbc.e21-01-0031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogues with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogues and also the best studied. To what extent SUMO1, SUMO2, and the other paralogues impart unique and nonredundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogues during development and studies in cell culture have relied largely on transient paralogue overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralogue gene expression levels in normal human tissues and found unique patterns of SUMO1–3 expression across 30 tissue types, suggesting paralogue-specific functions in adult human tissues. To systematically identify and characterize unique and nonredundant functions of the SUMO paralogues in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, promyelocytic leukemia (PML) nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal nonredundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.
Collapse
Affiliation(s)
- Danielle Bouchard
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Wei-Chih Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Shuying He
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Anthony Garcia
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
6
|
Effect of SUMO-SIM Interaction on the ICP0-Mediated Degradation of PML Isoform II and Its Associated Proteins in Herpes Simplex Virus 1 Infection. J Virol 2020; 94:JVI.00470-20. [PMID: 32295906 DOI: 10.1128/jvi.00470-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
ND10 nuclear bodies, as part of the intrinsic defenses, impose repression on incoming DNA. Infected cell protein 0 (ICP0), an E3 ubiquitin ligase of herpes simplex virus 1 (HSV-1), can derepress viral genes by degrading ND10 organizers to disrupt ND10. These events are part of the initial tug of war between HSV-1 and host, which determines the ultimate outcome of infection. Previously, we reported that ICP0 differentially recognizes promyelocytic leukemia (PML) isoforms. ICP0 depends on a SUMO-interaction motif located at residues 362 to 364 (SIM362-364) to trigger the degradation of PML isoforms II, IV, and VI, while using a bipartite sequence flanking the RING domain to degrade PML I. In this study, we investigated how the SUMO-SIM interaction regulates the degradation of PML II and PML II-associated proteins in ND10. We found that (i) the same regulatory mechanism for PML II degradation was detected in cells permissive or nonpermissive to the ICP0-null virus; (ii) the loss of a single SIM362-364 motif was restored by the presence of four consecutive SIMs from RNF4, but was not rescued by only two of the RNF4 SIMs; (iii) the loss of three C-terminal SIMs of ICP0 was fully restored by four RNF4 SIMs and also partially rescued by two RNF4 SIMs; and (iv) a PML II mutant lacking both lysine SUMOylation and SIM was not recognized by ICP0 for degradation, but was localized to ND10 and mitigated the degradation of other ND10 components, leading to delayed viral production. Taken together, SUMO regulates ICP0 substrate recognition via multiple fine-tuned mechanisms in HSV-1 infection.IMPORTANCE HSV-1 ICP0 is a multifunctional immediate early protein key to effective replication in the HSV-1 lytic cycle and reactivation in the latent cycle. ICP0 transactivates gene expression by orchestrating an overall mitigation in host intrinsic/innate restrictions. How ICP0 coordinates its multiple active domains and its diverse protein-protein interactions is a key question in understanding the HSV-1 life cycle and pathogenesis. The present study focuses on delineating the regulatory effects of the SUMO-SIM interaction on ICP0 E3 ubiquitin ligase activity regarding PML II degradation. For the first time, we discovered the importance of multivalency in the PML II-ICP0 interaction network and report the involvement of different regulatory mechanisms in PML II recognition by ICP0 in HSV-1 infection.
Collapse
|
7
|
Hidalgo P, Gonzalez RA. Formation of adenovirus DNA replication compartments. FEBS Lett 2019; 593:3518-3530. [PMID: 31710378 DOI: 10.1002/1873-3468.13672] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Adenoviruses induce an extensive reorganization of the host cell nucleus during replication. Such a process results in the assembly of viral and cellular macromolecules into nuclear structures called adenovirus replication compartments (AdRCs), which function as platforms for viral DNA replication and gene expression. AdRCs co-opt host proteins and cellular pathways that restrict viral replication, suggesting that the mechanisms that control AdRC formation and function are essential for viral replication and lay at the basis of virus-host interactions. Here, we review the hallmarks of AdRCs and recent progress in our understanding of the formation, composition, and function of AdRCs. Furthermore, we discuss how AdRCs facilitate the interplay between viral and cellular machineries and hijack cellular functions to promote viral genome replication and expression.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
8
|
Deiss K, Lockwood N, Howell M, Segeren HA, Saunders RE, Chakravarty P, Soliman TN, Martini S, Rocha N, Semple R, Zalmas LP, Parker PJ. A genome-wide RNAi screen identifies the SMC5/6 complex as a non-redundant regulator of a Topo2a-dependent G2 arrest. Nucleic Acids Res 2019; 47:2906-2921. [PMID: 30590722 PMCID: PMC6451093 DOI: 10.1093/nar/gky1295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
The Topo2a-dependent arrest is associated with faithful segregation of sister chromatids and has been identified as dysfunctional in numerous tumour cell lines. This genome-protecting pathway is poorly understood and its characterization is of significant interest, potentially offering interventional opportunities in relation to synthetic lethal behaviours in arrest-defective tumours. Using the catalytic Topo2a inhibitor ICRF193, we have performed a genome-wide siRNA screen in arrest-competent, non-transformed cells, to identify genes essential for this arrest mechanism. In addition, we have counter-screened several DNA-damaging agents and demonstrate that the Topo2a-dependent arrest is genetically distinct from DNA damage checkpoints. We identify the components of the SMC5/6 complex, including the activity of the E3 SUMO ligase NSE2, as non-redundant players that control the timing of the Topo2a-dependent arrest in G2. We have independently verified the NSE2 requirement in fibroblasts from patients with germline mutations that cause severely reduced levels of NSE2. Through imaging Topo2a-dependent G2 arrested cells, an increased interaction between Topo2a and NSE2 is observed at PML bodies, which are known SUMOylation hotspots. We demonstrate that Topo2a is SUMOylated in an ICRF193-dependent manner by NSE2 at a novel non-canonical site (K1520) and that K1520 sumoylation is required for chromosome segregation but not the G2 arrest.
Collapse
Affiliation(s)
- Katharina Deiss
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicola Lockwood
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hendrika Alida Segeren
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca E Saunders
- High Throughput Screening, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tanya N Soliman
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Silvia Martini
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nuno Rocha
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Robert Semple
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | | | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
9
|
Chen D, Gomes F, Abeykoon D, Lemma B, Wang Y, Fushman D, Fenselau C. Top-Down Analysis of Branched Proteins Using Mass Spectrometry. Anal Chem 2018; 90:4032-4038. [PMID: 29513006 PMCID: PMC6146919 DOI: 10.1021/acs.analchem.7b05234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-translational modifications by the covalent attachment of Rub1 (NEDD8), ubiquitin, SUMO, and other small signaling proteins have profound impacts on the functions and fates of cellular proteins. Investigations of the relationship of these bioactive structures and their functions are limited by analytical methods that are scarce and tedious. A novel strategy is reported here for the analysis of branched proteins by top-down mass spectrometry and illustrated by application to four recombinant proteins and one synthetic peptide modified by covalent bonds with ubiquitin or Rub1. The approach allows an analyte to be recognized as a branched protein; the participating proteins to be identified; the site of conjugation to be defined; and other chemical, native, and recombinant modifications to be characterized. In addition to the high resolution and high accuracy provided by the mass spectrometer, success is based on sample fragmentation by electron-transfer dissociation assisted by collisional activation and on software designed for graphic interpretation and adapted for branched proteins. The strategy allows for structures of unknown, two-component branched proteins to be elucidated directly the first time and can potentially be extended to more complex systems.
Collapse
Affiliation(s)
- Dapeng Chen
- University of Maryland , College Park , Maryland 20742 , United States
| | - Fabio Gomes
- University of Maryland , College Park , Maryland 20742 , United States
| | - Dulith Abeykoon
- University of Maryland , College Park , Maryland 20742 , United States
| | - Betsegaw Lemma
- University of Maryland , College Park , Maryland 20742 , United States
| | - Yan Wang
- University of Maryland , College Park , Maryland 20742 , United States
| | - David Fushman
- University of Maryland , College Park , Maryland 20742 , United States
| | | |
Collapse
|
10
|
Kr-POK (ZBTB7c) regulates cancer cell proliferation through glutamine metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:829-838. [PMID: 28571744 DOI: 10.1016/j.bbagrm.2017.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/19/2017] [Accepted: 05/27/2017] [Indexed: 11/21/2022]
Abstract
Kr-POK (ZBTB7c) is a kidney cancer-related POK transcription factor that not only represses transcription of CDKN1A but also increases expression of FASN. However, precisely how Kr-POK affects cell metabolism by controlling gene expression in response to an energy source in rapidly proliferating cells remains unknown. In this study, we characterized the molecular and functional features of Kr-POK in the context of tumor growth and glutamine metabolism. We found that cells expressing Kr-POK shRNA exhibited more severe cell death than control cells in glucose-deprived medium, and that knockdown of Kr-POK decreased glutamine uptake. Glutamine is critical for tumor cell proliferation. Glutaminase (GLS1), which is activated by p-STAT1, catalyzes the initial reaction in the pathway of glutaminolysis. Kr-POK interacts with PIAS1 to disrupt the interaction between PIAS1 and p-STAT1, and free p-STAT1 can activate GLS1 transcription through an interaction with p300. Kr-POK can be also sumoylated by PIAS1, facilitating Kr-POK degradation by the ubiquitin-mediated proteasomal pathway. Finally, we showed that repression of Kr-POK inhibited tumor growth in vivo in a xenograft model by repressing GLS1 expression. Taken together, our data reveal that Kr-POK activates GLS1 transcription and increases glutamine uptake to support rapid cancer cell proliferation.
Collapse
|
11
|
Hornig J, Choi KY, McGregor A. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting. Virology 2017; 504:122-140. [PMID: 28189970 DOI: 10.1016/j.virol.2017.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Abstract
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234-474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.
Collapse
Affiliation(s)
- Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
12
|
Shire K, Wong AI, Tatham MH, Anderson OF, Ripsman D, Gulstene S, Moffat J, Hay RT, Frappier L. Identification of RNF168 as a PML nuclear body regulator. J Cell Sci 2016; 129:580-91. [PMID: 26675234 PMCID: PMC4760303 DOI: 10.1242/jcs.176446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/12/2015] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) protein forms the basis of PML nuclear bodies (PML NBs), which control many important processes. We have screened an shRNA library targeting ubiquitin pathway proteins for effects on PML NBs, and identified RNF8 and RNF168 DNA-damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the levels of PML NBs and proteins, whereas overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin-interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted in increased ubiquitylation and SUMO2 modification of PML. In addition, RNF168 was found to associate with proteins modified by SUMO2 and/or SUMO3 in a manner dependent on its ubiquitin-binding sequences, suggesting that hybrid SUMO-ubiquitin chains can be bound. In vitro assays confirmed that RNF168, preferentially, binds hybrid SUMO2-K63 ubiquitin chains compared with K63-ubiquitin chains or individual SUMO2. Our study identified previously unrecognized roles for RNF8 and RNF168 in the regulation of PML, and a so far unknown preference of RNF168 for hybrid SUMO-ubiquitin chains.
Collapse
Affiliation(s)
- Kathy Shire
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrew I Wong
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Oliver F Anderson
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - David Ripsman
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Stephanie Gulstene
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
13
|
Packham S, Lin Y, Zhao Z, Warsito D, Rutishauser D, Larsson O. The Nucleus-Localized Epidermal Growth Factor Receptor Is SUMOylated. Biochemistry 2015; 54:5157-66. [PMID: 26244656 DOI: 10.1021/acs.biochem.5b00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays important roles in normal and cancer cell growth. The EGFR has principally two different signaling pathways: the canonical kinase route induced at the plasma membrane resulting in an intracellular phosphorylation cascade via MAPKs and PI3K and the more recently discovered pathway by which the receptor functions as a transcriptional co-activator inside the cell nucleus. Full length EGFR translocates to the inner nuclear membrane, via the endoplasmic reticulum, through association with the sec61β translocon. The c-myc (MYC) and cyclin D1 (CNND1) genes represent two target genes for nuclear EGFR (nEGFR). Here we show that EGFR is SUMOylated and that the SUMO-1-modified receptors are almost unexceptionally nuclear. Co-immunoprecipitation experiments suggest that EGFR is multi-SUMOylated. Using two mass spectrometry-based strategies (matrix-assisted laser desorption ionization time of flight and electrospray ionization liquid chromatography with tandem mass spectrometry), lysine 37 was identified as a SUMO-1-modified residue by both methods. A lysine 37 site mutant (K37R) was transfected into EGFR deficient cells. Total SUMOylation of EGFR was not altered in the K37R-transfected cells, confirming the presence of other SUMOylation sites. To gain preliminary insight into the possible functional role of EGFR SUMOylation, we compared the effect of expression of the wild-type EGFR with the K37R mutant on promoter activity and expression of CMYC and CNND1. Our results indicate that SUMO-1 modification may affect the transcriptional activity of EGFR, which might have additional impact on, e.g., cancer progression.
Collapse
Affiliation(s)
- Sylvia Packham
- Karolinska Institutet , Division of Biophysics, Medical Biochemistry and Biophysics, Scheeles väg 2, SE-171 77 Stockholm, Sweden
| | - Yingbo Lin
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| | - Zhiwei Zhao
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden.,Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, Sichuan CN-610041, China
| | - Dudi Warsito
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| | - Dorothea Rutishauser
- Karolinska Institutet , Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, SE-171 77 Stockholm, Sweden.,Science for Life Laboratory , Tomtebodavägen 23, SE-171 65 Solna, Sweden
| | - Olle Larsson
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| |
Collapse
|
14
|
Böhm S, Bernstein KA. The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair (Amst) 2014; 22:123-32. [PMID: 25150915 DOI: 10.1016/j.dnarep.2014.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
RecQ-like helicases are a highly conserved family of proteins which are critical for preserving genome integrity. Genome instability is considered a hallmark of cancer and mutations within three of the five human RECQ genes cause hereditary syndromes that are associated with cancer predisposition. The human RecQ-like helicase BLM has a central role in DNA damage signaling, repair, replication, and telomere maintenance. BLM and its budding yeast orthologue Sgs1 unwind double-stranded DNA intermediates. Intriguingly, BLM functions in both a pro- and anti-recombinogenic manner upon replicative damage, acting on similar substrates. Thus, BLM activity must be intricately controlled to prevent illegitimate recombination events that could have detrimental effects on genome integrity. In recent years it has become evident that post-translational modifications (PTMs) of BLM allow a fine-tuning of its function. To date, BLM phosphorylation, ubiquitination, and SUMOylation have been identified, in turn regulating its subcellular localization, protein-protein interactions, and protein stability. In this review, we will discuss the cellular context of when and how these different modifications of BLM occur. We will reflect on the current model of how PTMs control BLM function during DNA damage repair and compare this to what is known about post-translational regulation of the budding yeast orthologue Sgs1. Finally, we will provide an outlook toward future research, in particular to dissect the cross-talk between the individual PTMs on BLM.
Collapse
Affiliation(s)
- Stefanie Böhm
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Kara Anne Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| |
Collapse
|
15
|
Chhunchha B, Fatma N, Kubo E, Singh DP. Aberrant sumoylation signaling evoked by reactive oxygen species impairs protective function of Prdx6 by destabilization and repression of its transcription. FEBS J 2014; 281:3357-81. [PMID: 24910119 DOI: 10.1111/febs.12866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/24/2014] [Accepted: 06/05/2014] [Indexed: 12/20/2022]
Abstract
Loss of the cytoprotective protein peroxiredoxin 6 (Prdx6) in cells that are aging or under oxidative stress is known to be linked to the pathobiology of many age-related diseases. However, the mechanism by which Prdx6 activity goes awry is largely unknown. Using Prdx6-deficient (Prdx6(-/-) ) cells as a model for aging or redox active cells, human/mouse lens epithelial cells (LECs) facing oxidative stress and aging lenses, we found a significant increase in the levels of small ubiquitin-like modifier (Sumo)1 conjugates. These cells displayed increased levels of Sumo1 and reduced the expression of Prdx6. Specifically, we observed that Prdx6 is a target for aberrant sumoylation signaling, and that Sumo1 modification reduces its cellular abundance. LECs overexpressing Sumo1 showed reduced expression and activity of Prdx6 and its transactivator specificity protein 1 (Sp1), mRNA and protein with increased levels of reactive oxygen species; those cells were vulnerable to oxidative stress-induced cell death. A significant reduction in Prdx6, Sp1 protein and mRNA expression was observed in redox active Prdx6(-/-) cells and in aging lenses/LECs. The reduction was correlated with increased expression of Sumo1 and enrichment of the inactive form (dimeric) of Sumo-specific protease (Senp)1. Experiments with Sumo1-fused Prdx6 and Prdx6 promoter-linked to chloramphenicol acetyltransferase reporter gene constructs indicated that Sumo1 dysregulated Prdx6 activity by reducing its abundance and attenuating its transcription; in contrast, the delivery of Senp1 or Prdx6 reversed the process. The data show that reactive oxygen species-evoked aberrant sumoylation signaling affects Prdx6 activity by reducing Prdx6 abundance, as well as transcription. The findings of the present study may provide a foundation for a strategy to repair deleterious oxidative signaling generated by a reduced activity of Prdx6.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
16
|
The Mre11 Cellular Protein Is Modified by Conjugation of Both SUMO-1 and SUMO-2/3 during Adenovirus Infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/989160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adenovirus type 5 (Ad5) E1B 55 kDa and E4 Orf6 proteins assemble a Cullin 5-E3 ubiquitin (Ub) ligase that targets, among other cellular proteins, p53 and the Mre11-Rad50-Nbs1 (MRN) complex for degradation. The latter is also inhibited by the E4 Orf3 protein, which promotes the recruitment of Mre11 into specific nuclear sites to promote viral DNA replication. The activities associated with the E1B 55 kDa and E4 Orf6 viral proteins depend mostly on the assembly of this E3-Ub ligase. However, E1B 55 kDa can also function as an E3-SUMO ligase, suggesting not only that regulation of cellular proteins by these viral early proteins may depend on polyubiquitination and proteasomal degradation but also that SUMOylation of target proteins may play a key role in their activities. Since Mre11 is a target of both the E1B/E4 Orf6 complex and E4 Orf3, we decided to determine whether Mre11 displayed similar properties to those of other cellular targets, in Ad5-infected cells. We have found that during Ad5-infection, Mre11 is modified by SUMO-1 and SUMO-2/3 conjugation. Unexpectedly, SUMOylation of Mre11 is not exclusively dependent on E1B 55 kDa, E4 Orf6, or E4 Orf3, rather it seems to be influenced by a molecular interplay that involves each of these viral early proteins.
Collapse
|
17
|
Gromowski T, Masojć B, Scott RJ, Cybulski C, Górski B, Kluźniak W, Paszkowska-Szczur K, Rozmiarek A, Dębniak B, Maleszka R, Kładny J, Lubiński J, Dębniak T. Prevalence of the E318K and V320I MITF germline mutations in Polish cancer patients and multiorgan cancer risk-a population-based study. Cancer Genet 2014; 207:128-32. [PMID: 24767713 DOI: 10.1016/j.cancergen.2014.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/17/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Abstract
The E318K mutation in the MITF gene has been associated with a high risk of melanoma, renal cell carcinoma, and pancreatic cancer; the risk of other cancers has not been evaluated so far. Herein, we examined the possible association of E318K and a novel variant of the MITF gene, V320I, with the risk of cancers of different sites of origin in a Polish population. We assayed for the presence of the E318K and V320I missense mutations in 4,226 patients with one of six various cancers (melanoma or cancer of the kidney, lung, prostate, colon, or breast) and 2,114 controls from Poland. The E318K mutation was detected in 4 of 2,114 participants (0.19%) in the Polish control population, the V320I in 3 of 2,114 participants (0.14%) in the control group. We found no statistically significant differences in the prevalence of the E318K and V320I variants among cases and controls. We found two carriers of the E318K variant among melanoma patients (P = 0.95), one carrier among breast cancer patients (P = 0.77), one carrier among colorectal cancer patients (P = 0.82), and one carrier among kidney cancer patients (P = 0.64). Our study demonstrates a lack of strong association of E318K and V320I with increased risk of melanoma or cancers of the kidney, breast, prostate, lung, or colon.
Collapse
Affiliation(s)
- Tomasz Gromowski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Bartłomiej Masojć
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rodney J Scott
- Discipline of Medical Genetics, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Bohdan Górski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Kluźniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Paszkowska-Szczur
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Bogusław Dębniak
- Chair and Clinic of Mother's and Child's Health, Medical University, Poznań, Poland
| | - Romuald Maleszka
- Department of Dermatology and Venereology, Pomeranian Medical University, Szczecin, Poland
| | - Józef Kładny
- Department of General and Oncological Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
18
|
Ijaz A. SUMOhunt: Combining Spatial Staging between Lysine and SUMO with Random Forests to Predict SUMOylation. ISRN BIOINFORMATICS 2013; 2013:671269. [PMID: 25937950 PMCID: PMC4393069 DOI: 10.1155/2013/671269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/28/2013] [Indexed: 11/20/2022]
Abstract
Modification with SUMO protein has many key roles in eukaryotic systems which renders the identification of its target proteins and sites of considerable importance. Information regarding the SUMOylation of a protein may tell us about its subcellular localization, function, and spatial orientation. This modification occurs at particular and not all lysine residues in a given protein. In competition with biochemical means of modified-site recognition, computational methods are strong contenders in the prediction of SUMOylation-undergoing sites on proteins. In this research, physicochemical properties of amino acids retrieved from AAIndex, especially those involved in docking of modifier and target proteins and optimal presentation of target lysine, in combination with sequence information and random forest-based classifier presented in WEKA have been used to develop a prediction model, SUMOhunt, with statistics significantly better than all previous predictors. In this model 97.56% accuracy, 100% sensitivity, 94% specificity, and 0.95 MCC have been achieved which shows that proposed amino acid properties have a significant role in SUMO attachment. SUMOhunt will hence bring great reliability and efficiency in SUMOylation prediction.
Collapse
Affiliation(s)
- Amna Ijaz
- National Institute of Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
19
|
Mattoscio D, Segré CV, Chiocca S. Viral manipulation of cellular protein conjugation pathways: The SUMO lesson. World J Virol 2013; 2:79-90. [PMID: 24175232 PMCID: PMC3785051 DOI: 10.5501/wjv.v2.i2.79] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 02/05/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a key post-translational modification mechanism that controls the function of a plethora of proteins and biological processes. Given its central regulatory role, it is not surprising that it is widely exploited by viruses. A number of viral proteins are known to modify and/or be modified by the SUMOylation system to exert their function, to create a cellular environment more favorable for virus survival and propagation, and to prevent host antiviral responses. Since the SUMO pathway is a multi-step cascade, viral proteins engage with it at many levels, to advance and favor each stage of a typical infection cycle: replication, viral assembly and immune evasion. Here we review the current knowledge on the interplay between the host SUMO system and viral lifecycle.
Collapse
|
20
|
Nakano K, Watanabe T. HTLV-1 Rex: the courier of viral messages making use of the host vehicle. Front Microbiol 2012; 3:330. [PMID: 22973269 PMCID: PMC3434621 DOI: 10.3389/fmicb.2012.00330] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/24/2012] [Indexed: 01/25/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus causing an aggressive T-cell malignancy, adult T-cell leukemia (ATL). Although HTLV-1 has a compact RNA genome, it has evolved elaborate mechanisms to maximize its coding potential. The structural proteins Gag, Pro, and Pol are encoded in the unspliced form of viral mRNA, whereas the Env protein is encoded in singly spliced viral mRNA. Regulatory and accessory proteins, such as Tax, Rex, p30II, p12, and p13, are translated only from fully spliced mRNA. For effective viral replication, translation from all forms of HTLV-1 transcripts has to be achieved in concert, although unspliced mRNA are extremely unstable in mammalian cells. It has been well recognized that HTLV-1 Rex enhances the stability of unspliced and singly spliced HTLV-1 mRNA by promoting nuclear export and thereby removing them from the splicing site. Rex specifically binds to the highly structured Rex responsive element (RxRE) located at the 3' end of all HTLV-1 mRNA. Rex then binds to the cellular nuclear exporter, CRM1, via its nuclear export signal domain and the Rex-viral transcript complex is selectively exported from the nucleus to the cytoplasm for effective translation of the viral proteins. Yet, the mechanisms by which Rex inhibits the cellular splicing machinery and utilizes the cellular pathways beneficial to viral survival in the host cell have not been fully explored. Furthermore, physiological impacts of Rex against homeostasis of the host cell via interactions with numerous cellular proteins have been largely left uninvestigated. In this review, we focus on the biological importance of HTLV-1 Rex in the HTLV-1 life cycle by following the historical path in the literature concerning this viral post-transcriptional regulator from its discovery to this day. In addition, for future studies, we discuss recently discovered aspects of HTLV-1 Rex as a post-transcriptional regulator and its use in host cellular pathways.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
21
|
Oliveira RAS, Correia-Oliveira J, Tang LJ, Garcia RC. A proteomic insight into the effects of the immunomodulatory hydroxynaphthoquinone lapachol on activated macrophages. Int Immunopharmacol 2012; 14:54-65. [PMID: 22705049 DOI: 10.1016/j.intimp.2012.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/31/2022]
Abstract
We report the effect of an immunomodulatory and anti-mycobacterial naphthoquinone, lapachol, on the bi-dimensional patterns of protein expression of toll-like receptor 2 (TLR2)-agonised and IFN-γ-treated THP-1 macrophages. This non-hypothesis driven proteomic analysis intends to shed light on the cellular functions lapachol may be affecting. Proteins of both cytosol and membrane fractions were analysed. After quantification of the protein spots, the protein levels corresponding to macrophages activated in the absence or presence of lapachol were compared. A number of proteins were identified, the levels of which were appreciably and significantly increased or decreased as a result of the action of lapachol on the activated macrophages: cofilin-1, fascin, plastin-2, glucose-6-P-dehydrogenase, adenylyl cyclase-associated protein 1, pyruvate kinase, sentrin-specific protease 6, cathepsin B, cathepsin D, cytosolic aminopeptidase, proteasome β type-4 protease, tryptophan-tRNA ligase, DnaJ homolog and protein disulphide isomerase. Altogether, the comparative analysis performed indicates that lapachol could be hypothetically causing an impairment of cell migration and/or phagocytic capacity, an increase in NADPH availability, a decrease in pyruvate concentration, protection from proteosomal protein degradation, a decrease in lysosomal protein degradation, an impairment of cytosolic peptide generation, and an interference with NOS2 activation and grp78 function. The present proteomic results suggest issues that should be experimentally addressed ex- and in-vivo, to establish more accurately the potential of lapachol as an anti-infective drug. This study also constitutes a model for the pre-in-vivo evaluation of drug actions.
Collapse
Affiliation(s)
- Renato A S Oliveira
- Leukocyte Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | | | | |
Collapse
|
22
|
The potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1. Protein Cell 2012; 3:372-82. [PMID: 22544561 DOI: 10.1007/s13238-012-2021-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/19/2012] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a common human pathogen causing cold sores and even more serious diseases. It can establish a latent stage in sensory ganglia after primary epithelial infections, and reactivate in response to stress or sunlight. Previous studies have demonstrated that viral immediate-early protein ICP0 plays a key role in regulating the balance between lytic and latent infection. Recently, It has been determined that promyelocytic leukemia (PML) nuclear bodies (NBs), small nuclear sub-structures, contribute to the repression of HSV-1 infection in the absence of functional ICP0. In this review, we discuss the fundamentals of the interaction between ICP0 and PML NBs, suggesting a potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1.
Collapse
|
23
|
Erickson KD, Bouchet-Marquis C, Heiser K, Szomolanyi-Tsuda E, Mishra R, Lamothe B, Hoenger A, Garcea RL. Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS Pathog 2012; 8:e1002630. [PMID: 22496654 PMCID: PMC3320610 DOI: 10.1371/journal.ppat.1002630] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
Most DNA viruses replicate in the cell nucleus, although the specific sites of virion assembly are as yet poorly defined. Electron microscopy on freeze-substituted, plastic-embedded sections of murine polyomavirus (PyV)-infected 3T3 mouse fibroblasts or mouse embryonic fibroblasts (MEFs) revealed tubular structures in the nucleus adjacent to clusters of assembled virions, with virions apparently “shed” or “budding” from their ends. Promyelocytic leukemia nuclear bodies (PML-NBs) have been suggested as possible sites for viral replication of polyomaviruses (BKV and SV40), herpes simplex virus (HSV), and adenovirus (Ad). Immunohistochemistry and FISH demonstrated co-localization of the viral T-antigen (Tag), PyV DNA, and the host DNA repair protein MRE11, adjacent to the PML-NBs. In PML−/− MEFs the co-localization of MRE11, Tag, and PyV DNA remained unchanged, suggesting that the PML protein itself was not responsible for their association. Furthermore, PyV-infected PML−/− MEFs and PML−/− mice replicated wild-type levels of infectious virus. Therefore, although the PML protein may identify sites of PyV replication, neither the observed “virus factories” nor virus assembly were dependent on PML. The ultrastructure of the tubes suggests a new model for the encapsidation of small DNA viruses. Polyomaviruses are infectious pathogens of mammals and birds that have been linked to the development of cancers in their hosts. Members of the polyomavirus family are associated with human disease, such as JCV and BKV, and over the past few years, several more human polyomaviruses (WUV, KIV and MCV) have been discovered in immune-suppressed individuals. We are studying the way in which these viruses assemble in cells in order to identify critical points where anti-viral therapies could target these viruses. Using a structural, biochemical and cell biological approach, we set out to define sites of virus assembly and virus intermediates. We identified virus-specific structures that we termed “virus factories”. We believe that these sites serve as an assembly line for the production of new viruses. Our study provides new evidence for the presence and composition of virus assembly factories, and identifies a host protein that may be important for infection by polyomaviruses.
Collapse
Affiliation(s)
- Kimberly D. Erickson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- The Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Cedric Bouchet-Marquis
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Katie Heiser
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- The Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Eva Szomolanyi-Tsuda
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Benjamin Lamothe
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andreas Hoenger
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Robert L. Garcea
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- The Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
24
|
Lodewick J, Lamsoul I, Bex F. Move or die: the fate of the Tax oncoprotein of HTLV-1. Viruses 2011; 3:829-57. [PMID: 21994756 PMCID: PMC3185767 DOI: 10.3390/v3060829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 12/12/2022] Open
Abstract
The HTLV-1 Tax protein both activates viral replication and is involved in HTLV-1-mediated transformation of T lymphocytes. The transforming properties of Tax include altering the expression of select cellular genes via activation of cellular pathways and perturbation of both cell cycle control mechanisms and apoptotic signals. The recent discovery that Tax undergoes a hierarchical sequence of posttranslational modifications that control its intracellular localization provides provocative insights into the mechanisms regulating Tax transcriptional and transforming activities.
Collapse
Affiliation(s)
- Julie Lodewick
- Institut de Recherches Microbiologiques J-M Wiame, Université Libre de Bruxelles, B-1070 Bruxelles, Belgium.
| | | | | |
Collapse
|
25
|
How ubiquitination and autophagy participate in the regulation of the cell response to bacterial infection. Biol Cell 2011; 102:621-34. [PMID: 21077843 PMCID: PMC2975374 DOI: 10.1042/bc20100101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial infection relies on the micro-organism's ability to orchestrate the host's cell signalling such that the immune response is not activated. Conversely, the host cell has dedicated signalling pathways for coping with intrusions by pathogens. The autophagy of foreign micro-organisms (known as xenophagy) has emerged as one of the most powerful of these pathways, although the triggering mode remains largely unknown. In the present paper, we discuss the role that certain post-translational modifications (primarily ubiquitination) may play in the activation of xenophagy and how some bacteria have evolved mechanisms to subvert or hijack this process. In particular, we address the role played by P62/SQSTM1 (sequestosome 1). Finally, we discuss how autophagy can be subverted to eliminate bacteria-induced danger signals.
Collapse
|
26
|
Duverger O, Chen S, Lee D, Li T, Chock P, Morasso M. SUMOylation of DLX3 by SUMO1 promotes its transcriptional activity. J Cell Biochem 2011; 112:445-52. [PMID: 21268066 PMCID: PMC3180851 DOI: 10.1002/jcb.22891] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Small ubiquitin-like modifiers (SUMO) are post-translational modifiers that regulate target protein activity in diverse ways. The most common group of SUMO substrates is transcription factors, whose transcriptional activity can be altered positively or negatively as a result of SUMOylation. DLX3 is a homeodomain transcription factor involved in placental development, in the differentiation of structures involving epithelial-mesenchymal interactions, such as hair, teeth and nails, and in bone mineralization. We identified two potential SUMOylation sites in the N-terminal domain of DLX3 at positions K83 and K112. Among the six members of the Distal-less family, DLX3 is the only member containing these sites, which are highly conserved among vertebrates. Co-expression experiments demonstrated that DLX3 can be SUMOylated by SUMO1. Site-directed mutagenesis of lysines 83 and 112 to arginines (K83R and K112R) demonstrated that only K112 is involved in SUMOylation. Immunocytochemical analysis determined that SUMOylation does not affect DLX3 translocation to the nucleus and favors perinuclear localization. Moreover, using electrophoresis mobility shift assay (EMSA), we found that DLX3 is still able to bind DNA when SUMOylated. Using luciferase reporter assays, we showed that DLX3(K112R) exhibits a significantly lower transcriptional activity compared to DLX3(WT), suggesting that SUMOylation has a positive effect on DLX3 activity. We identified a new level of regulation in the activity of DLX3 that may play a crucial role in the regulation of hair, teeth, and bone development.
Collapse
Affiliation(s)
- O. Duverger
- Developmental Skin Biology Section, NIAMS/NIH, Bethesda, Maryland, USA
| | - S.X. Chen
- Developmental Skin Biology Section, NIAMS/NIH, Bethesda, Maryland, USA
| | - D. Lee
- Developmental Skin Biology Section, NIAMS/NIH, Bethesda, Maryland, USA
| | - T. Li
- Laboratory of Biochemistry, NHLBI/NIH, Bethesda, Maryland, USA
| | - P.B. Chock
- Laboratory of Biochemistry, NHLBI/NIH, Bethesda, Maryland, USA
| | - M.I. Morasso
- Developmental Skin Biology Section, NIAMS/NIH, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Campagna M, Herranz D, Garcia MA, Marcos-Villar L, González-Santamaría J, Gallego P, Gutierrez S, Collado M, Serrano M, Esteban M, Rivas C. SIRT1 stabilizes PML promoting its sumoylation. Cell Death Differ 2011; 18:72-9. [PMID: 20577263 PMCID: PMC3131875 DOI: 10.1038/cdd.2010.77] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 12/18/2022] Open
Abstract
SIRT1, the closest mammalian homolog of yeast Sir2, is an NAD(+)-dependent deacetylase with relevant functions in cancer, aging, and metabolism among other processes. SIRT1 has a diffuse nuclear localization but is recruited to the PML nuclear bodies (PML-NBs) after PML upregulation. However, the functions of SIRT1 in the PML-NBs are unknown. In this study we show that primary mouse embryo fibroblasts lacking SIRT1 contain reduced PML protein levels that are increased after reintroduction of SIRT1. In addition, overexpression of SIRT1 in HEK-293 cells increases the amount of PML protein whereas knockdown of SIRT1 reduces the size and number of PML-NBs and the levels of PML protein in HeLa cells. SIRT1 stimulates PML sumoylation in vitro and in vivo in a deacetylase-independent manner. Importantly, the absence of SIRT1 reduces the apoptotic response of vesicular stomatitis virus-infected cells and favors the extent of this PML-sensitive virus replication. These results show a novel function of SIRT1 in the control of PML and PML-NBs.
Collapse
Affiliation(s)
- M Campagna
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - D Herranz
- Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - M A Garcia
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento sn, Granada 18100, Spain
| | - L Marcos-Villar
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
- Departamento de Microbiología II, Fac Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal sn, Madrid 28040, Spain
| | - J González-Santamaría
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - P Gallego
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - S Gutierrez
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - M Collado
- Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - M Serrano
- Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - M Esteban
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - C Rivas
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| |
Collapse
|
28
|
Murata T, Hotta N, Toyama S, Nakayama S, Chiba S, Isomura H, Ohshima T, Kanda T, Tsurumi T. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem 2010; 285:23925-35. [PMID: 20516063 DOI: 10.1074/jbc.m109.095356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transition from latent to lytic phases of the Epstein-Barr virus life cycle is triggered by expression of a viral transactivator, BZLF1, that then induces expression of the viral immediate-early and early genes. The BZLF1 protein is post-translationally modified by a small ubiquitin-related modifier-1 (SUMO-1). Here we found that BZLF1 is conjugated at lysine 12 not only by SUMO-1 but also by SUMO-2 and 3. The K12R mutant of BZLF1, which no longer becomes sumoylated, exhibits stronger transactivation than the wild-type BZLF1 in a reporter assay system as well as in the context of virus genome with nucleosomal structures. Furthermore, exogenous supply of a SUMO-specific protease, SENP, caused de-sumoylation of BZLF1 and enhanced BZLF1-mediated transactivation. Immunoprecipitation experiments proved that histone deacetylase 3 preferentially associated with the sumoylated form of BZLF1. Levels of the sumoylated BZLF1 increased as lytic replication progressed. Based on these observations, we conclude that sumoylation of BZLF1 regulates its transcriptional activity through histone modification during Epstein-Barr virus productive replication.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ogawa H, Komatsu T, Hiraoka Y, Morohashi KI. Transcriptional Suppression by Transient Recruitment of ARIP4 to Sumoylated nuclear receptor Ad4BP/SF-1. Mol Biol Cell 2009; 20:4235-45. [PMID: 19692572 DOI: 10.1091/mbc.e08-12-1247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small ubiquitin-like modifier SUMO conjugates transcription factors and suppresses their respective activation of target genes. Although various SUMO-modified transcription factors have been isolated, mechanisms whereby sumoylated-substrates modulate transcription remain unknown. Here, we purified ARIP4 (AR interacting protein 4, a Rad54 family member and a SNF2 chromatin remodeling factor), which interacts with sumoylated Ad4BP/SF-1 through two SUMO-interacting motifs and one Ad4BP/SF-1-binding region. Remarkably, ARIP4 also interacts selectively with other sumoylated nuclear receptors including LRH-1, AR, and GR. Interestingly, the ATPase activity of ARIP4 was stimulated in the presence of sumoylated Ad4BP/SF-1 and the Ad4BP/SF-1-binding site containing double-stranded DNA. ChIP assays and siRNA studies strongly suggested that ARIP4 temporally suppresses Ad4BP/SF-1-mediated transcription through its transient recruitment to target genes. These findings suggest that ARIP4 may be a cofactor that modulates SUMO-mediated fine-tuning of transcriptional suppression.
Collapse
Affiliation(s)
- Hidesato Ogawa
- Division of Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji-cho, Okazaki 444-8787, Japan.
| | | | | | | |
Collapse
|
30
|
Percherancier Y, Germain-Desprez D, Galisson F, Mascle XH, Dianoux L, Estephan P, Chelbi-Alix MK, Aubry M. Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation: sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells. J Biol Chem 2009; 284:16595-16608. [PMID: 19380586 DOI: 10.1074/jbc.m109.006387] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promyelocytic leukemia protein (PML) is a tumor suppressor acting as the organizer of subnuclear structures called PML nuclear bodies (NBs). Both covalent modification of PML by the small ubiquitin-like modifier (SUMO) and non-covalent binding of SUMO to the PML SUMO binding domain (SBD) are necessary for PML NB formation and maturation. PML sumoylation and proteasome-dependent degradation induced by the E3 ubiquitin ligase, RNF4, are enhanced by the acute promyelocytic leukemia therapeutic agent, arsenic trioxide (As2O3). Here, we established a novel bioluminescence resonance energy transfer (BRET) assay to dissect and monitor PML/SUMO interactions dynamically in living cells upon addition of therapeutic agents. Using this sensitive and quantitative SUMO BRET assay that distinguishes PML sumoylation from SBD-mediated PML/SUMO non-covalent interactions, we probed the respective roles of covalent and non-covalent PML/SUMO interactions in PML degradation and interaction with RNF4. We found that, although dispensable for As2O3-enhanced PML sumoylation and RNF4 interaction, PML SBD core sequence was required for As2O3- and RNF4-induced PML degradation. As confirmed with a phosphomimetic mutant, phosphorylation of a stretch of serine residues, contained within PML SBD was needed for PML interaction with SUMO-modified protein partners and thus for NB maturation. However, mutation of these serine residues did not impair As2O3- and RNF4-induced PML degradation, contrasting with the known role of these phosphoserine residues for casein kinase 2-promoted PML degradation. Altogether, these data suggest a model whereby sumoylation- and SBD-dependent PML oligomerization within NBs is sufficient for RNF4-mediated PML degradation and does not require the phosphorylation-dependent association of PML with other sumoylated partners.
Collapse
Affiliation(s)
| | | | - Frédéric Galisson
- From the CNRS FRE2937, Institut André Lwoff, Villejuif 94801, France
| | - Xavier H Mascle
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Laurent Dianoux
- From the CNRS FRE2937, Institut André Lwoff, Villejuif 94801, France
| | - Patricia Estephan
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | | | - Muriel Aubry
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada.
| |
Collapse
|
31
|
Kumar D, Chugh J, Sharma S, Hosur RV. Conserved structural and dynamics features in the denatured states of drosophila SUMO, human SUMO and ubiquitin proteins: Implications to sequence-folding paradigm. Proteins 2008; 76:387-402. [DOI: 10.1002/prot.22354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Weidtkamp-Peters S, Lenser T, Negorev D, Gerstner N, Hofmann TG, Schwanitz G, Hoischen C, Maul G, Dittrich P, Hemmerich P. Dynamics of component exchange at PML nuclear bodies. J Cell Sci 2008; 121:2731-43. [PMID: 18664490 DOI: 10.1242/jcs.031922] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PML nuclear bodies (NBs) are involved in the regulation of key nuclear pathways but their biochemical function in nuclear metabolism is unknown. In this study PML NB assembly dynamics were assessed by live cell imaging and mathematic modeling of its major component parts. We show that all six nuclear PML isoforms exhibit individual exchange rates at NBs and identify PML V as a scaffold subunit. SP100 exchanges at least five times faster at NBs than PML proteins. Turnover dynamics of PML and SP100 at NBs is modulated by SUMOylation. Exchange is not temperature-dependent but depletion of cellular ATP levels induces protein immobilization at NBs. The PML-RARalpha oncogene exhibits a strong NB retention effect on wild-type PML proteins. HIPK2 requires an active kinase for PML NB targeting and elevated levels of PML IV increase its residence time. DAXX and BLM turn over rapidly and completely at PML NBs within seconds. These findings provide a kinetics model for factor exchange at PML NBs and highlight potential mechanisms to regulate intranuclear trafficking of specific factors at these domains.
Collapse
|
33
|
Kuwata T, Nakamura T. BCL11A is a SUMOylated protein and recruits SUMO-conjugation enzymes in its nuclear body. Genes Cells 2008; 13:931-40. [PMID: 18681895 DOI: 10.1111/j.1365-2443.2008.01216.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BCL11A/EVI9 is a zinc-finger protein predominantly expressed in brain and hematopoietic cells. Previous studies show that BCL11A is involved in acute myelomonocytic leukemia and chronic lymphoid leukemia in mouse and human, respectively. Moreover, BCL11A is localized in the characteristic nuclear body in which BCL6 is co-localized. However, the significance of BCL11A in leukemogenesis and nuclear function remains unknown. In this study we show that BCL11A interacts with UBC9, a small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, and recruits SUMO1 into the nuclear body. A lysine residue at amino acid 634 of BCL11A is SUMOylated but not required for the SUMO1 recruitment. The N-terminal region of BCL11A is responsible for SUMO1 recruitment as well as its nuclear body formation. We also show that SENP2, a SUMO specific peptidase, is co-localized in the nuclear body. These results suggest that BCL11A could be involved in the SUMO conjugation system, and that BCL11A might play an important role in protein modification.
Collapse
Affiliation(s)
- Takeshi Kuwata
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | |
Collapse
|
34
|
Kumar D, Kumar A, Misra JR, Chugh J, Sharma S, Hosur RV. 1H, 15N, 13C resonance assignment of folded and 8 M urea-denatured state of SUMO from Drosophila melanogaster. BIOMOLECULAR NMR ASSIGNMENTS 2008; 2:13-15. [PMID: 19636913 DOI: 10.1007/s12104-007-9072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 11/24/2007] [Indexed: 05/28/2023]
Abstract
SUMO, an important post-translational modifier of variety of substrate proteins, regulates different cellular functions. Here, we report the NMR resonance assignment of the folded and 8 M urea-denatured state of SUMO from Drosophila melanogaster (dsmt3).
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005, India
| | | | | | | | | | | |
Collapse
|
35
|
Vethantham V, Rao N, Manley JL. Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev 2008; 22:499-511. [PMID: 18281463 DOI: 10.1101/gad.1628208] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The addition of the poly(A) tail to the ends of eukaryotic mRNAs is catalyzed by poly(A) polymerase (PAP). PAP activity is known to be highly regulated, for example, by alternative splicing and phosphorylation. In this study we show that the small ubiquitin-like modifier (SUMO) plays multiple roles in regulating PAP function. Our discovery of SUMO-conjugated PAP began with the observation of a striking pattern of abundant higher-molecular-weight forms of PAP in certain mouse tissues and cell lines. PAP constitutes an unusual SUMO substrate in that, despite the absence of any consensus sumoylation sites, PAP interacts very strongly with the SUMO E2 enzyme ubc9 and can be extensively sumoylated both in vitro and in vivo. Six sites of sumoylation in PAP were identified, with two overlapping one of two nuclear localization signals (NLS). Strikingly, mutation of the two lysines at the NLS to arginines, or coexpression of a SUMO protease with wild-type PAP, caused PAP to be localized to the cytoplasm, demonstrating that sumoylation is required to facilitate PAP nuclear localization. Sumoylation also contributes to PAP stability, as down-regulation of sumoylation led to decreases in PAP levels. Finally, the activity of purified PAP was shown to be inhibited by in vitro sumoylation. Our study thus shows that SUMO regulates PAP in numerous distinct ways and is integral to normal PAP function.
Collapse
Affiliation(s)
- Vasupradha Vethantham
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
36
|
Mohrlüder J, Stangler T, Hoffmann Y, Wiesehan K, Mataruga A, Willbold D. Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library. FEBS J 2007; 274:5543-55. [PMID: 17916189 DOI: 10.1111/j.1742-4658.2007.06073.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
4-Aminobutyrate type A (GABA(A)) receptor-associated protein (GABARAP) is a ubiquitin-like modifier implicated in the intracellular trafficking of GABA(A) receptors, and belongs to a family of proteins involved in intracellular vesicular transport processes, such as autophagy and intra-Golgi transport. In this article, it is demonstrated that calreticulin is a high affinity ligand of GABARAP. Calreticulin, although best known for its functions as a Ca(2+) -dependent chaperone and a Ca(2+) -buffering protein in the endoplasmic reticulum, is also localized to the cytosol and exerts a variety of extra-endoplasmic reticulum functions. By phage display screening of a randomized peptide library, peptides that specifically bind GABARAP were identified. Their amino acid sequences allowed us to identify calreticulin as a potential GABARAP binding protein. GABARAP binding to calreticulin was confirmed by pull-down experiments with brain lysate and colocalization studies in N2a cells. Calreticulin and GABARAP interact with a dissociation constant K(d) = 64 nm and a mean lifetime of the complex of 20 min. Thus, the interaction between GABARAP and calreticulin is the strongest so far reported for each protein.
Collapse
Affiliation(s)
- Jeannine Mohrlüder
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In the last decade, the identification of enzymes that regulate acetylation of histones and nonhistone proteins has revealed the key role of dynamic acetylation and deacetylation in various cellular processes. Mammalian histone deacetylases (HDACs), which catalyse the removal of acetyl groups from lysine residues, are grouped into three classes, on the basis of similarity to yeast counterparts. An abundance of experimental evidence has established class IIa HDACs as crucial transcriptional regulators of various developmental and differentiation processes. In the past 5 years, a tremendous effort has been dedicated to characterizing the regulation of these enzymes. In this review, we summarize the latest discoveries in the field and discuss the molecular and structural determinants of class IIa HDACs regulation. Finally, we emphasize that comprehension of the mechanisms underlying class IIa HDAC functions is essential for potential therapeutic applications.
Collapse
Affiliation(s)
- M Martin
- Cellular and Molecular Biology Unit, FUSAGx, Gembloux, Belgium
| | | | | |
Collapse
|
38
|
Potts PR, Yu H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 2007; 14:581-90. [PMID: 17589526 DOI: 10.1038/nsmb1259] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/02/2007] [Indexed: 11/08/2022]
Abstract
Most cancer cells activate telomerase to elongate telomeres and achieve unlimited replicative potential. Some cancer cells cannot activate telomerase and use telomere homologous recombination (HR) to elongate telomeres, a mechanism termed alternative lengthening of telomeres (ALT). A hallmark of ALT cells is the recruitment of telomeres to PML bodies (termed APBs). Here, we show that the SMC5/6 complex localizes to APBs in ALT cells and is required for targeting telomeres to APBs. The MMS21 SUMO ligase of the SMC5/6 complex SUMOylates multiple telomere-binding proteins, including TRF1 and TRF2. Inhibition of TRF1 or TRF2 SUMOylation prevents APB formation. Depletion of SMC5/6 subunits by RNA interference inhibits telomere HR, causing telomere shortening and senescence in ALT cells. Thus, the SMC5/6 complex facilitates telomere HR and elongation in ALT cells by promoting APB formation through SUMOylation of telomere-binding proteins.
Collapse
Affiliation(s)
- Patrick Ryan Potts
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA
| | | |
Collapse
|
39
|
Everett RD, Chelbi-Alix MK. PML and PML nuclear bodies: implications in antiviral defence. Biochimie 2007; 89:819-30. [PMID: 17343971 DOI: 10.1016/j.biochi.2007.01.004] [Citation(s) in RCA: 351] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 01/19/2007] [Indexed: 12/13/2022]
Abstract
The establishment of an intracellular antiviral state is the defining activity of interferons (IFNs) as well as the property that permitted their discovery. Several pathways have been implicated in resistance to viral infection in IFN-treated cells, one of which implicates the ProMyelocytic Leukaemia (PML) protein and PML nuclear bodies (NBs, also known as ND10). PML NBs are dynamic intranuclear structures that require PML for their formation and which harbour numerous other transiently or permanently localised proteins. PML is expressed as a family of isoforms (PML I-VII) as a result of alternative splicing, most of which are found in the nucleus. IFN treatment directly induces transcription of the genes encoding both PML and Sp100, (another major component of PML NBs), resulting in higher levels of expression of these proteins and increases in both the size and number of PML NBs. These and other observations have encouraged the hypothesis that PML, PML NBs and a number of other constituents of these structures are involved in host antiviral defences. For example, exogenous expression of PML III or PML VI can impede infection by a number of RNA and DNA viruses, and certain viral proteins accumulate in PML NBs then cause their disruption by a variety of mechanisms. Although there are many other functions of PML NBs in a wide range of cellular pathways, there is accumulating evidence that they represent preferential targets for viral infections and that PML plays a role in the mechanism of the antiviral action of IFN. This article reviews the potential antiviral activities of PML NB constituent proteins, how RNA and DNA viruses overcome these defences, and the connections between these events and IFN pathways.
Collapse
Affiliation(s)
- Roger D Everett
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow, UK
| | | |
Collapse
|
40
|
Navascués J, Bengoechea R, Tapia O, Vaqué JP, Lafarga M, Berciano MT. Characterization of a new SUMO-1 nuclear body (SNB) enriched in pCREB, CBP, c-Jun in neuron-like UR61 cells. Chromosoma 2007; 116:441-51. [PMID: 17549507 DOI: 10.1007/s00412-007-0107-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/22/2007] [Accepted: 03/30/2007] [Indexed: 12/29/2022]
Abstract
The neuron-like UR61 cell is a stable PC12 subline that contains a mouse N-ras oncogene. Dexamethasone (Dex) treatment induces a neuron-like differentiation, which is associated with neuritogenesis and nuclear expression of the glucocorticoid receptor and c-Jun. In differentiated UR61 cells, small ubiquitin-like modifiers 1 (SUMO-1) is concentrated in a new category of SUMO-1 nuclear bodies (SNBs) distinct from promyelocytic leukemia (PML) bodies by their large size and absence of PML protein. SNBs are 1 to 3 mum in diameter and exhibit a fine granular texture by electron microscopy. They are free of splicing factors and transcription foci and show spatial associations with Cajal bodies. In addition to SUMO-1 and the E2-conjugating enzyme Ubc9, which is essential for sumoylation, SNBs concentrate the transcriptional regulators CBP, CREB, and c-Jun. Moreover, transfection experiments demonstrate that SNBs accumulate the active conjugating form of SUMO-1 but not the conjugation defective variant of SUMO-1, supporting that SNBs are sites of sumoylation. Our results suggest that SNBs play a role in the control of the nucleoplasmic concentration of transcription regulators involved in neuroprotection and survival of the UR61 cells.
Collapse
Affiliation(s)
- Joaquín Navascués
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, University of Dundee, DD1 5EH, Dundee, UK
| | | | | | | | | | | |
Collapse
|
41
|
Utsubo-Kuniyoshi R, Terui Y, Mishima Y, Rokudai A, Mishima Y, Sugimura N, Kojima K, Sonoda Y, Kasahara T, Hatake K. MEK-ERK is involved in SUMO-1 foci formation on apoptosis. Cancer Sci 2007; 98:569-76. [PMID: 17284251 PMCID: PMC11158486 DOI: 10.1111/j.1349-7006.2007.00422.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) modification appears to regulate the activity, intracellular localization, and stability of the targeted proteins. To explore the relationship among sumoylation, antitumor reagent, and apoptosis, we treated green fluorescence protein (GFP)-SUMO-1-overexpressed K562 cells (K562/GFP-SUMO-1) with mitoxantrone (MIT) as an antitumor reagent. By the treatment with MIT, GFP-SUMO-1 formed foci in nuclei. While by the treatment with a tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), GFP-SUMO-1 located homogeneously in nuclei. When K562/GFP-SUMO-1 cells were treated with TPA plus MIT, GFP-SUMO-1 foci became larger and apoptosis was induced more than with MIT alone. The apoptosis induced by TPA plus MIT was prevented by blockage of GFP-SUMO-1 foci by small interfering RNA (siRNA) against SUMO-1. The formation of GFP-SUMO-1 foci was reduced by a MEK inhibitor U0126 or a nuclear export inhibitor leptomycin B, and endogenous SUMO-1 foci were reduced in K562 cells expressing the dominant-negative MEK1 mutant. These results suggest that the formation of SUMO-1 foci is regulated by the MEK-ERK pathway and may induce apoptosis.
Collapse
Affiliation(s)
- Ryoko Utsubo-Kuniyoshi
- Division of Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Ubiquitination and deubiquitination regulate several essential cellular processes such as protein degradation, cell-cycle progression, signaling, and DNA repair. Given the importance of these processes, it is not surprising that many microbes have developed the means to interfere with different stages of ubiquitin pathways to promote their survival and replication. This review focuses on virulence proteins of bacterial pathogens that mediate these effects and summarizes our current understanding of their actions.
Collapse
Affiliation(s)
- Anne Rytkönen
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
43
|
Li S, Shang Y. Regulation of SRC family coactivators by post-translational modifications. Cell Signal 2007; 19:1101-12. [PMID: 17368849 DOI: 10.1016/j.cellsig.2007.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 02/01/2007] [Accepted: 02/01/2007] [Indexed: 02/05/2023]
Abstract
Initially identified as a group of auxiliary protein factors involved in transcriptional regulation by steroid hormone receptors as well as by other members of the nuclear receptor superfamily, the steroid receptor coactivators (SRCs) have since then been implicated in the transcriptional regulation of other transcription factors which are important components of very different signaling pathways. Members of the SRC family have been shown to interact with myogenin, MEF-2, transcriptional enhancer factor (TEF), NF-kappaB, AP-1, STAT, p53, and E2F1, suggesting that SRC coactivators participate in diverse cellular processes. Recent evidence indicates that various post-translational modifications play critical roles in determining the final transcriptional output and specificity of SRC coactivators. In this review, we summarized the current knowledge concerning post-translational modifications, dynamic interplay between different modifications, and patho-physiological relevance of the modifications of SRC proteins.
Collapse
Affiliation(s)
- Shaosi Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, PR China
| | | |
Collapse
|
44
|
Brooks WS, Banerjee S, Crawford DF. G2E3 is a nucleo-cytoplasmic shuttling protein with DNA damage responsive localization. Exp Cell Res 2007; 313:665-76. [PMID: 17239372 PMCID: PMC1876774 DOI: 10.1016/j.yexcr.2006.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 11/29/2022]
Abstract
G2E3 was originally described as a G2/M-specific gene with DNA damage responsive expression. The presence of a conserved HECT domain within the carboxy-terminus of the protein indicated that it likely functions as a ubiquitin ligase or E3. Although HECT domains are known to function in this capacity for many proteins, we demonstrate that a portion of the HECT domain from G2E3 plays an important role in the dynamic subcellular localization of the protein. We have shown that G2E3 is a nucleo-cytoplasmic shuttling protein with nuclear export mediated by a novel nuclear export domain that functions independently of CRM1. In full-length G2E3, a separate region of the HECT domain suppresses the function of the NES. Additionally, G2E3 contains a nucleolar localization signal (NoLS) in its amino terminus. Localization of G2E3 to the nucleolus is a dynamic process, and the protein delocalizes from the nucleolus rapidly after DNA damage. Cell cycle phase-specific expression and highly regulated subcellular localization of G2E3 suggest a possible role in cell cycle regulation and the cellular response to DNA damage.
Collapse
Affiliation(s)
- William S. Brooks
- From the Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| | - Sami Banerjee
- From the Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| | - David F. Crawford
- From the Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, 35233
- From the Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35233
| |
Collapse
|
45
|
Chen Z, Zhao WL, Shen ZX, Li JM, Chen SJ, Zhu J, Lallemand-Breittenbach V, Zhou J, Guillemin MC, Vitoux D, de Thé H. Arsenic trioxide and acute promyelocytic leukemia: clinical and biological. Curr Top Microbiol Immunol 2007; 313:129-44. [PMID: 17217042 DOI: 10.1007/978-3-540-34594-7_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Arsenic has recently been identified as an effective drug in the treatment of newly diagnosed and relapsed acute promyelocytic leukemia. Indeed, arsenic trioxide combined with all-trans retinoic acid shows a synergistic effect. Mechanistically, arsenic targets the key leukemogenic protein PML-RARalpha, setting up a new example of molecular target-based cancer therapy.
Collapse
Affiliation(s)
- Z Chen
- Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Road II, 200025 Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hamard PJ, Boyer-Guittaut M, Camuzeaux B, Dujardin D, Hauss C, Oelgeschläger T, Vigneron M, Kedinger C, Chatton B. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity. Nucleic Acids Res 2007; 35:1134-44. [PMID: 17264123 PMCID: PMC1851647 DOI: 10.1093/nar/gkl1168] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the past few years, small ubiquitin-like modifier (SUMO) modification has emerged as an important regulator of diverse pathways and activities including protein localization and transcriptional regulation. We identified a consensus sumoylation motif (IKEE), located within the N-terminal activation domain of the ATF7 transcription factor and thus investigated the role of this modification. ATF7 is a ubiquitously expressed transcription factor, homologous to ATF2, that binds to CRE elements within specific promoters. This protein is able to heterodimerize with Jun or Fos proteins and its transcriptional activity is mediated by interaction with TAF12, a subunit of the general transcription factor TFIID. In the present article, we demonstrate that ATF7 is sumoylated in vitro (using RanBP2 as a E3-specific ligase) and in vivo. Moreover, we show that ATF7 sumoylation affects its intranuclear localization by delaying its entry into the nucleus. Furthermore, SUMO conjugation inhibits ATF7 transactivation activity by (i) impairing its association with TAF12 and (ii) blocking its binding-to-specific sequences within target promoters.
Collapse
Affiliation(s)
- Pierre-Jacques Hamard
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Michaël Boyer-Guittaut
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Barbara Camuzeaux
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Denis Dujardin
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Charlotte Hauss
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Thomas Oelgeschläger
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Marc Vigneron
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Claude Kedinger
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Bruno Chatton
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
- *To whom correspondence should be addressed. Tel: +(33) 390 244 787; Fax+(33) 390 244 770;
| |
Collapse
|
47
|
Kumar A, Srivastava S, Hosur RV. NMR characterization of the energy landscape of SUMO-1 in the native-state ensemble. J Mol Biol 2007; 367:1480-93. [PMID: 17320104 DOI: 10.1016/j.jmb.2007.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 01/24/2023]
Abstract
Characterizing the low energy excited states in the energy landscape of a protein is one of the exciting and demanding problems in structural biology at the present time. These describe the adaptability of the protein structure to external perturbations. In this context, we used here non-linear dependence of amide proton chemical shifts on temperature to identify residues accessing alternative conformations in SUMO-1 in the native state as well as in the near-native states created by sub-denaturing concentrations of urea. The number of residues accessing alternative conformations increases and the profiles of curved temperature dependence also change with increasing urea concentration. In every case these alternative conformations lie within 2 kcal/mol from the ground state, and are separated from it by low energy barriers. The residues that access alternative conformations span the length of the protein chain but are located at particular regions on the protein structure. These include many of the loops, beta2 and beta5 strands, and some edges of the helices. We observed that some of the regions of the protein structure that exhibit such fluctuations coincide with the protein's binding surfaces with different substrate like GTPase effector domain (GED) of dynamin, SUMO binding motifs (SBM), E1 (activating enzyme, SAE1/SAE2) and E2 (conjugating enzyme, UBC9) enzymes of sumoylation machinery, reported earlier. We speculate that this would have significant implications for the binding of diversity of targets by SUMO-1 for the variety of functions it is involved in.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | | | |
Collapse
|
48
|
Abstract
SUMO modification (sumoylation) plays important roles in nucleo-cytoplasmic transport, maintenance of sub-nuclear architecture, the regulation of gene expression and in DNA replication, repair and recombination. Here we review recent evidence for SUMO's role in protecting genomic integrity at both the chromosomal and the DNA level. Furthermore, the involvement of sumoylation and of specific SUMO targets in cancer is discussed.
Collapse
Affiliation(s)
- J S Seeler
- Nuclear Organisation and Oncogenesis Unit, INSERM U.579, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France.
| | | | | | | |
Collapse
|
49
|
Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006; 22:159-80. [PMID: 16753028 DOI: 10.1146/annurev.cellbio.22.010605.093503] [Citation(s) in RCA: 1195] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following the discovery of protein modification by the small, highly conserved ubiquitin polypeptide, a number of distinct ubiquitin-like proteins (Ubls) have been found to function as protein modifiers as well. These Ubls, which include SUMO, ISG15, Nedd8, and Atg8, function as critical regulators of many cellular processes, including transcription, DNA repair, signal transduction, autophagy, and cell-cycle control. A growing body of data also implicates the dysregulation of Ubl-substrate modification and mutations in the Ubl-conjugation machinery in the etiology and progression of a number of human diseases. The primary aim of this review is to summarize the latest developments in our understanding of the different Ubl-protein modification systems, including the shared and unique features of these related pathways.
Collapse
Affiliation(s)
- Oliver Kerscher
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
50
|
Deyrieux AF, Rosas-Acosta G, Ozbun MA, Wilson VG. Sumoylation dynamics during keratinocyte differentiation. J Cell Sci 2006; 120:125-36. [PMID: 17164289 PMCID: PMC3470114 DOI: 10.1242/jcs.03317] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
SUMO modification regulates the activity of numerous transcription factors that have a direct role in cell-cycle progression, apoptosis, cellular proliferation, and development, but its role in differentiation processes is less clear. Keratinocyte differentiation requires the coordinated activation of a series of transcription factors, and as several crucial keratinocyte transcription factors are known to be SUMO substrates, we investigated the role of sumoylation in keratinocyte differentiation. In a human keratinocyte cell line model (HaCaT cells), Ca2+-induced differentiation led to the transient and coordinated transcriptional activation of the genes encoding crucial sumoylation system components, including SAE1, SAE2, Ubc9, SENP1, Miz-1 (PIASx beta), SUMO2 and SUMO3. The increased gene expression resulted in higher levels of the respective proteins and changes in the pattern of sumoylated substrate proteins during the differentiation process. Similarly to the HaCaT results, stratified human foreskin keratinocytes showed an upregulation of Ubc9 in the suprabasal layers. Abrogation of sumoylation by Gam1 expression severely disrupted normal HaCaT differentiation, consistent with an important role for sumoylation in the proper progression of this biological process.
Collapse
Affiliation(s)
- Adeline F. Deyrieux
- Department of Molecular & Microbial Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA 77843-1114
| | - Germán Rosas-Acosta
- Department of Molecular & Microbial Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA 77843-1114
| | - Michelle A. Ozbun
- Department of Molecular Genetics & Microbiology, and of Obstetrics & Gynecology, University of New Mexico School of Medicine, 915 Camino de Salud NE, Cancer Research Facility (CRF) 303, Albuquerque, NM 87131, Phone: 505-272-4950, FAX: 505-272-9912
| | - Van G. Wilson
- Department of Molecular & Microbial Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA 77843-1114
- Corresponding Author, Phone: 1-979-845-5207, Fax: 1-979-845-3479,
| |
Collapse
|