1
|
Attaelmanan AM, Alzubair S, Ahmmed AS, Abdelgalil A, Ali F, Khalafalla AS, Attaelmanan GA, Alfaki M. A Comprehensive Pan-Cancer Analysis Reveals GRB7 as a Potential Diagnostic and Prognostic Biomarker. Cureus 2024; 16:e74907. [PMID: 39742197 PMCID: PMC11687406 DOI: 10.7759/cureus.74907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND AND AIM Growth factor receptor-bound protein 7 (GRB7) belongs to a group of adaptor proteins characterized by their conserved multidomain structure. These proteins are involved in cellular signaling pathways that regulate cell growth, proliferation, and differentiation. Alterations in GRB7 expression have been linked to multiple human cancers. However, its role as a diagnostic and prognostic marker remains underexplored. This study aimed to assess the diagnostic and prognostic relevance of GRB7 in a comprehensive pan-cancer analysis. MATERIALS AND METHODS GRB7 expression across different cancers was evaluated using the Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), and the University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN). The correlation of GRB7 expression with various clinicopathological parameters was assessed by the UALCAN database. Additionally, the Human Protein Atlas (HPA) (https://www.proteinatlas.org/) was used to illustrate the histology of kidney cancer tissues. The correlation between GRB7 expression and prognosis was explored using the Kaplan-Meier plotter, GEPIA, and UALCAN databases. The TIMER database was used to explore the connection between GRB7 expression in tumor tissues and the infiltration of immune cells. Moreover, genetic alterations of the GRB7 gene were detected by the cBioPortal database. Results were validated by the GEO2R database. RESULTS GRB7 expression was significantly upregulated in bladder urothelial carcinoma (BLCA), cervical squamous cell carcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), rectum adenocarcinoma (READ), thyroid carcinoma (THCA), and uterine carcinosarcoma (UCEC). Conversely, it was downregulated in kidney chromophobe (KICH) and kidney renal clear cell carcinoma (KIRC) compared to normal tissues (p<0.001). Further analysis confirmed that GRB7 expression in KICH and KIRC was significantly downregulated across various clinicopathological parameters including stage 3 and stage 4 compared to stage 1. It was also significantly downregulated in 61-80 years compared to 41-60 years patients, as confirmed by the immunohistochemistry of kidney tissues. Prognostic analysis revealed that high GRB7 expression was linked to a better prognosis in KIRC and a poorer prognosis in pancreatic adenocarcinoma (PAAD) patients. In KICH, GRB7 expression showed a significant positive correlation with immune infiltration of B cells, CD8+ T cells, and macrophages. In KIRC, GRB7 was positively correlated with immune infiltration of B cells and CD4+ cells. However, in PAAD it was negatively correlated with immune infiltration of macrophages. These findings were validated by gene expression profiling from the Gene Expression Omnibus (GEO) database, confirming a significant GRB7 downregulation in KICH and KIRC and an upregulation in PAAD compared to normal samples. Conclusion: GRB7 shows potential as a biomarker in both diagnosing and predicting outcomes for various cancers. It may serve as a diagnostic marker for KICH, a prognostic marker for PAAD, and both a diagnostic and prognostic marker for KIRC, making GRB7 a target for future research and therapeutic approaches in oncology.
Collapse
Affiliation(s)
| | - Shyma Alzubair
- Medical Laboratory Science/Histopathology and Cytology, Sudan University of Science and Technology, Khartoum, SDN
| | | | - Ahmed Abdelgalil
- Molecular Biology, Institute of Post Graduate Medical Education and Research, Khartoum, SDN
| | - Fatima Ali
- Hematology, University of Khartoum, Khartoum, SDN
| | - Amira S Khalafalla
- Clinical Chemistry, Faculty of Medicine, University of Gezira, Wad Madani, SDN
| | | | | |
Collapse
|
2
|
Chen X, Han Q, Song J, Pu Y. Identification and validation of a novel defined stress granule-related gene signature for predicting the prognosis of ovarian cancer via bioinformatics analysis. Medicine (Baltimore) 2024; 103:e40608. [PMID: 39809219 PMCID: PMC11596697 DOI: 10.1097/md.0000000000040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/01/2024] [Indexed: 01/16/2025] Open
Abstract
Ovarian cancer (OC) is a malignant gynecological cancer with an extremely poor prognosis. Stress granules (SGs) are non-membrane organelles that respond to stressors; however, the correlation between SG-related genes and the prognosis of OC remains unclear. This systematic analysis aimed to determine the expression levels of SG-related genes between high- and low-risk groups of patients with OC and to explore the prognostic value of these genes. RNA-sequencing data and clinical information from GSE18520 and GSE14407 in the Gene Expression Omnibus (GEO) and ovarian plasmacytoma adenocarcinoma in The Cancer Genome Atlas (TCGA) were downloaded. SG-related genes were obtained from GeneCards, the Molecular Signatures Database, and the literature. First, 13 SG-related genes were identified in the prognostic model using least absolute shrinkage and selection operator (LASSO) Cox regression. The prognostic value of each SG-related gene for survival and its relationship with clinical characteristics were evaluated. Next, we performed a functional enrichment analysis of SG-related genes. The protein-protein interactions (PPI) of SG-related genes were visualized using Cytoscape with STRING. According to the median risk score from the LASSO Cox regression, a 13-gene signature was created. All patients with OC in TCGA cohort and GEO datasets were classified into high- and low-risk groups. Five SG-related genes were differentially expressed between the high- and low-risk OC groups in the GEO datasets. The 13 SG-related genes were related to several important oncogenic pathways (TNF-α signaling, PI3K-AKT-mTOR signaling, and WNT-β-catenin signaling) and several cellular components (cytoplasmic stress granule, cytoplasmic ribonucleoprotein granule, and ribonucleoprotein granule). The PPI network identified 11 hub genes with the strongest interactions with ELAVL1. These findings indicate that SG-related genes (DNAJA1, ELAVL1, FBL, GRB7, MOV10, PABPC3, PCBP2, PFN1, RFC4, SYNCRIP, USP10, ZFP36, and ZFP36L1) can be used to predict OC prognosis.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, China
| | - Qianqian Han
- Department of Colorectal and Anal Surgery, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Jing Song
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yongqiang Pu
- Department of Gastrointestinal Oncology, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
3
|
Sapehia D, Mahajan A, Singh P, Kaur J. Enrichment of trimethyl histone 3 lysine 4 in the Dlk1 and Grb10 genes affects pregnancy outcomes due to dietary manipulation of excess folic acid and low vitamin B12. Biol Res 2024; 57:85. [PMID: 39543691 PMCID: PMC11562088 DOI: 10.1186/s40659-024-00557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The aberrant expression of placental imprinted genes due to epigenetic alterations during pregnancy can impact fetal development. We investigated the impact of dietary modification of low vitamin B12 with varying doses of folic acid on the epigenetic control of imprinted genes and fetal development using a transgenerational model of C57BL/6J mice. The animals were kept on four distinct dietary combinations based on low vitamin B12 levels and modulated folic acid, mated in the F0 generation within each group. In the F1 generation, each group of mice is split into two subgroups; the sustained group was kept on the same diet, while the transient group was fed a regular control diet. After mating, maternal placenta (F1) and fetal tissues (F2) were isolated on day 20 of gestation. We observed a generation-wise opposite promoter CpG methylation and gene expression trend of the two developmental genes Dlk1 and Grb10, with enhanced gene expression in both the sustained and transient experimental groups in F1 placentae. When fetal development characteristics and gene expression were correlated, there was a substantial negative association between placental weight and Dlk1 expression (r = - 0.49, p < 0.05) and between crown-rump length and Grb10 expression (r = - 0.501, p < 0.05) in fetuses of the F2 generation. Consistent with these results, we also found that H3K4me3 at the promoter level of these genes is negatively associated with all fetal growth parameters. Overall, our findings suggest that balancing vitamin B12 and folic acid levels is important for maintaining the transcriptional status of imprinted genes and fetal development.
Collapse
Affiliation(s)
- Divika Sapehia
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parampal Singh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Zhao H, Chen S, Bai X, Zhang J, Liu S, Sun Z, Cao X, Wang J, Zhang Y, Li B, Ji X. GRB7-mediated enhancement of cell malignant characteristics induced by Helicobacter pylori infection. Front Microbiol 2024; 15:1469953. [PMID: 39360313 PMCID: PMC11444978 DOI: 10.3389/fmicb.2024.1469953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Growth factor receptor bound protein 7 (GRB7) is reportedly upregulated in human gastric cancer (GC), which is closely associated with tumor progression and prognosis. However, the mechanism underlying its dysregulation in GC remains poorly understood. In this study, we found that GRB7 overexpression was associated with Helicobacter pylori (H. pylori) infection. GC cells (AGS and MGC-803) infection assays revealed that this upregulation was mediated by the transcription factor STAT3, and activation of STAT3 by H. pylori promoted GRB7 expression in infected GC cells. Moreover, CagA, the key virulence factor of H. pylori, was found involved in STAT3-mediated GRB7 overexpression. The overexpressed GRB7 further promoted GC cell proliferation, migration, and invasion by activating ERK signaling. Mice infection was further used to investigate the action of GRB7. In H. pylori infection, GRB7 expression in mice gastric mucosa was elevated, and higher STAT3 and ERK activation were also detected. These results revealed GRB7-mediated pathogenesis in H. pylori infection, in which H. pylori activates STAT3, leading to increased GRB7 expression, then promotes activation of the ERK signal, and finally enhances malignant properties of infected cells. Our findings elucidate the role of GRB7 in H. pylori-induced gastric disorders, offering new prospects for the treatment and prevention of H. pylori-associated gastric carcinogenesis by targeting GRB7.
Collapse
Affiliation(s)
- Huilin Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, China
| | - Si Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Xinfeng Bai
- Translational Medicine Research Center, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Jianhui Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Shuzhen Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Zekun Sun
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Xinying Cao
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Jianping Wang
- Translational Medicine Research Center, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Boqing Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Xiaofei Ji
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Chen P, Chen X, Song X, He A, Zheng Y, Li X, Tian R. Dissecting phospho-motif-dependent Shc1 interactome using long synthetic protein fragments. Chem Sci 2024; 15:d4sc02350a. [PMID: 39184293 PMCID: PMC11342145 DOI: 10.1039/d4sc02350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
Activated receptor tyrosine kinases (RTKs) rely on the assembly of signaling proteins into high-dimensional protein complexes for signal transduction. Shc1, a prototypical scaffold protein, plays a pivotal role in directing phosphotyrosine (pY)-dependent protein complex formation for numerous RTKs typically through its two pY-binding domains. The three conserved pY sites within its CH1 region (Shc1CH1) hold particular significance due to their substantial contribution to its functions. However, how Shc1 differentially utilizes these sites to precisely coordinate protein complex assembly remains unclear. Here, we employed multiple peptide ligation techniques to synthesize an array of long protein fragments (107 amino acids) covering a significant portion of the Shc1CH1 region with varying phosphorylation states at residues Y239, 240, 313, and S335. By combining these phospho-Shc1CH1 fragments with integrated proteomics sample preparation and quantitative proteomic analysis, we were able to comprehensively resolve the site-specific interactomes of Shc1 with single amino acid resolution. By applying this approach to different cancer cell lines, we demonstrated that these phospho-Shc1CH1 fragments can be effectively used as a diagnostic tool to assess cell type-specific RTK signaling networks. Collectively, these biochemical conclusions help to better understand the sophisticated organization of pY-dependent Shc1 adaptor protein complexes and their functional roles in cancer.
Collapse
Affiliation(s)
- Peizhong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xiong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Xiaolei Song
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Yong Zheng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Basic Medicine, School of Rehabilitation Medicine, Gannan Medical University Ganzhou 341000 China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 China
| |
Collapse
|
6
|
Wen L, Hu W, Hou S, Luo C, Jin Y, Zeng Z, Zhang Z, Meng Y. GRB7 Plays a Vital Role in Promoting the Progression and Mediating Immune Evasion of Ovarian Cancer. Pharmaceuticals (Basel) 2024; 17:1043. [PMID: 39204147 PMCID: PMC11357674 DOI: 10.3390/ph17081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Despite breakthroughs in treatment, ovarian cancer (OC) remains one of the most lethal gynecological malignancies, with an increasing age-standardized mortality rate. This underscores an urgent need for novel biomarkers and therapeutic targets. Although growth factor receptor-bound protein 7 (GRB7) is implicated in cell signaling and tumorigenesis, its expression pattern and clinical implications in OC remain poorly characterized. METHODS To systematically investigate GRB7's expression in OC, our study utilized extensive datasets from TCGA, GTEx, CCLE, and GEO. The prognostic significance of GRB7 was evaluated by means of Kaplan-Meier and Cox regression analyses. Using a correlation analysis and gene set enrichment analysis, relationships between GRB7's expression and gene networks, immune cell infiltration and immunotherapy response were investigated. In vitro experiments were conducted to confirm GRB7's function in the biology of OC. RESULTS Compared to normal tissues, OC tissues exhibited a substantial upregulation of GRB7. Reduced overall survival, disease-specific survival, and disease-free interval were all connected with high GRB7 mRNA levels. The network study demonstrated that GRB7 is involved in pathways relevant to the course of OC and has a positive connection with several key driver genes. Notably, GRB7's expression was linked to the infiltration of M2 macrophage and altered response to immunotherapy. Data from single-cell RNA sequencing data across multiple cancer types indicated GRB7's predominant expression in malignant cells. Moreover, OC cells with GRB7 deletion showed decreased proliferation and migration, as well as increased susceptibility to T cell-mediated cytotoxicity. CONCLUSION With respect to OC, our results validated GRB7 as a viable prognostic biomarker and a promising therapeutic target, providing information about its function in tumorigenesis and immune modulation. GRB7's preferential expression in malignant cells highlights its significance in the biology of cancer and bolsters the possibility that it could be useful in enhancing the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Liang Wen
- Chinese People’s Liberation Army (PLA) Medical School, Beijing 100853, China;
| | - Wei Hu
- Department of Emergency, The Fifth Medical Center of Chinese PLA Hospital, Beijing 100039, China;
| | - Sen Hou
- Department of Gastrointestinal Surgery, Peking University People’s Hospital, Beijing 100032, China;
| | - Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Zhe Zhang
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yuanguang Meng
- Chinese People’s Liberation Army (PLA) Medical School, Beijing 100853, China;
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| |
Collapse
|
7
|
Lofgren KA, Kenny PA. Grb7 knockout mice develop normally but litters born to knockout females fail to thrive. Dev Dyn 2024; 253:677-689. [PMID: 38140940 DOI: 10.1002/dvdy.686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Growth factor receptor-bound 7 (Grb7) is an adaptor protein involved in signal transduction downstream of multiple receptor tyrosine kinases, including ERBB, FGFR, and PDGFR pathways. Experimental studies have implicated Grb7 in regulating cell proliferation, survival, migration, and invasion through its large repertoire of protein-protein interactions. RESULTS Here, we describe the generation and characterization of a Grb7 knockout mouse. These mice are viable and fertile. A lacZ knock-in reporter was used to visualize Grb7 promoter activity patterns in adult tissues, indicating widespread Grb7 expression in glandular epithelium, the central nervous system, and other tissues. The sole defect observed in these animals was a failure of Grb7 knockout females to successfully raise pups to weaning age, a phenotype that was independent of both paternal and pup genotypes. CONCLUSIONS These data suggest a regulatory role for Grb7 in mammary lactational physiology.
Collapse
Affiliation(s)
- Kristopher A Lofgren
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
| | - Paraic A Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
- Division of Hematology & Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Ren LL, Wang ZW, Sen R, Dai ZT, Liao XH, Shen LJ. GRB10 is a novel factor associated with gastric cancer proliferation and prognosis. Aging (Albany NY) 2023; 15:3394-3409. [PMID: 37179120 PMCID: PMC10449302 DOI: 10.18632/aging.204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
GRB10 and its family members GRB7 and GRB14 were important adaptor proteins. They regulated many cellular functions by interacting with various tyrosine kinase receptors and other phosphorus-containing amino acid proteins. More and more studies have shown that the abnormal expression of GRB10 is closely related to the occurrence and development of cancer. In our current research, expression data for 33 cancers from the TCGA database was downloaded for analysis. It was found that GRB10 was up-regulated in cholangiocarcinoma, colon adenocarcinoma, head and neck squamous carcinoma, renal chromophobe, clear renal carcinoma, hepatocellular carcinoma, lung adenocarcinoma, lung squamous carcinoma, gastric adenocarcinoma and thyroid carcinoma. Especially in gastric cancer, the high GRB10 expression was closely associated with poorer overall survival. Further research showed that the knockdown of GRB10 inhibited proliferation and migration ability in gastric cancer. Also, there was a potential binding site for miR-379-5p on the 3'UTR of GRB10. Overexpression of miR-379-5p in gastric cancer cells reduced GRB10-regulated gastric cancer proliferation and migration capacity. In addition, we found that tumor growth was slower in a mice xenograft model with knock down of GRB10 expression. These findings suggested that miR-379-5p suppresses gastric cancer development by downregulating GRB10 expression. Therefore, miR-379-5p and GRB10 were expected to be potential targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Food and Drug, Shenzhen Polytechnic, Guangdong 518055, China
| | - Zhi-Wen Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Ren Sen
- Clinical Academy, Changsha Health Vocational College, Hunan 410100, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Li-Juan Shen
- Longgang District People's Hospital of Shenzhen, Guangdong 518172, China
| |
Collapse
|
9
|
Pei YY, Ran J, Wen L, Liu X, Xiang L, Liu W, Wei F. Up-regulated GRB7 protein in gastric cancer cells correlates with clinical properties and increases proliferation and stem cell properties. Front Oncol 2023; 12:1054976. [PMID: 36686796 PMCID: PMC9846623 DOI: 10.3389/fonc.2022.1054976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction It has been reported that GRB7 is closely related to a variety of human solid tumors, but its role in gastric cancer has not been reported yet. The purpose of this study was to investigate the expression level and intracellular effects of GRB7 in human gastric cancer. Methods Real-time fluorescent quantitative PCR and Western blot were used to detect the expression of GRB7 in gastric cancer cell lines. The immunohistochemical staining and SPSS analysis verified the GRB7 protein expression. Stable gastric cancer cell lines, MTT experiments, clone formation experiments, cell cycle flow cytometry experiments, sphere formation experiments and lateral subpopulation cell sorting experiments were conducted to investigate the role of GRB7 in gastric cancer cells. Results We found that the expression of GRB7 in gastric cancer cell lines was higher than that of the corresponding normal gastric epithelial cells, and correspondingly higher in gastric cancer tissues than its paired adjacent tissues. GRB7 protein was expressed more highly in cancer tissues than in adjacent tissues. GRB7 protein expression levels were positively correlated with the clinical stage of gastric cancer patients, and negatively correlated with the survival prognosis of patients. GSEA analysis of GRB7 mRNA levels in gastric cancer tissues and normal gastric epithelial tissues from public databases showed that GRB7 may affect cell proliferation and related processes of intracellular stem cells. GRB7 can promote the proliferation of gastric cancer cells and is positively related to the self-renewal ability of gastric cancer stem cells. Discussion This study shows that GRB7 molecules highly expressed in gastric cancer tissues can promote the proliferation of gastric cancer cells and increase the proportion of gastric cancer stem cells, so it is expected to become a diagnostic molecule or potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yuan-yuan Pei
- The Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China,*Correspondence: Fengxiang Wei, ; Yuan-yuan Pei,
| | - Jian Ran
- The Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Lijuan Wen
- The Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Xiaoyi Liu
- The Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Li Xiang
- The Digestive Department, Longgang District People’s Hospital of Shenzhen City, Shenzhen, China
| | - Weiqiang Liu
- The Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China
| | - Fengxiang Wei
- The Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, China,*Correspondence: Fengxiang Wei, ; Yuan-yuan Pei,
| |
Collapse
|
10
|
Bautista Saiz C, Mora Gómez MM, Polo JF, Gutiérrez Castañeda LD. La proteína 7 unida al receptor del factor de crecimiento (GRB7) en cáncer de mama. REPERTORIO DE MEDICINA Y CIRUGÍA 2022. [DOI: 10.31260/repertmedcir.01217372.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
El cáncer de mama debe considerarse como un problema de salud pública ya que es la causa principal de muerte en mujeres en el mundo. Se conoce que es multifactorial y heterogéneo de manera que cada tumor tiene características genéticas y moleculares propias, lo cual se refleja en el comportamiento clínico, respuesta al tratamiento y pronóstico. La proteína 7 unida al receptor del factor de crecimiento (GRB7) hace parte de un grupo de proteínas GRB que median la interacción entre receptores tirosina cinasa y proteínas efectoras en algunas vías de señalización involucradas en transducción de señales, migración celular y angiogénesis. Esta proteína es codificada por el gen GRB7 localizado en el cromosoma 17 en el locus 17q11–21, cerca del gen ERBB2, lo que sugiere coamplificación y coexpresión de estos dos genes en el desarrollo del cáncer. Se ha visto que la proteína GRB7 por sí sola está presente en la biología molecular implícita del cáncer de mama, interviniendo en la proliferación y migración celular facilitando así la invasión y posibles metástasis. Se considera como un factor de mal pronóstico en esta enfermedad.
Collapse
|
11
|
Chen Y, Tang M, Xiong J, Gao Q, Cao W, Huang J. GRB10 is a novel oncogene associated with cell proliferation and prognosis in glioma. Cancer Cell Int 2022; 22:223. [PMID: 35790975 PMCID: PMC9254544 DOI: 10.1186/s12935-022-02636-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Glioma is the most common malignant tumor of the central nervous system and is associated with a poor prognosis. This study aimed to explore the function of growth factor receptor-bound protein 10(GRB 10) in glioma.
Methods
The expression of GRB10 in glioma was determined based on the glioma transcriptome profile downloaded from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases. RT-qPCR was performed to detect the expression of GRB10 in tissue samples obtained from 68 glioma patients. The patients were followed up via telephone or in-person outpatient visits to determine survival. Kaplan-Meier survival analyses were used to evaluate the effect of GRB10 on the prognosis of glioma patients. Further, we constructed GRB10 knockdown cell lines were constructed to investigate the effect of GRB10 on glioma. The cell growth, colony formation, cell cycle assay, EdU assay, and tumor formation in xenograft were performed.
Results
The expression level of GRB10 was positively correlated to the histological grades of gliomas. In addition, Kaplan-Meier survival curves revealed that glioma patients with lower expression of GRB10 had more prolonged survival. The knockdown of GRB10 was shown to inhibit cell proliferation, colony formation, and tumor formation in the xenograft models. Cell cycle assay revealed that the knockdown of GRB10 can inhibit the cells entering the G2/M phase from the S phase. The analysis of GSEA suggests that the expression of GRB10 was positively correlated with the hypoxia and EMT signaling pathway.
Conclusions
Our data revealed that GRB10 regulated tumorigenesis in glioma and played a vital role in promoting the glioma progression, which indicated that GRB10 could be used as a potential prognostic marker.
Collapse
|
12
|
Wang D, Ming X, Xu J, Xiao Y. Circ_0009910 shuttled by exosomes regulates proliferation, cell cycle and apoptosis of acute myeloid leukemia cells by regulating miR-5195-3p/GRB10 axis. Hematol Oncol 2021; 39:390-400. [PMID: 33969901 DOI: 10.1002/hon.2874] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/18/2021] [Indexed: 12/25/2022]
Abstract
The exosomes are involved in intercellular communication via RNA trafficking in human diseases. Hsa_circ_0009910 (circ_0009910) is a novel leukemia-related circular RNA. However, the mechanism of circ_0009910 in acute myeloid leukemia (AML) cell-to-cell communication remained obscure. Expression of circ_0009910, miRNA (miR)-5195-3p and growth factor receptor-bound protein 10 (GRB10) was detected by quantitative real-time polymerase chain reaction and Western blotting. A stable cell coculture model was established and functional experiment was performed using Cell Counting Kit-8 assay, flow cytometry, and Western blotting. The interaction among circ_0009910, miR-5195-3p and GRB10 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. As a result, circ_0009910 was upregulated in AML bone marrows and cells (HL-60 and MOLM-13), even higher in AML cells-derived exosomes. Functionally, blocking circ_0009910 via small interfering RNA (siRNA) suppressed cell proliferation and cell cycle progression, but facilitated apoptosis rate of HL-60 and MOLM-13 cells, accompanied with lower B-cell lymphoma 2 (Bcl-2) level and higher Bcl-2-associated X protein (Bax) level. circ_0009910 shuttled via exosomes negatively regulated miR-5195-3p expression by target binding. Furthermore, circ_0009910 knockdown via exosomes and miR-5195-3p overexpression via mimic resulted in similar results of circ_0009910 siRNA in proliferation, apoptosis and cell cycle progression of AML cells. Meanwhile, the role of circ_0009910 knockdown in AML cells was partially reversed by miR-5195-3p deletion, and restoring GRB10 could abrogate miR-5195-3p effect as well. Notably, GRB10 was a downstream target of miR-5195-3p. circ_0009910-containing exosomes mediated proliferation, apoptosis and cell cycle progression of AML cells partially through miR-5195-3p/GRB10 axis.
Collapse
Affiliation(s)
- Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinhuan Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Luo H, Peng F, Weng B, Tang X, Chen Y, Yang A, Chen B, Ran M. miR-222 Suppresses Immature Porcine Sertoli Cell Growth by Targeting the GRB10 Gene Through Inactivating the PI3K/AKT Signaling Pathway. Front Genet 2020; 11:581593. [PMID: 33329720 PMCID: PMC7673446 DOI: 10.3389/fgene.2020.581593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 01/24/2023] Open
Abstract
Sertoli cells are central and essential coordinators of spermatogenesis. Accumulating evidence has demonstrated that miRNAs participate in the regulation of Sertoli cell growth. However, the functions and the regulatory mechanisms of miRNAs in Sertoli cells of domestic animals remain largely unknown. Here we report that miR-222 overexpression repressed cell cycle progression and proliferation and promoted the apoptosis of immature porcine Sertoli cells, whereas miR-222 inhibition resulted in the opposite result. miR-222 directly targeted the 3′-UTR of the GRB10 gene and inhibited its mRNA abundance. An siRNA-induced GRB10 knockdown showed similar effects as did miR-222 overexpression on cell proliferation and apoptosis and further attenuated the role of miR-222 inhibition. Furthermore, both miR-222 overexpression and GRB10 inhibition repressed the phosphorylation of PI3K and AKT, the key elements of the PI3K/AKT signaling pathway, whereas GRB10 inhibition offsets the effects of the miR-222 knockdown. Overall, we concluded that miR-222 suppresses immature porcine Sertoli cell growth by targeting the GRB10 gene through inactivation of the PI3K/AKT signaling pathway. This study provides novel insights into the epigenetic regulation of porcine spermatogenesis by determining the fate of Sertoli cells.
Collapse
Affiliation(s)
- Hui Luo
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Fuzhi Peng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Bo Weng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Yao Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Anqi Yang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Maoliang Ran
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| |
Collapse
|
14
|
Gotovac JR, Liu DSH, Yates MJ, Milne JV, Macpherson AA, Simpson KJ, Eslick GD, Mitchell C, Duong CP, Phillips WA, Clemons NJ. GRB7 is an oncogenic driver and potential therapeutic target in oesophageal adenocarcinoma. J Pathol 2020; 252:317-329. [PMID: 32737994 PMCID: PMC7693356 DOI: 10.1002/path.5528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/12/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022]
Abstract
Efficacious therapeutic approaches are urgently needed to improve outcomes in patients with oesophageal adenocarcinoma (OAC). However, oncogenic drivers amenable to targeted therapy are limited and their functional characterisation is essential. Among few targeted therapies available, anti-human epidermal growth factor receptor 2 (HER2) therapy showed only modest benefit for patients with OAC. Herein, we investigated the potential oncogenic role of growth factor receptor bound protein 7 (GRB7), which is reported to be co-amplified with HER2 (ERBB2) in OAC. GRB7 was highly expressed in 15% of OAC tumours, not all of which could be explained by co-amplification with HER2, and was associated with a trend for poorer overall survival. Knockdown of GRB7 decreased proliferation and clonogenic survival, and induced apoptosis. Reverse phase protein array (RPPA) analyses revealed a role for PI3K, mammalian target of rapamycin (mTOR), MAPK, and receptor tyrosine kinase signalling in the oncogenic action of GRB7. Furthermore, the GRB7 and HER2 high-expressing OAC cell line Eso26 showed reduced cell proliferation upon GRB7 knockdown but was insensitive to HER2 inhibition by trastuzumab. Consistent with this, GRB7 knockdown in vivo with an inducible shRNA significantly inhibited tumour growth in cell line xenografts. HER2 expression did not predict sensitivity to trastuzumab, with Eso26 xenografts remaining refractory to trastuzumab treatment. Taken together, our study provides strong evidence for an oncogenic role for GRB7 in OAC and suggests that targeting GRB7 may be a potential therapeutic strategy for this cancer. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jovana R Gotovac
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - David SH Liu
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Michael J Yates
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Julia V Milne
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Arthi A Macpherson
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Kaylene J Simpson
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Guy D Eslick
- Nepean Clinical SchoolThe University of SydneyKingswoodNew South WalesAustralia
| | - Catherine Mitchell
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Department of PathologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Cuong P Duong
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Wayne A Phillips
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
- Department of Surgery (St Vincent's Hospital)The University of MelbourneParkvilleVictoriaAustralia
| | - Nicholas J Clemons
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
15
|
García-Palmero I, Shah N, Ali NA, Daly RJ, Wilce JA, Villalobo A. Partners of wild type Grb7 and a mutant lacking its calmodulin-binding domain. Arch Biochem Biophys 2020; 687:108386. [PMID: 32360748 DOI: 10.1016/j.abb.2020.108386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 11/28/2022]
Abstract
Growth factor receptor bound protein 7 (Grb7) is a mammalian adaptor protein participating in signaling pathways implicated in cell migration, metastatic invasion, cell proliferation and tumor-associated angiogenesis. We expressed tagged versions of wild type Grb7 and the mutant Grb7Δ, lacking its calmodulin-binding domain (CaM-BD), in human embryonic kidney (HEK) 293 cells and rat glioma C6 cells to identify novel binding partners using shot-gun proteomics. Among the new identified proteins, we validated the ubiquitin-ligase Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4), the heat-shock protein Hsc70/HSPA8 (heat shock cognate protein 70) and the cell cycle regulatory protein caprin-1 (cytoplasmic activation/proliferation-associated protein 1) in rat glioma C6 cells. Our results suggest a role of Grb7 in pathways where these proteins are implicated. These include protein trafficking and degradation, stress-response, chaperone-mediated autophagy, apoptosis and cell proliferation.
Collapse
Affiliation(s)
- Irene García-Palmero
- Life Length, Parque Científico de Madrid, c/ Faraday 7, Campus de Cantoblanco, E-28049, Madrid, Spain
| | - Neelam Shah
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Naveid A Ali
- The Garvan Institute of Medical Research, Darlinghurst Sydney NSW, 2010, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria, 3800, Australia.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046, Madrid, Spain.
| |
Collapse
|
16
|
Pham DDM, Guhan S, Tsao H. KIT and Melanoma: Biological Insights and Clinical Implications. Yonsei Med J 2020; 61:562-571. [PMID: 32608199 PMCID: PMC7329741 DOI: 10.3349/ymj.2020.61.7.562] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
Melanoma, originating from epidermal melanocytes, is a heterogeneous disease that has the highest mortality rate among all types of skin cancers. Numerous studies have revealed the cause of this cancer as related to various somatic driver mutations, including alterations in KIT-a proto-oncogene encoding for a transmembrane receptor tyrosine kinase. Although accounting for only 3% of all melanomas, mutations in c-KIT are mostly derived from acral, mucosal, and chronically sun-damaged melanomas. As an important factor for cell differentiation, proliferation, and survival, inhibition of c-KIT has been exploited for clinical trials in advanced melanoma. Here, apart from the molecular background of c-KIT and its cellular functions, we will review the wide distribution of alterations in KIT with a catalogue of more than 40 mutations reported in various articles and case studies. Additionally, we will summarize the association of KIT mutations with clinicopathologic features (age, sex, melanoma subtypes, anatomic location, etc.), and the differences of mutation rate among subgroups. Finally, several therapeutic trials of c-KIT inhibitors, including imatinib, dasatinib, nilotinib, and sunitinib, will be analyzed for their success rates and limitations in advanced melanoma treatment. These not only emphasize c-KIT as an attractive target for personalized melanoma therapy but also propose the requirement for additional investigational studies to develop novel therapeutic trials co-targeting c-KIT and other cytokines such as members of signaling pathways and immune systems.
Collapse
Affiliation(s)
- Duc Daniel M Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Hensin Tsao
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Grb7-derived calmodulin-binding peptides inhibit proliferation, migration and invasiveness of tumor cells while they enhance attachment to the substrate. Heliyon 2020; 6:e03922. [PMID: 32420488 PMCID: PMC7215194 DOI: 10.1016/j.heliyon.2020.e03922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/05/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
The growth factor receptor bound protein 7 (Grb7) is a Ca2+-dependent calmodulin (CaM)-binding adaptor protein implicated, among other functions, in cell proliferation, migration and tumor-associated angiogenesis. The goal of this study was to determine whether a peptide based on the CaM binding site of Grb7 disrupts cellular processes, relevant for the malignancy of tumor cells, in which this adaptor protein is implicated. We designed synthetic myristoylated and non-myristoylated peptides corresponding to the CaM-binding domain of human Grb7 with the sequence 243RKLWKRFFCFLRRS256 and a variant peptide with the mutated sequence RKLERFFCFLRRE (W246E-ΔK247-S256E). The two non-myristoylated peptides bind dansyl-CaM with higher efficiency in the presence than in the absence of Ca2+ and they enter into the cell, as tested with 5(6)-carboxytetramethylrhodamine (TAMRA)-labeled peptides. The myristoylated and non-myristoylated peptides inhibit the proliferation, migration and invasiveness of A431 tumor cells while they enhance their adhesion to the substrate. The myristoylated peptides have stronger inhibitory effect than the non-myristoylated counterparts, in agreement with their expected higher cell-permeant capacity. The myristoylated and non-myristoylated W246E-ΔK247-S256E mutant peptide has a lesser inhibitory effect on cell proliferation as compared to the wild-type peptide. We also demonstrated that the myristoylated peptides were more efficient than the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibiting cell migration and equally efficient inhibiting cell proliferation.
Collapse
|
18
|
Watson GM, Wilce JA. Direct Interaction between Calmodulin and the Grb7 RA-PH Domain. Int J Mol Sci 2020; 21:ijms21041336. [PMID: 32079204 PMCID: PMC7073000 DOI: 10.3390/ijms21041336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 01/18/2023] Open
Abstract
Grb7 is a signalling adapter protein that engages activated receptor tyrosine kinases at cellular membranes to effect downstream pathways of cell migration, proliferation and survival. Grb7’s cellular location was shown to be regulated by the small calcium binding protein calmodulin (CaM). While evidence for a Grb7/CaM interaction is compelling, a direct interaction between CaM and purified Grb7 has not been demonstrated and quantitated. In this study we sought to determine this, and prepared pure full-length Grb7, as well as its RA-PH and SH2 subdomains, and tested for CaM binding using surface plasmon resonance. We report a direct interaction between full-length Grb7 and CaM that occurs in a calcium dependent manner. While no binding was observed to the SH2 domain alone, we observed a high micromolar affinity interaction between the Grb7 RA-PH domain and CaM, suggesting that the Grb7/CaM interaction is mediated through this region of Grb7. Together, our data support the model of a CaM interaction with Grb7 via its RA-PH domain.
Collapse
|
19
|
Abstract
Tyrosine phosphorylation is a critical component of signal transduction for multicellular organisms, particularly for pathways that regulate cell proliferation and differentiation. While tyrosine kinase inhibitors have become FDA-approved drugs, inhibitors of the other important components of these signaling pathways have been harder to develop. Specifically, direct phosphotyrosine (pTyr) isosteres have been aggressively pursued as inhibitors of Src homology 2 (SH2) domains and protein tyrosine phosphatases (PTPs). Medicinal chemists have produced many classes of peptide and small molecule inhibitors that mimic pTyr. However, balancing affinity with selectivity and cell penetration has made this an extremely difficult space for developing successful clinical candidates. This review will provide a comprehensive picture of the field of pTyr isosteres, from early beginnings to the current state and trajectory. We will also highlight the major protein targets of these medicinal chemistry efforts, the major classes of peptide and small molecule inhibitors that have been developed, and the handful of compounds which have been tested in clinical trials.
Collapse
Affiliation(s)
- Robert A Cerulli
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
20
|
Larsen EK, Weber DK, Wang S, Gopinath T, Blackwell DJ, Dalton MP, Robia SL, Gao J, Veglia G. Intrinsically disordered HAX-1 regulates Ca 2+ cycling by interacting with lipid membranes and the phospholamban cytoplasmic region. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183034. [PMID: 31400305 PMCID: PMC6899184 DOI: 10.1016/j.bbamem.2019.183034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 01/14/2023]
Abstract
Hematopoietic-substrate-1 associated protein X-1 (HAX-1) is a 279 amino acid protein expressed ubiquitously. In cardiac muscle, HAX-1 was found to modulate the sarcoendoplasmic reticulum calcium ATPase (SERCA) by shifting its apparent Ca2+ affinity (pCa). It has been hypothesized that HAX-1 binds phospholamban (PLN), enhancing its inhibitory function on SERCA. HAX-1 effects are reversed by cAMP-dependent protein kinase A that phosphorylates PLN at Ser16. To date, the molecular mechanisms for HAX-1 regulation of the SERCA/PLN complex are still unknown. Using enzymatic, in cell assays, circular dichroism, and NMR spectroscopy, we found that in the absence of a binding partner HAX-1 is essentially disordered and adopts a partial secondary structure upon interaction with lipid membranes. Also, HAX-1 interacts with the cytoplasmic region of monomeric and pentameric PLN as detected by NMR and in cell FRET assays, respectively. We propose that the regulation of the SERCA/PLN complex by HAX-1 is mediated by its interactions with lipid membranes, adding another layer of control in Ca2+ homeostatic balance in the heart muscle.
Collapse
Affiliation(s)
- Erik K Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Michael P Dalton
- Department of Physiology, Loyola University, Maywood, IL 60153, USA
| | - Seth L Robia
- Department of Physiology, Loyola University, Maywood, IL 60153, USA
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; School of Chemical Biology and Technology, Beijing University Graduate School, Shenzhen 518055, China
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Sang J, Kulkarni K, Watson GM, Ma X, Craik DJ, Henriques ST, Poth AG, Benfield AH, Wilce JA. Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules 2019; 24:molecules24203739. [PMID: 31627265 PMCID: PMC6832895 DOI: 10.3390/molecules24203739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022] Open
Abstract
Grb7 is an adapter protein, overexpressed in HER2+ve breast and other cancers, and identified as a therapeutic target. Grb7 promotes both proliferative and migratory cellular pathways through interaction of its SH2 domain with upstream binding partners including HER2, SHC, and FAK. Here we present the evaluation of a series of monocyclic and bicyclic peptide inhibitors that have been developed to specifically and potently target the Grb7 SH2-domain. All peptides tested were found to inhibit signaling in both ERK and AKT pathways in SKBR-3 and MDA-MB-231 cell lines. Proliferation, migration, and invasion assays revealed, however, that the second-generation bicyclic peptides were not more bioactive than the first generation G7-18NATE peptide, despite their higher in vitro affinity for the target. This was found not to be due to steric hindrance by the cell-permeability tag, as ascertained by ITC, but to differences in the ability of the bicyclic peptides to interact with and penetrate cellular membranes, as determined using SPR and mass spectrometry. These studies reveal that just small differences to amino acid composition can greatly impact the effectiveness of peptide inhibitors to their intracellular target and demonstrate that G7-18NATE remains the most effective peptide inhibitor of Grb7 developed to date.
Collapse
Affiliation(s)
- Jianrong Sang
- Department of Physiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Ketav Kulkarni
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Gabrielle M Watson
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Xiuquan Ma
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane 4102, Australia.
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Aurélie H Benfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane 4102, Australia.
| | - Jacqueline A Wilce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| |
Collapse
|
22
|
Bradford AM, Koirala R, Park CK, Lyons BA. Characterization of the full-length human Grb7 protein and a phosphorylation representative mutant. J Mol Recognit 2019; 32:e2803. [PMID: 31353673 DOI: 10.1002/jmr.2803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is well known the dimerization state of receptor tyrosine kinases (RTKs), in conjunction with binding partners such as the growth factor receptor bound protein 7 (Grb7) protein, plays an important role in cell signaling regulation. Previously, we proposed, downstream of RTKs, that the phosphorylation state of Grb7SH2 domain tyrosine residues could control Grb7 dimerization, and dimerization may be an important regulatory step in Grb7 binding to RTKs. In this manner, additional dimerization-dependent regulation could occur downstream of the membrane-bound kinase in RTK-mediated signaling pathways. Extrapolation to the full-length (FL) Grb7 protein, and the ability to test this hypothesis further, has been hampered by the availability of large quantities of pure and stable FL protein. Here, we report the biophysical characterization of the FL Grb7 protein and also a mutant representing a tyrosine-phosphorylated Grb7 protein form. Through size exclusion chromatography and analytical ultracentrifugation, we show the phosphorylated-tyrosine-mimic Y492E-FL-Grb7 protein (Y492E-FL-Grb7) is essentially monomeric at expected physiological concentrations. It has been shown previously the wild-type FL Grb7(WT-FLGrb7) protein is dimeric with a dissociation constant (Kd) of approximately 11μM. Our studies here measure a FL protein dimerization Kd of WT-FL-Grb7 within one order of magnitude at approximately 1μM. The approximate size and shape of the WT-FL-Grb7 in comparison the tyrosine-phosphorylation mimic Y492E-FL-Grb7 protein was determined by dynamic light scattering methods. In vitro phosphorylation of the Grb7SH2 domain indicates only one of the available tyrosine residues is phosphorylated, suggesting the same phosphorylation pattern could be relevant in the FL protein. The biophysical characterization studies in total are interpreted with a view towards understanding the functionally active Grb7 protein conformation.
Collapse
Affiliation(s)
| | - Rajan Koirala
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Chad K Park
- Analytical Biophysics Core, Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Barbara A Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
23
|
Chu PY, Tai YL, Shen TL. Grb7, a Critical Mediator of EGFR/ErbB Signaling, in Cancer Development and as a Potential Therapeutic Target. Cells 2019; 8:cells8050435. [PMID: 31083325 PMCID: PMC6562560 DOI: 10.3390/cells8050435] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
The partner of activated epidermal growth factor receptor (EGFR), growth factor receptor bound protein-7 (Grb7), a functionally multidomain adaptor protein, has been demonstrated to be a pivotal regulator for varied physiological and pathological processes by interacting with phospho-tyrosine-related signaling molecules to affect the transmission through a number of signaling pathways. In particular, critical roles of Grb7 in erythroblastic leukemia viral oncogene homolog (ERBB) family-mediated cancer development and malignancy have been intensively evaluated. The overexpression of Grb7 or the coamplification/cooverexpression of Grb7 and members of the ERBB family play essential roles in advanced human cancers and are associated with decreased survival and recurrence of cancers, emphasizing Grb7's value as a prognostic marker and a therapeutic target. Peptide inhibitors of Grb7 are being tested in preclinical trials for their possible therapeutic effects. Here, we review the molecular, functional, and clinical aspects of Grb7 in ERBB family-mediated cancer development and malignancy with the aim to reveal alternative and effective therapeutic strategies.
Collapse
Affiliation(s)
- Pei-Yu Chu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Ling Tai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
24
|
Rienecker KDA, Chavasse AT, Moorwood K, Ward A, Isles AR. Detailed analysis of paternal knockout Grb10 mice suggests effects on stability of social behavior, rather than social dominance. GENES BRAIN AND BEHAVIOR 2019; 19:e12571. [PMID: 30932322 PMCID: PMC7050506 DOI: 10.1111/gbb.12571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
Abstract
Imprinted genes are highly expressed in monoaminergic regions of the midbrain and their functions in this area are thought to have an impact on mammalian social behaviors. One such imprinted gene is Grb10, of which the paternal allele is generally recognized as mediating social dominance behavior. However, there has been no detailed study of social dominance in Grb10+/p mice. Moreover, the original study examined tube‐test behavior in isolated mice 10 months of age. Isolation testing favors more territorial and aggressive behaviors, and does not address social dominance strategies employed in group housing contexts. Furthermore, isolation stress impacts midbrain function and dominance related behavior, often through alterations in monoaminergic signaling. Thus, we undertook a systematic study of Grb10+/p social rank and dominance behavior within the cage group, using a number of convergent behavioral tests. We examined both male and female mice to account for sex differences and tested cohorts aged 2, 6 and 10 months to examine any developments related to age. We found group‐housed Grb10+/p mice do not show evidence of enhanced social dominance, but cages containing Grb10+/p and wild‐type mice lacked the normal correlation between three different measures of social rank. Moreover, a separate study indicated isolation stress induced inconsistent changes in tube test behavior. Taken together, these data suggest future research on Grb10+/p mice should focus on the stability of social behaviors, rather than dominance per se.
Collapse
Affiliation(s)
- Kira D A Rienecker
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Alexander T Chavasse
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Kim Moorwood
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
25
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
26
|
Watson GM, Lucas WAH, Gunzburg MJ, Wilce JA. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target. Front Mol Biosci 2017; 4:64. [PMID: 29018805 PMCID: PMC5623053 DOI: 10.3389/fmolb.2017.00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/13/2017] [Indexed: 12/28/2022] Open
Abstract
Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors.
Collapse
Affiliation(s)
| | | | | | - Jacqueline A. Wilce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
27
|
GRB7 Expression and Correlation With HER2 Amplification in Invasive Breast Carcinoma. Appl Immunohistochem Mol Morphol 2017; 25:553-558. [DOI: 10.1097/pai.0000000000000349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Serrano-Gómez SJ, Sanabria-Salas MC, Garay J, Baddoo MC, Hernández-Suarez G, Mejía JC, García O, Miele L, Fejerman L, Zabaleta J. Ancestry as a potential modifier of gene expression in breast tumors from Colombian women. PLoS One 2017; 12:e0183179. [PMID: 28832682 PMCID: PMC5568388 DOI: 10.1371/journal.pone.0183179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 01/24/2023] Open
Abstract
Background Hispanic/Latino populations are a genetically admixed and heterogeneous group, with variable fractions of European, Indigenous American and African ancestries. The molecular profile of breast cancer has been widely described in non-Hispanic Whites but equivalent knowledge is lacking in Hispanic/Latinas. We have previously reported that the most prevalent breast cancer intrinsic subtype in Colombian women was Luminal B as defined by St. Gallen 2013 criteria. In this study we explored ancestry-associated differences in molecular profiles of Luminal B tumors among these highly admixed women. Methods We performed whole-transcriptome RNA-seq analysis in 42 Luminal tumors (21 Luminal A and 21 Luminal B) from Colombian women. Genetic ancestry was estimated from a panel of 80 ancestry-informative markers (AIM). We categorized patients according to Luminal subtype and to the proportion of European and Indigenous American ancestry and performed differential expression analysis comparing Luminal B against Luminal A tumors according to the assigned ancestry groups. Results We found 5 genes potentially modulated by genetic ancestry: ERBB2 (log2FC = 2.367, padj<0.01), GRB7 (log2FC = 2.327, padj<0.01), GSDMB (log2FC = 1.723, padj<0.01, MIEN1 (log2FC = 2.195, padj<0.01 and ONECUT2 (log2FC = 2.204, padj<0.01). In the replication set we found a statistical significant association between ERBB2 expression with Indigenous American ancestry (p = 0.02, B = 3.11). This association was not biased by the distribution of HER2+ tumors among the groups analyzed. Conclusions Our results suggest that genetic ancestry in Hispanic/Latina women might modify ERBB2 gene expression in Luminal tumors. Further analyses are needed to confirm these findings and explore their prognostic value.
Collapse
Affiliation(s)
- Silvia J. Serrano-Gómez
- Grupo de investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá D. C, Colombia
- Programa de doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá D. C, Colombia
| | | | - Jone Garay
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, United States of America
| | - Melody C. Baddoo
- Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Gustavo Hernández-Suarez
- Grupo de investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá D. C, Colombia
| | - Juan Carlos Mejía
- Grupo de Patología, Instituto Nacional de Cancerología, Bogotá D. C, Colombia
| | - Oscar García
- Grupo de Seno y Tejidos blandos, Instituto Nacional de Cancerología, Bogotá D. C, Colombia
| | - Lucio Miele
- Department of Genetics, LSUHSC, New Orleans, LA, United States of America
| | - Laura Fejerman
- Department of Medicine, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States of America
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, United States of America
- Department of Pediatrics, LSUHSC, New Orleans, United States of America
- * E-mail:
| |
Collapse
|
29
|
García-Palmero I, Pompas-Veganzones N, Villalobo E, Gioria S, Haiech J, Villalobo A. The adaptors Grb10 and Grb14 are calmodulin-binding proteins. FEBS Lett 2017; 591:1176-1186. [PMID: 28295264 DOI: 10.1002/1873-3468.12623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
We identified the Grb7 family members, Grb10 and Grb14, as Ca2+ -dependent CaM-binding proteins using Ca2+ -dependent CaM-affinity chromatography as we previously did with Grb7. The potential CaM-binding sites were identified and experimentally tested using fluorescent-labeled peptides corresponding to these sites. The apparent affinity constant of these peptides for CaM, and the minimum number of calcium ions bound to CaM that are required for effective binding to these peptides were also determined. We prepared deletion mutants of the three adaptor proteins lacking the identified sites and determined that they lost or strongly diminished their CaM-binding capacity following the sequence Grb7 > > Grb14 > Grb10. More than one CaM-binding site and/or accessory CaM-binding sites appear to exist in Grb10 and Grb14, as compared to a single one present in Grb7.
Collapse
Affiliation(s)
- Irene García-Palmero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Noemí Pompas-Veganzones
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Spain
| | - Sophie Gioria
- Plate-forme de Chimie Biologique Intégrative de Strasbourg (PCBIS), UMS 3286 CNRS-Université de Strasbourg, France
| | - Jacques Haiech
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, France
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| |
Collapse
|
30
|
Godamudunage MP, Foster A, Warren D, Lyons BA. Grb7 protein RA domain oligomerization. J Mol Recognit 2017; 30. [PMID: 28295715 DOI: 10.1002/jmr.2620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 11/05/2022]
Abstract
The growth factor receptor bound protein 7 (Grb7) is an adaptor protein that is often coamplified with the erythroblastosis oncogene B 2 receptor in 20% to 30% of breast cancer patients. Grb7 overexpression has been linked to increased cell migration and cancer metastasis. The ras associating and pleckstrin homology domain region of Grb7 has been reported to interact with various other downstream signaling proteins such as four and half Lin11, Isl-1, Mec-3 (LIM) domains isoform 2 and filamin α. These interactions are believed to play a role in regulating Grb7-mediated cell migration function. The full-length Grb7 protein has been shown to dimerize, and the oligomeric state of the Grb7SH2 domain has been extensively studied; however, the oligomerization state of the ras associating and pleckstrin homology domains, and the importance of this oligomerization in Grb7 function, is yet to be fully known. In this study, we characterize the oligomeric state of the Grb7RA domain using size exclusion chromatography, nuclear magnetic resonance, nuclear relaxation studies, glutaraldehyde cross linking, and dynamic light scattering. We report the Grb7RA domain can exist in transient multimeric forms and, based upon modeling results, postulate the potential role of Grb7RA domain oligomerization in Grb7 function.
Collapse
Affiliation(s)
- Malika P Godamudunage
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | | | - Barbara A Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
31
|
Tai YL, Tung LH, Lin YC, Lu PJ, Chu PY, Wang MY, Huang WP, Chen KC, Lee H, Shen TL. Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression. PLoS One 2016; 11:e0163617. [PMID: 27658202 PMCID: PMC5033455 DOI: 10.1371/journal.pone.0163617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Growth factor receptor bound protein-7 (Grb7) is a multi-domain adaptor protein that is co-opted by numerous tyrosine kinases involved in various cellular signaling and functions. The molecular mechanisms underlying the regulation of Grb7 remain unclear. Here, we revealed a novel negative post-translational regulation of Grb7 by the peptidyl-prolyl cis/trans isomerase, Pin1. Our data show that phosphorylation of Grb7 protein on the Ser194-Pro motif by c-Jun N-terminal kinase facilitates its binding with the WW domain of Pin1. Subsequently, Grb7 is degraded by the ubiquitin- and proteasome-dependent proteolytic pathway. Indeed, we found that Pin1 exerts its peptidyl-prolyl cis/trans isomerase activity in the modulation of Grb7 protein stability in regulation of cell cycle progression at the G2-M phase. This study illustrates a novel regulatory mechanism in modulating Grb7-mediated signaling, which may take part in pathophysiological consequences.
Collapse
Affiliation(s)
- Yu-Ling Tai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Li-Hsuan Tung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yu Chu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, Connecticut, United States of America
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Pang Huang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Ko-Chien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hsinyu Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7. Sci Rep 2016; 6:27060. [PMID: 27257138 PMCID: PMC4891710 DOI: 10.1038/srep27060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 01/11/2023] Open
Abstract
The design of potent and specific peptide inhibitors to therapeutic targets is of enormous utility for both proof-of-concept studies and for the development of potential new therapeutics. Grb7 is a key signaling molecule in the progression of HER2 positive and triple negative breast cancers. Here we report the crystal structure of a stapled bicyclic peptide inhibitor G7-B1 in complex with the Grb7-SH2 domain. This revealed an unexpected binding mode of the peptide, in which the staple forms an alternative contact with the surface of the target protein. Based on this structural information, we designed a new series of bicyclic G7 peptides that progressively constrain the starting peptide, to arrive at the G7-B4 peptide that binds with an approximately 2-fold enhanced affinity to the Grb7-SH2 domain (KD = 0.83 μM) compared to G7-B1 and shows low affinity binding to Grb2-, Grb10- and Grb14-SH2 domains (KD > 100 μM). Furthermore, we determined the structure of the G7-B4 bicyclic peptide in complex with the Grb7-SH2 domain, both before and after ring closing metathesis to show that the closed staple is essential to the target interaction. The G7-B4 peptide represents an advance in the development of Grb7 inhibitors and is a classical example of structure aided inhibitor development.
Collapse
|
33
|
Yang S, Deng H, Zhang Q, Xie J, Zeng H, Jin X, Ling Z, Shan Q, Liu M, Ma Y, Tang J, Wei Q. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling. PLoS One 2016; 11:e0151857. [PMID: 26986757 PMCID: PMC4795681 DOI: 10.1371/journal.pone.0151857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.
Collapse
Affiliation(s)
- Shasha Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huacong Deng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qunzhou Zhang
- Department of Oral Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jing Xie
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zeng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolong Jin
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zixi Ling
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoyun Shan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Momo Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuefei Ma
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Tang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianping Wei
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
34
|
Terrazas M, Ivani I, Villegas N, Paris C, Salvans C, Brun-Heath I, Orozco M. Rational design of novel N-alkyl-N capped biostable RNA nanostructures for efficient long-term inhibition of gene expression. Nucleic Acids Res 2016; 44:4354-67. [PMID: 26975656 PMCID: PMC4872095 DOI: 10.1093/nar/gkw169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/03/2016] [Indexed: 12/29/2022] Open
Abstract
Computational techniques have been used to design a novel class of RNA architecture with expected improved resistance to nuclease degradation, while showing interference RNA activity. The in silico designed structure consists of a 24–29 bp duplex RNA region linked on both ends by N-alkyl-N dimeric nucleotides (BCn dimers; n = number of carbon atoms of the alkyl chain). A series of N-alkyl-N capped dumbbell-shaped structures were efficiently synthesized by double ligation of BCn-loop hairpins. The resulting BCn-loop dumbbells displayed experimentally higher biostability than their 3′-N-alkyl-N linear version, and were active against a range of mRNA targets. We studied first the effect of the alkyl chain and stem lengths on RNAi activity in a screen involving two series of dumbbell analogues targeting Renilla and Firefly luciferase genes. The best dumbbell design (containing BC6 loops and 29 bp) was successfully used to silence GRB7 expression in HER2+ breast cancer cells for longer periods of time than natural siRNAs and known biostable dumbbells. This BC6-loop dumbbell-shaped structure displayed greater anti-proliferative activity than natural siRNAs.
Collapse
Affiliation(s)
- Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Ivan Ivani
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
| | - Clément Paris
- Department of Organic Chemistry and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Cándida Salvans
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
35
|
Yang P, Wei J, Li W, He F, Zeng S, Zhang T, Sun Z, Cao J. High expression of growth factor receptor-bound protein 14 predicts poor prognosis for colorectal cancer patients. Biotechnol Lett 2016; 38:1043-7. [PMID: 26965150 DOI: 10.1007/s10529-016-2077-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
Abstract
OBJECTS To explore the roles of growth factor receptor-bound protein 14 (GRB14) in colorectal cancer (CRC) and its correlation with clinicopathological characteristics and prognosis of CRC patients. RESULTS GRB14 was localized in the cytoplasm of CRC and benign glandular epithelium cells, showing higher levels in CRC tissues compared with normal colon samples (P < 0.001). High GRB14 was associated with a high pathological grade (P = 0.045), advanced clinical stage (P = 0.018), enhanced tumor invasion (P < 0.001) and lymph node metastasis (P = 0.028). The cancer genome atlas (TCGA) mRNA sequence data showed that GRB14 was upregulated in CRC at an advanced clinical stage (P = 0.011) with enhanced tumor invasion (P < 0.001) and lymph node metastasis (P = 0.014). Kaplan-Meier survival curves revealed that CRC patients with high GRB14 levels had a shorter survival compared with those showing low GRB14 expression (P = 0.007). High GRB14 expression was an independent prognostic factor for CRC patients (HR 2.847, 95 %CI 1.058-7.659; P = 0.038). CONCLUSIONS GRB14 may be an important cancer promoter that enhances CRC progression. Upregulated GRB14 levels may predict a poor clinical outcome in CRC patients.
Collapse
Affiliation(s)
- Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road No. 1, Guangzhou, 510180, China
| | - Jianchang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road No. 1, Guangzhou, 510180, China
| | - Wanglin Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road No. 1, Guangzhou, 510180, China
| | - Feng He
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road No. 1, Guangzhou, 510180, China
| | - Shanqi Zeng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road No. 1, Guangzhou, 510180, China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road No. 1, Guangzhou, 510180, China
| | - Zheng Sun
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road No. 1, Guangzhou, 510180, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road No. 1, Guangzhou, 510180, China.
| |
Collapse
|
36
|
Qian L, Bradford AM, Cooke PH, Lyons BA. Grb7 and Hax1 may colocalize partially to mitochondria in EGF-treated SKBR3 cells and their interaction can affect Caspase3 cleavage of Hax1. J Mol Recognit 2016; 29:318-33. [PMID: 26869103 DOI: 10.1002/jmr.2533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 11/11/2022]
Abstract
Growth factor receptor bound protein 7 (Grb7) is a signal-transducing adaptor protein that mediates specific protein-protein interactions in multiple signaling pathways. Grb7, with Grb10 and Grb14, is members of the Grb7 protein family. The topology of the Grb7 family members contains several protein-binding domains that facilitate the formation of protein complexes, and high signal transduction efficiency. Grb7 has been found overexpressed in several types of cancers and cancer cell lines and is presumed involved in cancer progression through promotion of cell proliferation and migration via interactions with the erythroblastosis oncogene B 2 (human epidermal growth factor receptor 2) receptor, focal adhesion kinase, Ras-GTPases, and other signaling partners. We previously reported Grb7 binds to Hax1 (HS1 associated protein X1) isoform 1, an anti-apoptotic protein also involved in cell proliferation and calcium homeostasis. In this study, we confirm that the in vitro Grb7/Hax1 interaction is exclusive to these two proteins and their interaction does not depend on Grb7 dimerization state. In addition, we report Grb7 and Hax1 isoform 1 may colocalize partially to mitochondria in epidermal growth factor-treated SKBR3 cells and growth conditions can affect this colocalization. Moreover, Grb7 can affect Caspase3 cleavage of Hax1 isoform 1 in vitro, and Grb7 expression may slow Caspase3 cleavage of Hax1 isoform 1 in apoptotic HeLa cells. Finally, Grb7 is shown to increase cell viability in apoptotic HeLa cells in a time-dependent manner. Taken together, these discoveries provide clues for the role of a Grb7/Hax1 protein interaction in apoptosis pathways involving Hax1. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lei Qian
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Andrew M Bradford
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Peter H Cooke
- Core University Research Resources Laboratory, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Barbara A Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
37
|
Sawada G, Niida A, Hirata H, Komatsu H, Uchi R, Shimamura T, Takahashi Y, Kurashige J, Matsumura T, Ueo H, Takano Y, Ueda M, Sakimura S, Shinden Y, Eguchi H, Sudo T, Sugimachi K, Yamasaki M, Tanaka F, Tachimori Y, Kajiyama Y, Natsugoe S, Fujita H, Tanaka Y, Calin G, Miyano S, Doki Y, Mori M, Mimori K. An Integrative Analysis to Identify Driver Genes in Esophageal Squamous Cell Carcinoma. PLoS One 2015; 10:e0139808. [PMID: 26465158 PMCID: PMC4605796 DOI: 10.1371/journal.pone.0139808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 09/17/2015] [Indexed: 11/18/2022] Open
Abstract
Background Few driver genes have been well established in esophageal squamous cell carcinoma (ESCC). Identification of the genomic aberrations that contribute to changes in gene expression profiles can be used to predict driver genes. Methods We searched for driver genes in ESCC by integrative analysis of gene expression microarray profiles and copy number data. To narrow down candidate genes, we performed survival analysis on expression data and tested the genetic vulnerability of each genes using public RNAi screening data. We confirmed the results by performing RNAi experiments and evaluating the clinical relevance of candidate genes in an independent ESCC cohort. Results We found 10 significantly recurrent copy number alterations accompanying gene expression changes, including loci 11q13.2, 7p11.2, 3q26.33, and 17q12, which harbored CCND1, EGFR, SOX2, and ERBB2, respectively. Analysis of survival data and RNAi screening data suggested that GRB7, located on 17q12, was a driver gene in ESCC. In ESCC cell lines harboring 17q12 amplification, knockdown of GRB7 reduced the proliferation, migration, and invasion capacities of cells. Moreover, siRNA targeting GRB7 had a synergistic inhibitory effect when combined with trastuzumab, an anti-ERBB2 antibody. Survival analysis of the independent cohort also showed that high GRB7 expression was associated with poor prognosis in ESCC. Conclusion Our integrative analysis provided important insights into ESCC pathogenesis. We identified GRB7 as a novel ESCC driver gene and potential new therapeutic target.
Collapse
Affiliation(s)
- Genta Sawada
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Atsushi Niida
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hidenari Hirata
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Hisateru Komatsu
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Ryutaro Uchi
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Teppei Shimamura
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Takahashi
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Junji Kurashige
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Tae Matsumura
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Hiroki Ueo
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Yuki Takano
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Masami Ueda
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Shotaro Sakimura
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Yoshiaki Shinden
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Tomoya Sudo
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Fumiaki Tanaka
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
| | - Yuji Tachimori
- Department of Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiaki Kajiyama
- Department of Esophageal and Gastroenterological Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shoji Natsugoe
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Hiromasa Fujita
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoichi Tanaka
- Division of Gastroenterological Surgery, Saitama Cancer Center, Saitama, Japan
| | - George Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, United States of America
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Beppu Hospital, Kyushu University, 4546, Tsurumihara, Beppu 874-0838, Japan
- * E-mail:
| |
Collapse
|
38
|
Loss of the Rap1 effector RIAM results in leukocyte adhesion deficiency due to impaired β2 integrin function in mice. Blood 2015; 126:2704-12. [PMID: 26337492 DOI: 10.1182/blood-2015-05-647453] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/24/2015] [Indexed: 01/13/2023] Open
Abstract
Talin is an integrin adaptor, which controls integrin activity in all hematopoietic cells. How intracellular signals promote talin binding to the integrin tail leading to integrin activation is still poorly understood, especially in leukocytes. In vitro studies identified an integrin activation complex whose formation is initiated by the interaction of active, guanosine triphosphate (GTP)-bound Ras-related protein 1 (Rap1) with the adapter protein Rap1-GTP-interacting adapter molecule (RIAM) followed by the recruitment of talin to the plasma membrane. Unexpectedly, loss-of-function studies in mice have shown that the talin-activating role of RIAM is neither required for development nor for integrin activation in platelets. In this study, we show that leukocyte integrin activation critically depends on RIAM both in vitro and in vivo. RIAM deficiency results in a loss of β2 integrin activation in multiple leukocyte populations, impaired leukocyte adhesion to inflamed vessels, and accumulation in the circulation. Surprisingly, however, the major leukocyte β1 integrin family member, α4β1, was only partially affected by RIAM deficiency in leukocytes. Thus, although talin is an essential, shared regulator of all integrin classes expressed by leukocytes, we report that β2 and α4 integrins use different RIAM-dependent and -independent pathways to undergo activation by talin.
Collapse
|
39
|
Abstract
Breast cancer is among the most commonly diagnosed cancer types in women worldwide and is the second leading cause of cancer-related disease in the USA. SH2 domains recruit signaling proteins to phosphotyrosine residues on aberrantly activated growth factor and cytokine receptors and contribute to cancer cell cycling, metastasis, angiogenesis and so on. Herein we review phosphopeptide mimetic and small-molecule approaches targeting the SH2 domains of Grb2, Grb7 and STAT3 that inhibit their targets and reduce proliferation in in vitro breast cancer models. Only STAT3 inhibitors have been evaluated in in vivo models and have led to tumor reduction. Taken together, these studies suggest that targeting SH2 domains is an important approach to the treatment of breast cancer.
Collapse
|
40
|
Privitera G, Luca T, Musso N, Vancheri C, Crimi N, Barresi V, Condorelli D, Castorina S. In vitro antiproliferative effect of trastuzumab (Herceptin(®)) combined with cetuximab (Erbitux(®)) in a model of human non-small cell lung cancer expressing EGFR and HER2. Clin Exp Med 2015; 16:161-8. [PMID: 25716471 DOI: 10.1007/s10238-015-0343-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/16/2015] [Indexed: 11/26/2022]
Abstract
Lung cancer is the leading cause of cancer death. For this reason, new therapies are needed for the treatment of this devastating disease. In this study, we investigated the effects of combining cetuximab and the trastuzumab on the growth of a model of human non-small cell lung carcinoma cell line (A549). The results were compared with those obtained from a human lung squamous carcinoma cell line (NCI-H226). Both cell lines were treated with cetuximab and trastuzumab, alone or in combination, at various concentrations, for 24, 48 and 72 h. Cell proliferation was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. EGFR and HER-2 mRNA expression was detected by reverse transcription polymerase chain reaction, and the gene amplification status of receptors was evaluated by fluorescence in situ hybridisation. The colorimetric proliferation assay showed that trastuzumab combined with cetuximab significantly inhibited A549 cells at a dose of 40 μg/ml after 72 h of treatment (p < 0.05), while no time-dose dependent inhibition was observed in NCI-H226 cells. The combined treatment influenced both levels of EGFR and HER-2 mRNA in A549 cells and only EGFR mRNA levels in NCI-H226 cells. Fluorescence in situ hybridisation showed that both cell lines were aneuploid for the two genes with equally increased EGFR and CEN7 signals, as well as HER-2 and CEN17 signals, indicating a condition of polysomy without amplification. The preliminary results of this study encourage further investigations to elucidate the downstream events involved and to understand how these mechanisms influence non-small cell lung cancers growth.
Collapse
Affiliation(s)
- G Privitera
- Fondazione Mediterranea "G.B. Morgagni", Via del Bosco, 105, 95125, Catania, Italy.
| | - T Luca
- Fondazione Mediterranea "G.B. Morgagni", Via del Bosco, 105, 95125, Catania, Italy
| | - N Musso
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - C Vancheri
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - N Crimi
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - V Barresi
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - D Condorelli
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - S Castorina
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
41
|
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc Natl Acad Sci U S A 2014; 112:6841-7. [PMID: 25368187 DOI: 10.1073/pnas.1411254111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10's unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.
Collapse
|
42
|
Abstract
Most lymphomas show an increased incidence and poorer prognosis in males vs females, suggesting endocrine regulation. We have previously shown that tumor growth in vivo of a murine T-cell-derived lymphoma is repressed following activation of estrogen receptor β (ERβ, ESR2). By using ERβ-deficient mice, we now demonstrate that this inhibition is mediated via a direct effect on the tumor cells and not on the microenvironment. Furthermore, we show that the growth-suppressing effects of ERβ agonist are also valid for human B-cell lymphomas as demonstrated in tumors derived from Granta-519 mantle cell lymphoma (MCL) and Raji Burkitt lymphoma (BL) cells. In Granta-519 MCL tumors, activation of ERβ reduced expression of BAFF and GRB7, 2 important molecules involved in B-cell proliferation and survival. Importantly, activation of ERβ inhibited angiogenesis and lymphangiogenesis, possibly mediated by impaired vascular endothelial growth factor C expression. Furthermore, using disseminating Raji BL cells, we show that ERβ activation reduces dissemination of grafted Raji BL tumors. We also show by immunohistochemistry that ERβ is expressed in primary MCL tissue. These results suggest that targeting ERβ with agonists may be valuable in the treatment of some lymphomas, affecting several aspects of the malignant process, including proliferation, vascularization, and dissemination.
Collapse
|
43
|
Ambaye ND, Gunzburg MJ, Traore DAK, Del Borgo MP, Perlmutter P, Wilce MCJ, Wilce JA. Preparation of crystals for characterizing the Grb7 SH2 domain before and after complex formation with a bicyclic peptide antagonist. Acta Crystallogr F Struct Biol Commun 2014; 70:182-6. [PMID: 24637751 PMCID: PMC3936443 DOI: 10.1107/s2053230x13033414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 11/10/2022] Open
Abstract
Human growth factor receptor-bound protein 7 (Grb7) is an adapter protein involved in cell growth, migration and proliferation. It is now recognized that Grb7 is an emerging therapeutic target in specific cancer subtypes. Recently, the discovery of a bicyclic peptide inhibitor that targets the Grb7 SH2 domain, named G7-B1, was reported. In an attempt to probe the foundation of its interaction with Grb7, the crystallization and preliminary data collection of both the apo and G7-B1-bound forms of the Grb7 SH2 domain are reported here. Diffraction-quality crystals were obtained using the hanging-drop vapour-diffusion method. After several rounds of microseeding, crystals of the apo Grb7 SH2 domain were obtained that diffracted to 1.8 Å resolution, while those of the G7-B1-Grb7 SH2 domain complex diffracted to 2.2 Å resolution. The apo Grb7 SH2 domain crystallized in the trigonal space group P63, whereas the G7-B1-Grb7 SH2 domain complex crystallized in the monoclinic space group P21. The experimental aspects of crystallization, crystal optimization and data collection and the preliminary data are reported.
Collapse
Affiliation(s)
- Nigus D. Ambaye
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Menachem J. Gunzburg
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Daouda A. K. Traore
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | | | | | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Jacqueline A. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| |
Collapse
|
44
|
Lim RCC, Price JT, Wilce JA. Context-dependent role of Grb7 in HER2+ve and triple-negative breast cancer cell lines. Breast Cancer Res Treat 2014; 143:593-603. [PMID: 24464577 DOI: 10.1007/s10549-014-2838-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/10/2014] [Indexed: 01/23/2023]
Abstract
Grb7 is an adapter protein, aberrantly co-overexpressed with HER2 and identified as an independent prognostic marker in breast cancer. It has been established that Grb7 exacerbates the cellular growth and migratory behaviour of HER2+ve breast cancer cells. Less is known about Grb7's role in the context of HER2-ve cells. Here we directly compare the effect of stable Grb7 knockdown in oestrogen sensitive (T47D), HER2+ve (SKBR3) and triple-negative (MDA-MB-468 and MDA-MB-231) breast cancer cell lines on anchorage dependent and independent cell growth, wound healing and chemotaxis. All cell lines showed reduced ability to migrate upon Grb7 knockdown, despite their greatly varied endogenous levels of Grb7. Decreased cell proliferation was not observed in any of the cell lines upon Grb7 knockdown; however, decreased ability to form colonies was observed for all but the oestrogen sensitive cell line, depending upon the stringency of the growth conditions. The data reveal that Grb7 plays an important role in breast cancer progression, beyond the context of HER2+ve cell types.
Collapse
Affiliation(s)
- Reece C C Lim
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
45
|
Li R, He J, Chen X, Ding Y, Wang Y, Long C, Shen L, Liu X. Mmu-miR-193 is involved in embryo implantation in mouse uterus by regulating GRB7 gene expression. Reprod Sci 2013; 21:733-42. [PMID: 24336674 DOI: 10.1177/1933719113512535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Embryo implantation is a complicated process involving a series of endometrial changes that depend on differential gene expression. MicroRNAs (miRNAs) are important for regulation of gene expression. Previous studies have shown that miRNAs may participate in the regulation of gene expression during embryo implantation. To explore the role of endometrial miRNAs in early murine pregnancy, we used microarrays to investigate whether miRNAs were differentially expressed in the mouse endometrium on pregnancy day 4 (D4) and day 6 (D6). The results demonstrated that 17 miRNAs were upregulated and 18 were downregulated (>2-fold) in D6 endometria compared to D4. We identified that mmu-miR-193 exhibited the highest upregulation on D6, and the upregulation of mmu-miR-193 before embryo implantation could reduce the embryo implantation rate. Further, we demonstrated that mmu-miR-193 influenced embryo implantation by regulating growth factor receptor-bound protein 7 expression. In summary, our study suggests that mmu-miR-193 plays an important role in embryo implantation.
Collapse
Affiliation(s)
- Rong Li
- 1Laboratory of Reproduction Biology, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
47
|
Huang O, Jiang M, Zhang X, Xie Z, Chen X, Wu J, Liu H, Shen K. Grb14 as an independent good prognosis factor for breast cancer patients treated with neoadjuvant chemotherapy. Jpn J Clin Oncol 2013; 43:1064-72. [PMID: 24031083 DOI: 10.1093/jjco/hyt130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Growth factor receptor-binding protein 14, a new member of noncatalytic adaptor proteins family, has been shown to be upregulated in breast cancer. We investigated the prognostic value of growth factor receptor-binding protein 14 expression in breast cancer patients treated with neoadjuvant chemotherapy. METHODS Primary breast cancer specimens were taken from locally advanced breast cancer patients in a Phase II clinical trial of neoadjuvant chemotherapy and the expression pattern of growth factor receptor-binding protein 14 was determined by immunohistochemistry. Kaplan-Meier analysis and Cox regression model were used to assess disease-free and overall survival, according to the expression of growth factor receptor-binding protein 14 in tumor cells. RESULTS Our result showed that growth factor receptor-binding protein 14 was highly expressed in 23.1% of breast cancer sections, and high expression of growth factor receptor-binding protein 14 was significantly associated with better disease-free (P = 0.016, hazard ratio 0.07, 95% confidence interval 0.06-0.08) and overall survival (P = 0.004, hazard ratio 0.02, 95% confidence interval 0.02-0.03), compared with the low-expression group. Multivariate analysis indicated that high expression of growth factor receptor-binding protein 14 was an independent good prognostic factor for both disease-free (P = 0.04, hazard ratio 0.37, 95% confidence interval 0.14-0.98) and overall survival (P = 0.03, hazard ratio 0.11, 95% confidence interval 0.10-0.82). CONCLUSIONS High expression of growth factor receptor-binding protein 14 in breast cancer cells may help to identify low-risk patients for additional therapies after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Ou Huang
- *Department of Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197, 2nd Ruijin Road, Huangpu District, Shanghai 200025, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
García-Palmero I, López-Larrubia P, Cerdán S, Villalobo A. Nuclear magnetic resonance imaging of tumour growth and neovasculature performance in vivo reveals Grb7 as a novel antiangiogenic target. NMR IN BIOMEDICINE 2013; 26:1059-1069. [PMID: 23348935 DOI: 10.1002/nbm.2918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Development of neovasculature is a necessary requirement for tumour growth and it provides additional opportunities for therapeutic intervention. However, current antiangiogenic therapies have limited efficacy, mostly because of the development of resistance. Hence, characterization of new antiangiogenic molecular targets is of considerable clinical interest. We report that a calmodulin-binding domain (CaM-BD) deletion mutant of the growth factor receptor bound protein 7 (Grb7) (denoted Grb7Δ) impairs tumour growth and associated angiogenesis in vivo. We implanted glioma C6 cells in rat brains transfected with an enhanced yellow fluorescent protein (EYFP) chimera of Grb7∆, its EYFP-Grb7 wild type counterpart, and EYFP alone. We systematically followed intracerebral growth of the tumours, their cellularity and the functional performance of tumour-associated microvasculature using magnetic resonance imaging, including anatomical T1W and T2W images and functional diffusion and perfusion parameters. Tumours grown from implanted C6 cells expressing EYFP-Grb7Δ developed slower, became smaller and presented lower apparent cellularity than those derived from cells expressing EYFP-Grb7 and EYFP. Vascular perfusion measurements within tumours derived from EYFP-Grb7∆-expressing cells showed significantly lower cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) values. These findings were independently validated by histological and immunohistochemical techniques. Taken together, these findings confirm that the CaM-BD of Grb7 plays an important role in tumour growth and associated angiogenesis in vivo, thus identifying this region of the protein as a novel target for antiangiogenic treatment.
Collapse
Affiliation(s)
- Irene García-Palmero
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Department of Cancer Biology, c/ Arturo Duperier 4, E-28029, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Park JE, Son AI, Zhou R. Roles of EphA2 in Development and Disease. Genes (Basel) 2013; 4:334-57. [PMID: 24705208 PMCID: PMC3924825 DOI: 10.3390/genes4030334] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023] Open
Abstract
The Eph family of receptor tyrosine kinases (RTKs) has been implicated in the regulation of many aspects of mammalian development. Recent analyses have revealed that the EphA2 receptor is a key modulator for a wide variety of cellular functions. This review focuses on the roles of EphA2 in both development and disease.
Collapse
Affiliation(s)
- Jeong Eun Park
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Alexander I Son
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Renping Zhou
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
50
|
Ezzat S, Zheng L, Florez JC, Stefan N, Mayr T, Hliang MM, Jablonski K, Harden M, Stančáková A, Laakso M, Haring HU, Ullrich A, Asa SL. The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes. Cell Metab 2013; 17:929-940. [PMID: 23747250 PMCID: PMC4005358 DOI: 10.1016/j.cmet.2013.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/18/2013] [Accepted: 04/05/2013] [Indexed: 12/11/2022]
Abstract
The fibroblast growth factor receptor 4 (FGFR4)-R388 single-nucleotide polymorphism has been associated with cancer risk and prognosis. Here we show that the FGFR4-R388 allele yields a receptor variant that preferentially promotes STAT3/5 signaling. This STAT activation transcriptionally induces Grb14 in pancreatic endocrine cells to promote insulin secretion. Knockin mice with the FGFR4 variant allele develop pancreatic islets that secrete more insulin, a feature that is reversed through Grb14 deletion and enhanced with FGF19 administration. We also show in humans that the FGFR4-R388 allele enhances islet function and may protect against type 2 diabetes. These data support a common genetic link underlying cancer and hyperinsulinemia.
Collapse
Affiliation(s)
- Shereen Ezzat
- Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Lei Zheng
- Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Jose C Florez
- Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02142, USA
| | | | - Thomas Mayr
- Department of Molecular Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Maw Maw Hliang
- Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Kathleen Jablonski
- The Biostatistics Center, George Washington University, Rockville, MD 20852, USA
| | - Maegan Harden
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | | | - Axel Ullrich
- Department of Molecular Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sylvia L Asa
- Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada
| |
Collapse
|