1
|
Jaye S, Sandau US, McFarland TJ, Woltjer RL, Saugstad JA. A clathrin mediated endocytosis scaffolding protein, Intersectin 1, changes in an isoform, brain region, and sex specific manner in Alzheimer's disease. Front Neurosci 2024; 18:1426180. [PMID: 38915309 PMCID: PMC11195150 DOI: 10.3389/fnins.2024.1426180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary Tau tangles in the brain. We previously identified a set of candidate AD microRNAs (miRNAs) in human cerebrospinal fluid (CSF) and used a target prediction pipeline to identify mRNAs and pathways that could potentially be regulated by the miRNAs. Of these pathways, clathrin mediated endocytosis (CME) was selected for further investigation. CME is altered in multiple brain cell types in AD and is implicated in early cellular phenotypes such as enlarged early endosomes and pathogenic processing of Aβ. However, a comprehensive evaluation of major CME hub proteins in humans with AD across multiple brain regions is lacking. Thus, we used immunoblots to evaluate human post-mortem AD and control (CTL) frontal cortex (FC; AD n = 22, CTL n = 23) and hippocampus (HP; AD n = 34, CTL n = 22) for changes in Intersectin 1 (ITSN1), Phosphatidylinositol Binding Clathrin Assembly Protein gene (PICALM), Clathrin Light Chain (CLT), FCH and Mu Domain Containing Endocytic Adaptor 1 (FCHO1), Adaptor Related Protein Complex 2 (AP2) Subunit Alpha 1 (AP2A1), and Dynamin 2 (DNM2). Of these, we found that in AD, ITSN1-long (ITSN1-L) was decreased in the FC of males and HP of females, while ITSN1-short was increased in the HP of both males and females. We further evaluated ITSN1-L levels in cortex (CTX) and HP of the 5xFAD mouse model of Aβ pathology at different timepoints during aging and disease progression by immunoblot (n = 5-8 per group). At 3 months, female 5xFAD exhibited an increase of ITSN1-L in CTX but a decrease at 6 and 9 months. Additionally, immunofluorescent staining of 5xFAD primary HP neurons showed an increase of ITSN1-L in matured 5xFAD neurons at 21 and 28 days in vitro. Together, our studies show that in AD, isoforms of ITSN1 change in a brain region-and sex-dependent manner. Further, changes in ITSN1-L are transient with levels increasing during early Aβ accumulation and decreasing during later progression. These findings suggest that ITSN1 expression, and consequently CME activity, may change depending on the stage of disease progression.
Collapse
Affiliation(s)
- Sierra Jaye
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Ursula S. Sandau
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Trevor J. McFarland
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Randy L. Woltjer
- Division of Neuropathology, Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| | - Julie A. Saugstad
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Alternative splicing-derived intersectin1-L and intersectin1-S exert opposite function in glioma progression. Cell Death Dis 2019; 10:431. [PMID: 31160551 PMCID: PMC6547669 DOI: 10.1038/s41419-019-1668-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
Intersectin1 (ITSN1) contains two isoforms: ITSN1-S and ITSN1-L, which is highly regulated by alternative splicing. However, the alteration of alternative splicing and its importance in cancer is still unknown. In this study, our transcriptome analysis by using a large glioma cohort indicated the two isoforms exerted opposite function in glioma progression. Our previous results had shown ITSN1-S could promote glioma development; however, the function of ITSN1-L remained unknown. In this study, we first confirmed that ITSN1-L exerted an inhibitory role in glioma progression both in vivo and in vitro, which was contrary to the function of ITSN1-S. In additional, we also elucidated the mechanisms of ITSN1-L in inhibiting tumor progression. First, we revealed ITSN1-L could interact with α-tubulin to promote HDAC6-dependent deacetylation of ac-tubulin leading to decreased cell motility. Second, ITSN1-L could attenuate cell-substrate adhesion through FAK/integrin β3 pathway. Third, ITSN1-L was able to strengthen cell-cell adhesion by upregulating N-cadherin expression and its re-localization to membrane by ANXA2 and TUBB3/TUBB4. In conclusion, we found for the first time that two isoforms produced by alternative splicing exerted opposite functions in glioma development. Therefore, upregulation of ITSN1-L expression as well as downregulation of ITSN1-S expression probably was a better strategy in glioma treatment. Our present study laid a foundation for the importance of alternative splicing in glioma progression and raised the possibility of controlling glioma development completely at an alternative splicing level to be a more effective strategy.
Collapse
|
3
|
Gryaznova T, Gubar O, Burdyniuk M, Kropyvko S, Rynditch A. WIP/ITSN1 complex is involved in cellular vesicle trafficking and formation of filopodia-like protrusions. Gene 2018; 674:49-56. [PMID: 29958948 DOI: 10.1016/j.gene.2018.06.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 01/12/2023]
Abstract
WIP (WASP interacting protein) together with N-WASP (neural Wiskott-Aldrich syndrome protein) regulates actin polymerization that is crucial for invadopodia and filopodia formation. Recently, we reported the WIP interaction with ITSN1 which is highly implicated in endo-/exocytosis, apoptosis, mitogenic signaling and cytoskeleton rearrangements. Here we demonstrate that the WIP/ITSN1 complex is involved in the transferrin receptor recycling and partially co-localizes with a marker of the fast recycling endosomes, RAB4. Moreover, ITSN1 recruits WIP to RAB4-positive vesicles upon overexpression. Our data indicate that WIP enhances the interaction of N-WASP with ITSN1 and promotes ITSN1/β-actin association. Moreover, the WIP/ITSN1-L complex facilitates formation of filopodia-like protrusions in MCF-7 cells. Thus, WIP/ITSN1 complex is involved in the cellular vesicle trafficking and actin-dependent membrane processes.
Collapse
Affiliation(s)
- Tetyana Gryaznova
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine.
| | - Olga Gubar
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Mariia Burdyniuk
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Sergii Kropyvko
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | - Alla Rynditch
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| |
Collapse
|
4
|
Jeganathan N, Predescu D, Predescu S. Intersectin-1s deficiency in pulmonary pathogenesis. Respir Res 2017; 18:168. [PMID: 28874189 PMCID: PMC5585975 DOI: 10.1186/s12931-017-0652-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Intersectin-1s (ITSN-1s), a multidomain adaptor protein, plays a vital role in endocytosis, cytoskeleton rearrangement and cell signaling. Recent studies have demonstrated that deficiency of ITSN-1s is a crucial early event in pulmonary pathogenesis. In lung cancer, ITSN-1s deficiency impairs Eps8 ubiquitination and favors Eps8-mSos1 interaction which activates Rac1 leading to enhanced lung cancer cell proliferation, migration and metastasis. Restoring ITSN-1s deficiency in lung cancer cells facilitates cytoskeleton changes favoring mesenchymal to epithelial transformation and impairs lung cancer progression. ITSN-1s deficiency in acute lung injury leads to impaired endocytosis which leads to ubiquitination and degradation of growth factor receptors such as Alk5. This deficiency is counterbalanced by microparticles which, via paracrine effects, transfer Alk5/TGFβRII complex to non-apoptotic cells. In the presence of ITSN-1s deficiency, Alk5-restored cells signal via Erk1/2 MAPK pathway leading to restoration and repair of lung architecture. In inflammatory conditions such as pulmonary artery hypertension, ITSN-1s full length protein is cleaved by granzyme B into EHITSN and SH3A-EITSN fragments. The EHITSN fragment leads to pulmonary cell proliferation via activation of p38 MAPK and Elk-1/c-Fos signaling. In vivo, ITSN-1s deficient mice transduced with EHITSN plasmid develop pulmonary vascular obliteration and plexiform lesions consistent with pathological findings seen in severe pulmonary arterial hypertension. These novel findings have significantly contributed to understanding the mechanisms and pathogenesis involved in pulmonary pathology. As demonstrated in these studies, genetically modified ITSN-1s expression mouse models will be a valuable tool to further advance our understanding of pulmonary pathology and lead to novel targets for treating these conditions.
Collapse
Affiliation(s)
| | - Dan Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University, 1750 W. Harrison Street, 1415 Jelke, Chicago, IL, 60612, USA
| | - Sanda Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 1535 Jelke, Chicago, IL, 60612, USA
| |
Collapse
|
5
|
Yang X, Xu X, Zhang Y, Wang S, Li M, Wang X. Altered Expression of Intersectin1-L in Patients with Refractory Epilepsy and in Experimental Epileptic Rats. Cell Mol Neurobiol 2015; 35:871-80. [PMID: 25783631 PMCID: PMC11486327 DOI: 10.1007/s10571-015-0181-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 11/29/2022]
Abstract
Epilepsy is a common neurological disorder. Because its underlying mechanisms remain incompletely understood, current treatments are not adequate for all epilepsy patients, and some patients progress to refractory epilepsy. Under physiological conditions, excitatory and inhibitory neurons function in a dynamic balance. Epilepsy develops when this balance is disrupted. Intersectin1-L is a major scaffold protein in the central nervous system that contains multiple functional domains, and it is the long form of intersectin1. Recent studies have shown that intersectin1-L plays an important role in the process of neurotransmitter release. In this study, we investigated the expression pattern and distribution of intersectin1-L in patients with refractory epilepsy, in a rat model of pilocarpine-induced epilepsy, and in a rat model of amygdala-kindled epilepsy by immunohistochemistry, immunofluorescence, and Western blotting. The purpose of this study was to explore the relationship between epilepsy and intersectin1-L. The results showed that the intersectin1-L protein was primarily expressed in neurons in brain tissue. Its expression was remarkably increased in patients with refractory epilepsy and in epilepsy model rats. These results suggest that the abnormal expression of the intersectin1-L protein in epileptic brain tissue may play an important role in epilepsy, especially refractory epilepsy.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016 China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016 China
| | - Yujiao Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016 China
| | - Shasha Wang
- Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, 400016 China
| | - Minghui Li
- Chongqing Medical University, No.1 Yixueyuan Road, Chongqing, 400016 China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, 400016 China
| |
Collapse
|
6
|
Gu F, Zhang H, Qin F, Liu X, Li W, Fu L, Ying G, Li B, Zhang M, Ma Y. Intersectin1-S, a multidomain adapter protein, is essential for malignant glioma proliferation. Glia 2015; 63:1595-605. [PMID: 25832561 DOI: 10.1002/glia.22830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/17/2015] [Indexed: 01/07/2023]
Abstract
Glioblastomas, the most aggressive form of primary brain tumors with a tendency to invade surrounding healthy brain tissues, remains an incurable disease. Intersectin (ITSN) is a multidomain adapter protein implicated in endocytosis, exocytosis, and multiple signaling pathways. Prior research of ours has shown intersectin1-S (ITSN1-S) is critical for the migration and invasion of glioma cells by regulating several key proteins. In this study, we established ITSN1-S expression patterns in human tumor tissues. We discovered that ITSN1-S expression was positively correlated with histological grade of gliomas and with poor patient prognosis. We also found that the expression of ITSN1-S protein was essential to glioblastoma cell proliferation. Furthermore, through a series of expression constructs encoding different ITSN1-S domains, we identified the critical roles of ITSN1-S SH3 domains in the regulation of cell proliferation. This study also demonstrates evidence suggesting that the regulation of ITSN1-S on glioblastoma cells proliferation is through the Raf/MEK/ERK pathway. In conclusion, this study suggests critical roles of ITSN1-S in malignant glioma proliferation, indicating a potential usage of ITSN1-S in the therapeutic intervention as a novel molecular target.
Collapse
Affiliation(s)
- Feng Gu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| | - Huikun Zhang
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| | - Fengxia Qin
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| | - Xiaoli Liu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| | - Wenliang Li
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| | - Li Fu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| | - Guoguang Ying
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| | - Binghui Li
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Yongjie Ma
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, People's Republic of China
| |
Collapse
|
7
|
Chen PH, Hsiao KM, Chou CC. Molecular characterization of toxicity mechanism of single-walled carbon nanotubes. Biomaterials 2013; 34:5661-9. [PMID: 23623425 DOI: 10.1016/j.biomaterials.2013.03.093] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/29/2013] [Indexed: 11/30/2022]
Abstract
Carbon nanotubes (CNTs) are one of widely used nanomaterials in industry and biomedicine. The potential impact of single-walled carbon nanotubes (SWCNTs) was evaluated using Caenorhabditis elegans (C. elegans) as a toxicological animal model. SWCNTs are extremely hydrophobic to form large agglomerates in aqueous solutions. Highly soluble amide-modified SWCNTs (a-SWCNTs) were therefore used in the present study so that the exact impact of SWCNTs could be studied. No significant toxicity was observed in C. elegans due to the amide modification. a-SWCNTs were efficiently taken up by worms and caused acute toxicity, including retarded growth, shortened lifespan and defective embryogenesis. The resulting toxicity was reversible since C. elegans could recover from a-SWCNT-induced toxicity once the exposure terminates. Chronic exposure to low doses of a-SWCNTs during all development stages could also cause a toxic accumulation in C. elegans. Genome-wide gene expression analysis was performed to investigate the toxic molecular mechanisms. Functional genomic analysis and molecular biology validation suggest that defective endocytosis, the decreased activity of the citrate cycle and the reduced nuclear translocation of DAF-16 transcription factor play key roles in inducing the observed a-SWCNT toxicity in worms. The present study presents an integrated approach to evaluating the toxicity of nanomaterials at the organism and molecular level for human and environmental health and demonstrates that traditional toxicological endpoints associated with functional genomic analysis can provide global and thorough insight into toxicity.
Collapse
Affiliation(s)
- Po-Hsuan Chen
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan.
| | | | | |
Collapse
|
8
|
Asbach B, Ludwig C, Saksela K, Wagner R. Comprehensive analysis of interactions between the Src-associated protein in mitosis of 68 kDa and the human Src-homology 3 proteome. PLoS One 2012; 7:e38540. [PMID: 22745667 PMCID: PMC3379994 DOI: 10.1371/journal.pone.0038540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
The protein Sam68 is involved in many cellular processes such as cell-cycle regulation, RNA metabolism, or signal transduction. Sam68 comprises a central RNA-binding domain flanked by unstructured tails containing docking sites for signalling proteins including seven proline-rich sequences (denoted P0 to P6) as potential SH3-domain binding motifs. To comprehensively assess Sam68-SH3-interactions, we applied a phage-display screening of a library containing all approx. 300 human SH3 domains. Thereby we identified five new (from intersectin 2, the osteoclast stimulating factor OSF, nephrocystin, sorting nexin 9, and CIN85) and seven already known high-confidence Sam68-ligands (mainly from the Src-kinase family), as well as several lower-affinity binders. Interaction of the high-affinity Sam68-binders was confirmed in independent assays in vitro (phage-ELISA, GST-pull-down) and in vivo (FACS-based FRET-analysis with CFP- and YFP-tagged proteins). Fine-mapping analyses with peptides established P0, P3, P4, and P5 as exclusive docking-sites for SH3 domains, which showed varying preferences for these motifs. Mutational analyses identified individual residues within the proline-rich motifs being crucial for the interactions. Based on these data, we generated a Sam68-mutant incapable of interacting with SH3 domains any more, as subsequently demonstrated by FRET-analyses. In conclusion, we present a thorough characterization of Sam68's interplay with the SH3 proteome. The observed interaction between Sam68 and OSF complements the known Sam68-Src and OSF-Src interactions. Thus, we propose, that Sam68 functions as a classical scaffold protein in this context, assembling components of an osteoclast-specific signalling pathway.
Collapse
Affiliation(s)
- Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Christine Ludwig
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Knezevic I, Predescu D, Bardita C, Wang M, Sharma T, Keith B, Neamu R, Malik AB, Predescu S. Regulation of dynamin-2 assembly-disassembly and function through the SH3A domain of intersectin-1s. J Cell Mol Med 2012; 15:2364-76. [PMID: 21129155 PMCID: PMC3072443 DOI: 10.1111/j.1582-4934.2010.01226.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.
Collapse
Affiliation(s)
- Ivana Knezevic
- Department of Pharmacology, Rush University Medical Center, Medical College, Vascular Biology Section, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kleschevnikov AM, Belichenko PV, Salehi A, Wu C. Discoveries in Down syndrome: moving basic science to clinical care. PROGRESS IN BRAIN RESEARCH 2012; 197:199-221. [PMID: 22541294 DOI: 10.1016/b978-0-444-54299-1.00010-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review describes recent discoveries in neurobiology of Down syndrome (DS) achieved with use of mouse genetic models and provides an overview of experimental approaches aimed at development of pharmacological restoration of cognitive function in people with this developmental disorder. Changes in structure and function of synaptic connections within the hippocampal formation of DS model mice, as well as alterations in innervations of the hippocampus by noradrenergic and cholinergic neuromodulatory systems, provided important clues for potential pharmacological treatments of cognitive disabilities in DS. Possible molecular and cellular mechanisms underlying this genetic disorder have been addressed. We discuss novel mechanisms engaging misprocessing of amyloid precursor protein (App) and other proteins, through their affect on axonal transport and endosomal dysfunction, to "Alzheimer-type" neurodegenerative processes that affect cognition later in life. In conclusion, a number of therapeutic strategies have been defined that may restore cognitive function in mouse models of DS. In the juvenile and young animals, these strategists focus on restoration of synaptic plasticity, rate of adult neurogenesis, and functions of the neuromodulatory subcortical systems. Later in life, the major focus is on recuperation of misprocessed App and related proteins. It is hoped that the identification of an increasing number of potential targets for pharmacotherapy of cognitive deficits in DS will add to the momentum for creating and completing clinical trials.
Collapse
Affiliation(s)
- A M Kleschevnikov
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
11
|
Ma Y, Wang B, Li W, Liu X, Wang J, Ding T, Zhang J, Ying G, Fu L, Gu F. Intersectin1-s is involved in migration and invasion of human glioma cells. J Neurosci Res 2011; 89:1079-90. [PMID: 21503949 DOI: 10.1002/jnr.22616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 11/12/2022]
Abstract
Malignant gliomas have a tendency to invade diffusely into surrounding healthy brain tissues, thereby precluding their successful surgical removal. Intersectin1 (ITSN1) as a molecular linker in the central nervous system is well known as an important regulator of endocytosis and exocytosis. ITSN1 has two isoforms: ITSN1-l and ITSN1-s. In this study, we show that siRNA-mediated down regulation of ITSN1-s inhibited migration and invasion of glioma cells. In addition, we demonstrate the possible mechanisms by which ITSN1-s functions in migration and invasion. Several key proteins, including cofilin, LIMK, PAK, FAK, integrin β1, and MMP-9, which are critical for cells migration and invasion, were probably involved in ITSN1-s signaling pathways. These results suggest that ITSN1-s contributes to glioma cells migration and invasion by regulating the formation of cytoskeleton, influencing adhesion and increasing expression of MMP-9. Our results indicate that ITSN1-s is a critical factor in gliomas invasion and identify that ITSN1-s is a new potentially antiinvasion target for therapeutic intervention in gliomas.
Collapse
Affiliation(s)
- Yongjie Ma
- Central Laboratory of Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Defining the subcellular distribution of signaling complexes is imperative to understanding the output from that complex. Conventional methods such as immunoprecipitation do not provide information on the spatial localization of complexes. In contrast, BiFC monitors the interaction and subcellular compartmentalization of protein complexes. In this method, a fluororescent protein is split into amino- and carboxy-terminal non-fluorescent fragments which are then fused to two proteins of interest. Interaction of the proteins results in reconstitution of the fluorophore (Figure 1). A limitation of BiFC is that once the fragmented fluorophore is reconstituted the complex is irreversible. This limitation is advantageous in detecting transient or weak interactions, but precludes a kinetic analysis of complex dynamics. An additional caveat is that the reconstituted flourophore requires 30min to mature and fluoresce, again precluding the observation of real time interactions. BiFC is a specific example of the protein fragment complementation assay (PCA) which employs reporter proteins such as green fluorescent protein variants (BiFC), dihydrofolate reductase, b-lactamase, and luciferase to measure protein:protein interactions. Alternative methods to study protein:protein interactions in cells include fluorescence co-localization and Förster resonance energy transfer (FRET). For co-localization, two proteins are individually tagged either directly with a fluorophore or by indirect immunofluorescence. However, this approach leads to high background of non-interacting proteins making it difficult to interpret co-localization data. In addition, due to the limits of resolution of confocal microscopy, two proteins may appear co-localized without necessarily interacting. With BiFC, fluorescence is only observed when the two proteins of interest interact. FRET is another excellent method for studying protein:protein interactions, but can be technically challenging. FRET experiments require the donor and acceptor to be of similar brightness and stoichiometry in the cell. In addition, one must account for bleed through of the donor into the acceptor channel and vice versa. Unlike FRET, BiFC has little background fluorescence, little post processing of image data, does not require high overexpression, and can detect weak or transient interactions. Bioluminescence resonance energy transfer (BRET) is a method similar to FRET except the donor is an enzyme (e.g. luciferase) that catalyzes a substrate to become bioluminescent thereby exciting an acceptor. BRET lacks the technical problems of bleed through and high background fluorescence but lacks the ability to provide spatial information due to the lack of substrate localization to specific compartments. Overall, BiFC is an excellent method for visualizing subcellular localization of protein complexes to gain insight into compartmentalized signaling.
Collapse
Affiliation(s)
- Katy A Wong
- Department of Pharmacology, University of Illinois at Chicago, USA
| | | |
Collapse
|
13
|
Intersectin multidomain adaptor proteins: Regulation of functional diversity. Gene 2011; 473:67-75. [DOI: 10.1016/j.gene.2010.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 12/17/2022]
|
14
|
Abstract
The endocytic pathway is involved in activation and inhibition of cellular signaling. Thus, defining the regulatory mechanisms that link endocytosis and cellular signaling is of interest. An emerging link between these processes is a family of proteins called intersectins (ITSNs). These multidomain proteins serve as scaffolds in the assembly of endocytic vesicles and also regulate components of various signaling pathways, including kinases, guanosine triphosphatases, and ubiquitin ligases. This review summarizes research on the role of ITSNs in regulating both endocytic and signal transduction pathways, discusses the link between ITSNs and human disease, and highlights future directions in the study of ITSNs.
Collapse
Affiliation(s)
- John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
15
|
Ahmad KF, Lim WA. The minimal autoinhibited unit of the guanine nucleotide exchange factor intersectin. PLoS One 2010; 5:e11291. [PMID: 20585582 PMCID: PMC2892021 DOI: 10.1371/journal.pone.0011291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 06/02/2010] [Indexed: 01/21/2023] Open
Abstract
Intersectin-1L is a member of the Dbl homology (DH) domain guanine nucleotide exchange factors (GEF) which control Rho-family GTPase signaling. Intersectin-1L is a GEF that is specific for Cdc42. It plays an important role in endocytosis, and is regulated by several partners including the actin regulator N-WASP. Intact intersectin-1L shows low Cdc42 exchange activity, although the isolated catalytic DH domain shows high activity. This finding suggests that the molecule is autoinhibited. To investigate the mechanism of autoinhibition we have constructed a series of domain deletions. We find that the five SH3 domains of intersectin are important for autoinhibition, with the fifth domain (SH3(E)) being sufficient for the bulk of the autoinhibitory effect. This SH3 domain appears to primarily interact with the DH domain. We have determined the crystal structure of the SH3(E)-DH domain construct, which shows a domain swapped arrangement in which the SH3 from one monomer interacts with the DH domain of the other monomer. Analytical ultracentrifugation and gel filtration, however, show that under biochemical concentrations, the construct is fully monomeric. Thus we propose that the actual autoinhibited structure contains the related intramolecular SH3(E)-DH interaction. We propose a model in which this intramolecular interaction may block or distort the GTPase binding region of the DH domain.
Collapse
Affiliation(s)
- K. Farid Ahmad
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Wendell A. Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ma Y, Wang B, Li W, Ying G, Fu L, Niu R, Gu F. Reduction of intersectin1-s induced apoptosis of human glioblastoma cells. Brain Res 2010; 1351:222-228. [PMID: 20493827 DOI: 10.1016/j.brainres.2010.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 11/15/2022]
Abstract
Malignant gliomas have a high proliferation ability and high tendency to invade diffusely into surrounding healthy brain tissues, thereby precluding their successful surgical removal. Intersectin1 (also called ITSN1) as a molecular linker in the central nervous system is well known as an important regulator of endocytosis and exocytosis. ITSN1 has two isoforms: ITSN1-l and ITSN1-s. In this study, we show that siRNA-mediated down regulation of ITSN1-s induced glioma cells apoptosis. In addition, we demonstrate the possible mechanisms by which ITSN1-s functions in glioma cells apoptosis. Our data demonstrate that several key proteins, including FAK, Akt, Bcl-2, BAD which are critical for cells apoptosis were probably involved in ITSN1-s signaling pathways. Our results indicate that ITSN1-s is an effecter in regulation of gliomas cells apoptosis, and identify that ITSN1-s may be a new potentially anti-apoptosis target for therapeutic of gliomas.
Collapse
Affiliation(s)
- Yongjie Ma
- Central Laboratory of Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Bingbing Wang
- Central Laboratory of Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Wenliang Li
- Department of Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Guoguang Ying
- Central Laboratory of Oncology Department, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Li Fu
- Department of Breast Pathology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Ruifang Niu
- Department of Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China
| | - Feng Gu
- Department of Breast Pathology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, China.
| |
Collapse
|
17
|
Frosi Y, Anastasi S, Ballarò C, Varsano G, Castellani L, Maspero E, Polo S, Alemà S, Segatto O. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. ACTA ACUST UNITED AC 2010; 189:557-71. [PMID: 20421427 PMCID: PMC2867293 DOI: 10.1083/jcb.201002032] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The EGFR kinase inhibitor RALT/MIG6 also functions as an endocytic adaptor to promote receptor internalization by scaffolding AP-2 and intersectins. Signaling by epidermal growth factor receptor (EGFR) must be controlled tightly because aberrant EGFR activity may cause cell transformation. Receptor-associated late transducer (RALT) is a feedback inhibitor of EGFR whose genetic ablation in the mouse causes phenotypes due to EGFR-driven excess cell proliferation. RALT inhibits EGFR catalytic activation by docking onto EGFR kinase domain. We report here an additional mechanism of EGFR suppression mediated by RALT, demonstrating that RALT-bound EGF receptors undergo endocytosis and eventual degradation into lysosomes. Moreover, RALT rescues the endocytic deficit of EGFR mutants unable to undergo either endocytosis (Dc214) or degradation (Y1045F) and mediates endocytosis via a domain distinct from that responsible for EGFR catalytic suppression. Consistent with providing a scaffolding function for endocytic proteins, RALT drives EGFR endocytosis by binding to AP-2 and Intersectins. These data suggest a model in which binding of RALT to EGFR integrates suppression of EGFR kinase with receptor endocytosis and degradation, leading to durable repression of EGFR signaling.
Collapse
|
18
|
Abstract
During neurotransmitter release, SVs (synaptic vesicles) fuse at the active zone and are recovered predominantly via clathrin-mediated endocytosis at the presynaptic compartment surrounding the site of release, referred to as the periactive zone. Exo- and endo-cytosis in synapses are tightly temporarily and spatially coupled to sustain synaptic transmission. The molecular mechanisms linking these two cellular events, which take place in separate compartments of the nerve terminal, remain largely enigmatic. Several lines of evidence indicate that multiple factors may be involved in exocytic–endocytic coupling including SV integral membrane proteins, SV membrane lipids and the membrane-associated actin cytoskeleton. A number of recent studies also indicate that multimodular adaptor proteins shuttling between the active and periactive zones aid the dynamic assembly of macromolecular protein complexes that execute the exo- and endo-cytic limbs of the SV cycle. Here, we discuss recent evidence implicating the multidomain scaffolding and adaptor protein ITSN1 (intersectin 1) as a central regulator of SV cycling.
Collapse
|
19
|
Thomas S, Ritter B, Verbich D, Sanson C, Bourbonnière L, McKinney RA, McPherson PS. Intersectin regulates dendritic spine development and somatodendritic endocytosis but not synaptic vesicle recycling in hippocampal neurons. J Biol Chem 2009; 284:12410-9. [PMID: 19258322 DOI: 10.1074/jbc.m809746200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intersectin-short (intersectin-s) is a multimodule scaffolding protein functioning in constitutive and regulated forms of endocytosis in non-neuronal cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of Drosophila and Caenorhabditis elegans. In vertebrates, alternative splicing generates a second isoform, intersectin-long (intersectin-l), that contains additional modular domains providing a guanine nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is expressed in multiple tissues and cells, including glia, but excluded from neurons, whereas intersectin-l is a neuron-specific isoform. Thus, intersectin-I may regulate multiple forms of endocytosis in mammalian neurons, including SV endocytosis. We now report, however, that intersectin-l is localized to somatodendritic regions of cultured hippocampal neurons, with some juxtanuclear accumulation, but is excluded from synaptophysin-labeled axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV recycling. Instead intersectin-l co-localizes with clathrin heavy chain and adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces the rate of transferrin endocytosis. The protein also co-localizes with F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation during development. Our data indicate that intersectin-l is indeed an important regulator of constitutive endocytosis and neuronal development but that it is not a prominent player in the regulated endocytosis of SVs.
Collapse
Affiliation(s)
- Sébastien Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42. J Mol Biol 2009; 387:270-83. [PMID: 19356586 DOI: 10.1016/j.jmb.2009.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/15/2009] [Accepted: 01/26/2009] [Indexed: 11/20/2022]
Abstract
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5'-diphosphate (GDP) to allow guanosine-5'-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2'/3'-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2'/3'-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42.GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex.
Collapse
|
21
|
Ma N, Niu RF, Ma YJ. Intersectin 1: a molecular linker in the central nervous system. Neurosci Bull 2008; 24:401-5. [PMID: 19037327 DOI: 10.1007/s12264-008-0715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Down syndrome (DS) is the most common cause of cognitive impairment associated with a congenital chromosomal abnormality, trisomy of chromosome 21. Mental retardation and congenital heart defects are key features of DS. All DS individuals develop early-onset Alzheimer's disease-like neuropathology. Intersectin 1 gene is localized on human chromosome 21, the critical region of DS, and it has higher expression in the brain of DS patients than in normal individuals. So fully understanding functions of intersectin 1 is critical for revealing the pathogenesis of DS. Intersectin 1 protein has two isoforms: intersectin 1-L and intersectin 1-S. This review will focus on the distribution, expression characters and functions of intersectin 1 in the central nervous system.
Collapse
Affiliation(s)
- Ning Ma
- Center Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital of Ministry of Education, Tianjin, China
| | | | | |
Collapse
|
22
|
Xie J, Vandenbroere I, Pirson I. SHIP2 associates with intersectin and recruits it to the plasma membrane in response to EGF. FEBS Lett 2008; 582:3011-7. [DOI: 10.1016/j.febslet.2008.07.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/03/2008] [Accepted: 07/03/2008] [Indexed: 11/17/2022]
|
23
|
Wang W, Bouhours M, Gracheva EO, Liao EH, Xu K, Sengar AS, Xin X, Roder J, Boone C, Richmond JE, Zhen M, Egan SE. ITSN-1 controls vesicle recycling at the neuromuscular junction and functions in parallel with DAB-1. Traffic 2008; 9:742-54. [PMID: 18298590 PMCID: PMC3791081 DOI: 10.1111/j.1600-0854.2008.00712.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intersectins (Itsn) are conserved EH and SH3 domain containing adaptor proteins. In Drosophila melanogaster, ITSN is required to regulate synaptic morphology, to facilitate efficient synaptic vesicle recycling and for viability. Here, we report our genetic analysis of Caenorhabditis elegans intersectin. In contrast to Drosophila, C. elegans itsn-1 protein null mutants are viable and display grossly normal locomotion and development. However, motor neurons in these mutants show a dramatic increase in large irregular vesicles and accumulate membrane-associated vesicles at putative endocytic hotspots, approximately 300 nm from the presynaptic density. This defect occurs precisely where endogenous ITSN-1 protein localizes in wild-type animals and is associated with a significant reduction in synaptic vesicle number and reduced frequency of endogenous synaptic events at neuromuscular junctions (NMJs). ITSN-1 forms a stable complex with EHS-1 (Eps15) and is expressed at reduced levels in ehs-1 mutants. Thus, ITSN-1 together with EHS-1, coordinate vesicle recycling at C. elegans NMJs. We also found that both itsn-1 and ehs-1 mutants show poor viability and growth in a Disabled (dab-1) null mutant background. These results show for the first time that intersectin and Eps15 proteins function in the same genetic pathway, and appear to function synergistically with the clathrin-coat-associated sorting protein, Disabled, for viability.
Collapse
Affiliation(s)
- Wei Wang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children. 101 College Street, TMDT East Tower, Toronto, Ontario M5G 1L7, Canada
| | - Magali Bouhours
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Elena O. Gracheva
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Edward H. Liao
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Keli Xu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children. 101 College Street, TMDT East Tower, Toronto, Ontario M5G 1L7, Canada
| | - Ameet S. Sengar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children. 101 College Street, TMDT East Tower, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Neuroscience and Mental Health, The Hospital for Sick Children, 555 University Avenue, Room 5020 McMaster Building, Toronto, Ontario M5G 1X8, Canada
| | - Xiaofeng Xin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Center for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - John Roder
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Center for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Mei Zhen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sean E. Egan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children. 101 College Street, TMDT East Tower, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Wilmot B, McWeeney SK, Nixon RR, Montine TJ, Laut J, Harrington CA, Kaye JA, Kramer PL. Translational gene mapping of cognitive decline. Neurobiol Aging 2008; 29:524-41. [PMID: 17174450 PMCID: PMC2684335 DOI: 10.1016/j.neurobiolaging.2006.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/21/2022]
Abstract
The ability to maintain cognitive function during aging is a complex process subject to genetic and environmental influences. Alzheimer's disease (AD) is the most common disorder causing cognitive decline among the elderly. Among those with AD, there is broad variation in the relationship between AD neuropathology and clinical manifestations of dementia. Differences in expression of genes involved in neural processing pathways may contribute to individual differences in maintenance of cognitive function. We performed whole genome expression profiling of RNA obtained from frontal cortex of clinically non-demented and AD subjects to identify genes associated with brain aging and cognitive decline. Genetic mapping information and biological function annotation were incorporated to highlight genes of particular interest. The candidate genes identified in this study were compared with those from two other studies in different tissues to identify common underlying transcriptional profiles. In addition to confirming sweeping transcriptomal differences documented in previous studies of cognitive decline, we present new evidence for up-regulation of actin-related processes and down-regulation of translation, RNA processing and localization, and vesicle-mediated transport in individuals with cognitive decline.
Collapse
Affiliation(s)
- Beth Wilmot
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Das M, Scappini E, Martin NP, Wong KA, Dunn S, Chen YJ, Miller SLH, Domin J, O'Bryan JP. Regulation of neuron survival through an intersectin-phosphoinositide 3'-kinase C2beta-AKT pathway. Mol Cell Biol 2007; 27:7906-17. [PMID: 17875942 PMCID: PMC2169155 DOI: 10.1128/mcb.01369-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 09/04/2007] [Indexed: 12/26/2022] Open
Abstract
While endocytosis attenuates signals from plasma membrane receptors, recent studies suggest that endocytosis also serves as a platform for the compartmentalized activation of cellular signaling pathways. Intersectin (ITSN) is a multidomain scaffolding protein that regulates endocytosis and has the potential to regulate various biochemical pathways through its multiple, modular domains. To address the biological importance of ITSN in regulating cellular signaling pathways versus in endocytosis, we have stably silenced ITSN expression in neuronal cells by using short hairpin RNAs. Decreasing ITSN expression dramatically increased apoptosis in both neuroblastoma cells and primary cortical neurons. Surprisingly, the loss of ITSN did not lead to major defects in the endocytic pathway. Yeast two-hybrid analysis identified class II phosphoinositide 3'-kinase C2beta (PI3K-C2beta) as an ITSN binding protein, suggesting that ITSN may regulate a PI3K-C2beta-AKT survival pathway. ITSN associated with PI3K-C2beta on a subset of endomembrane vesicles and enhanced both basal and growth factor-stimulated PI3K-C2beta activity, resulting in AKT activation. The use of pharmacological inhibitors, dominant negatives, and rescue experiments revealed that PI3K-C2beta and AKT were epistatic to ITSN. This study represents the first demonstration that ITSN, independent of its role in endocytosis, regulates a critical cellular signaling pathway necessary for cell survival.
Collapse
Affiliation(s)
- Margaret Das
- Laboratory of Signal Transduction, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Point mutations in WNK4 [for With No K (lysine)], a serine-threonine kinase that is expressed in the distal nephron of the kidney, are linked to familial hyperkalemic hypertension (FHH). The imbalanced electrolyte homeostasis in FHH has led to studies toward an understanding of WNK4-mediated regulation of ion transport proteins in the kidney. A growing number of ion transport proteins for Na(+), K(+), Ca(2+), and Cl(-), including ion channels and transporters in the transcellular pathway and claudins in the paracellular pathway, are shown to be regulated by WNK4 from studies using models ranging from Xenopus laevis oocytes to transgenic and knockin mice. WNK4 regulates these transport proteins in different directions and by different cellular mechanisms. The common theme of WNK4-mediated regulation is to alter the abundance of ion transport proteins at the plasma membrane, with the exception of claudins, which are phosphorylated in the presence of WNK4. The regulation of WNK4 can be blocked by the full-length WNK1, whose action is in turn antagonized by a kidney-specific WNK1 variant lacking the kinase domain. In addition, WNK4 also activates stress-related serine-threonine kinases to regulate members of the SLC12 family members of cation-chloride cotransporters. In many cases, the FHH-causing mutants of WNK4 exhibit differences from wild-type WNK4 in regulating ion transport proteins. These regulations well explain the clinical features of FHH and provide insights into the multilayered regulation of ion transport processes in the distal nephron.
Collapse
Affiliation(s)
- Ji-Bin Peng
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA.
| | | |
Collapse
|
27
|
Scappini E, Koh TW, Martin NP, O'Bryan JP. Intersectin enhances huntingtin aggregation and neurodegeneration through activation of c-Jun-NH2-terminal kinase. Hum Mol Genet 2007; 16:1862-71. [PMID: 17550941 DOI: 10.1093/hmg/ddm134] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Huntingon's disease is a progressive neurodegenerative disease arising from expansion of a polyglutamine (polyQ) tract in the protein huntingtin (Htt) resulting in aggregation of mutant Htt into nuclear and/or cytosolic inclusions in neurons. Mutant Htt affects multiple processes including protein degradation, transcription, signal transduction, fast axonal transport and endocytosis [reviewed in Ross, C.A. and Poirier, M.A. (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell. Biol., 6, 891-898]. Here, we report that the endocytic and signal transduction scaffold intersectin (ITSN) increased aggregate formation by mutant Htt through activation of the c-Jun-NH(2)-terminal kinase (JNK)-MAPK pathway. Conversely, silencing ITSN or inhibiting JNK attenuated aggregate formation. Using a Drosophila model for polyQ repeat disease, we observed that ITSN enhanced polyQ-mediated neurotoxicity. A reciprocal relationship was observed between ITSN and Htt. While ITSN enhanced Htt aggregation and toxicity, Htt, in turn, inhibited the cooperativity between ITSN and the epidermal growth factor receptor signal transduction pathway. Finally, we observed that ITSN overexpression enhanced aggregation of polyQ-expanded androgen receptor (AR) as well as wild-type versions of both Htt and AR suggesting a broader involvement of ITSN in neurodegenerative diseases through destabilization of polyQ-containing proteins.
Collapse
Affiliation(s)
- Erica Scappini
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
28
|
Martin NP, Mohney RP, Dunn S, Das M, Scappini E, O'Bryan JP. Intersectin regulates epidermal growth factor receptor endocytosis, ubiquitylation, and signaling. Mol Pharmacol 2006; 70:1643-53. [PMID: 16914641 DOI: 10.1124/mol.106.028274] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are critical for normal cell growth, differentiation, and development, but they contribute to various pathological conditions when disrupted. Activation of RTKs stimulates a plethora of pathways, including the ubiquitylation and endocytosis of the receptor itself. Although endocytosis terminates RTK signaling, it has emerged as a requisite step in RTK activation of signaling pathways. We have discovered that the endocytic scaffolding protein intersectin (ITSN) cooperated with epidermal growth factor receptor (EGFR) in the regulation of cell growth and signaling. However, a biochemical link between ITSN and EGFR was not defined. In this study, we demonstrate that ITSN is a scaffold for the E3 ubiquitin ligase Cbl. ITSN forms a complex with Cbl in vivo mediated by the Src homology (SH) 3 domains binding to the Pro-rich COOH terminus of Cbl. This interaction stimulates the ubiquitylation and degradation of the activated EGFR. Furthermore, silencing ITSN by RNA interference attenuated EGFR internalization as well as activation of the extracellular signal-regulated kinasemitogen-activated protein kinase pathway, thereby demonstrating the importance of ITSN in EGFR function. Given the cooperativity between ITSN and additional RTKs, these results point to an important evolutionarily conserved, regulatory role for ITSN in RTK function that is necessary for both signaling from receptors as well as the ultimate termination of receptor signaling.
Collapse
Affiliation(s)
- Negin P Martin
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nishimura T, Yamaguchi T, Tokunaga A, Hara A, Hamaguchi T, Kato K, Iwamatsu A, Okano H, Kaibuchi K. Role of numb in dendritic spine development with a Cdc42 GEF intersectin and EphB2. Mol Biol Cell 2006; 17:1273-85. [PMID: 16394100 PMCID: PMC1382316 DOI: 10.1091/mbc.e05-07-0700] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/15/2005] [Accepted: 12/27/2005] [Indexed: 12/22/2022] Open
Abstract
Numb has been implicated in cortical neurogenesis during nervous system development, as a result of its asymmetric partitioning and antagonizing Notch signaling. Recent studies have revealed that Numb functions in clathrin-dependent endocytosis by binding to the AP-2 complex. Numb is also expressed in postmitotic neurons and plays a role in axonal growth. However, the functions of Numb in later stages of neuronal development remain unknown. Here, we report that Numb specifically localizes to dendritic spines in cultured hippocampal neurons and is implicated in dendritic spine morphogenesis, partially through the direct interaction with intersectin, a Cdc42 guanine nucleotide exchange factor (GEF). Intersectin functions as a multidomain adaptor for proteins involved in endocytosis and cytoskeletal regulation. Numb enhanced the GEF activity of intersectin toward Cdc42 in vivo. Expression of Numb or intersectin caused the elongation of spine neck, whereas knockdown of Numb and Numb-like decreased the protrusion density and its length. Furthermore, Numb formed a complex with EphB2 receptor-type tyrosine kinase and NMDA-type glutamate receptors. Knockdown of Numb suppressed the ephrin-B1-induced spine development and maturation. These results highlight a role of Numb for dendritic spine development and synaptic functions with intersectin and EphB2.
Collapse
Affiliation(s)
- Takashi Nishimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Savdie C, Ferguson SSG, Vincent JP, Beaudet A, Stroh T. Cell-type-specific pathways of neurotensin endocytosis. Cell Tissue Res 2005; 324:69-85. [PMID: 16374621 DOI: 10.1007/s00441-005-0102-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 10/18/2005] [Indexed: 12/01/2022]
Abstract
The neurotensin receptor subtype 1 (NTS1) is a G-protein-coupled receptor (GPCR) mediating a large number of central and peripheral effects of neurotensin. Upon stimulation, NTS1 is rapidly internalized and targeted to lysosomes. This process depends on the interaction of the phosphorylated receptor with beta-arrestin. Little is known about other accessory endocytic proteins potentially involved. Here, we investigated the involvement of dynamin, amphiphysin, and intersectin in the internalization of NTS1 receptor-ligand complexes in transfected COS-7 and HEK 293 cells, by using the transferrin receptor as an internal control for the constitutive endocytic pathway. We found that NTS1 endocytosis was not only arrestin-dependent, but also dynamin-dependent in both COS-7 and HEK 293 cells, whereas internalization of the transferrin receptor was independent of arrestin but required dynamin. Overexpression of the SH3 domain of amphiphysin II had no effect on receptor internalization in either cell type. By contrast, overexpression of full-length intersectin or of its SH3 domain (but not of its EH domain) inhibited NTS1 internalization in COS-7 but not in HEK 293 cells. This difference between COS-7 and HEK 293 cells was not attributable to differences in endogenous intersectin levels between the two cell lines. Indeed, the same constructs inhibited transferrin endocytosis equally well in COS-7 and HEK 293 cells. However, immunogold electron microscopy revealed that internalized NTS1 receptors were associated with clathrin-coated pits in COS-7 cells but with smooth vesicles in HEK 293 cells, suggesting that NTS1 internalization proceeds via different endocytic pathways in these two cell types.
Collapse
Affiliation(s)
- Cheryl Savdie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
31
|
Kleschevnikov AM, Belichenko PV, Villar AJ, Epstein CJ, Malenka RC, Mobley WC. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci 2005; 24:8153-60. [PMID: 15371516 PMCID: PMC6729789 DOI: 10.1523/jneurosci.1766-04.2004] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although many genetic disorders are characterized by cognitive failure during development, there is little insight into the neurobiological basis for the abnormalities. Down syndrome (DS), a disorder caused by the presence of three copies of chromosome 21 (trisomy 21), is characterized by impairments in learning and memory attributable to dysfunction of the hippocampus. We explored the cellular basis for these abnormalities in Ts65Dn mice, a genetic model for DS. Although basal synaptic transmission in the dentate gyrus was normal, there was severe impairment of long-term potentiation (LTP) as a result of reduced activation of NMDA receptors. After suppressing inhibition with picrotoxin, a GABA(A) receptor antagonist, NMDA receptor-mediated currents were normalized and induction of LTP was restored. Several lines of evidence suggest that inhibition in the Ts65Dn dentate gyrus was enhanced, at least in part, because of presynaptic abnormalities. These findings raise the possibility that similar changes contribute to abnormalities in learning and memory in people with DS and, perhaps, in other developmental disorders with cognitive failure.
Collapse
Affiliation(s)
- Alexander M Kleschevnikov
- Department of Neurology and Neurological Sciences, and the Institute for Neuroscience, Stanford University Medical School, Stanford University, Stanford, California 94305-5489, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Crosetto N, Tikkanen R, Dikic I. Oncogenic breakdowns in endocytic adaptor proteins. FEBS Lett 2005; 579:3231-8. [PMID: 15943966 DOI: 10.1016/j.febslet.2005.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2005] [Indexed: 01/21/2023]
Abstract
Endocytosis is a versatile tool to regulate the intensity, localization, half-life and function of signaling complexes (signalosomes) that form in cells upon binding of growth factors, cytokines and morphogens to their cognate receptors. Endocytic adaptors are non-catalytic proteins that assemble effectors and structural components of the endocytic machinery around the trafficking cargo and serve as scaffolds for signalosomes, which in turn modify their location and activity by various post-translational modifications. We discuss how breakdowns in the function of endocytic adaptors might facilitate impairment of tissue homeostasis and consequent tumor development.
Collapse
Affiliation(s)
- Nicola Crosetto
- Institute of Biochemistry II, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt (Main), Germany
| | | | | |
Collapse
|
33
|
Wong BR. Cambridge Healthtech Institute Signal Transduction Conference: Targets for Effective Therapeutics. Expert Opin Investig Drugs 2005; 14:209-14. [PMID: 15757398 DOI: 10.1517/13543784.14.2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Cambridge Healthtech Institute Signal Transduction Conference covered three major topics over 2 days: the discovery of new signalling targets, improved technology to dissect out signal transduction pathways and the effects of small molecules on those pathways, and progress in the discovery and development of signalling modulators. There was a particular emphasis placed on the biology of protein kinases and industry efforts to develop efficacious and safe inhibitors for this target class. Of note, kinase inhibitors for therapeutic indications other than oncology, including those directed against inflammation, allergy and metabolic disorders, have reached or have nearly completed clinical testing. Other signalling targets presented included tyrosine phosphatases, intracellular and membrane-bound channels, and G-protein-coupled receptors. This article will briefly summarise the newer technologies and signalling targets but will primarily focus on the presentations covering drug discovery and development.
Collapse
Affiliation(s)
- Brian R Wong
- Rigel Pharmaceuticals, 1180 Veterans Boulevard South, San Francisco, CA 94080, USA.
| |
Collapse
|
34
|
Belichenko PV, Masliah E, Kleschevnikov AM, Villar AJ, Epstein CJ, Salehi A, Mobley WC. Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J Comp Neurol 2005; 480:281-98. [PMID: 15515178 DOI: 10.1002/cne.20337] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Ts65Dn mouse is a genetic model for Down syndrome. Although this mouse shows abnormalities in cognitive function that implicate hippocampus as well as marked deficits in hippocampal long-term potentiation, the structure of the hippocampus has been little studied. We characterized synaptic structure in Ts65Dn and control (2N) mice, studying the hippocampus (fascia dentata, CA1) as well as the motor and somatosensory cortex, entorhinal cortex, and medial septum. Confocal microscopy was used to examine immunostained presynaptic boutons and to detail the structure of dendrites after Lucifer yellow microinjection. Both presynaptic and postsynaptic elements were significantly enlarged in Ts65Dn in all regions examined. The changes were detected at the youngest age examined (postnatal day 21) and in adults. In studies detailing the changes in fascia dentata and motor cortex, the enlargement of spines affected the entire population, resulting in the presence of spines whose volume was greatly increased. Electron microscopy confirmed that boutons and spines were enlarged and demonstrated abnormalities in the internal membranes of both. In addition, spine density was decreased on the dendrites of dentate granule cells, and there was reorganization of inhibitory inputs, with a relative decrease in inputs to dendrite shafts and an increase in inputs to the necks of spines. Taken together, the findings document widespread abnormalities of synaptic structure that recapitulate important features seen in Down syndrome. They establish the Ts65Dn mouse as a model for abnormal synapse structure and function in Down syndrome and point to the importance of studies to elucidate the mechanisms responsible for synapse enlargement.
Collapse
Affiliation(s)
- Pavel V Belichenko
- Department of Neurology and Neurological Sciences and the Center for Research and Treatment of Down Syndrome, Stanford University Medical Center, 1201 Welch Road, Stanford, California 94305-5489, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Predescu SA, Predescu DN, Timblin BK, Stan RV, Malik AB. Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 2003; 14:4997-5010. [PMID: 12960435 PMCID: PMC284801 DOI: 10.1091/mbc.e03-01-0041] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intersectin, a multiple Eps15 homology and Src homology 3 (SH3) domain-containing protein, is a component of the endocytic machinery in neurons and nonneuronal cells. However, its role in endocytosis via caveolae in endothelial cells (ECs) is unclear. We demonstrate herein by coimmunoprecipitation, velocity sedimentation on glycerol gradients, and cross-linking that intersectin is present in ECs in a membrane-associated protein complex containing dynamin and SNAP-23. Electron microscopy (EM) immunogold labeling studies indicated that intersectin associated preferentially with the caveolar necks, and it remained associated with caveolae after their fission from the plasmalemma. A cell-free system depleted of intersectin failed to support caveolae fission from the plasma membrane. A biotin assay used to quantify caveolae internalization and extensive EM morphological analysis of ECs overexpressing wt-intersectin indicated a wide range of morphological changes (i.e., large caveolae clusters marginated at cell periphery and pleiomorphic caveolar necks) as well as impaired caveolae internalization. Biochemical evaluation of caveolae-mediated uptake by ELISA showed a 68.4% inhibition by reference to control. We also showed that intersectin interaction with dynamin was important in regulating the fission and internalization of caveolae. Taken together, the results indicate the crucial role of intersectin in the mechanism of caveolae fission in endothelial cells.
Collapse
Affiliation(s)
- Sanda A Predescu
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
36
|
Mohney RP, Das M, Bivona TG, Hanes R, Adams AG, Philips MR, O'Bryan JP. Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J Biol Chem 2003; 278:47038-45. [PMID: 12970366 DOI: 10.1074/jbc.m303895200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intersectin (ITSN) is a molecular scaffold involved in regulating endocytosis and mitogenic signaling. We previously demonstrated that ITSN transformed rodent fibroblasts, accelerated hormone-induced maturation of Xenopus oocytes, and activated the Elk-1 transcription factor through an MEK- and Erk-independent mechanism. We now demonstrate that ITSN complexes with the Ras guanine nucleotide exchange factor Sos1 leading to increased RasGTP levels. Using fluorescence resonant energy transfer analysis, we demonstrate that ITSN complexes with Ras in living cells leading to Ras activation on intracellular vesicles. These vesicles contain epidermal growth factor receptor but are distinct from transferrin-positive vesicles. However, Ras is not required for ITSN stimulation of transcription. Rather, we demonstrate that ITSN signals through JNK to activate Elk-1. Although ITSN activation of Elk-1 was Ras-independent, ITSN cooperates with Ras to synergistically activate JNK. These findings indicate that ITSN activates multiple intracellular signaling pathways and suggest that this adaptor protein may coordinately regulate the activity of these pathways in vivo.
Collapse
Affiliation(s)
- Robert P Mohney
- Laboratory of Signal Transduction, National Institute of Environmental Health Services, NIH/DHHS, Building 101, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Qualmann B, Mellor H. Regulation of endocytic traffic by Rho GTPases. Biochem J 2003; 371:233-41. [PMID: 12564953 PMCID: PMC1223314 DOI: 10.1042/bj20030139] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 02/04/2003] [Indexed: 11/17/2022]
Abstract
The members of the Rho subfamily of small GTPases are key regulators of the actin cytoskeleton. However, recent studies have provided evidence for multiple additional roles for these signalling proteins in controlling endocytic traffic. Here we review our current understanding of Rho GTPase action within the endocytic pathway and examine the potential points of convergence with the more established, actin-based functions of these signalling proteins.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, D-39008, Magdeburg, Germany
| | | |
Collapse
|
38
|
Pruitt WM, Karnoub AE, Rakauskas AC, Guipponi M, Antonarakis SE, Kurakin A, Kay BK, Sondek J, Siderovski DP, Der CJ. Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:61-8. [PMID: 12676355 DOI: 10.1016/s0167-4889(03)00002-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.
Collapse
Affiliation(s)
- Wendy M Pruitt
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ma YJ, Okamoto M, Gu F, Obata K, Matsuyama T, Desaki J, Tanaka J, Sakanaka M. Neuronal distribution of EHSH1/intersectin: molecular linker between clathrin-mediated endocytosis and signaling pathways. J Neurosci Res 2003; 71:468-77. [PMID: 12548702 DOI: 10.1002/jnr.10500] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent research indicates that the novel multimodular adaptor protein EHSH1 plays an important role in a partnership between clathrin-mediated endocytosis and intracellular signaling pathways, including the MAPK pathway, receptor-tyrosine kinase/ras-mediated pathway, and the rho family of the GTPase-dependent pathway. We report the detailed expression pattern of EHSH1 in the rat CNS, using separate cultures of neurons, astrocytes, and microglia, and biochemical and immunohistochemical analyses. Cultured neurons from the cortex express primarily the long isoform EHSH1-l, as well as a small amount of the short isoform EHSH1-s. Cultured astrocytes express EHSH1-s, at a level similar to neurons, and a trace of EHSH1-l. Cultured microglia express only EHSH1-s. Double immunofluorescent staining of cortical sections showed that EHSH1 is expressed predominantly in neurons. These results suggest that EHSH1-l is a primary isoform and that EHSH1-l is highly enriched in neurons in the rat adult CNS. Immunohistochemistry of a series of brain sections revealed widespread distribution of EHSH1 throughout the brain. Particularly intense immunoreactivity was observed in the somatodendritic region of neurons in Layer III of the neocortex, hippocampus, globus pallidus, subthalamic nucleus, and substantia nigra. Interestingly, all pyramidal neurons in Layer III of the neocortex and hippocampus did not necessarily exhibit equal levels of immunostaining. In contrast, little EHSH1 immunoreactivity was detected in septofimbrial nucleus and subfornical organ of the septal region, and solitary tract and external cuneate nuclei of the medulla. Variety in the expression of EHSH1 in neurons of different regions may reflect different conditions in clathrin-mediated endocytosis and the following signal transduction.
Collapse
Affiliation(s)
- Yong Jie Ma
- Department of Anatomy and Neuroscience, Ehime University School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Oldham CE, Mohney RP, Miller SLH, Hanes RN, O'Bryan JP. The ubiquitin-interacting motifs target the endocytic adaptor protein epsin for ubiquitination. Curr Biol 2002; 12:1112-6. [PMID: 12121618 DOI: 10.1016/s0960-9822(02)00900-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The covalent attachment of ubiquitin to proteins is an evolutionarily conserved signal for rapid protein degradation. However, additional cellular functions for ubiquitination are now emerging, including regulation of protein trafficking and endocytosis. For example, recent genetic studies suggested a role for ubiquitination in regulating epsin, a modular endocytic adaptor protein that functions in the assembly of clathrin-coated vesicles; however, biochemical evidence for this notion has been lacking. Epsin consists of an epsin NH(2)-terminal homology (ENTH) domain that promotes the interaction with phospholipids, several AP2 binding sites, two clathrin binding sequences, and several Eps15 homology (EH) domain binding motifs. Interestingly, epsin also possesses several recently described ubiquitin-interacting motifs (UIMs) that have been postulated to bind ubiquitin. Here, we demonstrate that epsin is predominantly monoubiquitinated and resistant to proteasomal degradation. The UIMs are necessary for epsin ubiquitination but are not the site of ubiquitination. Finally, we demonstrate that the isolated UIMs from both epsin and an unrelated monoubiquitinated protein, Eps15, are sufficient to promote ubiquitination of a chimeric glutathione-S-transferase (GST)-UIM fusion protein. Thus, our data suggest that UIMs may serve as a general signal for ubiquitination.
Collapse
Affiliation(s)
- Carla E Oldham
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
41
|
Siboni G, Weitman H, Freeman D, Mazur Y, Malik Z, Ehrenberg B. The correlation between hydrophilicity of hypericins and helianthrone: internalization mechanisms, subcellular distribution and photodynamic action in colon carcinoma cells. Photochem Photobiol Sci 2002; 1:483-91. [PMID: 12659159 DOI: 10.1039/b202884k] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The internalization mechanism and subcellular distribution of hypericin (Hyp), hypericin tetrasulfonic acid (HypS4) and 1,3,4,6-tetrahydroxyhelianthrone (Hel) were studied in murine colon carcinoma CT26 cells, in protein-free medium or in the presence of serum proteins. The correlation between the extent of uptake of the sensitizers by cells that were incubated in the presence of different serum components, and the internalization mechanisms, was studied. The results indicate that sensitizer internalization may be a result of three mechanisms: partitioning, pinocytosis and endocytosis, and as a direct consequence is targeted to specific subcellular sites. While Hyp and Hel, the two lipophilic sensitizers, were localized in the endoplasmic reticulum after protein-free internalization, the hydrophilic HypS4 was localized in the cytoplasmic membrane and in lysosomes. An endolysosomal internalization route was revealed for Hyp and Hel under serum-enriched conditions showing lysosomal localization, as for HypS4. The lysosomal accumulation of Hyp-serum and specifically Hyp-LDL points to an endocytotic mechanism which is supported by its higher uptake parameter in an LDL-enriched medium, compared to the medium with 10% serum. The different uptake parameters of Hyp to cells, with or without serum, reflect the different mechanisms. Smaller differences in the uptake parameter for HypS4 reflect the distinction between partitioning and endocytosis, which, in this case, are both targeted to the lysosomes. The same uptake parameter of Hel to cells incubated in media with or without serum indicates the absence of the endocytotic mechanism. The interrelationship between subcellular targeting and photodynamic treatment was shown for the three sensitizers Hyp was found to be the most efficient sensitizer for PDT under our illumination protocol and it was dependent on internalization and localization sites.
Collapse
Affiliation(s)
- Galit Siboni
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The functionality and efficacy of Rho GTPase signaling is pivotal for a plethora of biological processes. Due to the integral nature of these molecules, the dysregulation of their activities can result in diverse aberrant phenotypes. Dysregulation can, as will be described below, be based on an altered signaling strength on the level of a specific regulator or that of the respective GTPase itself. Alternatively, effector pathways emanating from a specific Rho GTPase may be under- or overactivated. In this review, we address the role of the Rho-type GTPases as a subfamily of the Ras-superfamily of small GTP-binding proteins in the development of various disease phenotypes. The steadily growing list of genetic alterations that specifically impinge on proper Rho GTPase function corresponds to pathological categories such as cancer progression, mental disabilities and a group of quite diverse and unrelated disorders. We will provide an overview of disease-rendering mutations in genes that have been positively correlated with Rho GTPase signaling and will discuss the cellular and molecular mechanisms that may be affected by them.
Collapse
Affiliation(s)
- Benjamin Boettner
- Cold Spring Harbor Laboratories, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|