1
|
Morgan RA, Hazard ES, Savage SJ, Halbert CH, Gattoni-Celli S, Hardiman G. Unveiling Racial Disparities in Localized Prostate Cancer: A Systems-Level Exploration of the lncRNA Landscape. Genes (Basel) 2025; 16:229. [PMID: 40004558 PMCID: PMC11855151 DOI: 10.3390/genes16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PC) is the most common non-cutaneous cancer in men globally, and one which displays significant racial disparities. Men of African descent (AF) are more likely to develop PC and face higher mortality compared to men of European descent (EU). The biological mechanisms underlying these differences remain unclear. Long non-coding RNAs (lncRNAs), recognized as key regulators of gene expression and immune processes, have emerged as potential contributors to these disparities. This study aimed to investigate the regulatory role of lncRNAs in localized PC in AF men relative to those of EU and assess their involvement in immune response and inflammation. METHODS A systems biology approach was employed to analyze differentially expressed (DE) lncRNAs and their roles in prostate cancer (PC). Immune-related pathways were investigated through over-representation analysis of lncRNA-mRNA networks. The study also examined the effects of vitamin D supplementation on lncRNA expression in African descent (AF) PC patients, highlighting their potential regulatory roles in immune response and inflammation. RESULTS Key lncRNAs specific to AF men were identified, with several being implicated for immune response and inflammatory processes. Notably, 10 out of the top 11 ranked lncRNAs demonstrated strong interactions with immune-related genes. Pathway analysis revealed their regulatory influence on antigen processing and presentation, chemokine signaling, and ribosome pathways, suggesting their critical roles in immune regulation. CONCLUSIONS These findings highlight the pivotal role of lncRNAs in PC racial disparities, particularly through immune modulation. The identified lncRNAs may serve as potential biomarkers or therapeutic targets to address racial disparities in PC outcomes.
Collapse
Affiliation(s)
- Rebecca A. Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen’s University Belfast (QUB), Belfast BT9 5DL, UK;
| | - E. Starr Hazard
- Academic Affairs Faculty, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
| | - Stephen J. Savage
- Department of Urology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
- Ralph H. Johnson VA Health Care System (VAHCS) Medical Center, Charleston, SC 29425, USA;
| | - Chanita Hughes Halbert
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA;
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sebastiano Gattoni-Celli
- Ralph H. Johnson VA Health Care System (VAHCS) Medical Center, Charleston, SC 29425, USA;
- Department of Radiation Oncology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen’s University Belfast (QUB), Belfast BT9 5DL, UK;
- Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| |
Collapse
|
2
|
Wu F, Huang F, Jiang N, Su J, Yao S, Liang B, Li W, Yan T, Zhou S, Zhou Q. Identification of ferroptosis related genes and pathways in prostate cancer cells under erastin exposure. BMC Urol 2024; 24:78. [PMID: 38575966 PMCID: PMC10996193 DOI: 10.1186/s12894-024-01472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/31/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Few studies are focusing on the mechanism of erastin acts on prostate cancer (PCa) cells, and essential ferroptosis-related genes (FRGs) that can be PCa therapeutic targets are rarely known. METHODS In this study, in vitro assays were performed and RNA-sequencing was used to measure the expression of differentially expressed genes (DEGs) in erastin-induced PCa cells. A series of bioinformatic analyses were applied to analyze the pathways and DEGs. RESULTS Erastin inhibited the expression of SLC7A11 and cell survivability in LNCaP and PC3 cells. After treatment with erastin, the concentrations of malondialdehyde (MDA) and Fe2+ significantly increased, whereas the glutathione (GSH) and the oxidized glutathione (GSSG) significantly decreased in both cells. A total of 295 overlapping DEGs were identified under erastin exposure and significantly enriched in several pathways, including DNA replication and cell cycle. The percentage of LNCaP and PC3 cells in G1 phase was markedly increased in response to erastin treatment. For four hub FRGs, TMEFF2 was higher in PCa tissue and the expression levels of NRXN3, CLU, and UNC5B were lower in PCa tissue. The expression levels of SLC7A11 and cell survivability were inhibited after the knockdown of TMEFF2 in androgen-dependent cell lines (LNCaP and VCaP) but not in androgen-independent cell lines (PC3 and C4-2). The concentration of Fe2+ only significantly increased in TMEFF2 downregulated LNCaP and VCaP cells. CONCLUSION TMEFF2 might be likely to develop into a potential ferroptosis target in PCa and this study extends our understanding of the molecular mechanism involved in erastin-affected PCa cells.
Collapse
Affiliation(s)
- Fan Wu
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Fei Huang
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Nili Jiang
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jinfeng Su
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Siyi Yao
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Boying Liang
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Wen Li
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Tengyue Yan
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, China.
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China.
| | - Qingniao Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, China.
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
Jiang X, Dong L, Wang S, Wen Z, Chen M, Xu L, Xiao G, Li Q. Reconstructing Spatial Transcriptomics at the Single-cell Resolution with BayesDeep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570715. [PMID: 38106214 PMCID: PMC10723442 DOI: 10.1101/2023.12.07.570715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Spatially resolved transcriptomics (SRT) techniques have revolutionized the characterization of molecular profiles while preserving spatial and morphological context. However, most next-generation sequencing-based SRT techniques are limited to measuring gene expression in a confined array of spots, capturing only a fraction of the spatial domain. Typically, these spots encompass gene expression from a few to hundreds of cells, underscoring a critical need for more detailed, single-cell resolution SRT data to enhance our understanding of biological functions within the tissue context. Addressing this challenge, we introduce BayesDeep, a novel Bayesian hierarchical model that leverages cellular morphological data from histology images, commonly paired with SRT data, to reconstruct SRT data at the single-cell resolution. BayesDeep effectively model count data from SRT studies via a negative binomial regression model. This model incorporates explanatory variables such as cell types and nuclei-shape information for each cell extracted from the paired histology image. A feature selection scheme is integrated to examine the association between the morphological and molecular profiles, thereby improving the model robustness. We applied BayesDeep to two real SRT datasets, successfully demonstrating its capability to reconstruct SRT data at the single-cell resolution. This advancement not only yields new biological insights but also significantly enhances various downstream analyses, such as pseudotime and cell-cell communication.
Collapse
Affiliation(s)
- Xi Jiang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
- Department of Statistics and Data Science, Southern Methodist University, Dallas, Texas, U.S.A
| | - Lei Dong
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Zhuoyu Wen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Mingyi Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, Texas, U.S.A
| |
Collapse
|
4
|
Reformation of the chondroitin sulfate glycocalyx enables progression of AR-independent prostate cancer. Nat Commun 2022; 13:4760. [PMID: 35963852 PMCID: PMC9376089 DOI: 10.1038/s41467-022-32530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Lineage plasticity of prostate cancer is associated with resistance to androgen receptor (AR) pathway inhibition (ARPI) and supported by a reactive tumor microenvironment. Here we show that changes in chondroitin sulfate (CS), a major glycosaminoglycan component of the tumor cell glycocalyx and extracellular matrix, is AR-regulated and promotes the adaptive progression of castration-resistant prostate cancer (CRPC) after ARPI. AR directly represses transcription of the 4-O-sulfotransferase gene CHST11 under basal androgen conditions, maintaining steady-state CS in prostate adenocarcinomas. When AR signaling is inhibited by ARPI or lost during progression to non-AR-driven CRPC as a consequence of lineage plasticity, CHST11 expression is unleashed, leading to elevated 4-O-sulfated chondroitin levels. Inhibition of the tumor cell CS glycocalyx delays CRPC progression, and impairs growth and motility of prostate cancer after ARPI. Thus, a reactive CS glycocalyx supports adaptive survival and treatment resistance after ARPI, representing a therapeutic opportunity in patients with advanced prostate cancer. Chondroitin sulfate (CS) is one of the most abundant glycosaminoglycans in prostate cancers. Here the authors show that inhibition of the androgen receptor pathway leads to the upregulation of CS, which promotes prostate cancer growth and metastasis.
Collapse
|
5
|
Alabiad MA, Harb OA, Hefzi N, Ahmed RZ, Osman G, Shalaby AM, Alnemr AAA, Saraya YS. Prognostic and clinicopathological significance of TMEFF2, SMOC-2, and SOX17 expression in endometrial carcinoma. Exp Mol Pathol 2021; 122:104670. [PMID: 34339705 DOI: 10.1016/j.yexmp.2021.104670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
Background there is a need for novel biomarkers and targeting therapies for predicting Endometrial carcinoma (EC) progression and recurrence. TMEFF2 is a gene that was found to play a role in EMT. SMOC-2 is expressed in embryogenesis and it was identified as a recent stem cell-related gene that has a role in cancer progression. SRY-box 17 (SOX17) is a member of the SRY-related HMG-box (SOX) family of transcription factors. Dysregulation or downregulation of SOX17 expression was found in many cancer tissues. AIM In the present study, we aimed to assess the tissue protein expressions of TMEFF2, SMOC-2, and SOX17 in EC using immunohistochemistry to evaluate their clinicopathological values and prognostic roles in EC patients. PATIENTS AND METHODS This is prospective cohort study included 120 patients with EC. Sections from 120 paraffin blocks were retrieved and stained with TMEFF2, SMOC-2, and SOX17 using immunohistochemistry, the expression of markers in all tissue samples was assessed, analyzed and correlation of pathological parameters with the levels of expression was done. All patients were followed up till death or till the last known alive data for about 50 months (range from 25 to 60). RESULTS TMEFF2, SMOC-2 expression was correlated with the presence of lymph node metastases (p = 0.023), distant metastasis (p = 0.039) recurrence of the tumor after successful therapy, overall survival, and disease-free survival (p < 0.001). SOX17 positive expression was positively correlated with low grade (p = 0.019), absence of lymph node metastasis (p = 0.001), absence of distant metastasis (p = 0.013), low stage (p = 0.03), and its negative expression was positively correlated with recurrence of the tumor after successful therapy, overall survival and disease-free survival (p = 0.001). In conclusion, we demonstrated that both TMEFF2 and SMOC-2 were highly expressed in EC and were associated with a shortened survival rate, dismal outcome, and poor prognosis in EC patients. While SOX17 expression was related to a favorable outcome and its down-regulation was associated with dismal EC patient's survival.
Collapse
Affiliation(s)
- Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Ola A Harb
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nabila Hefzi
- Department of Clinical Oncology& Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rham Z Ahmed
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gamal Osman
- Department of General Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Abd-Almohsen Alnemr
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yasser S Saraya
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Corbin JM, Georgescu C, Wren JD, Xu C, Asch AS, Ruiz-Echevarría MJ. Seed-mediated RNA interference of androgen signaling and survival networks induces cell death in prostate cancer cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:337-351. [PMID: 33850637 PMCID: PMC8022159 DOI: 10.1016/j.omtn.2021.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Resistance to anti-androgen therapy in prostate cancer (PCa) is often driven by genetic and epigenetic aberrations in the androgen receptor (AR) and coregulators that maintain androgen signaling activity. We show that specific small RNAs downregulate expression of multiple essential and androgen receptor-coregulatory genes, leading to potent androgen signaling inhibition and PCa cell death. Expression of different short hairpin/small interfering RNAs (sh-/siRNAs) designed to target TMEFF2 preferentially reduce viability of PCa but not benign cells, and growth of murine xenografts. Surprisingly, this effect is independent of TMEFF2 expression. Transcriptomic and sh/siRNA seed sequence studies indicate that expression of these toxic shRNAs lead to downregulation of androgen receptor-coregulatory and essential genes through mRNA 3' UTR sequence complementarity to the seed sequence of the toxic shRNAs. These findings reveal a form of the "death induced by survival gene elimination" mechanism in PCa cells that mainly targets AR signaling, and that we have termed androgen network death induced by survival gene elimination (AN-DISE). Our data suggest that AN-DISE may be a novel therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Joshua M. Corbin
- Stephenson Cancer Center, 800 NE 10th Street, Oklahoma City, OK 73104, Oklahoma City, OK, USA
- Department of Pathology, Biomedical Sciences building, Oklahoma University Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Genes and Human Disease Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Stephenson Cancer Center, 800 NE 10th Street, Oklahoma City, OK 73104, Oklahoma City, OK, USA
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, Oklahoma University Health Sciences Center, 801 N.E. 13 Street, Oklahoma City, OK, USA
| | - Adam S. Asch
- Stephenson Cancer Center, 800 NE 10th Street, Oklahoma City, OK 73104, Oklahoma City, OK, USA
- Department of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Maria J. Ruiz-Echevarría
- Stephenson Cancer Center, 800 NE 10th Street, Oklahoma City, OK 73104, Oklahoma City, OK, USA
- Department of Pathology, Biomedical Sciences building, Oklahoma University Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
- Department of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Xie S, Zhang Y, Peng T, Guo J, Cao Y, Guo J, Shi X, Li Y, Liu Y, Qi S, Wang H. TMEFF2 promoter hypermethylation is an unfavorable prognostic marker in gliomas. Cancer Cell Int 2021; 21:148. [PMID: 33663520 PMCID: PMC7931334 DOI: 10.1186/s12935-021-01818-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmembrane protein with EGF-like and two follistatin-like domains 2 (TMEFF2) is a transmembrane protein in the tomoregulin family. Little research has been performed to determine whether TMEFF2 methylation is a prognostic marker in adult diffuse gliomas. METHODS In this study, we investigated TMEFF2 expression in surgical glioma tissue samples. In addition, we conducted bisulfite amplicon sequencing (BSAS) and methylation-specific PCR (MSP) to evaluate TMEFF2 methylation in glioblastoma (GBM) cells. Subsequently, we investigated the biological function of TMEFF2 in GBM cells. Moreover, we explored the prognostic significance of TMEFF2 in gliomas by analysing a cohort dataset from TCGA. RESULTS Immunohistochemistry analysis of 75 paired glioma tumour and peritumoural tissues demonstrated that glioma tumour tissues expressed lower TMEFF2 levels than peritumoural tissues (P < 0.001). TMEFF2 promoter methylation levels were increased in glioblastoma cells compared with SVG p12 cells (P < 0.001). Inhibition of methylation reduced TMEFF2 methylation and increased its expression in LN229 and T98G cells (P < 0.05). Knockdown of TMEFF2 expression significantly promoted the proliferation of U87MG cells and primary GBM cells (P < 0.05). TMEFF2 methylation is negatively associated with IDH1, ATRX and TP53 mutations, and the subtype of glioma harbouring combined IDH1/ATRX/TP53 mutations was associated with low TMEFF2 methylation levels. Survival analysis confirmed that low TMEFF2 methylation levels are associated with good prognosis in glioma patients. CONCLUSIONS Our results suggest that TMEFF2 DNA methylation might be associated with glioma tumour progression and could serve as a valuable prognostic marker for adult diffuse gliomas.
Collapse
Affiliation(s)
- Sidi Xie
- Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yunxiao Zhang
- Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Tao Peng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jinglin Guo
- Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yongfu Cao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Jing Guo
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Xiaofeng Shi
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, People's Republic of China
| | - Yaqin Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yawei Liu
- Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China. .,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Hai Wang
- Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China. .,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Masood M, Grimm S, El-Bahrawy M, Yagüe E. TMEFF2: A Transmembrane Proteoglycan with Multifaceted Actions in Cancer and Disease. Cancers (Basel) 2020; 12:3862. [PMID: 33371267 PMCID: PMC7766544 DOI: 10.3390/cancers12123862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Transmembrane protein with an EGF-like and two Follistatin-like domains 2 (TMEFF2) is a 374-residue long type-I transmembrane proteoglycan which is proteolytically shed from the cell surface. The protein is involved in a range of functions including metabolism, neuroprotection, apoptosis, embryonic development, onco-suppression and endocrine function. TMEFF2 is methylated in numerous cancers, and an inverse correlation with the stage, response to therapy and survival outcome has been observed. Moreover, TMEFF2 methylation increases with breast, colon and gastric cancer progression. TMEFF2 is methylated early during oncogenesis in breast and colorectal cancer, and the detection of methylated free-circulating TMEFF2 DNA has been suggested as a potential diagnostic tool. The TMEFF2 downregulation signature equals and sometimes outperforms the Gleason and pathological scores in prostate cancer. TMEFF2 is downregulated in glioma and cotricotropinomas, and it impairs the production of adrenocorticotropic hormone in glioma cells. Interestingly, through binding the amyloid β protein, its precursor and derivatives, TMEFF2 provides neuroprotection in Alzheimer's disease. Despite undergoing extensive investigation over the last two decades, the primary literature regarding TMEFF2 is incoherent and offers conflicting information, in particular, the oncogenic vs. onco-suppressive role of TMEFF2 in prostate cancer. For the first time, we have compiled, contextualised and critically analysed the vast body of TMEFF2-related literature and answered the apparent discrepancies regarding its function, tissue expression, intracellular localization and oncogenic vs. onco-suppressive role.
Collapse
Affiliation(s)
- Motasim Masood
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Stefan Grimm
- Department of Medicine, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| |
Collapse
|
9
|
Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjöström M, Aggarwal R, Playdle D, Liao A, Alumkal JJ, Das R, Chou J, Hua JT, Barnard TJ, Bailey AM, Chow ED, Perry MD, Dang HX, Yang R, Moussavi-Baygi R, Zhang L, Alshalalfa M, Laura Chang S, Houlahan KE, Shiah YJ, Beer TM, Thomas G, Chi KN, Gleave M, Zoubeidi A, Reiter RE, Rettig MB, Witte O, Yvonne Kim M, Fong L, Spratt DE, Morgan TM, Bose R, Huang FW, Li H, Chesner L, Shenoy T, Goodarzi H, Asangani IA, Sandhu S, Lang JM, Mahajan NP, Lara PN, Evans CP, Febbo P, Batzoglou S, Knudsen KE, He HH, Huang J, Zwart W, Costello JF, Luo J, Tomlins SA, Wyatt AW, Dehm SM, Ashworth A, Gilbert LA, Boutros PC, Farh K, Chinnaiyan AM, Maher CA, Small EJ, Quigley DA, Feng FY. The DNA methylation landscape of advanced prostate cancer. Nat Genet 2020; 52:778-789. [PMID: 32661416 PMCID: PMC7454228 DOI: 10.1038/s41588-020-0648-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Although DNA methylation is a key regulator of gene expression, the comprehensive methylation landscape of metastatic cancer has never been defined. Through whole-genome bisulfite sequencing paired with deep whole-genome and transcriptome sequencing of 100 castration-resistant prostate metastases, we discovered alterations affecting driver genes only detectable with integrated whole-genome approaches. Notably, we observed that 22% of tumors exhibited a novel epigenomic subtype associated with hyper-methylation and somatic mutations in TET2, DNMT3B, IDH1, and BRAF. We also identified intergenic regions where methylation is associated with RNA expression of the oncogenic driver genes AR, MYC and ERG. Finally, we showed that differential methylation during progression preferentially occurs at somatic mutational hotspots and putative regulatory regions. This study is a large integrated study of whole-genome, whole-methylome and whole-transcriptome sequencing in metastatic cancer and provides a comprehensive overview of the important regulatory role of methylation in metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - William S Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Yale School of Medicine, New Haven, CT, USA
| | - Haolong Li
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Denise Playdle
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Rajdeep Das
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Chou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Junjie T Hua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Travis J Barnard
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adina M Bailey
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Center for Advanced Technology, University of California San Francisco, San Francisco, CA, USA
| | - Marc D Perry
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ha X Dang
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA.,Department of Internal Medicine, Washington University, St. Louis, MO, USA.,Siteman Cancer Center, Washington University, St. Louis, MO, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ruhollah Moussavi-Baygi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - S Laura Chang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen E Houlahan
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA, USA
| | - Yu-Jia Shiah
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology/Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - George Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Cancer Agency, Vancouver Centre, Vancouver, British Columbia, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E Reiter
- Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew B Rettig
- Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA.,Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Owen Witte
- Department of Microbiology, Immunology, and Molecular Genetics at the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - M Yvonne Kim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Bose
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Franklin W Huang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hui Li
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Lisa Chesner
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Tanushree Shenoy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Nupam P Mahajan
- Siteman Cancer Center, Washington University, St. Louis, MO, USA.,Department of Surgery, Washington University, St. Louis, MO, USA
| | - Primo N Lara
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.,Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Christopher P Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.,Department of Urologic Surgery, University of California Davis, Sacramento, CA, USA
| | | | | | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Housheng H He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Arul M Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA.,Department of Internal Medicine, Washington University, St. Louis, MO, USA.,Siteman Cancer Center, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA. .,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA. .,Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Bicak M, Lückerath K, Kalidindi T, Phelps ME, Strand SE, Morris MJ, Radu CG, Damoiseaux R, Peltola MT, Peekhaus N, Ho A, Veach D, Malmborg Hager AC, Larson SM, Lilja H, McDevitt MR, Klein RJ, Ulmert D. Genetic signature of prostate cancer mouse models resistant to optimized hK2 targeted α-particle therapy. Proc Natl Acad Sci U S A 2020; 117:15172-15181. [PMID: 32532924 PMCID: PMC7334567 DOI: 10.1073/pnas.1918744117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hu11B6 is a monoclonal antibody that internalizes in cells expressing androgen receptor (AR)-regulated prostate-specific enzyme human kallikrein-related peptidase 2 (hK2; KLK2). In multiple rodent models, Actinium-225-labeled hu11B6-IgG1 ([225Ac]hu11B6-IgG1) has shown promising treatment efficacy. In the present study, we investigated options to enhance and optimize [225Ac]hu11B6 treatment. First, we evaluated the possibility of exploiting IgG3, the IgG subclass with superior activation of complement and ability to mediate FC-γ-receptor binding, for immunotherapeutically enhanced hK2 targeted α-radioimmunotherapy. Second, we compared the therapeutic efficacy of a single high activity vs. fractionated activity. Finally, we used RNA sequencing to analyze the genomic signatures of prostate cancer that progressed after targeted α-therapy. [225Ac]hu11B6-IgG3 was a functionally enhanced alternative to [225Ac]hu11B6-IgG1 but offered no improvement of therapeutic efficacy. Progression-free survival was slightly increased with a single high activity compared to fractionated activity. Tumor-free animals succumbing after treatment revealed no evidence of treatment-associated toxicity. In addition to up-regulation of canonical aggressive prostate cancer genes, such as MMP7, ETV1, NTS, and SCHLAP1, we also noted a significant decrease in both KLK3 (prostate-specific antigen ) and FOLH1 (prostate-specific membrane antigen) but not in AR and KLK2, demonstrating efficacy of sequential [225Ac]hu11B6 in a mouse model.
Collapse
Affiliation(s)
- Mesude Bicak
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genome Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Katharina Lückerath
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael E Phelps
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095;
| | - Sven-Erik Strand
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, 223 81 Lund, Sweden
| | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
| | - Mari T Peltola
- Department of Biochemistry-Biotechnology, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Norbert Peekhaus
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
| | - Austin Ho
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Diaprost AB, 223 63 Lund, Sweden
| | | | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065
| | - Hans Lilja
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Translational Medicine, Lund University, 221 00 Lund, Sweden
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genome Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - David Ulmert
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095;
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| |
Collapse
|
11
|
Elahi A, Ajidahun A, Hendrick L, Getun I, Humphries LA, Hernandez J, Shibata D. HPP1 Ectodomain Shedding is Mediated by ADAM17 and is Necessary for Tumor Suppression in Colon Cancer. J Surg Res 2020; 254:183-190. [PMID: 32450419 DOI: 10.1016/j.jss.2020.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hyperplastic polyposis protein 1 (HPP1) encodes a tumor-suppressive transmembrane cleavable epidermal growth factor-like ligand. It is unclear as to whether cleavage and shedding of HPP1 are essential steps in achieving its tumor suppressive properties. ADAM proteins are key players in cellular ectodomain shedding processes with ADAM17 being well characterized and representing the most likely sheddase for HPP1. In this study, we explore the mechanisms and importance of ectodomain shedding in contributing to HPP1-mediated tumor suppression. METHODS Baseline characterization of HPP1 ectodomain shedding and ADAM family member expression was performed in HCT116 colon cancer cells with forced overexpression of HPP1 and controls. Subsequent impact of attenuation of ADAM expression by short interfering RNA on HPP1 shedding was evaluated. Furthermore, we examined the functional impact of an uncleavable HPP1 mutant construct (HPP1-Δstalk) generated by site-directed mutagenesis. Cellular growth potential functions were analyzed by MTT and soft agar assays. RESULTS Select proinflammatory cytokines enhanced HPP1 ectodomain shedding, whereas short interfering RNA-mediated knockdown of ADAM17 resulted in abrogation of HPP1 ectodomain shedding. ADAM17 knockdown concomitantly resulted in increased cell proliferation and anchorage-independent growth. HPP1-Δstalk-transfected cells exhibited significantly higher proliferation and reduced STAT1 activation relative to full-length HPP1, further suggesting a critical role for ectodomain shedding in HPP1-mediated tumor suppression. CONCLUSION The tumor-suppressive properties of HPP1 in colorectal cancer require cleavage and shedding of its ectodomain which in turn are mediated by ADAM17. Further investigations into the regulation of HPP1 may lead to a greater understanding of epidermal growth factor-like ligand family biology and potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Abul Elahi
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida; Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Abidemi Ajidahun
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida; Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Leah Hendrick
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Irina Getun
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Leigh Ann Humphries
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - David Shibata
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida; Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
12
|
Cerasuolo M, Maccarinelli F, Coltrini D, Mahmoud AM, Marolda V, Ghedini GC, Rezzola S, Giacomini A, Triggiani L, Kostrzewa M, Verde R, Paris D, Melck D, Presta M, Ligresti A, Ronca R. Modeling Acquired Resistance to the Second-Generation Androgen Receptor Antagonist Enzalutamide in the TRAMP Model of Prostate Cancer. Cancer Res 2020; 80:1564-1577. [PMID: 32029552 DOI: 10.1158/0008-5472.can-18-3637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in patients previously exposed to chemotherapy. However, resistance to enzalutamide and enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that may delay or prevent the onset of resistance. In this study, the prostate cancer multistage murine model TRAMP and TRAMP-derived cells have been used to extensively characterize in vitro and in vivo the response and resistance to enzalutamide. The therapeutic profile as well as the resistance onset were characterized and a multiscale stochastic mathematical model was proposed to link the in vitro and in vivo evolution of prostate cancer. The model showed that all therapeutic strategies that use enzalutamide result in the onset of resistance. The model also showed that combination therapies can delay the onset of resistance to enzalutamide, and in the best scenario, can eliminate the disease. These results set the basis for the exploitation of this "TRAMP-based platform" to test novel therapeutic approaches and build further mathematical models of combination therapies to treat prostate cancer and CRPC.Significance: Merging mathematical modeling with experimental data, this study presents the "TRAMP-based platform" as a novel experimental tool to study the in vitro and in vivo evolution of prostate cancer resistance to enzalutamide.
Collapse
Affiliation(s)
- Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Hampshire, United Kingdom
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ali Mokhtar Mahmoud
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Viviana Marolda
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Gaia Cristina Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Roberta Verde
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Dominique Melck
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy.
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
13
|
Han H, Zhan Z, Xu J, Song Z. TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing phosphorylation of the MAPK signaling pathway. Onco Targets Ther 2019; 12:11371-11382. [PMID: 31920328 PMCID: PMC6939404 DOI: 10.2147/ott.s210619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE This paper studied the effect of TMEFF2 expression on pancreatic cancer and its mechanism. METHODS A total of 72 pancreatic cancer patients were enrolled. AsPC1 and Panc1 cells were transfected. SB203580 was used to treat AsPC1 cells. CCK8 assay, colony formation analysis, Transwell experiment and Tunel test were performed. In vivo studies in nude mice were conducted. Immunohistochemistry, qRT-PCR and Western blot were used to detect genes expression. RESULTS TMEFF2 was downregulated in pancreatic cancer tissues and cells (P<0.001). Low TMEFF2 expression was associated with larger tumor size and advanced stage and poor differentiation (P<0.01). Compared with the NC group, AsPC1 and Panc1 cells of the TMEFF2 group exhibited much lower OD450 values, colony number, tumor volume and weight, migration and invasion cell numbers, obviously higher E-cadherin protein expression, lower Snail, Vimentin, MMP-2 and MMP-9 proteins expression, lower phosphorylation level of MAPK signaling pathway, and more apoptotic cells. AsPC1 cells of the SB203580 group showed much lower OD450 value when compared with the siTMEFF2 group. Significantly decreased colony number, migration and invasion number, higher E-cadherin protein expression and lower Snail, Vimentin, MMP-2 and MMP-9 proteins expression were found in AsPC1 cells of the siTMEFF2+ SB203580 group when compared with the siTMEFF2+ DMSO group. CONCLUSION TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing the phosphorylation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Hongchao Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Shanghai No. 10 People’s Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of General Surgery, Yancheng Third People’s Hospital, Yancheng, People’s Republic of China
| | - Zhilin Zhan
- Department of Hepatobiliary Surgery, Chizhou People’s Hospital, Chizhou, People’s Republic of China
| | - Jie Xu
- Department of General Surgery, Yancheng Third People’s Hospital, Yancheng, People’s Republic of China
| | - Zhenshun Song
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Shanghai No. 10 People’s Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
14
|
TMEFF2 is a novel prognosis signature and target for endometrial carcinoma. Life Sci 2019; 243:116910. [PMID: 31610211 DOI: 10.1016/j.lfs.2019.116910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
AIMS Tomoregulin-2 (TMEFF2) is a single-pass transmembrane protein whose specific functions and mechanisms in endometrial carcinoma (EC) remain unclear. The aim of this study was to investigate the expression, prognostic role, and potential regulatory mechanisms of TMEFF2 in EC. MATERIALS AND METHODS The expression and prognosis of TMEFF2 in EC were analyzed via bioinformatics and verified by immunohistochemistry and survival analysis. Proliferation, invasion, and migration of EC cells in vitro were assessed by cell functional assays, while epithelial-mesenchymal transition (EMT) markers and key signaling pathway proteins were evaluated by western blotting. KEY FINDINGS The expression of TMEFF2 in EC was significantly higher than that in atypical hyperplasia and normal endometrium, the high expression of TMEFF2 was correlated with advanced stage, poor differentiation, and lymph node metastasis, and also predicted a poor prognosis of EC. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that TMEFF2 and its related genes were enriched in the central nervous system, cell adhesion, signal transduction, and several critical signaling pathways. We also elucidated TMEFF2 networks of kinase, microRNA, and transcription factor targets. In vitro, the proliferation, invasion, and migration abilities of EC cells decreased after TMEFF2 downregulation. Downregulation of TMEFF2 reduced the activation of MAPK and PI3K signaling pathways, and inhibited EMT. SIGNIFICANCE TMEFF2 plays an important role in the initiation, development, and malignant behavior of EC and can be a potential target for early diagnosis and treatment in EC.
Collapse
|
15
|
Hilliard AT, Xie D, Ma Z, Snyder MP, Fernald RD. Genome-wide effects of social status on DNA methylation in the brain of a cichlid fish, Astatotilapia burtoni. BMC Genomics 2019; 20:699. [PMID: 31506062 PMCID: PMC6737626 DOI: 10.1186/s12864-019-6047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were previously unknown. RESULTS We performed the first genome-wide search for DNA methylation patterns associated with social status in the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways. DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were often seemingly positioned to regulate specific splice variants. CONCLUSIONS Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.
Collapse
Affiliation(s)
| | - Dan Xie
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | |
Collapse
|
16
|
Li K, Gu W, Xu J, Wang A, Han H. Expression of TMEFF2 in Human Pancreatic Cancer Tissue and the Effects of TMEFF2 Knockdown on Cell, Proliferation, and Apoptosis in Human Pancreatic Cell Lines. Med Sci Monit 2019; 25:3238-3246. [PMID: 31044775 PMCID: PMC6510056 DOI: 10.12659/msm.913974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The TMEFF2 gene encodes the transmembrane protein with EGF like and two follistatin-like domains 2 and has been reported to be a tumor suppressor gene, but its role remains unknown in pancreatic cancer. This study aimed to investigate the expression of TMEFF2 in human pancreatic cancer tissue and the effects of knockdown of TMEFF2 on cell, proliferation, and apoptosis in human pancreatic cell lines. Material/Methods Thirty-five samples of human pancreatic tissue and adjacent normal pancreatic tissue, and five human pancreatic cancer cell lines, CAPAN1, ASPC1, BXPC3, SW1990, and CFPAC were studied. RNA expression, protein expression, cell proliferation, and apoptosis were studied using real-time polymerase chain reaction (RT-PCR), Western blot, the cell counting kit-8 (CCK-8) assay, and flow cytometry, respectively. A co-immunoprecipitation assay evaluated protein interactions. Results TMEFF2 expression was down-regulated in pancreatic cancer tissue compared with normal pancreas. In human pancreatic cancer cell lines, overexpression of TMEFF2 suppressed cell proliferation and enhanced apoptosis, suppressed the expression of p-STAT3, MCL1, VEGF and increased the expression of the tyrosine-specific protein phosphatase, SHP-1. The co-immunoprecipitation assay showed that TMEFF2 interacted with SHP-1. Knockdown of expression of TMEFF2 resulted in the increased expression of p-STAT3, MCL1, and VEGF, increased cell proliferation and decreased cell apoptosis, which were reversed by overexpression of SHP-1. Conclusions In pancreatic cancer, TMEFF2 exerted as a tumor suppressor effect by regulating p-STAT3, MCL1, and VEGF via SHP-1.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Hepatobiliary Pancreatic Surgery, Jilin Province Peoples' Hospital, Changchun, Jilin, China (mainland)
| | - Wenjing Gu
- Department of Otolaryngology Head and Neck Surgery, First Bethune Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jie Xu
- Department of Gynecology and Obstetrics, Yancheng Third Peoples' Hospital, Yancheng, Jiangsu, China (mainland)
| | - Aikun Wang
- Department of General Surgery, Yancheng Third Peoples' Hospital, Yancheng, Jiangsu, China (mainland)
| | - Hongchao Han
- Department of General Surgery, Yancheng Third Peoples' Hospital, Yancheng, Jiangsu, China (mainland)
| |
Collapse
|
17
|
Faramarzi S, Ghafouri-Fard S. Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy. Immunotherapy 2018; 9:1019-1034. [PMID: 28971747 DOI: 10.2217/imt-2017-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a prevalent disorder among men with a heterogeneous etiological background. Several molecular events and signaling perturbations have been found in this disorder. Among genes whose expressions have been altered during the prostate cancer development are cancer-testis antigens (CTAs). This group of antigens has limited expression in the normal adult tissues but aberrant expression in cancers. This property provides them the possibility to be used as cancer biomarkers and immunotherapeutic targets. Several CTAs have been shown to be immunogenic in prostate cancer patients and some of the have entered clinical trials. Based on the preliminary data obtained from these trials, it is expected that CTA-based therapeutic options are beneficial for at least a subset of prostate cancer patients.
Collapse
Affiliation(s)
- Sepideh Faramarzi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Gaweł‐Bęben K, Ali N, Ellis V, Velasco G, Poghosyan Z, Ager A, Knäuper V. TMEFF2 shedding is regulated by oxidative stress and mediated by ADAMs and transmembrane serine proteases implicated in prostate cancer. Cell Biol Int 2018; 42:273-280. [PMID: 28762604 PMCID: PMC5836882 DOI: 10.1002/cbin.10832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
TMEFF2 is a type I transmembrane protein with two follistatin (FS) and one EGF-like domain over-expressed in prostate cancer; however its biological role in prostate cancer development and progression remains unclear, which may, at least in part, be explained by its proteolytic processing. The extracellular part of TMEFF2 (TMEFF2-ECD) is cleaved by ADAM17 and the membrane-retained fragment is further processed by the gamma-secretase complex. TMEFF2 shedding is increased with cell crowding, a condition associated with the tumour microenvironment, which was mediated by oxidative stress signalling, requiring jun-kinase (JNK) activation. Moreover, we have identified that TMEFF2 is also a novel substrate for other proteases implicated in prostate cancer, including two ADAMs (ADAM9 and ADAM12) and the type II transmembrane serine proteinases (TTSPs) matriptase-1 and hepsin. Whereas cleavage by ADAM9 and ADAM12 generates previously identified TMEFF2-ECD, proteolytic processing by matriptase-1 and hepsin produced TMEFF2 fragments, composed of TMEFF2-ECD or FS and/or EGF-like domains as well as novel membrane retained fragments. Differential TMEFF2 processing from a single transmembrane protein may be a general mechanism to modulate transmembrane protein levels and domains, dependent on the repertoire of ADAMs or TTSPs expressed by the target cell.
Collapse
Affiliation(s)
- Katarzyna Gaweł‐Bęben
- School of MedicineUniversity of Information Technology and Management in Rzeszow2 Sucharskiego Str.35‐225 RzeszowPoland
- School of DentistryCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
| | - Nazim Ali
- School of DentistryCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
- School of MedicineUniversity of KeeleKeeleST5 5BGUnited Kingdom
| | - Vincent Ellis
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Gloria Velasco
- Departamento de Bioquímica y Biología Molecular Facultad de MedicinaUniversidad de Oviedo33006 OviedoSpain
| | - Zaruhi Poghosyan
- School of MedicineCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
| | - Ann Ager
- School of MedicineCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
| | - Vera Knäuper
- School of DentistryCollege of Biomedical and Life SciencesCardiff UniversityCardiffCF14 4XYUnited Kingdom
| |
Collapse
|
19
|
Chen E, Zheng F, Yuan X, Ye Y, Li X, Dai Y, Chen L. The effect of TMEFF2 methylation on the tumor stage and survival outcome of clear cell renal cell carcinoma. Cancer Biomark 2017; 19:207-212. [PMID: 28128743 DOI: 10.3233/cbm-161656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Enjing Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Fufu Zheng
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoxu Yuan
- Department of Urology, Jiangmen Central Hospital, Jiangmen, Guangdong 529030, China
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yunlin Ye
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaofei Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuping Dai
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
20
|
Kregel S, Chen JL, Tom W, Krishnan V, Kach J, Brechka H, Fessenden TB, Isikbay M, Paner GP, Szmulewitz RZ, Vander Griend DJ. Acquired resistance to the second-generation androgen receptor antagonist enzalutamide in castration-resistant prostate cancer. Oncotarget 2016; 7:26259-74. [PMID: 27036029 PMCID: PMC5041979 DOI: 10.18632/oncotarget.8456] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/13/2016] [Indexed: 11/25/2022] Open
Abstract
Enzalutamide (MDV3100) is a second generation Androgen Receptor (AR) antagonist with proven efficacy in the treatment of castration resistant prostate cancer (CRPC). The majority of treated patients, however, develop resistance and disease progression and there is a critical need to identify novel targetable pathways mediating resistance. The purpose of this study was to develop and extensively characterize a series of enzalutamide-resistant prostate cancer cell lines. Four genetically distinct AR-positive and AR-pathway dependent prostate cancer cell lines (CWR-R1, LAPC-4, LNCaP, VCaP) were made resistant to enzalutamide by long-term culture (> 6 months) in enzalutamide. Extensive characterization of these lines documented divergent in vitro growth characteristics and AR pathway modulation. Enzalutamide-resistant LNCaP and CWR-R1 cells, but not LAPC-4 and VCAP cells, demonstrated increased castration-resistant and metastatic growth in vivo. Global gene expression analyses between short-term enzalutamide treated vs. enzalutamide-resistant cells identified both AR pathway and non-AR pathway associated changes that were restored upon acquisition of enzalutamide resistance. Further analyses revealed very few common gene expression changes between the four resistant cell lines. Thus, while AR-mediated pathways contribute in part to enzalutamide resistance, an unbiased approach across several cell lines demonstrates a greater contribution toward resistance via pleiotropic, non-AR mediated mechanisms.
Collapse
Affiliation(s)
- Steven Kregel
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - James L. Chen
- Department of Biomedical Informatics and Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Westin Tom
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, IL, USA
| | - Venkatesh Krishnan
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, IL, USA
| | - Jacob Kach
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Hannah Brechka
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Tim B. Fessenden
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Masis Isikbay
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, IL, USA
| | - Gladell P. Paner
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Russell Z. Szmulewitz
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Donald J. Vander Griend
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Mesquita D, Barros-Silva JD, Santos J, Skotheim RI, Lothe RA, Paulo P, Teixeira MR. Specific and redundant activities of ETV1 and ETV4 in prostate cancer aggressiveness revealed by co-overexpression cellular contexts. Oncotarget 2016; 6:5217-36. [PMID: 25595908 PMCID: PMC4467144 DOI: 10.18632/oncotarget.2847] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
Genomic rearrangements involving ETS transcription factors are found in 50–70% of prostate carcinomas. While the large majority of the rearrangements involve ERG, around 10% involve members of the PEA3 subfamily (ETV1, ETV4 and ETV5). Using a panel of prostate cancer cell lines we found co-overexpression of ETV1 and ETV4 in two cell line models of advanced prostate cancer (MDA-PCa-2b and PC3) and questioned whether these PEA3 family members would cooperate in the acquisition of oncogenic properties or show functional redundancy. Using shRNAs we found that ETV1 and ETV4 have partially overlapping functions, with ETV1 being more relevant for cell invasion and ETV4 for anchorage-independent growth. In vitro expression signatures revealed the regulation of both specific and shared candidate targets that may resemble cellular mechanisms in vivo by interaction with the same intermediate partners. By combining the phenotypic impact data and the gene expression profiles of in vitro models with clinico-pathological features and gene expression profiles of ETS-subtyped tumors, we identified a set of eight genes associated with advanced stage and a set of three genes associated with higher Gleason score, supporting an oncogenic role of ETV1 and ETV4 overexpression and revealing gene sets that may be useful as prognostic markers.
Collapse
Affiliation(s)
- Diana Mesquita
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal
| | - João D Barros-Silva
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal
| | - Joana Santos
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal
| | - Rolf I Skotheim
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Paula Paulo
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal.,Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Manuel R Teixeira
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| |
Collapse
|
22
|
Corbin JM, Overcash RF, Wren JD, Coburn A, Tipton GJ, Ezzell JA, McNaughton KK, Fung KM, Kosanke SD, Ruiz-Echevarria MJ. Analysis of TMEFF2 allografts and transgenic mouse models reveals roles in prostate regeneration and cancer. Prostate 2016; 76:97-113. [PMID: 26417683 PMCID: PMC4722803 DOI: 10.1002/pros.23103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous results from our lab indicate a tumor suppressor role for the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) in prostate cancer (PCa). Here, we further characterize this role and uncover new functions for TMEFF2 in cancer and adult prostate regeneration. METHODS The role of TMEFF2 was examined in PCa cells using Matrigel(TM) cultures and allograft models of PCa cells. In addition, we developed a transgenic mouse model that expresses TMEFF2 from a prostate specific promoter. Anatomical, histological, and metabolic characterizations of the transgenic mouse prostate were conducted. The effect of TMEFF2 in prostate regeneration was studied by analyzing branching morphogenesis in the TMEFF2-expressing mouse lobes and alterations in branching morphogenesis were correlated with the metabolomic profiles of the mouse lobes. The role of TMEFF2 in prostate tumorigenesis in whole animals was investigated by crossing the TMEFF2 transgenic mice with the TRAMP mouse model of PCa and analyzing the histopathological changes in the progeny. RESULTS Ectopic expression of TMEFF2 impairs growth of PCa cells in Matrigel or allograft models. Surprisingly, while TMEFF2 expression in the TRAMP mouse did not have a significant effect on the glandular prostate epithelial lesions, the double TRAMP/TMEFF2 transgenic mice displayed an increased incidence of neuroendocrine type tumors. In addition, TMEFF2 promoted increased branching specifically in the dorsal lobe of the prostate suggesting a potential role in developmental processes. These results correlated with data indicating an alteration in the metabolic profile of the dorsal lobe of the transgenic TMEFF2 mice. CONCLUSIONS Collectively, our results confirm the tumor suppressor role of TMEFF2 and suggest that ectopic expression of TMEFF2 in mouse prostate leads to additional lobe-specific effects in prostate regeneration and tumorigenesis. This points to a complex and multifunctional role for TMEFF2 during PCa progression.
Collapse
Affiliation(s)
- JM. Corbin
- Department of Pathology, Oklahoma University Health Sciences Center. Oklahoma City, OK, USA
| | - RF. Overcash
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - JD. Wren
- Arthritis and Clinical Immunology Research Program. Oklahoma Medical Research Foundation. Oklahoma City, OK, USA
| | - A. Coburn
- Department of Comparative Medicine. East Carolina University. Greenville, NC, USA
| | - GJ. Tipton
- Bowles Center for Alcohol Studies. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - JA. Ezzell
- Department of Cell Biology and Physiology. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - KK. McNaughton
- Department of Cell Biology and Physiology. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - KM Fung
- Department of Pathology, Oklahoma University Health Sciences Center. Oklahoma City, OK, USA
- Department of Pathology, Oklahoma City Veterans Affairs Medical Center. Oklahoma City, OK, USA
| | - SD. Kosanke
- Department of Pathology, Oklahoma University Health Sciences Center. Oklahoma City, OK, USA
| | - MJ Ruiz-Echevarria
- Department of Pathology, Oklahoma University Health Sciences Center. Oklahoma City, OK, USA
- Stephenson Cancer Center. Oklahoma City, OK, USA
- Correspondence to: MJ. Ruiz-Echevarria, Associate Professor of Pathology, University of Oklahoma Health Sciences Center, Stanton L. Young Biomedical Research Center, 975 N.E. 10th Street, Room 1368A, Oklahoma City, Oklahoma 73104. Phone: (405) 271.1871; Fax: (405) 271.2141.
| |
Collapse
|
23
|
Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity. Oncotarget 2015; 6:1302-14. [PMID: 25514598 PMCID: PMC4359234 DOI: 10.18632/oncotarget.2744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer.
Collapse
|
24
|
Labeur M, Wölfel B, Stalla J, Stalla GK. TMEFF2 is an endogenous inhibitor of the CRH signal transduction pathway. J Mol Endocrinol 2015; 54:51-63. [PMID: 25573902 DOI: 10.1530/jme-14-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TMEFF2 is a transmembrane protein with unknown function, containing an altered epidermal growth factor (EGF)-like motif, two follistatin-like domains, and a cytosolic tail with a putative G-protein-activating motif. TMEFF2 is predominantly expressed in brain and prostate and has been implicated in cell signaling, neuronal cell survival, and tumor suppression. We found that expression of TMEFF2 in pituitary corticotrope cells inhibits the effects of corticotropin-releasing hormone (CRH) on the production of intracellular cAMP, and CREB, and transcription of Pomc. Regulation of the activity of CRH by TMEFF2 requires neither the cytoplasmic tail nor the EGF domain, while deletion of the follistatin modules abolishes the inhibitory function of TMEFF2. Moreover, a soluble secreted protein containing the complete extracellular domain is sufficient for inhibition of CRH signaling. TMEFF2-induced inhibition depends on serum components. Furthermore, TMEFF2 regulates the non-canonical activin/BMP4 signaling, PI3K, and Ras/ERK1/2 pathways. Thus, TMEFF2 inhibits the CRH signaling pathway and the PI3K/AKT and Ras/ERK1/2 pathways, contributing to a significant inhibition of transcription of Pomc. We found that expression of TMEFF2 in human Cushing's adenoma is reduced when compared with normal human pituitary, which may indicate that TMEFF2 acts as a tumor suppressor in these adenomas. Furthermore, the overexpression of TMEFF2 decreased proliferation of corticotrope cells. Our results indicate a potential therapeutic use of TMEFF2 or factors that stimulate the activity of TMEFF2 for the treatment of corticotrope tumors in order to reduce their secretion of ACTH and proliferation.
Collapse
Affiliation(s)
- Marta Labeur
- Department of NeuroendocrinologyMax Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Barbara Wölfel
- Department of NeuroendocrinologyMax Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Johanna Stalla
- Department of NeuroendocrinologyMax Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Günter K Stalla
- Department of NeuroendocrinologyMax Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
25
|
Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, Jänne OA, Palvimo JJ. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res 2014; 43:848-61. [PMID: 25552417 PMCID: PMC4333416 DOI: 10.1093/nar/gku1375] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Androgen receptor (AR) is a ligand-activated transcription factor that plays a central role in the development and growth of prostate carcinoma. PIAS1 is an AR- and SUMO-interacting protein and a putative transcriptional coregulator overexpressed in prostate cancer. To study the importance of PIAS1 for the androgen-regulated transcriptome of VCaP prostate cancer cells, we silenced its expression by RNAi. Transcriptome analyses revealed that a subset of the AR-regulated genes is significantly influenced, either activated or repressed, by PIAS1 depletion. Interestingly, PIAS1 depletion also exposed a new set of genes to androgen regulation, suggesting that PIAS1 can mask distinct genomic loci from AR access. In keeping with gene expression data, silencing of PIAS1 attenuated VCaP cell proliferation. ChIP-seq analyses showed that PIAS1 interacts with AR at chromatin sites harboring also SUMO2/3 and surrounded by H3K4me2; androgen exposure increased the number of PIAS1-occupying sites, resulting in nearly complete overlap with AR chromatin binding events. PIAS1 interacted also with the pioneer factor FOXA1. Of note, PIAS1 depletion affected AR chromatin occupancy at binding sites enriched for HOXD13 and GATA motifs. Taken together, PIAS1 is a genuine chromatin-bound AR coregulator that functions in a target gene selective fashion to regulate prostate cancer cell growth.
Collapse
Affiliation(s)
- Sari Toropainen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Sanna Kaikkonen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Miia Rytinki
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland Institute of Dentistry, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Biswajyoti Sahu
- Institute of Biomedicine, Physiology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland Research Programs Unit, Genome-Scale Biology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Olli A Jänne
- Institute of Biomedicine, Physiology, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
26
|
Sun TT, Tang JY, Du W, Zhao HJ, Zhao G, Yang SL, Chen HY, Hong J, Fang JY. Bidirectional regulation between TMEFF2 and STAT3 may contribute to Helicobacter pylori-associated gastric carcinogenesis. Int J Cancer 2014; 136:1053-64. [PMID: 24996057 DOI: 10.1002/ijc.29061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022]
Abstract
The transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is a single-pass transmembrane protein, and it is downregulated in human gastric cancer and levels correlate with tumor progression and time of survival. However, the mechanism of its dysregulation in gastric cancer is little known. Here we investigate its regulatory mechanism and the bidirectional regulation between TMEFF2 and STAT3 in gastric carcinogenesis. TMEFF2 expression was decreased after Helicobacter pylori (H. pylori) infection in vivo and in vitro. STAT3 directly binds to the promoter of TMEFF2 and regulates H. pylori-induced TMEFF2 downregulation in normal gastric GES-1 cells and gastric cancer AGS cells. Conversely, TMEFF2 may suppress the phosphorylation of STAT3 and TMEFF2-induced downregulation of STAT3 phosphorylation may depend on SHP-1. A highly inverse correlation between the expression of TMEFF2 and pSTAT3 was also revealed in gastric tissues. We now show the deregulation mechanism of TMEFF2 in gastric carcinogenesis and identify TMEFF2 as a new target gene of STAT3. The phosphorylation of STAT3 may be negatively regulated by TMEFF2, and the bidirectional regulation between TMEFF2 and STAT3 may contribute to H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Tian-Tian Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sun T, Du W, Xiong H, Yu Y, Weng Y, Ren L, Zhao H, Wang Y, Chen Y, Xu J, Xiang Y, Qin W, Cao W, Zou W, Chen H, Hong J, Fang JY. TMEFF2 deregulation contributes to gastric carcinogenesis and indicates poor survival outcome. Clin Cancer Res 2014; 20:4689-704. [PMID: 24987055 DOI: 10.1158/1078-0432.ccr-14-0315] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The role and clinical implication of the transmembrane protein with EGF and two follistatin motifs 2 (TMEFF2) in gastric cancer is poorly understood. EXPERIMENTAL DESIGN Gene expression profile analyses were performed and Gene Set Enrichment Analysis (GSEA) was used to explore its gene signatures. AGS and MKN45 cells were transfected with TMEFF2 or control plasmids and analyzed for gene expression patterns, proliferation, and apoptosis. TMEFF2 expression was knocked down with shRNAs, and the effects on genome stability were assessed. Interactions between TMEFF2 and SHP-1 were determined by mass spectrometry and immunoprecipitation assays. RESULTS Integrated analysis revealed that TMEFF2 expression was significantly decreased in gastric cancer cases and its expression was negatively correlated with the poor pathologic stage, large tumor size, and poor prognosis. GSEA in The Cancer Genome Atlas (TCGA) and Jilin datasets revealed that cell proliferation, apoptosis, and DNA damage-related genes were enriched in TMEFF2 lower expression patients. Gain of TMEFF2 function decreased cell proliferation by increasing of apoptosis and blocking of cell cycle in gastric cancer cells. The protein tyrosine phosphatase SHP-1 was identified as a binding partner of TMEEF2 and mediator of TMEFF2 function. TMEFF2 expression positively correlated with SHP-1, and a favorable prognosis was more likely in patients with gastric cancer with higher levels of both TMEFF2 and SHP-1. CONCLUSION TMEFF2 acts as a tumor suppressor in gastric cancer through direct interaction with SHP-1 and can be a potential biomarker of carcinogenesis.
Collapse
Affiliation(s)
- Tiantian Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wan Du
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hua Xiong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanan Yu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yurong Weng
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Linlin Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Huijun Zhao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yingchao Wang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yingxuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yongbing Xiang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Weibiao Cao
- Department of Pathology and Medicine, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China. Department of Pathology and Medicine, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
28
|
Wang J, Elahi A, Ajidahun A, Clark W, Hernandez J, Achille A, Hao JH, Seto E, Shibata D. The interplay between histone deacetylases and c-Myc in the transcriptional suppression of HPP1 in colon cancer. Cancer Biol Ther 2014; 15:1198-207. [PMID: 24919179 DOI: 10.4161/cbt.29500] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
HPP1 (hyperplastic polyposis protein 1), a tumor suppressor gene, is downregulated by promoter hypermethylation in a number of tumor types including colon cancer. c-Myc is also known to play a role in the suppression of HPP1 expression via binding to a promoter region cognate E-box site. The contribution of histone deacetylation as an additional epigenetic mechanism and its potential interplay with c-Myc in the transcriptional regulation of HPP1 are unknown. We have shown that the treatment of the HPP1-non-expressing colon cancer cell lines, HCT116 and DLD-1 with HDAC inhibitors results in re-expression of HPP1. RNAi-mediated knockdown of c-Myc as well as of HDAC2 and HDAC3 in HCT116 and of HDAC1 and HDAC3 in DLD-1 also resulted in significant re-expression of HPP1. Co-immunoprecipitation (IP), chromatin IP (ChIP), and sequential ChIP experiments demonstrated binding of c-Myc to the HPP1 promoter with recruitment of and direct interaction with HDAC3. In summary, we have demonstrated that c-Myc contributes to the epigenetic regulation of HPP1 via the dominant recruitment of HDAC3. Our findings may lead to a greater biologic understanding for the application of targeted use of HDAC inhibitors for anti-cancer therapy.
Collapse
Affiliation(s)
- Jian Wang
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA; Department of Pancreatic Oncology; Cancer Institute and Hospital of Tianjin Medical University; Tianjin, PR China
| | - Abul Elahi
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Abidemi Ajidahun
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Whalen Clark
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Jonathan Hernandez
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Alex Achille
- Department of Molecular Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - Ji-hui Hao
- Department of Pancreatic Oncology; Cancer Institute and Hospital of Tianjin Medical University; Tianjin, PR China
| | - Edward Seto
- Department of Molecular Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| | - David Shibata
- Department of Gastrointestinal Oncology; H. Lee Moffitt Cancer Center & Research Institute; Tampa, FL USA
| |
Collapse
|
29
|
Chen X, Corbin JM, Tipton GJ, Yang LV, Asch AS, Ruiz-Echevarría MJ. The TMEFF2 tumor suppressor modulates integrin expression, RhoA activation and migration of prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1216-24. [PMID: 24632071 DOI: 10.1016/j.bbamcr.2014.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/11/2014] [Accepted: 03/05/2014] [Indexed: 01/01/2023]
Abstract
Cell adhesion and migration play important roles in physiological and pathological states, including embryonic development and cancer invasion and metastasis. The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly in brain and prostate and its expression is deregulated in prostate cancer. We have previously shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer cells and that this effect correlates with changes in integrin expression and RhoA activation. Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells resulted in an increased integrin expression. Results obtained with a double TRAMP/TMEFF2 transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in regulating cell adhesion and migration that involves integrin signaling and is mediated by its cytoplasmic domain.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Joshua M Corbin
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Greg J Tipton
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Adam S Asch
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maria J Ruiz-Echevarría
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
30
|
Green T, Chen X, Ryan S, Asch AS, Ruiz-Echevarría MJ. TMEFF2 and SARDH cooperate to modulate one-carbon metabolism and invasion of prostate cancer cells. Prostate 2013; 73:1561-75. [PMID: 23824605 PMCID: PMC3878307 DOI: 10.1002/pros.22706] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/11/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND The transmembrane protein with epidermal growth factor and two follistatin motifs, TMEFF2, has been implicated in prostate cancer but its role in this disease is unclear. We recently demonstrated that the tumor suppressor role of TMEFF2 correlates, in part, with its ability to interact with sarcosine dehydrogenase (SARDH) and modulate sarcosine level. TMEFF2 overexpression inhibits sarcosine-induced invasion. Here, we further characterize the functional interaction between TMEFF2 and SARDH and their link with one-carbon (1-C) metabolism and invasion. METHODS RNA interference was used to study the effect of SARDH and/or TMEFF2 knockdown (KD) in invasion, evaluated using Boyden chambers. The dependence of invasion on 1-C metabolism was determined by examining sensitivity to methotrexate. Real-time PCR and Western blot of subcellular fractions were used to study the effect of SARDH KD or TMEFF2 KD on expression of enzymes involved in one-carbon (1-C) metabolism and on TMEFF2 expression and localization. Protein interactions were analyzed by mass spectrometry. Cell viability and proliferation were measured by cell counting and MTT analysis. RESULTS While knocking down SARDH affects TMEFF2 subcellular localization, this effect is not responsible for the increased invasion observed in SARDH KD cells. Importantly, SARDH and/or TMEFF2 KD promote increased cellular invasion, sensitize the cell to methotrexate, render the cell resistant to invasion induced by sarcosine, a metabolite from the folate-mediated 1-C metabolism pathway, and affect the expression level of enzymes involved in that pathway. CONCLUSIONS Our findings define a role for TMEFF2 and the folate-mediated 1-C metabolism pathway in modulating cellular invasion.
Collapse
Affiliation(s)
- Thomas Green
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Xiaofei Chen
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, USA
| | - Stephen Ryan
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Adam S. Asch
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria J. Ruiz-Echevarría
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
- Correspondence: , Phone: 252-744.2856, Fax: 252-744.3418
| |
Collapse
|
31
|
Grondahl ML, Borup R, Vikesa J, Ernst E, Andersen CY, Lykke-Hartmann K. The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase II. Mol Hum Reprod 2013; 19:600-17. [DOI: 10.1093/molehr/gat027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Overcash RF, Chappell VA, Green T, Geyer CB, Asch AS, Ruiz-Echevarría MJ. Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2. PLoS One 2013; 8:e55257. [PMID: 23405127 PMCID: PMC3566213 DOI: 10.1371/journal.pone.0055257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/27/2012] [Indexed: 01/21/2023] Open
Abstract
The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2), is expressed mainly in brain and prostate. Expression of TMEFF2 is deregulated in prostate cancer, suggesting a role in this disease, but the molecular mechanism(s) involved in this effect are not clear. Although androgens promote tmeff2 transcription, androgen delivery to castrated animals carrying CWR22 xenografts increases TMEFF2 protein levels in the absence of mRNA changes, suggesting that TMEFF2 may also be post-transcriptionally regulated. Here we show that translation of TMEFF2 is regulated by androgens. Addition of physiological concentrations of dihydrotestosterone (DHT) to prostate cancer cell lines increases translation of endogenous TMEFF2 or transfected TMEFF2-Luciferase fusions, and this effect requires the presence of upstream open reading frames (uORFs) in the 5′-untranslated region (5′-UTR) of TMEFF2. Using chemical and siRNA inhibition of the androgen receptor (AR), we show that the androgen effect on TMEFF2 translation is mediated by the AR. Importantly, DHT also promotes phosphorylation of the α subunit of the translation initiation factor 2 (eIF2α) in an AR-dependent manner, paralleling the effect on TMEFF2 translation. Moreover, endoplasmic reticulum (ER) stress conditions, which promote eIF2α phosphorylation, also stimulate TMEFF2 translation. These results indicate that androgen signaling promotes eIF2α phosphorylation and subsequent translation of TMEFF2 via a mechanism that requires uORFs in the 5′-UTR of TMEFF2.
Collapse
Affiliation(s)
- Ryan F. Overcash
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Vesna A. Chappell
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Thomas Green
- Department of Internal Medicine, Division of Hematology/Oncology. Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Adam S. Asch
- Department of Internal Medicine, Division of Hematology/Oncology. Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Maria J. Ruiz-Echevarría
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- Department of Internal Medicine, Division of Hematology/Oncology. Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lee SM, Park JY, Kim DS. Methylation of TMEFF2 gene in tissue and serum DNA from patients with non-small cell lung cancer. Mol Cells 2012; 34:171-6. [PMID: 22814847 PMCID: PMC3887809 DOI: 10.1007/s10059-012-0083-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/31/2012] [Indexed: 12/31/2022] Open
Abstract
Lung cancer remains a global health problem with a high mortality rate. CpG island methylation is a common aberration frequently associated with gene silencing in multiple tumor types, emerging as a highly promising biomarker. The transmembrane protein with a single EGF-like and two follistatin domains (TMEFF2) is epigenetically silenced in numerous tumor types, suggesting a potential role as a potential tumor suppressor. However, the role of TMEFF2 in lung cancer remains to be fully elucidated. We explored the methylation status of TMEFF2 gene in 139 patients with non-small cell lung cancer (NSCLC) and the feasibility of detecting circulating methylated DNA as a screening tool for NSCLC using methylation-specific PCR in 316 patients and 50 age-matched health controls. TMEFF2 methylation in tumor tissues was found in 73 of the 139 NSCLCs (52.5%) and was related to gene expression. The frequency of TMEFF2 methylation was higher in females and never-smokers than in males and smokers with borderline significance (65.8% vs 47.8%, p = 0.06; 65.7% vs 48.1%, p = 0.07). Notably, in adenocarcinomas, TMEFF2 methylation was significantly more frequent in tumors without EGFR mutation than those with EGFR mutation (adjusted odds ratio = 7.13, 95% confidence interval = 2.05-24.83, P = 0.002). Furthermore, TMEFF2 methylation was exclusively detected in the serum of NSCLC patients at a frequency of 9.2% (29/316). These findings suggest that methylation-associated down-regulation of TMEFF2 gene may be involved in lung tumorigenesis and TMEFF2 methylation can serve as a specific blood-based biomarker for NSCLC.
Collapse
Affiliation(s)
- Su Man Lee
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 702-422,
Korea
| | - Jae Yong Park
- Internal Medicine, School of Medicine, Kyungpook National University, Daegu 702-422,
Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 702-422,
Korea
| |
Collapse
|
34
|
Chen TR, Wang P, Carroll LK, Zhang YJ, Han BX, Wang F. Generation and characterization of Tmeff2 mutant mice. Biochem Biophys Res Commun 2012; 425:189-94. [PMID: 22828515 DOI: 10.1016/j.bbrc.2012.07.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 11/26/2022]
Abstract
TMEFF2 is a single-transmembrane protein containing one EGF-like and two follistatin-like domains. Some studies implicated TMEFF2 as a tumor suppressor for prostate and other cancers, whereas others reported TMEFF2 functioning as a growth factor for neurons and other cells. To gain insights into the apparently conflicting roles of TMEFF2, we generated a null allele of Tmeff2 gene by replacing its first coding exon with human placental alkaline phosphatase cDNA (Tmeff2(PLAP)). Tmeff2(PLAP/PLAP) homozygous mutant mice are born normal, but show growth retardation and die around weaning age. Tmeff2 is widely expressed in the nervous system, and the Tmeff2(PLAP) knock-in allele enables the visualization of neuronal innervations of skin and internal organs with a simple alkaline phosphatase staining. Tmeff2 is also highly expressed in prostate gland and white adipose tissues (WAT). However, with the exception of reduced WAT mass, extensive anatomical and molecular analyses failed to detect any structural or molecular abnormalities in the brain, the spinal cord, the enteric nervous system, or the prostate in the Tmeff2 mutants. No tumors were found in Tmeff2-mutant mice. The Tmeff2(PLAP/PLAP) knock-in mouse is an useful tool for studying the in vivo biological functions of TMEFF2.
Collapse
Affiliation(s)
- Tian Rui Chen
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
35
|
Rodriguez-Milla MA, Mirones I, Mariñas-Pardo L, Melen GJ, Cubillo I, Ramírez M, García-Castro J. Enrichment of neural-related genes in human mesenchymal stem cells from neuroblastoma patients. Int J Mol Med 2012; 30:365-73. [PMID: 22641458 DOI: 10.3892/ijmm.2012.1008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/22/2012] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common pediatric solid tumors and, like most human cancers, is characterized by a broad variety of genomic alterations. Although mesenchymal stem cells (MSCs) are known to interact with cancer cells, the relationship between MSCs and metastatic NB cancer cells in bone marrow (BM) is unknown. To obtain genetic evidence about this interaction, we isolated ΒΜ-derived MSCs from children with NB and compared their global expression patterns with MSCs obtained from normal pediatric donors, using the Agilent 44K microarrays. Significance analysis of microarray results with a false discovery rate (FDR) <5% identified 496 differentially expressed genes showing either a 2-fold upregulation or downregulation between both groups of samples. Comparison of gene ontology categories of differentially expressed genes revealed the upregulation of genes categorized as 'neurological system process', 'cell adhesion', 'apoptosis', 'cell surface receptor linked signal transduction', 'intrinsic to membrane' and 'extracellular region'. Among the downregulated genes, several immunology-related terms were the most abundant. These findings provide preliminary genetic evidence of the interaction between MSCs and NB cancer cells in ΒΜ as well as identify relevant biological processes potentially altered in MSCs in response to NB.
Collapse
|
36
|
Lehmusvaara S, Erkkilä T, Urbanucci A, Waltering K, Seppälä J, Larjo A, Tuominen VJ, Isola J, Kujala P, Lähdesmäki H, Kaipia A, Tammela TL, Visakorpi T. Chemical castration and anti-androgens induce differential gene expression in prostate cancer. J Pathol 2012; 227:336-45. [PMID: 22431170 DOI: 10.1002/path.4027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/04/2012] [Accepted: 03/09/2012] [Indexed: 11/08/2022]
Abstract
Endocrine therapy by castration or anti-androgens is the gold standard treatment for advanced prostate cancer. Although it has been used for decades, the molecular consequences of androgen deprivation are incompletely known and biomarkers of its resistance are lacking. In this study, we studied the molecular mechanisms of hormonal therapy by comparing the effect of bicalutamide (anti-androgen), goserelin (GnRH agonist) and no therapy, followed by radical prostatectomy. For this purpose, 28 men were randomly assigned to treatment groups. Freshly frozen specimens were used for gene expression profiling for all known protein-coding genes. An in silico Bayesian modelling tool was used to assess cancer-specific gene expression from heterogeneous tissue specimens. The expression of 128 genes was > two-fold reduced by the treatments. Only 16% of the altered genes were common in both treatment groups. Of the 128 genes, only 24 were directly androgen-regulated genes, according to re-analysis of previous data on gene expression, androgen receptor-binding sites and histone modifications in prostate cancer cell line models. The tumours containing TMPRSS2-ERG fusion showed higher gene expression of genes related to proliferation compared to the fusion-negative tumours in untreated cases. Interestingly, endocrine therapy reduced the expression of one-half of these genes and thus diminished the differences between the fusion-positive and -negative samples. This study reports the significantly different effects of an anti-androgen and a GnRH agonist on gene expression in prostate cancer cells. TMPRSS2-ERG fusion seems to bring many proliferation-related genes under androgen regulation.
Collapse
Affiliation(s)
- Saara Lehmusvaara
- Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Markholt S, Grøndahl M, Ernst E, Andersen CY, Ernst E, Lykke-Hartmann K. Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. ACTA ACUST UNITED AC 2012; 18:96-110. [DOI: 10.1093/molehr/gar083] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Antunes AA, Leite KR, Reis ST, Sousa-Canavez JM, Camara-Lopes LH, Dall'Oglio MF, Srougi M. GREB1 tissue expression is associated with organ-confined prostate cancer. Urol Oncol 2012; 30:16-20. [DOI: 10.1016/j.urolonc.2009.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 11/24/2022]
|
39
|
Kumarasamy S, Gopalakrishnan K, Toland EJ, Yerga-Woolwine S, Farms P, Morgan EE, Joe B. Refined mapping of blood pressure quantitative trait loci using congenic strains developed from two genetically hypertensive rat models. Hypertens Res 2011; 34:1263-70. [PMID: 21814219 DOI: 10.1038/hr.2011.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously linkage and substitution mapping were conducted between the Dahl Salt-sensitive (S) rat and the Spontaneously Hypertensive Rat (SHR) to address the hypothesis that genetic contributions to blood pressure (BP) in two genetically hypertensive rat strains are different. Among the BP quantitative trait loci (QTLs) detected, two are located on chromosome 9 within large genomic segments. The goal of the current study was to develop new iterations of congenic substrains, to further resolve both of these BP QTLs on chromosome 9 as independent congenic segments. A total of 10 new congenic substrains were developed and characterized. The newly developed congenic substrains S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1, with introgressed segments of 2.05 and 6.14 Mb, represented the shortest genomic segments. Both of these congenic substrains, S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1 lowered BP of the S rat by 56 mm Hg (P<0.001) and 15 mm Hg (P<0.039), respectively. The BP measurements were corroborated by radiotelemetry. Urinary protein excretion was significantly lowered by SHR alleles within S.SHR(9)x10Ax1 but not by S.SHR(9)x8Ax11A. The shorter of the two congenic segments, 2.05 Mb was further characterized and found to contain a single differentially expressed protein-coding gene, Tomoregulin-2 (Tmeff2). The protein expression of Tmeff2 was higher in the S rat compared with S.SHR(9)x8Ax11A, which also had lower cardiac hypertrophy as measured by echocardiography. Tmeff2 is known to be upregulated in patients from multiple cohorts with cardiac hypertrophy. Taken together, Tmeff2 can be prioritized as a candidate gene for hypertension and associated cardiac hypertrophy in both rats and in humans.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Physiological Genomics Laboratory, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Tomoregulin internalization confers selective cytotoxicity of immunotoxins on prostate cancer cells. Transl Oncol 2011; 1:102-9. [PMID: 18633458 DOI: 10.1593/tlo.08124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 05/22/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022] Open
Abstract
We have recently identified and validated the prostate cancer antigen Tomoregulin as a target for the radioimmunotherapy for prostate cancer. Here, we provide evidence that Tomoregulin is an internalizing antigen and a potential target for immunotoxins. First, the cell surface localization of Tomoregulin was confirmed by flow cytometry, and its expression levels were determined by whole-cell binding assays. Second, laser scanning confocal microscopy revealed Tomoregulin internalization into the cytoplasm on antibody binding at 37 degrees C. The internalized Tomoregulin was found to colocalize with acidic vesicles. Third, internalization kinetics assays using (125)I-labeled anti-Tomoregulin mouse monoclonal antibody 2H8 demonstrated that the amount of internalized antigen-antibody complexes increased with time and reached approximately 25% of the total surface antigen after 60 to 90 minutes. Because 2H8 is capable of binding to Tomoregulin on the cell surface and can be internalized, we finally evaluated 2H8 as a means of targeting toxic payloads to prostate cancer cells. 2H8 was coupled to the cytotoxin saporin through a secondary antibody (Mab-ZAP) in indirect immunotoxin assays. Cell killing occurred on Tomoregulin-positive cells (Clone69) at the immunotoxin concentrations not affecting the Tomoregulin-negative cells (PC-3). In contrast to 2H8, the control antibody (mouse anti-c-Myc antibody 9E10) had no effect on cells in the presence of Mab-ZAP. Thus, Tomoregulin internalization confers selective cytotoxicity of immunotoxins on prostate cancer cells, and Tomoregulin-mediated delivery of immunotoxin has potential as a prostate cancer therapy.
Collapse
|
41
|
Lin K, Taylor JR, Wu TD, Gutierrez J, Elliott JM, Vernes JM, Koeppen H, Phillips HS, de Sauvage FJ, Meng YG. TMEFF2 is a PDGF-AA binding protein with methylation-associated gene silencing in multiple cancer types including glioma. PLoS One 2011; 6:e18608. [PMID: 21559523 PMCID: PMC3084709 DOI: 10.1371/journal.pone.0018608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/07/2011] [Indexed: 01/28/2023] Open
Abstract
Background TMEFF2 is a protein containing a single EGF-like domain and two
follistatin-like modules. The biological function of TMEFF2 remains unclear
with conflicting reports suggesting both a positive and a negative
association between TMEFF2 expression and human cancers. Methodology/Principal Findings Here we report that the extracellular domain of TMEFF2 interacts with
PDGF-AA. This interaction requires the amino terminal region of the
extracellular domain containing the follistatin modules and cannot be
mediated by the EGF-like domain alone. Furthermore, the extracellular domain
of TMEFF2 interferes with PDGF-AA–stimulated fibroblast proliferation
in a dose–dependent manner. TMEFF2 expression is downregulated in
human brain cancers and is negatively correlated with PDGF-AA expression.
Suppressed expression of TMEFF2 is associated with its hypermethylation in
several human tumor types, including glioblastoma and cancers of ovarian,
rectal, colon and lung origins. Analysis of glioma subtypes indicates that
TMEFF2 hypermethylation and decreased expression are associated with a
subset of non-Proneural gliomas that do not display CpG island methylator
phentoype. Conclusions/Significance These data provide the first evidence that TMEFF2 can function to regulate
PDGF signaling and that it is hypermethylated and downregulated in glioma
and several other cancers, thereby suggesting an important role for this
protein in the etiology of human cancers.
Collapse
Affiliation(s)
- Kui Lin
- Genentech, South San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen X, Overcash R, Green T, Hoffman D, Asch AS, Ruiz-Echevarría MJ. The tumor suppressor activity of the transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) correlates with its ability to modulate sarcosine levels. J Biol Chem 2011; 286:16091-100. [PMID: 21393249 DOI: 10.1074/jbc.m110.193805] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed in brain and prostate and overexpressed in prostate cancer, but its role in this disease is unclear. Several studies have suggested that TMEFF2 plays a role in suppressing the growth and invasive potential of human cancer cells, whereas others suggest that the shed portion of TMEFF2, which lacks the cytoplasmic region, has a growth-promoting activity. Here we show that TMEFF2 has a dual mode of action. Ectopic expression of wild-type full-length TMEFF2 inhibits soft agar colony formation, cellular invasion, and migration and increases cellular sensitivity to apoptosis. However, expression of the ectodomain portion of TMEFF2 increases cell proliferation. Using affinity chromatography and mass spectrometry, we identify sarcosine dehydrogenase (SARDH), the enzyme that converts sarcosine to glycine, as a TMEFF2-interacting protein. Co-immunoprecipitation and immunofluorescence analysis confirms the interaction of SARDH with full-length TMEFF2. The ectodomain does not bind to SARDH. Moreover, expression of the full-length TMEFF2 but not the ectodomain results in a decreased level of sarcosine in the cells. These results suggest that the tumor suppressor activity of TMEFF2 requires the cytoplasmic/transmembrane portion of the protein and correlates with its ability to bind to SARDH and to modulate the level of sarcosine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, Greenville, North Carolina 27834, USA
| | | | | | | | | | | |
Collapse
|
43
|
Dozmorov MG, Hurst RE, Culkin DJ, Kropp BP, Frank MB, Osban J, Penning TM, Lin HK. Unique patterns of molecular profiling between human prostate cancer LNCaP and PC-3 cells. Prostate 2009; 69:1077-90. [PMID: 19343732 PMCID: PMC2755240 DOI: 10.1002/pros.20960] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Human prostate cancer LNCaP and PC-3 cell lines have been extensively used to study prostate cancer progression and to develop therapeutic agents. Although LNCaP and PC-3 cells are generally assumed to represent early and late stages of prostate cancer, respectively, there is limited information regarding gene expression patterns between these two cell lines and its relationship to prostate cancer. METHODS Comprehensive gene expression analysis was performed. Total RNA was isolated from cultured cells and hybridized to Illumina human BeadChips representing 24,526 transcripts. Bioinformatics analysis was applied to identify cell line specific genes as well as biological mechanisms, pathways, and functions related to the genes. RESULTS A total of 2,198 genes were differentially expressed between LNCaP and PC-3 cells. Using a robust statistical analysis and high significance criteria, 115 and 188 genes were identified to be unique to LNCaP and PC-3 cells, respectively. LNCaP cells maintained various metabolic pathways including a gene cluster that encodes UDP-glucuronosyltransferases. Several transcription factors including Tal alpha/beta, GATA-1, and c-Myc/Max may be responsible for regulating LNCaP cell specific genes. By contrast, PC-3 cells were characterized by their unique expression of cytoskeleton-related genes and other genes including VEGFC, IL8, and TGF beta 2. CONCLUSIONS This study showed that LNCaP and PC-3 cells represent two distinct prostate cancer cell lineages. LNCaP cells retain many prostate cell specific properties, whereas PC-3 cells have acquired a more aggressive phenotype. Future studies for prostate cancer research need to consider similarities and differences between these two cells and their relationship to prostate cancer.
Collapse
Affiliation(s)
- Mikhail G. Dozmorov
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Robert E. Hurst
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Daniel J. Culkin
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- klahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104
| | - Bradley P. Kropp
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Mark Barton Frank
- Oklahoma Medical Research Foundation Microarray Research Facility, Oklahoma City, OK 73104
| | - Jeanette Osban
- Oklahoma Medical Research Foundation Microarray Research Facility, Oklahoma City, OK 73104
| | - Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Hsueh-Kung Lin
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- klahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
44
|
Condomines M, Hose D, Rème T, Requirand G, Hundemer M, Schoenhals M, Goldschmidt H, Klein B. Gene expression profiling and real-time PCR analyses identify novel potential cancer-testis antigens in multiple myeloma. THE JOURNAL OF IMMUNOLOGY 2009; 183:832-40. [PMID: 19542363 DOI: 10.4049/jimmunol.0803298] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer-testis (CT) Ags are attractive targets for immunotherapeutic strategies since they are aberrantly expressed in malignant cells and not, or in limited number, in somatic tissues, except germ cells. To identify novel CT genes in multiple myeloma, we used Affymetrix HG-U133 gene expression profiles of 5 testis, 64 primary multiple myeloma cells (MMC), and 24 normal tissue samples. A 5-filter method was developed to keep known CT genes while deleting non-CT genes. Starting from 44,928 probe sets, including probe sets for 18 previously described CT genes, we have obtained 82 genes expressed in MMC and testis and not detected in more than 6 normal tissue samples. This list includes 14 of the 18 known CT genes and 68 novel putative CT genes. Real-time RT-PCR was performed for 34 genes in 12 normal tissue samples, 5 MMC samples, and one sample of five pooled testes. It has validated the CT status of 23 of 34 genes (67%). We found one novel "testis-restricted" gene (TEX14, expression in testis and tumor only), eight "tissue-restricted" (mRNA detected in one or two nongametogenic tissues), and seven "differentially expressed" (mRNA detected in three to six nongametogenic tissues) CT genes. Further studies are warranted to determine the immunogenicity of these novel CT Ag candidates.
Collapse
Affiliation(s)
- Maud Condomines
- Centre Hospitalier Universitaire Montpellier, Institute of Research in Biotherapy, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Res Treat 2009; 120:83-93. [DOI: 10.1007/s10549-009-0378-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
|
46
|
The role of prostate specific membrane antigen and pepsinogen C tissue expression as an adjunctive method to prostate cancer diagnosis. J Urol 2008; 181:594-600. [PMID: 19084862 DOI: 10.1016/j.juro.2008.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Indexed: 11/22/2022]
Abstract
PURPOSE The diagnosis of prostate cancer in men with persistently increased prostate specific antigen after a negative prostate biopsy has become a great challenge for urologists and pathologists. We analyzed the diagnostic value of 6 genes in the tissue of patients with prostate cancer. MATERIALS AND METHODS The study was comprised of 50 patients with localized disease who underwent radical prostatectomy. Gene selection was based on a previous microarray analysis. Among 4,147 genes with different expressions between 2 pools of patients 6 genes (PSMA, TMEFF2, GREB1, TH1L, IgH3 and PGC) were selected. These genes were tested for diagnostic value using the quantitative reverse transcription polymerase chain reaction method. Initially malignant tissue samples from 33 patients were analyzed and in the second part of the study we analyzed benign tissue samples from the other 17 patients with prostate cancer. The control group was comprised of tissue samples of patients with benign prostatic hyperplasia. RESULTS Analysis of malignant prostatic tissue demonstrated that prostate specific membrane antigen was over expressed (mean 9 times) and pepsinogen C was under expressed (mean 1.3 x 10(-4) times) in all cases compared to benign prostatic hyperplasia. The other 4 tested genes showed a variable expression pattern not allowing for differentiation between benign and malignant cases. When we tested these results in the benign prostate tissues from patients with cancer, pepsinogen C maintained the expression pattern. In terms of prostate specific membrane antigen, despite over expression in most cases (mean 12 times), 2 cases (12%) presented with under expression. CONCLUSIONS Pepsinogen C tissue expression may constitute a powerful adjunctive method to prostate biopsy in the diagnosis of prostate cancer cases.
Collapse
|
47
|
Zhao BJ, Tan SN, Cui Y, Sun DG, Ma X. Aberrant promoter methylation of the TPEF gene in esophageal squamous cell carcinoma. Dis Esophagus 2008; 21:582-8. [PMID: 19040536 DOI: 10.1111/j.1442-2050.2007.00808.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant methylation of tumor suppressor genes plays an important role in the development of esophageal squamous cell carcinoma (ESCC). The purpose of the present study was to identify the epigenetic changes in ESCC. Methylation-sensitive arbitrarily primed polymerase chain reaction (MS AP-PCR) analysis was used on 22 matched ESCC tumors and adjacent normal tissues. Through this screen we identified a frequently methylated fragment that showed a high homology to the 5'-CpG island of the gene encoding a transmembrane protein containing epidermal growth factor and follistatin domains (TPEF). The methylation status of the TPEF gene was then detected by bisulfite sequencing and the levels of TPEF mRNA were detected by RT-PCR. In addition, the effects of a methylation inhibitor 5-aza-2'-deoxycytidine on TPEF mRNA expression was determined in cells of ESCC cell lines. Hypermethylation of the 5'-CpG island of TPEF was found in 12 of 22 (54.5%) primary tumors. Reverse transcription PCR analysis demonstrated that TPEF mRNA expression was significantly lower in tumors than in adjacent normal tissues, which is associated with promoter hypermethylation. In addition, treatment of ESCC cell lines with 5-aza-2'-deoxycytidine led to re-expression of the TPEF transcript. In conclusion, we observed promoter of TPEF gene is frequently hpermethylated, and is associated with the loss of TPEF mRNA expression in ESCC samples. Promoter hypermethylation of TPEF gene may play a role in the development of ESCC.
Collapse
Affiliation(s)
- B-J Zhao
- Department of Genetics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
48
|
Abstract
Early detection of prostate cancer (PCa) and advances in hormonal and chemotherapy treatments have provided great clinical benefits to patients with early stages of the disease. However, a significant proportion of patients still progress to advanced, metastatic disease, for which no effective therapies are available. Therefore, there is a critical need for new treatment modalities, ideally targeted specifically to prostate cancer cells. The recent clinical and commercial successes of monoclonal antibodies (MAbs) have made them the most rapidly expanding class of therapeutics being developed for many disease indications, including cancer. PCa is well suited for antibody-based therapy due to the size and location of recurrent and metastatic tumors, and the lack of necessity to avoid targeting the normal prostate, a nonessential organ. These properties have fostered interest in the development and clinical evaluation of therapeutic MAbs directed to both well established and newly discovered targets in PCa. MAbs directed to established targets include those approved for other solid tumors, including anti-human epidermal growth factor receptor-2 (HER2) MAb trastuzumab, anti-epidermal growth factor receptor (EGFR) MAbs cetuximab and panitumumab, and the antivascular endothelial growth factor (VEGF) MAb bevacizumab. Genomics efforts have yielded a large number of novel, clinically relevant targets in PCa with the desirable expression profiling in tumor and normal tissues, and with an implicated role in tumor growth and spread. Growing efforts are directed to the development of naked or payload-conjugated therapeutic antibodies to these targets, and a variety of MAb products are currently progressing through preclinical and various stages of clinical development. The clinical experience with some of the commercialized MAb products points out specific challenges in conducting clinical trials with targeted therapy in PCa.
Collapse
Affiliation(s)
- A Jakobovits
- Agensys Inc., 1545 17th Street, Santa Monica, CA 90404, USA.
| |
Collapse
|
49
|
Elahi A, Zhang L, Yeatman TJ, Gery S, Sebti S, Shibata D. HPP1-mediated tumor suppression requires activation of STAT1 pathways. Int J Cancer 2007; 122:1567-72. [DOI: 10.1002/ijc.23202] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Ali N, Knaüper V. Phorbol Ester-induced Shedding of the Prostate Cancer Marker Transmembrane Protein with Epidermal Growth Factor and Two Follistatin Motifs 2 Is Mediated by the Disintegrin and Metalloproteinase-17. J Biol Chem 2007; 282:37378-88. [DOI: 10.1074/jbc.m702170200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|