1
|
Saykali B, Tran AD, Cornwell JA, Caldwell MA, Sangsari PR, Morgan NY, Kruhlak MJ, Cappell SD, Ruiz S. Lineage-specific CDK activity dynamics characterize early mammalian development. Cell Rep 2025; 44:115558. [PMID: 40220290 PMCID: PMC12070373 DOI: 10.1016/j.celrep.2025.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/27/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate proliferation dynamics and cell fate in response to extracellular inputs. It remains largely unknown how CDK activity fluctuates and influences cell commitment during early mammalian development. Here, we generated a mouse model expressing a CDK translocation reporter that enabled quantification of CDK activity in live single cells. By examining pre- and post-implantation mouse embryos at different stages, we observed a progressive decrease in CDK activity in cells from the trophectoderm (TE) prior to implantation. This drop seems to correlate with the available levels of ICM-derived FGF4 as CDK activity downregulation is rescued by exogenous FGF4. Furthermore, we showed that cell fate decisions in the pre-implantation embryo are not determined by the establishment of oscillatory CDK activity or overall changes in CDK activity. Finally, we uncovered the existence of conserved regulatory mechanisms in mammals by revealing lineage-specific regulation of CDK activity in TE-like human cells.
Collapse
Affiliation(s)
- Bechara Saykali
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andy D Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James A Cornwell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew A Caldwell
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paniz Rezvan Sangsari
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Lanto J, Vehlken MMN, Abramenko V, Storch A, Markert F. Hyperoxia shows duration-dependent effects on the lengths of cell cycle phases in fetal cortical neural stem cells. Front Cell Dev Biol 2025; 13:1546131. [PMID: 39936031 PMCID: PMC11811091 DOI: 10.3389/fcell.2025.1546131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Fetal neural stem cells (NSCs) physiologically reside under low-oxygen conditions (1%-5% of tissue pO2), but are often transferred and maintained under atmospheric oxygen levels of 21% pO2 (hyperoxia) for in vitro investigations. These altered oxygen conditions lead to adaptive changes in NSCs which complicate the interpretation of in vitro data. However, the underlying adaption dynamics remain largely enigmatic. Here we investigated short-term hyperoxia effects (5 days in 3% pO2 followed by 2 days in 21% pO2) in comparison to continuous hyperoxia effects (7 days in 21% pO2) and physioxic control (7 days in 3% pO2). We utilized cortical NSCs to analyze the cell cycle phases by flow cytometry and cumulative BrdU incorporation assay. NSCs showed a severe reduction of cell proliferation when cultivated under continuous hyperoxia, but no changes after short-term hyperoxia. Subsequent cell cycle analysis as assessed by flow cytometry revealed a clear shift of NSCs from G0/G1-phase towards S- or G2/M-phase after both continuous and short-term hyperoxia. However, while cell cycle length was dramatically reduced by short-term hyperoxia, it was increased during continuous hyperoxia. Taken together, our results demonstrate the beneficial effect of physioxia for expanding NSCs in vitro and reveal differential effects of short-term hyperoxia compared to continuous hyperoxia.
Collapse
Affiliation(s)
- Jennifer Lanto
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Franz Markert
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Luo Y, Yu P, Liu J. The efficiency of stem cell differentiation into functional beta cells for treating insulin-requiring diabetes: Recent advances and current challenges. Endocrine 2024; 86:1-14. [PMID: 38730069 DOI: 10.1007/s12020-024-03855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
In recent years, the potential of stem cells (SCs) to differentiate into various types of cells, including β-cells, has led to a significant boost in development. The efficiency of this differentiation process and the functionality of the cells post-transplantation are crucial factors for the success of stem cell therapy in diabetes. Herein, this article reviews the current advances and challenges faced by stem cell differentiation into functional β-cells for diabetes treatment. In vitro, researchers have sought to enhance the differentiation efficiency of functional β-cells by mimicking the normal pancreatic development process, using gene manipulation, pharmacological and culture conditions stimulation, three-dimensional (3D) and organoid culture, or sorting for functional β-cells based on mature islet cell markers. Furthermore, in vivo studies have also looked at suitable transplantation sites, the enhancement of the transplantation microenvironment, immune modulation, and vascular function reconstruction to improve the survival rate of functional β-cells, thereby enhancing the treatment of diabetes. Despite these advancements, developing stem cells to produce functional β-cells for efficacious diabetes treatment is a continuous research endeavor requiring significant multidisciplinary collaboration, for the stem-cell-derived beta cells to evolve into an effective cellular therapy.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Kurashima K, Kamikawa Y, Tsubouchi T. Embryonic stem cells maintain high origin activity and slow forks to coordinate replication with cell cycle progression. EMBO Rep 2024; 25:3757-3776. [PMID: 39054377 PMCID: PMC11387781 DOI: 10.1038/s44319-024-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Embryonic stem (ES) cells are pluripotent stem cells that can produce all cell types of an organism. ES cells proliferate rapidly and are thought to experience high levels of intrinsic replication stress. Here, by investigating replication fork dynamics in substages of S phase, we show that mammalian pluripotent stem cells maintain a slow fork speed and high active origin density throughout the S phase, with little sign of fork pausing. In contrast, the fork speed of non-pluripotent cells is slow at the beginning of S phase, accompanied by increased fork pausing, but thereafter fork pausing rates decline and fork speed rates accelerate in an ATR-dependent manner. Thus, replication fork dynamics within the S phase are distinct between ES and non-ES cells. Nucleoside addition can accelerate fork speed and reduce origin density. However, this causes miscoordination between the completion of DNA replication and cell cycle progression, leading to genome instability. Our study indicates that fork slowing in the pluripotent stem cells is an integral aspect of DNA replication.
Collapse
Affiliation(s)
- Kiminori Kurashima
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yasunao Kamikawa
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomomi Tsubouchi
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| |
Collapse
|
5
|
Saykali B, Tran AD, Cornwell JA, Caldwell MA, Sangsari PR, Morgan NY, Kruhlak MJ, Cappell SD, Ruiz S. Lineage-specific CDK activity dynamics characterize early mammalian development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599098. [PMID: 39372752 PMCID: PMC11451597 DOI: 10.1101/2024.06.14.599098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cyclin-dependent kinases (CDK) are key regulatory enzymes that regulate proliferation dynamics and cell fate in response to extracellular inputs. It remains largely unknown how CDK activity fluctuates and influences cell commitment in vivo during early mammalian development. Here, we generated a transgenic mouse model expressing a CDK kinase translocation reporter (KTR) that enabled quantification of CDK activity in live single cells. By examining pre- and post-implantation mouse embryos at different stages, we observed a progressive decrease in CDK activity in cells from the trophectoderm (TE) prior to implantation. This drop correlated with the establishment of an FGF4-dependent signaling gradient through the embryonic-abembryonic axis. Furthermore, we showed that CDK activity levels do not determine cell fate decisions during pre-implantation development. Finally, we uncovered the existence of conserved regulatory mechanisms in mammals by revealing lineage-specific regulation of CDK activity in TE-like human cells.
Collapse
Affiliation(s)
- Bechara Saykali
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Andy D. Tran
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - James A. Cornwell
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | | | - Paniz Rezvan Sangsari
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y. Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, CCR, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
- Lead contact:
| |
Collapse
|
6
|
Saha D, Animireddy S, Bartholomew B. The SWI/SNF ATP-dependent chromatin remodeling complex in cell lineage priming and early development. Biochem Soc Trans 2024; 52:603-616. [PMID: 38572912 PMCID: PMC11088921 DOI: 10.1042/bst20230416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| |
Collapse
|
7
|
Xiao T, Eze UC, Charruyer-Reinwald A, Weisenberger T, Khalifa A, Abegaze B, Schwab GK, Elsabagh RH, Parenteau TR, Kochanowski K, Piper M, Xia Y, Cheng JB, Cho RJ, Ghadially R. Short cell cycle duration is a phenotype of human epidermal stem cells. Stem Cell Res Ther 2024; 15:76. [PMID: 38475896 PMCID: PMC10935907 DOI: 10.1186/s13287-024-03670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND A traditional view is that stem cells (SCs) divide slowly. Meanwhile, both embryonic and pluripotent SCs display a shorter cell cycle duration (CCD) in comparison to more committed progenitors (CPs). METHODS We examined the in vitro proliferation and cycling behavior of somatic adult human cells using live cell imaging of passage zero keratinocytes and single-cell RNA sequencing. RESULTS We found two populations of keratinocytes: those with short CCD and protracted near exponential growth, and those with long CCD and terminal differentiation. Applying the ergodic principle, the comparative numbers of cycling cells in S phase in an enriched population of SCs confirmed a shorter CCD than CPs. Further, analysis of single-cell RNA sequencing of cycling adult human keratinocyte SCs and CPs indicated a shortening of both G1 and G2M phases in the SC. CONCLUSIONS Contrary to the pervasive paradigm, SCs progress through cell cycle more quickly than more differentiated dividing CPs. Thus, somatic human adult keratinocyte SCs may divide infrequently, but divide rapidly when they divide. Additionally, it was found that SC-like proliferation persisted in vitro.
Collapse
Affiliation(s)
- Tong Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Ugomma C Eze
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
| | - Alex Charruyer-Reinwald
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Tracy Weisenberger
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Ayman Khalifa
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Brook Abegaze
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
| | - Gabrielle K Schwab
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Rasha H Elsabagh
- Immunology Department, Animal Health Research Institute (AHRI), Giza, Egypt
| | | | - Karl Kochanowski
- Department of Pharmaceutical Chemistry, UC San Francisco, San Francisco, CA, USA
| | - Merisa Piper
- Department of Plastic Surgery, UC San Francisco, San Francisco, CA, USA
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jeffrey B Cheng
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA
| | - Raymond J Cho
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA
| | - Ruby Ghadially
- Department of Dermatology, San Francisco Co-Director Epithelial Section Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, 1700 Owens Street, San Francisco, CA, 94158, USA.
- Department of Dermatology, VA Medical Center, San Francisco, CA, USA.
| |
Collapse
|
8
|
Heo G, Lee SH, Kim JD, Lee GH, Sim JM, Zhou D, Guo J, Cui XS. GRP78 acts as a cAMP/PKA signaling modulator through the MC4R pathway in porcine embryonic development. FASEB J 2023; 37:e23274. [PMID: 37917004 DOI: 10.1096/fj.202301356r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/23/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Glucose-regulated protein 78 (GRP78) binds to and stabilizes melanocortin 4 receptor (MC4R), which activates protein kinase A (PKA) by regulating G proteins. GRP78 is primarily used as a marker for endoplasmic reticulum stress; however, its other functions have not been well studied. Therefore, in this study, we aimed to investigate the function of GRP78 during porcine embryonic development. The developmental quality of porcine embryos, expression of cell cycle proteins, and function of mitochondria were evaluated by inhibiting the function of GRP78. Porcine oocytes were activated to undergo parthenogenesis, and blastocysts were obtained after 7 days of in vitro culture. GRP78 function was inhibited by adding 20 μM HA15 to the in vitro culture medium. The inhibition in GRP78 function led to a decrease in G proteins release, which subsequently downregulated the cyclic adenosine monophosphate (cAMP)/PKA pathway. Ultimately, inhibition of GRP78 function induced the inhibition of CDK1 and cyclin B expression and disruption of the cell cycle. In addition, inhibition of GRP78 function regulated DRP1 and SIRT1 expression, resulting in mitochondrial dysfunction. This study provides new insights into the role of GRP78 in porcine embryonic development, particularly its involvement in the regulation of the MC4R pathway and downstream cAMP/PKA signaling. The results suggest that the inhibition of GRP78 function in porcine embryos by HA15 treatment may have negative effects on embryo quality and development. This study also demonstrated that GRP78 plays a crucial role in the functioning of MC4R, which releases the G protein during porcine embryonic development.
Collapse
Affiliation(s)
- Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
9
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
10
|
Illi B, Nasi S. Myc beyond Cancer: Regulation of Mammalian Tissue Regeneration. PATHOPHYSIOLOGY 2023; 30:346-365. [PMID: 37606389 PMCID: PMC10443299 DOI: 10.3390/pathophysiology30030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
Myc is one of the most well-known oncogenes driving tumorigenesis in a wide variety of tissues. From the brain to blood, its deregulation derails physiological pathways that grant the correct functioning of the cell. Its action is carried out at the gene expression level, where Myc governs basically every aspect of transcription. Indeed, in addition to its role as a canonical, chromatin-bound transcription factor, Myc rules RNA polymerase II (RNAPII) transcriptional pause-release, elongation and termination and mRNA capping. For this reason, it is evident that minimal perturbations of Myc function mirror malignant cell behavior and, consistently, a large body of literature mainly focuses on Myc malfunctioning. In healthy cells, Myc controls molecular mechanisms involved in pivotal functions, such as cell cycle (and proliferation thereof), apoptosis, metabolism and cell size, angiogenesis, differentiation and stem cell self-renewal. In this latter regard, Myc has been found to also regulate tissue regeneration, a hot topic in the research fields of aging and regenerative medicine. Indeed, Myc appears to have a role in wound healing, in peripheral nerves and in liver, pancreas and even heart recovery. Herein, we discuss the state of the art of Myc's role in tissue regeneration, giving an overview of its potent action beyond cancer.
Collapse
Affiliation(s)
- Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Nasi
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Aranda S, Alcaine-Colet A, Ballaré C, Blanco E, Mocavini I, Sparavier A, Vizán P, Borràs E, Sabidó E, Di Croce L. Thymine DNA glycosylase regulates cell-cycle-driven p53 transcriptional control in pluripotent cells. Mol Cell 2023:S1097-2765(23)00517-8. [PMID: 37506700 DOI: 10.1016/j.molcel.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Cell cycle progression is linked to transcriptome dynamics and variations in the response of pluripotent cells to differentiation cues, mostly through unknown determinants. Here, we characterized the cell-cycle-associated transcriptome and proteome of mouse embryonic stem cells (mESCs) in naive ground state. We found that the thymine DNA glycosylase (TDG) is a cell-cycle-regulated co-factor of the tumor suppressor p53. Furthermore, TDG and p53 co-bind ESC-specific cis-regulatory elements and thereby control transcription of p53-dependent genes during self-renewal. We determined that the dynamic expression of TDG is required to promote the cell-cycle-associated transcriptional heterogeneity. Moreover, we demonstrated that transient depletion of TDG influences cell fate decisions during the early differentiation of mESCs. Our findings reveal an unanticipated role of TDG in promoting molecular heterogeneity during the cell cycle and highlight the central role of protein dynamics for the temporal control of cell fate during development.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona 08025, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
12
|
INO80 Is Required for the Cell Cycle Control, Survival, and Differentiation of Mouse ESCs by Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms232315402. [PMID: 36499727 PMCID: PMC9740483 DOI: 10.3390/ijms232315402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Precise regulation of the cell cycle of embryonic stem cells (ESCs) is critical for their self-maintenance and differentiation. The cell cycle of ESCs differs from that of somatic cells and is different depending on the cell culture conditions. However, the cell cycle regulation in ESCs via epigenetic mechanisms remains unclear. Here, we showed that the ATP-dependent chromatin remodeler Ino80 regulates the cell cycle genes in ESCs under primed conditions. Ino80 loss led to a significantly extended length of the G1-phase in ESCs grown under primed culture conditions. Ino80 directly bound to the transcription start site and regulated the expression of cell cycle-related genes. Furthermore, Ino80 loss induced cell apoptosis. However, the regulatory mechanism of Ino80 in differentiating ESC cycle slightly differed; an extended S-phase was detected in differentiating inducible Ino80 knockout ESCs. RNA-seq analysis of differentiating ESCs revealed that the expression of genes associated with organ development cell cycle is persistently altered in Ino80 knockout cells, suggesting that cell cycle regulation by Ino80 is not limited to undifferentiated ESCs. Therefore, our study establishes the function of Ino80 in ESC cycle via transcriptional regulation, at least partly. Moreover, this Ino80 function may be universal to other cell types.
Collapse
|
13
|
Nakanoh S, Kadiwala J, Pinte L, Morell CM, Lenaerts AS, Vallier L. Simultaneous depletion of RB, RBL1 and RBL2 affects endoderm differentiation of human embryonic stem cells. PLoS One 2022; 17:e0269122. [PMID: 36413521 PMCID: PMC9681086 DOI: 10.1371/journal.pone.0269122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
RB is a well-known cell cycle regulator controlling the G1 checkpoint. Previous reports have suggested that it can influence cell fate decisions not only by regulating cell proliferation and survival but also by interacting with transcription factors and epigenetic modifiers. However, the functional redundancy of RB family proteins (RB, RBL1 and RBL2) renders it difficult to investigate their roles during early development, especially in human. Here, we address this problem by generating human embryonic stem cells lacking RB family proteins. To achieve this goal, we first introduced frameshift mutations in RBL1 and RBL2 genes using the CRISPR/Cas9 technology, and then integrated the shRNA-expression cassette to knockdown RB upon tetracycline treatment. The resulting RBL1/2_dKO+RB_iKD cells remain pluripotent and efficiently differentiate into the primary germ layers in vitro even in the absence of the RB family proteins. In contrast, we observed that subsequent differentiation into foregut endoderm was impaired without the expression of RB, RBL1 and RBL2. Thus, it is suggested that RB proteins are dispensable for the maintenance and acquisition of cell identities during early development, but they are essential to generate advanced derivatives after the formation of primary germ layers. These results also indicate that our RBL1/2_dKO+RB_iKD cell lines are useful to depict the detailed molecular roles of RB family proteins in the maintenance and generation of various cell types accessible from human pluripotent stem cells.
Collapse
Affiliation(s)
- Shota Nakanoh
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Juned Kadiwala
- National Institute for Health and Care Research Cambridge Biomedical Research Centre Human Induced Pluripotent Stem Cells Core Facility, University of Cambridge, Cambridge, United Kingdom
| | - Laetitia Pinte
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Carola Maria Morell
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - An-Sofie Lenaerts
- National Institute for Health and Care Research Cambridge Biomedical Research Centre Human Induced Pluripotent Stem Cells Core Facility, University of Cambridge, Cambridge, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
14
|
Minchiotti G, D’Aniello C, Fico A, De Cesare D, Patriarca EJ. Capturing Transitional Pluripotency through Proline Metabolism. Cells 2022; 11:cells11142125. [PMID: 35883568 PMCID: PMC9323356 DOI: 10.3390/cells11142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
In this paper, we summarize the current knowledge of the role of proline metabolism in the control of the identity of Embryonic Stem Cells (ESCs). An imbalance in proline metabolism shifts mouse ESCs toward a stable naïve-to-primed intermediate state of pluripotency. Proline-induced cells (PiCs), also named primitive ectoderm-like cells (EPLs), are phenotypically metastable, a trait linked to a rapid and reversible relocalization of E-cadherin from the plasma membrane to intracellular membrane compartments. The ESC-to-PiC transition relies on the activation of Erk and Tgfβ/Activin signaling pathways and is associated with extensive remodeling of the transcriptome, metabolome and epigenome. PiCs maintain several properties of naïve pluripotency (teratoma formation, blastocyst colonization and 3D gastruloid development) and acquire a few traits of primed cells (flat-shaped colony morphology, aerobic glycolysis metabolism and competence for primordial germ cell fate). Overall, the molecular and phenotypic features of PiCs resemble those of an early-primed state of pluripotency, providing a robust model to study the role of metabolic perturbations in pluripotency and cell fate decisions.
Collapse
|
15
|
G1/S restriction point coordinates phasic gene expression and cell differentiation. Nat Commun 2022; 13:3696. [PMID: 35760790 PMCID: PMC9237072 DOI: 10.1038/s41467-022-31101-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/31/2022] [Indexed: 01/19/2023] Open
Abstract
Pluripotent embryonic stem cells have a unique cell cycle structure with a suppressed G1/S restriction point and little differential expression across the cell cycle phases. Here, we evaluate the link between G1/S restriction point activation, phasic gene expression, and cellular differentiation. Expression analysis reveals a gain in phasic gene expression across lineages between embryonic days E7.5 and E9.5. Genetic manipulation of the G1/S restriction point regulators miR-302 and P27 respectively accelerates or delays the onset of phasic gene expression in mouse embryos. Loss of miR-302-mediated p21 or p27 suppression expedites embryonic stem cell differentiation, while a constitutive Cyclin E mutant blocks it. Together, these findings uncover a causal relationship between emergence of the G1/S restriction point with a gain in phasic gene expression and cellular differentiation.
Collapse
|
16
|
Guo YL, Gurung C, Fendereski M, Huang F. Dicer and PKR as Novel Regulators of Embryonic Stem Cell Fate and Antiviral Innate Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2259-2266. [PMID: 35577384 PMCID: PMC9179006 DOI: 10.4049/jimmunol.2200042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 05/17/2023]
Abstract
Embryonic stem cells (ESCs) represent a unique cell population in the blastocyst stage embryo. They have been intensively studied as a promising cell source for regenerative medicine. Recent studies have revealed that both human and mouse ESCs are deficient in expressing IFNs and have attenuated inflammatory responses. Apparently, the ability to express IFNs and respond to certain inflammatory cytokines is not "innate" to ESCs but rather is developmentally acquired by somatic cells during differentiation. Accumulating evidence supports a hypothesis that the attenuated innate immune response may serve as a protective mechanism allowing ESCs to avoid immunological cytotoxicity. This review describes our current understanding of the molecular basis that shapes the immune properties of ESCs. We highlight the recent findings on Dicer and dsRNA-activated protein kinase R as novel regulators of ESC fate and antiviral immunity and discuss how ESCs use alternative mechanisms to accommodate their stem cell properties.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Chandan Gurung
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Mona Fendereski
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Faqing Huang
- Chemistry and Biochemistry Program, University of Southern Mississippi, Hattiesburg, MS
| |
Collapse
|
17
|
Herchcovici Levy S, Feldman Cohen S, Arnon L, Lahav S, Awawdy M, Alajem A, Bavli D, Sun X, Buganim Y, Ram O. Esrrb is a cell-cycle-dependent associated factor balancing pluripotency and XEN differentiation. Stem Cell Reports 2022; 17:1334-1350. [PMID: 35594859 PMCID: PMC9214067 DOI: 10.1016/j.stemcr.2022.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Cell cycle and differentiation decisions are linked; however, the underlying principles that drive these decisions are unclear. Here, we combined cell-cycle reporter system and single-cell RNA sequencing (scRNA-seq) profiling to study the transcriptomes of embryonic stem cells (ESCs) in the context of cell-cycle states and differentiation. By applying retinoic acid, to G1 and G2/M ESCs, we show that, while both populations can differentiate toward epiblast stem cells (EpiSCs), only G2/M ESCs could differentiate into extraembryonic endoderm cells. We identified Esrrb, a pluripotency factor that is upregulated during G2/M, as a driver of extraembryonic endoderm stem cell (XEN) differentiation. Furthermore, enhancer chromatin states based on wild-type (WT) and ESRRB knockout (KO) ESCs show association of ESRRB with XEN poised enhancers. G1 cells overexpressing Esrrb allow ESCs to produce XENs, while ESRRB-KO ESCs lost their potential to differentiate into XEN. Overall, this study reveals a vital link between Esrrb and cell-cycle states during the exit from pluripotency.
Collapse
Affiliation(s)
- Sapir Herchcovici Levy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Sharon Feldman Cohen
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Lee Arnon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Shlomtzion Lahav
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Muhammad Awawdy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Adi Alajem
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Danny Bavli
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Xue Sun
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | - Oren Ram
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
18
|
Glover HJ, Shparberg RA, Morris MB. L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2490:11-24. [PMID: 35486235 DOI: 10.1007/978-1-0716-2281-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) can be grown under a variety of culture conditions as discrete cell states along the pluripotency continuum, ranging from the least mature "ground state" to being "primed" to differentiate. Cells along this continuum are demarcated by differences in gene expression, X chromosome inactivation, ability to form chimeras and epigenetic marks. We have developed a protocol to differentiate "naïve" mESCs to a "partially primed" state by adding the amino acid L-proline to self-renewal medium. These cells express the primitive ectoderm markers Dnmt3b and Fgf5, and are thus called early primitive ectoderm-like (EPL) cells. In addition to changes in gene expression, these cells undergo a morphological change to flattened, dispersed colonies, have an increased proliferation rate, and a predisposition to neural fate. EPL cells can be used to study the cell states along the pluripotency continuum, peri-implantation embryogenesis, and as a starting point for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Hannah J Glover
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Rachel A Shparberg
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Morris
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
19
|
Zaveri L, Dhawan J. Inducible expression of Oct-3/4 reveals synergy with Klf4 in targeting Cyclin A2 to enhance proliferation during early reprogramming. Biochem Biophys Res Commun 2022; 587:29-35. [PMID: 34864392 DOI: 10.1016/j.bbrc.2021.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
During reprogramming of somatic cells, heightened proliferation is one of the earliest changes observed. While other early events such as mesenchymal-to-epithelial transition have been well studied, the mechanisms by which the cell cycle switches from a slow cycling state to a faster cycling state are still incompletely understood. To investigate the role of Oct-3/4 in this early transition, we created a 4-Hydroxytamoxifen (OHT) dependent Oct-3/4 Estrogen Receptor fusion (OctER). We confirmed that OctER can substitute for Oct-3/4 to reprogram mouse embryonic fibroblasts to a pluripotent state. During the early stages of reprograming, Oct-3/4 and Klf4 individually did not affect cell proliferation but in combination hastened the cell cycle. Using OctER + Klf4, we found that proliferative enhancement is OHT dose-dependent, suggesting that OctER is the driver of this transition. We identified Cyclin A2 as a likely target of Oct-3/4 + Klf4. In mESC, Klf4 and Oct-3/4 bind ∼100bp upstream of Cyclin A2 CCRE, suggesting a potential regulatory role. Using inducible OctER, we show a dose-dependent induction of Cyclin A2 promoter-reporter activity. Taken together, our results suggest that Cyclin A2 is a key early target during reprogramming, and support the view that a rapid cell cycle assists the transition to pluripotency.
Collapse
Affiliation(s)
- Lamuk Zaveri
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, 560068, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, 560068, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.
| |
Collapse
|
20
|
Sánchez-Botet A, Quandt E, Masip N, Escribá R, Novellasdemunt L, Gasa L, Li VSW, Raya Á, Clotet J, Ribeiro MPC. Atypical cyclin P regulates cancer cell stemness through activation of the WNT pathway. Cell Oncol (Dordr) 2021; 44:1273-1286. [PMID: 34604945 PMCID: PMC8648692 DOI: 10.1007/s13402-021-00636-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Cancer stem cells represent a cancer cell subpopulation that has been found to be associated with metastasis and chemoresistance. Therefore, it is vital to identify mechanisms regulating cancer stemness. Previously, we have shown that the atypical cyclin P (CCNP), also known as CNTD2, is upregulated in lung and colorectal cancers and is associated with a worse clinical prognosis. Given that other cyclins have been implicated in pluripotency regulation, we hypothesized that CCNP may also play a role in cancer stemness. METHODS Cell line-derived spheroids, ex vivo intestinal organoid cultures and induced-pluripotent stem cells (iPSCs) were used to investigate the role of CCNP in stemness. The effects of CCNP on cancer cell stemness and the expression of pluripotency markers and ATP-binding cassette (ABC) transporters were evaluated using Western blotting and RT-qPCR assays. Cell viability was assessed using a MTT assay. The effects of CCNP on WNT targets were monitored by RNA-seq analysis. Data from publicly available web-based resources were also analyzed. RESULTS We found that CCNP increases spheroid formation in breast, lung and colorectal cancers, and upregulates the expression of stemness (CD44, CD133) and pluripotency (SOX2, OCT4, NANOG) markers. In addition, we found that CCNP promotes resistance to anticancer drugs and induces the expression of multidrug resistance ABC transporters. Our RNA-seq data indicate that CCNP activates the WNT pathway, and that inhibition of this pathway abrogates the increase in spheroid formation promoted by CCNP. Finally, we found that CCNP knockout decreases OCT4 expression in iPSCs, further supporting the notion that CCNP is involved in stemness regulation. CONCLUSION Our results reveal CCNP as a novel player in stemness and as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Abril Sánchez-Botet
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Eva Quandt
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Núria Masip
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Rubén Escribá
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain
- Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Laura Novellasdemunt
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Laura Gasa
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Ángel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain
- Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Josep Clotet
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain.
| | - Mariana P C Ribeiro
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, 08195, Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
21
|
Abdulhasan M, Ruden X, You Y, Harris SM, Ruden DM, Awonuga AO, Alvero A, Puscheck EE, Rappolee DA. Using Live Imaging and FUCCI Embryonic Stem Cells to Rank DevTox Risks: Adverse Growth Effects of PFOA Compared With DEP Are 26 Times Faster, 1,000 Times More Sensitive, and 13 Times Greater in Magnitude. FRONTIERS IN TOXICOLOGY 2021; 3:709747. [PMID: 35295126 PMCID: PMC8915856 DOI: 10.3389/ftox.2021.709747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Fluorescent ubiquitination-based cell cycle indicator (FUCCI) embryonic stem cells (ESCs), which fluoresce green during the S-G2-M phases, generate an S-shaped curve for the accumulation of cells during normal stemness (NS) culture with leukemia-inhibitory factor (LIF). Since it was hypothesized that a culture of ESCs was heterogeneous in the cell cycle, it was expected that increased S-G2-M-phases of the cell cycle would make an S-shaped curve parallel to the accumulation curve. Unexpectedly, it was observed that the fraction of FUCCI ESCs in green decreases over time to a nadir at ∼24 h after previous feeding and then rapidly enters S-G2-M-phases after medium change. G1 delay by infrequent medium change is a mild stress, as it does not affect growth significantly when frequency is increased to 12 h. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) were used as examples of members of the per- and polyfluoroalkyl substances (PFAS) and phthalate families of chemicals, respectively. Two adverse outcomes were used to compare dose- and time-dependent effects of PFOA and DEP. The first was cell accumulation assay by time-lapse confluence measurements, largely at Tfinal/T74 h. The second was by quantifying dominant toxicant stress shown by the suppression of mild stress that creates a green fed/unfed peak. In terms of speed, PFOA is 26 times faster than DEP for producing a time-dependent LOAEL dose at 100 uM (that is, 2 h for PFOA and 52 h for DEP). PFOA has 1000-fold more sensitive LOAEL doses than DEP for suppressing ESC accumulation (confluence) at day 3 and day 2. There were two means to compare the magnitude of the growth suppression of PFOA and DEP. For the suppression of the accumulation of cells measured by confluence at Tfinal/T74h, there was a 13-fold suppression at the highest dose of PFOA > the highest dose of DEP. For the suppression of entry into the cell cycle after the G1 phase by stress on day 1 and 2, there is 10-fold more suppression by PFOA than DEP. The data presented here suggest that FUCCI ESCs can assay the suppression of accumulated growth or predict the suppression of future growth by the suppression of fed/unfed green fluorescence peaks and that PFOA's adverse effects are faster and larger and can occur at more sensitive lower doses than DEP.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
| | - Ximena Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuan You
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Douglas M. Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Awoniyi O. Awonuga
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ayesha Alvero
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elizabeth E. Puscheck
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
- Invia Fertility Clinics, IL, Chicago, United States
| | - Daniel A. Rappolee
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
22
|
de Mey S, Dufait I, De Ridder M. Radioresistance of Human Cancers: Clinical Implications of Genetic Expression Signatures. Front Oncol 2021; 11:761901. [PMID: 34778082 PMCID: PMC8579106 DOI: 10.3389/fonc.2021.761901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although radiotherapy is given to more than 50% of cancer patients, little progress has been made in identifying optimal radiotherapy - drug combinations to improve treatment efficacy. Using molecular data from The Cancer Genome Atlas (TCGA), we extracted a total of 1016 cancer patients that received radiotherapy. The patients were diagnosed with head-and-neck (HNSC - 294 patients), cervical (CESC - 166 patients) and breast (BRCA - 549 patients) cancer. We analyzed mRNA expression patterns of 50 hallmark gene sets of the MSigDB collection, which we divided in eight categories based on a shared biological or functional process. Tumor samples were split into upregulated, neutral or downregulated mRNA expression for all gene sets using a gene set analysis (GSEA) pre-ranked analysis and assessed for their clinical relevance. We found a prognostic association between three of the eight gene set categories (Radiobiological, Metabolism and Proliferation) and overall survival in all three cancer types. Furthermore, multiple single associations were revealed in the other categories considered. To the best of our knowledge, our study is the first report suggesting clinical relevance of molecular characterization based on hallmark gene sets to refine radiation strategies.
Collapse
Affiliation(s)
- Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
Lin C, He Y, Feng Q, Xu K, Chen Z, Tao B, Li X, Xia Z, Jiang H, Cai K. Self-renewal or quiescence? Orchestrating the fate of mesenchymal stem cells by matrix viscoelasticity via PI3K/Akt-CDK1 pathway. Biomaterials 2021; 279:121235. [PMID: 34749070 DOI: 10.1016/j.biomaterials.2021.121235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
To control the fate of mesenchymal stem cells (MSCs) in a 3D environment by adjusting the mechanical parameters of MSC-loading scaffolds, is one of the hot topics in the field of regenerative biomaterials. However, a thorough understanding of the relevant MSCs behaviors affected by viscoelasticity, a dynamic physical parameter of scaffolds, is still lacking. Herein, we established an alginate hydrogel system with constant stiffness and tunable stress relaxation rate, which is a key parameter for the viscoelastic property of material. MSCs were cultured inside three groups of alginate hydrogels with various stress relaxation rates, and then RNA-seq analysis of cells was performed. Results showed that the change of stress relaxation rates of hydrogels regulated the most of the different expression genes of MSCs, which were enriched in cell proliferation-related pathways. MSCs cultured in hydrogels with fast stress relaxation rate presented a high self-renewal proliferation profile via activating phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) pathway. In contrast, a slow stress relaxation rate of hydrogels induced MSCs to enter a reversible quiescence state due to the weakened PI3K/Akt activation. Combined with a further finite element analysis, we speculated that the quiescence of MSCs could be served as a positive strategy for MSCs to deal with the matrix with a low deformation to keep stemness. Based on the results, we identified that stress relaxation rate of hydrogel was a potential physical factor of hydrogel to regulate the self-renewal or quiescence of MSCs. Thus, our findings provide a significant guiding principle for the design of MSCs-encapsulated biomaterials.
Collapse
Affiliation(s)
- Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuemin Li
- Innovation Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
24
|
Chen ACH, Peng Q, Fong SW, Lee KC, Yeung WSB, Lee YL. DNA Damage Response and Cell Cycle Regulation in Pluripotent Stem Cells. Genes (Basel) 2021; 12:1548. [PMID: 34680943 PMCID: PMC8535646 DOI: 10.3390/genes12101548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/30/2023] Open
Abstract
Pluripotent stem cells (PSCs) hold great promise in cell-based therapy because of their pluripotent property and the ability to proliferate indefinitely. Embryonic stem cells (ESCs) derived from inner cell mass (ICM) possess unique cell cycle control with shortened G1 phase. In addition, ESCs have high expression of homologous recombination (HR)-related proteins, which repair double-strand breaks (DSBs) through HR or the non-homologous end joining (NHEJ) pathway. On the other hand, the generation of induced pluripotent stem cells (iPSCs) by forced expression of transcription factors (Oct4, Sox2, Klf4, c-Myc) is accompanied by oxidative stress and DNA damage. The DNA repair mechanism of DSBs is therefore critical in determining the genomic stability and efficiency of iPSCs generation. Maintaining genomic stability in PSCs plays a pivotal role in the proliferation and pluripotency of PSCs. In terms of therapeutic application, genomic stability is the key to reducing the risks of cancer development due to abnormal cell replication. Over the years, we and other groups have identified important regulators of DNA damage response in PSCs, including FOXM1, SIRT1 and PUMA. They function through transcription regulation of downstream targets (P53, CDK1) that are involved in cell cycle regulations. Here, we review the fundamental links between the PSC-specific HR process and DNA damage response, with a focus on the roles of FOXM1 and SIRT1 on maintaining genomic integrity.
Collapse
Affiliation(s)
- Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen 518009, China;
| | - Qian Peng
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen 518009, China;
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
| | - Kai Chuen Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen 518009, China;
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China; (A.C.H.C.); (S.W.F.); (K.C.L.)
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong Shenzhen Hospital, Shenzhen 518009, China;
| |
Collapse
|
25
|
Ter Huurne M, Stunnenberg HG. G1-phase progression in pluripotent stem cells. Cell Mol Life Sci 2021; 78:4507-4519. [PMID: 33884444 PMCID: PMC8195903 DOI: 10.1007/s00018-021-03797-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 11/10/2022]
Abstract
During early embryonic development both the rapid increase in cell number and the expression of genes that control developmental decisions are tightly regulated. Accumulating evidence has indicated that these two seemingly independent processes are mechanistically intertwined. The picture that emerges from studies on the cell cycle of embryonic stem cells is one in which proteins that promote cell cycle progression prevent differentiation and vice versa. Here, we review which transcription factors and signalling pathways play a role in both maintenance of pluripotency as well as cell cycle progression. We will not only describe the mechanism behind their function but also discuss the role of these regulators in different states of mouse pluripotency. Finally, we elaborate on how canonical cell cycle regulators impact on the molecular networks that control the maintenance of pluripotency and lineage specification.
Collapse
Affiliation(s)
- Menno Ter Huurne
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands.
- Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Rivera HM, Muñoz EN, Osuna D, Florez M, Carvajal M, Gómez LA. Reciprocal Changes in miRNA Expression with Pigmentation and Decreased Proliferation Induced in Mouse B16F1 Melanoma Cells by L-Tyrosine and 5-Bromo-2'-Deoxyuridine. Int J Mol Sci 2021; 22:ijms22041591. [PMID: 33562431 PMCID: PMC7914888 DOI: 10.3390/ijms22041591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.
Collapse
Affiliation(s)
- Hernán Mauricio Rivera
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Esther Natalia Muñoz
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Daniel Osuna
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Mauro Florez
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Michael Carvajal
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Luis Alberto Gómez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
27
|
Gurung C, Fendereski M, Sapkota K, Guo J, Huang F, Guo YL. Dicer represses the interferon response and the double-stranded RNA-activated protein kinase pathway in mouse embryonic stem cells. J Biol Chem 2021; 296:100264. [PMID: 33837743 PMCID: PMC7948645 DOI: 10.1016/j.jbc.2021.100264] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated that embryonic stem cells (ESCs) are deficient in expressing type I interferons (IFN), the cytokines that play key roles in antiviral responses. However, the underlying molecular mechanisms and biological implications of this finding are poorly understood. In this study, we developed a synthetic RNA-based assay that can simultaneously assess multiple forms of antiviral responses. Dicer is an enzyme essential for RNA interference (RNAi), which is used as a major antiviral mechanism in invertebrates. RNAi activity is detected in wild-type ESCs but is abolished in Dicer knockout ESCs (D-/-ESCs) as expected. Surprisingly, D-/-ESCs have gained the ability to express IFN, which is otherwise deficient in wild-type ESCs. Furthermore, D-/-ESCs have constitutively active double-stranded RNA (dsRNA)-activated protein kinase (PKR), an enzyme that is also involved in antiviral response. D-/-ESCs show increased sensitivity to the cytotoxicity resulting from RNA transfection. The effects of dsRNA can be partly replicated with a synthetic B2RNA corresponding to the retrotransposon B2 short interspersed nuclear element. B2RNA has secondary structure features of dsRNA and accumulates in D-/-ESCs, suggesting that B2RNA could be a cellular RNA that activates PKR and contributes to the decreased cell proliferation and viability of D-/-ESCs. Treatment of D-/-ESCs with a PKR inhibitor and IFNβ-neutralizing antibodies increased cell proliferation rate and cell viability. Based on these findings, we propose that, in ESCs, Dicer acts as a repressor of antiviral responses and plays a key role in the maintenance of proliferation, viability, and pluripotency of ESCs.
Collapse
Affiliation(s)
- Chandan Gurung
- Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Mona Fendereski
- Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Krishna Sapkota
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Jason Guo
- Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Faqing Huang
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Yan-Lin Guo
- Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA.
| |
Collapse
|
28
|
Aksoy I, Rognard C, Moulin A, Marcy G, Masfaraud E, Wianny F, Cortay V, Bellemin-Ménard A, Doerflinger N, Dirheimer M, Mayère C, Bourillot PY, Lynch C, Raineteau O, Joly T, Dehay C, Serrano M, Afanassieff M, Savatier P. Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells. Stem Cell Reports 2020; 16:56-74. [PMID: 33382978 PMCID: PMC7815945 DOI: 10.1016/j.stemcr.2020.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
After reprogramming to naive pluripotency, human pluripotent stem cells (PSCs) still exhibit very low ability to make interspecies chimeras. Whether this is because they are inherently devoid of the attributes of chimeric competency or because naive PSCs cannot colonize embryos from distant species remains to be elucidated. Here, we have used different types of mouse, human, and rhesus monkey naive PSCs and analyzed their ability to colonize rabbit and cynomolgus monkey embryos. Mouse embryonic stem cells (ESCs) remained mitotically active and efficiently colonized host embryos. In contrast, primate naive PSCs colonized host embryos with much lower efficiency. Unlike mouse ESCs, they slowed DNA replication after dissociation and, after injection into host embryos, they stalled in the G1 phase and differentiated prematurely, regardless of host species. We conclude that human and non-human primate naive PSCs do not efficiently make chimeras because they are inherently unfit to remain mitotically active during colonization. Mouse ESCs are highly effective in colonizing rabbit and non-human primate embryos Rhesus monkey and human naive PSCs ineffectively colonize rabbit and monkey embryos Most rhesus/human naive PSCs differentiate prematurely upon injection into embryos Rhesus monkey PSCs stall in the G1 phase after transfer into rabbit embryos
Collapse
Affiliation(s)
- Irène Aksoy
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Cloé Rognard
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Anaïs Moulin
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Guillaume Marcy
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Etienne Masfaraud
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Florence Wianny
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Véronique Cortay
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Angèle Bellemin-Ménard
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Nathalie Doerflinger
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Manon Dirheimer
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Chloé Mayère
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Pierre-Yves Bourillot
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Cian Lynch
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Olivier Raineteau
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Thierry Joly
- ISARA-Lyon, 69007 Lyon, France; VetAgroSup, UPSP ICE, 69280 Marcy l'Etoile, France
| | - Colette Dehay
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Manuel Serrano
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Marielle Afanassieff
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Pierre Savatier
- Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
29
|
Yoo H, La H, Lee EJ, Choi HJ, Oh J, Thang NX, Hong K. ATP-Dependent Chromatin Remodeler CHD9 Controls the Proliferation of Embryonic Stem Cells in a Cell Culture Condition-Dependent Manner. BIOLOGY 2020; 9:biology9120428. [PMID: 33261017 PMCID: PMC7760864 DOI: 10.3390/biology9120428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022]
Abstract
Emerging evidence suggests that chromodomain-helicase-DNA-binding (CHD) proteins are involved in stem cell maintenance and differentiation via the coordination of chromatin structure and gene expression. However, the molecular function of some CHD proteins in stem cell regulation is still poorly understood. Herein, we show that Chd9 knockdown (KD) in mouse embryonic stem cells (ESCs) cultured in normal serum media, not in 2i-leukemia inhibitory factor (LIF) media, causes rapid cell proliferation. This is caused by transcriptional regulation related to the cell cycle and the response to growth factors. Our analysis showed that, unlike the serum cultured-Chd9 KD ESCs, the 2i-LIF-cultured-Chd9 KO ESCs displayed elevated levels of critical G1 phase regulators such as p21 and p27. Consistently, the DNA binding sites of CHD9 overlap with some transcription factor DNA motifs that are associated with genes regulating the cell cycle and growth pathways. These transcription factors include the cycle gene homology region (CHR), Arid5a, and LIN54. Collectively, our results provide new insights into CHD9-mediated gene transcription for controlling the cell cycle of ESCs.
Collapse
|
30
|
Jirawatnotai S, Dalton S, Wattanapanitch M. Role of cyclins and cyclin-dependent kinases in pluripotent stem cells and their potential as a therapeutic target. Semin Cell Dev Biol 2020; 107:63-71. [PMID: 32417217 PMCID: PMC7554155 DOI: 10.1016/j.semcdb.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/09/2023]
Abstract
Over the last 15 years connections between cell cycle control, maintenance of pluripotency, and control of cell fate decisions have been firmly established. With the emergence of powerful tools, such as highly-specific small molecule inhibitors for cyclin-dependent protein kinase (CDK) activity and single-cell imaging technologies, the mechanistic links between cyclins, CDKs and regulation in PSCs in mechanistic detail has been made possible. In this review, we discuss new developments that mechanistically link the CDK regulatory network to control of cell fate decisions, including maintenance of the pluripotent state. Overall, these findings have potential to impact the translational applications of stem cells in regenerative medicine, drug discovery and cancer treatment.
Collapse
Affiliation(s)
- Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Medical School, Mahidol University, Bangkok, 10700, Thailand
| | - Stephen Dalton
- Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, 325 Riverbend Road, The University of Georgia, Athens, GA, 30602, USA
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
31
|
Chung CYT, Lo PHY, Lee KKH. Babam2 Regulates Cell Cycle Progression and Pluripotency in Mouse Embryonic Stem Cells as Revealed by Induced DNA Damage. Biomedicines 2020; 8:biomedicines8100397. [PMID: 33050379 PMCID: PMC7600899 DOI: 10.3390/biomedicines8100397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
BRISC and BRCA1-A complex member 2 (Babam2) plays an essential role in promoting cell cycle progression and preventing cellular senescence. Babam2-deficient fibroblasts show proliferation defect and premature senescence compared with their wild-type (WT) counterpart. Pluripotent mouse embryonic stem cells (mESCs) are known to have unlimited cell proliferation and self-renewal capability without entering cellular senescence. Therefore, studying the role of Babam2 in ESCs would enable us to understand the mechanism of Babam2 in cellular aging, cell cycle regulation, and pluripotency in ESCs. For this study, we generated Babam2 knockout (Babam2−/−) mESCs to investigate the function of Babam2 in mESCs. We demonstrated that the loss of Babam2 in mESCs leads to abnormal G1 phase retention in response to DNA damage induced by gamma irradiation or doxorubicin treatments. Key cell cycle regulators, CDC25A and CDK2, were found to be degraded in Babam2−/− mESCs following gamma irradiation. In addition, Babam2−/− mESCs expressed p53 strongly and significantly longer than in control mESCs, where p53 inhibited Nanog expression and G1/S cell cycle progression. The combined effects significantly reduced developmental pluripotency in Babam2−/− mESCs. In summary, Babam2 maintains cell cycle regulation and pluripotency in mESCs in response to induced DNA damage.
Collapse
Affiliation(s)
- Cheuk Yiu Tenny Chung
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; (C.Y.T.C.); (P.H.Y.L.)
- Chinese University of Hong Kong-University of Southampton Joint Laboratory for Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Paulisally Hau Yi Lo
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; (C.Y.T.C.); (P.H.Y.L.)
- Chinese University of Hong Kong-University of Southampton Joint Laboratory for Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kenneth Ka Ho Lee
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong; (C.Y.T.C.); (P.H.Y.L.)
- Chinese University of Hong Kong-University of Southampton Joint Laboratory for Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence:
| |
Collapse
|
32
|
Kap1 regulates the self-renewal of embryonic stem cells and cellular reprogramming by modulating Oct4 protein stability. Cell Death Differ 2020; 28:685-699. [PMID: 32895487 DOI: 10.1038/s41418-020-00613-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
Oct4 plays a crucial role in the regulation of self-renewal of embryonic stem cells (ESCs) and reprogramming of somatic cells to induced pluripotent stem cells. However, the molecular mechanisms underlying posttranslational regulation and protein stability of Oct4 remain unclear. Using affinity purification and mass spectrometry analysis, we identified Kap1 as an Oct4-binding protein. Silencing of Kap1 reduced the protein levels of Oct4 in ESCs, whereas the overexpression of Kap1 stimulated the levels of Oct4. In addition, Kap1 overexpression stimulated the self-renewal of ESCs and attenuated the spontaneous differentiation of ESCs in response to LIF withdrawal. Kap1 overexpression increased the stability of Oct4 by inhibiting the Itch-mediated ubiquitination of Oct4. Silencing of Kap1 augmented Itch-mediated ubiquitination and inhibited the stability of Oct4. We identified the lysine 133 (K133) residue in Oct4 as a ubiquitination site responsible for the Kap1-Itch-dependent regulation of Oct4 stability. Preventing ubiquitination at the lysine residue by mutation to arginine augmented the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. These results suggest that Kap1 plays a crucial role in the regulation of the pluripotency of ESCs and somatic cell reprogramming by preventing Itch-mediated ubiquitination and the subsequent degradation of Oct4.
Collapse
|
33
|
Wang X, Ellenbecker M, Hickey B, Day NJ, Osterli E, Terzo M, Voronina E. Antagonistic control of Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2. eLife 2020; 9:52788. [PMID: 32804074 PMCID: PMC7467723 DOI: 10.7554/elife.52788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells support tissue maintenance, but the mechanisms that coordinate the rate of stem cell self-renewal with differentiation at a population level remain uncharacterized. We find that two PUF family RNA-binding proteins FBF-1 and FBF-2 have opposite effects on Caenorhabditis elegans germline stem cell dynamics: FBF-1 restricts the rate of meiotic entry, while FBF-2 promotes both cell division and meiotic entry rates. Antagonistic effects of FBFs are mediated by their distinct activities toward the shared set of target mRNAs, where FBF-1-mediated post-transcriptional control requires the activity of CCR4-NOT deadenylase, while FBF-2 is deadenylase-independent and might protect the targets from deadenylation. These regulatory differences depend on protein sequences outside of the conserved PUF family RNA-binding domain. We propose that the opposing FBF-1 and FBF-2 activities serve to modulate stem cell division rate simultaneously with the rate of meiotic entry.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Benjamin Hickey
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Nicholas J Day
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Emily Osterli
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Mikaya Terzo
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, United States
| |
Collapse
|
34
|
Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Exp Mol Med 2020; 52:1220-1229. [PMID: 32770082 PMCID: PMC8080833 DOI: 10.1038/s12276-020-0481-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells (ESCs) possess specific gene expression patterns that confer the ability to proliferate indefinitely and enable pluripotency, which allows ESCs to differentiate into diverse cell types in response to developmental signals. Compared to differentiated cells, ESCs harbor an elevated level of homologous recombination (HR)-related proteins and exhibit exceptional cell cycle control, characterized by a high proliferation rate and a prolonged S phase. HR is involved in several aspects of chromosome maintenance. For instance, HR repairs impaired chromosomes and prevents the collapse of DNA replication forks during cell proliferation. Thus, HR is essential for the maintenance of genomic integrity and prevents cellular dysregulation and lethal events. In addition, abundant HR proteins in the prolonged S phase can efficiently protect ESCs from external damages and protect against genomic instability caused by DNA breaks, facilitating rapid and accurate DNA break repair following chromosome duplication. The maintenance of genome integrity is key to preserving the functions of ESCs and reducing the risks of cancer development, cell cycle arrest, and abnormal replication. Here, we review the fundamental links between the stem cell-specific HR process and DNA damage response as well as the different strategies employed by ESCs to maintain genomic integrity. Embryonic stem cells (ESCs), which give rise to the many specialized cells of the body, have highly effective molecular processes of DNA maintenance and repair which protect their genetic information from damage. Keun Pil Kim and colleagues at Chung-Ang University, Seoul, South Korea, review the strategies found in ESCs to maintain the integrity of their DNA as they develop and multiply. A key feature is the process of homologous recombination (HR) in which one copy of a section of DNA acts as the template allowing a damaged version of the DNA to be repaired. HR also facilitates swapping of sections of DNA when sperm and egg cells form, promoting genetic diversity. HR appears to be especially significant in maintaining ESC DNA as ESCs possess higher levels of key proteins involved in its maintenance and regulation.
Collapse
|
35
|
Padgett J, Santos SDM. From clocks to dominoes: lessons on cell cycle remodelling from embryonic stem cells. FEBS Lett 2020; 594:2031-2045. [PMID: 32535913 DOI: 10.1002/1873-3468.13862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Cell division is a fundamental cellular process and the evolutionarily conserved networks that control cell division cycles adapt during development, tissue regeneration, cell de-differentiation and reprogramming, and a variety of pathological conditions. Embryonic development is a prime example of such versatility: fast, clock-like divisions hallmarking embryonic cells at early developmental stages become slower and controlled during cellular differentiation and lineage specification. In this review, we compare and contrast the unique cell cycle of mouse and human embryonic stem cells with that of early embryonic cells and of differentiated cells. We propose that embryonic stem cells provide an extraordinarily useful model system to understand cell cycle remodelling during embryonic-to-somatic transitions. We discuss how cell cycle networks help sustain embryonic stem cell pluripotency and self-renewal and how they safeguard cell identity and proper cell number in differentiated cells. Finally, we highlight the incredible diversity in cell cycle regulation within mammals and discuss the implications of studying cell cycle remodelling for understanding healthy and disease states.
Collapse
Affiliation(s)
- Joe Padgett
- Quantitative Cell Biology Lab, The Francis Crick Institute, London, UK
| | - Silvia D M Santos
- Quantitative Cell Biology Lab, The Francis Crick Institute, London, UK
| |
Collapse
|
36
|
Michowski W, Chick JM, Chu C, Kolodziejczyk A, Wang Y, Suski JM, Abraham B, Anders L, Day D, Dunkl LM, Li Cheong Man M, Zhang T, Laphanuwat P, Bacon NA, Liu L, Fassl A, Sharma S, Otto T, Jecrois E, Han R, Sweeney KE, Marro S, Wernig M, Geng Y, Moses A, Li C, Gygi SP, Young RA, Sicinski P. Cdk1 Controls Global Epigenetic Landscape in Embryonic Stem Cells. Mol Cell 2020; 78:459-476.e13. [PMID: 32240602 DOI: 10.1016/j.molcel.2020.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/26/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.
Collapse
Affiliation(s)
- Wojciech Michowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandra Kolodziejczyk
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yichen Wang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brian Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lars Anders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Daniel Day
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lukas M Dunkl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mitchell Li Cheong Man
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Phatthamon Laphanuwat
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nickolas A Bacon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lijun Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Otto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuelle Jecrois
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Han
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katharine E Sweeney
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samuele Marro
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Center for Analysis of Genome Evolution and Function, Toronto, ON M5S 3B2, Canada
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Yao H, Lu F, Shao Y. The E2F family as potential biomarkers and therapeutic targets in colon cancer. PeerJ 2020; 8:e8562. [PMID: 32117628 PMCID: PMC7035869 DOI: 10.7717/peerj.8562] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Background The E2F family is a group of genes encoding a series of transcription factors in higher eukaryotes and participating in the regulation of cell cycle and DNA synthesis in mammals. This study was designed to investigate the role of E2F family in colon cancer. Methods In this study, the transcriptional levels of E2F1-8 in patients with colon cancer from GEPIA was examined. Meanwhile, the immunohistochemical data of the eight genes were also obtained in the The Human Protein Atlas website. Additionally, we re-identified the mRNA expression levels of these genes via real time PCR. Furthermore, the association between the levels of E2F family and stage plot as wells overall survival of patients with colon cancer were analyzed. Results We found that the mRNA and protein levels of E2F1, E2F2, E3F3, E2F5, E2F7 and E2F8 were significantly higher in colon cancer tissues than in normal colon tissues while the expression levels of E2F4 and E2F6 displayed no significant difference between colon cancer tissues and normal tissues. Additionally, E2F3, E2F4, E2F7 and E2F8 were significantly associated with the stages of colon cancer. The Kaplan-Meier Plotter showed that the high levels of E2F3 conferred a worse overall survival and disease free survival of patients with colon cancer. Also, high levels of E2F4 resulted in a worse overall survival. Conclusion Our study implied that E2F3, E2F4, E2F7 and E2F8 are potential targets of precision therapy for patients with colon cancer while E2F1, E2F2, E3F3, E2F5, E2F7 and E2F8 are potential biomarkers for the diagnosis of colon cancer.
Collapse
Affiliation(s)
- Haibo Yao
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College, Key Laboratory of Gastroenterology of Zhejiang Province), Hangzhou, China
| | - Fang Lu
- Department of Neurology, Second People's Hospital of Yuhang District, Hangzhou, China
| | - Yanfei Shao
- Department of Pharmacy, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
38
|
Critical Role for P53 in Regulating the Cell Cycle of Ground State Embryonic Stem Cells. Stem Cell Reports 2020; 14:175-183. [PMID: 32004494 PMCID: PMC7013234 DOI: 10.1016/j.stemcr.2020.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) grown in serum-supplemented conditions are characterized by an extremely short G1 phase due to the lack of G1-phase control. Concordantly, the G1-phase-specific P53-P21 pathway is compromised in serum ESCs. Here, we provide evidence that P53 is activated upon transition of serum ESCs to their pluripotent ground state using serum-free 2i conditions and that is required for the elongated G1 phase characteristic of ground state ESCs. RNA sequencing and chromatin immunoprecipitation sequencing analyses reveal that P53 directly regulates the expression of the retinoblastoma (RB) protein and that the hypo-phosphorylated, active RB protein plays a key role in G1-phase control. Our findings suggest that the P53-P21 pathway is active in ground state 2i ESCs and that its role in the G1-checkpoint is abolished in serum ESCs. Taken together, the data reveal a mechanism by which inactivation of P53 can lead to loss of RB and uncontrolled cell proliferation. The P53-P21 pathway is activated upon adaptation of ESCs to their pluripotent ground state. P53 is required for the elongated G1-phase characteristic to 2i ESCs. P53 binds the promoter and activates Rb1 expression.
Collapse
|
39
|
NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation. Cell Rep 2019; 23:1853-1866. [PMID: 29742439 DOI: 10.1016/j.celrep.2018.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC). A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation.
Collapse
|
40
|
Hu X, Eastman AE, Guo S. Cell cycle dynamics in the reprogramming of cellular identity. FEBS Lett 2019; 593:2840-2852. [PMID: 31562821 DOI: 10.1002/1873-3468.13625] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
Reprogramming of cellular identity is fundamentally at odds with replication of the genome: cell fate reprogramming requires complex multidimensional epigenomic changes, whereas genome replication demands fidelity. In this review, we discuss how the pace of the genome's replication and cell cycle influences the way daughter cells take on their identity. We highlight several biochemical processes that are pertinent to cell fate control, whose propagation into the daughter cells should be governed by more complex mechanisms than simple templated replication. With this mindset, we summarize multiple scenarios where rapid cell cycle could interfere with cell fate copying and promote cell fate reprogramming. Prominent examples of cell fate regulation by specific cell cycle phases are also discussed. Overall, there is much to be learned regarding the relationship between cell fate reprogramming and cell cycle control. Harnessing cell cycle dynamics could greatly facilitate the derivation of desired cell types.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Anna E Eastman
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Shangqin Guo
- Department of Cell Biology, Yale University, New Haven, CT, USA.,Yale Stem Cell Center, Yale University, New Haven, CT, USA
| |
Collapse
|
41
|
The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol 2019; 21:1060-1067. [PMID: 31481793 DOI: 10.1038/s41556-019-0384-4] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/24/2019] [Indexed: 12/30/2022]
Abstract
Cyclins, cyclin-dependent kinases and other components of the core cell cycle machinery drive cell division. Growing evidence indicates that this machinery operates in a distinct fashion in some mammalian stem cell types, such as pluripotent embryonic stem cells. In this Review, we discuss our current knowledge of how cell cycle proteins mechanistically link cell proliferation, pluripotency and cell fate specification. We focus on embryonic stem cells, induced pluripotent stem cells and embryonic neural stem/progenitor cells.
Collapse
|
42
|
Gonnot F, Langer D, Bourillot PY, Doerflinger N, Savatier P. Regulation of Cyclin E by transcription factors of the naïve pluripotency network in mouse embryonic stem cells. Cell Cycle 2019; 18:2697-2712. [PMID: 31462142 PMCID: PMC6773236 DOI: 10.1080/15384101.2019.1656475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Continuous, non-cell cycle-dependent expression of cyclin E is a characteristic feature of mouse embryonic stem cells (mESCs). We studied the 5′ regulatory region of Cyclin E, also known as Ccne1, and identified binding sites for transcription factors of the naïve pluripotency network, including Esrrb, Klf4, and Tfcp2l1 within 1 kilobase upstream of the transcription start site. Luciferase assay and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChiP–qPCR) study highlighted one binding site for Esrrb that is essential to transcriptional activity of the promoter region, and three binding sites for Klf4 and Tfcp2l1. Knockdown of Esrrb, Klf4, and Tfcp2l1 reduced Cyclin E expression whereas overexpression of Esrrb and Klf4 increased it, indicating a strong correlation between the expression level of these factors and that of cyclin E. We observed that cyclin E overexpression delays differentiation induced by Esrrb depletion, suggesting that cyclin E is an important target of Esrrb for differentiation blockade. We observed that mESCs express a low level of miR-15a and that transfection of a miR-15a mimic decreases Cyclin E mRNA level. These results lead to the conclusion that the high expression level of Cyclin E in mESCs can be attributed to transcriptional activation by Esrrb as well as to the absence of its negative regulator, miR-15a.
Collapse
Affiliation(s)
- Fabrice Gonnot
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Diana Langer
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Pierre-Yves Bourillot
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Nathalie Doerflinger
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Pierre Savatier
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| |
Collapse
|
43
|
Kim HJ, Shin J, Lee S, Kim TW, Jang H, Suh MY, Kim JH, Hwang IY, Hwang DS, Cho EJ, Youn HD. Cyclin-dependent kinase 1 activity coordinates the chromatin associated state of Oct4 during cell cycle in embryonic stem cells. Nucleic Acids Res 2019; 46:6544-6560. [PMID: 29901724 PMCID: PMC6061841 DOI: 10.1093/nar/gky371] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is indispensable for embryonic stem cell (ESC) maintenance and embryo development. Even though some reports have described a connection between Cdk1 and Oct4, there is no evidence that Cdk1 activity is directly linked to the ESC pluripotency transcription program. We recently reported that Aurkb/PP1-mediated Oct4 resetting is important to cell cycle maintenance and pluripotency in mouse ESCs (mESCs). In this study, we show that Cdk1 is an upstream regulator of the Oct4 phosphorylation state during cell cycle progression, and it coordinates the chromatin associated state of Oct4 for pluripotency-related gene expression within the cell cycle. Upon entry into mitosis, Aurkb in the chromosome passenger complex becomes fully activated and PP1 activity is inhibited downstream of Cdk1 activation, leading to sustaining Oct4(S229) phosphorylation and dissociation of Oct4 from chromatin during the mitotic phase. Cdk1 inhibition at the mitotic phase abnormally results in Oct4 dephosphorylation, chromosome decondensation and chromatin association of Oct4, even in replicated chromosome. Our study results suggest a molecular mechanism by which Cdk1 directly links the cell cycle to the pluripotency transcription program in mESCs.
Collapse
Affiliation(s)
- Hye Ji Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihoon Shin
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangho Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Tae Wan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Min Young Suh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In-Young Hwang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Deog Su Hwang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
44
|
de Souza Lima IM, Schiavinato JLDS, Paulino Leite SB, Sastre D, Bezerra HLDO, Sangiorgi B, Corveloni AC, Thomé CH, Faça VM, Covas DT, Zago MA, Giacca M, Mano M, Panepucci RA. High-content screen in human pluripotent cells identifies miRNA-regulated pathways controlling pluripotency and differentiation. Stem Cell Res Ther 2019; 10:202. [PMID: 31287022 PMCID: PMC6615276 DOI: 10.1186/s13287-019-1318-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background By post-transcriptionally regulating multiple target transcripts, microRNAs (miRNAs or miR) play important biological functions. H1 embryonic stem cells (hESCs) and NTera-2 embryonal carcinoma cells (ECCs) are two of the most widely used human pluripotent model cell lines, sharing several characteristics, including the expression of miRNAs associated to the pluripotent state or with differentiation. However, how each of these miRNAs functionally impacts the biological properties of these cells has not been systematically evaluated. Methods We investigated the effects of 31 miRNAs on NTera-2 and H1 hESCs, by transfecting miRNA mimics. Following 3–4 days of culture, cells were stained for the pluripotency marker OCT4 and the G2 cell-cycle marker Cyclin B1, and nuclei and cytoplasm were co-stained with Hoechst and Cell Mask Blue, respectively. By using automated quantitative fluorescence microscopy (i.e., high-content screening (HCS)), we obtained several morphological and marker intensity measurements, in both cell compartments, allowing the generation of a multiparametric miR-induced phenotypic profile describing changes related to proliferation, cell cycle, pluripotency, and differentiation. Results Despite the overall similarities between both cell types, some miRNAs elicited cell-specific effects, while some related miRNAs induced contrasting effects in the same cell. By identifying transcripts predicted to be commonly targeted by miRNAs inducing similar effects (profiles grouped by hierarchical clustering), we were able to uncover potentially modulated signaling pathways and biological processes, likely mediating the effects of the microRNAs on the distinct groups identified. Specifically, we show that miR-363 contributes to pluripotency maintenance, at least in part, by targeting NOTCH1 and PSEN1 and inhibiting Notch-induced differentiation, a mechanism that could be implicated in naïve and primed pluripotent states. Conclusions We present the first multiparametric high-content microRNA functional screening in human pluripotent cells. Integration of this type of data with similar data obtained from siRNA screenings (using the same HCS assay) could provide a large-scale functional approach to identify and validate microRNA-mediated regulatory mechanisms controlling pluripotency and differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1318-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ildercílio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Josiane Lilian Dos Santos Schiavinato
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Sarah Blima Paulino Leite
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Danuta Sastre
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil
| | - Hudson Lenormando de Oliveira Bezerra
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Bruno Sangiorgi
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Carolina Hassibe Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Marco Antônio Zago
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic and Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic and Engineering and Biotechnology (ICGEB), Trieste, Italy.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil. .,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
45
|
Waisman A, Sevlever F, Elías Costa M, Cosentino MS, Miriuka SG, Ventura AC, Guberman AS. Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Sci Rep 2019; 9:8051. [PMID: 31142785 PMCID: PMC6541595 DOI: 10.1038/s41598-019-44537-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can be maintained as homogeneous populations in the ground state of pluripotency. Release from this state in minimal conditions allows to obtain cells that resemble those of the early post-implantation epiblast, providing an important developmental model to study cell identity transitions. However, the cell cycle dynamics of mESCs in the ground state and during its dissolution have not been extensively studied. By performing live imaging experiments of mESCs bearing cell cycle reporters, we show here that cells in the pluripotent ground state display a cell cycle structure comparable to the reported for mESCs in serum-based media. Upon release from self-renewal, the cell cycle is rapidly accelerated by a reduction in the length of the G1 phase and of the S/G2/M phases, causing an increased proliferation rate. Analysis of cell lineages indicates that cell cycle variables of sister cells are highly correlated, suggesting the existence of inherited cell cycle regulators from the parental cell. Together with a major morphological reconfiguration upon differentiation, our findings support a correlation between this in vitro model and early embryonic events.
Collapse
Affiliation(s)
- Ariel Waisman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Federico Sevlever
- CONICET - Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | - María Soledad Cosentino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina
| | - Santiago G Miriuka
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Alejandra C Ventura
- CONICET - Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Alejandra S Guberman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Gisler S, Gonçalves JP, Akhtar W, de Jong J, Pindyurin AV, Wessels LFA, van Lohuizen M. Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nat Commun 2019; 10:1598. [PMID: 30962441 PMCID: PMC6453899 DOI: 10.1038/s41467-019-09551-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Understanding the impact of guide RNA (gRNA) and genomic locus on CRISPR-Cas9 activity is crucial to design effective gene editing assays. However, it is challenging to profile Cas9 activity in the endogenous cellular environment. Here we leverage our TRIP technology to integrate ~ 1k barcoded reporter genes in the genomes of mouse embryonic stem cells. We target the integrated reporters (IRs) using RNA-guided Cas9 and characterize induced mutations by sequencing. We report that gRNA-sequence and IR locus explain most variation in mutation efficiency. Predominant insertions of a gRNA-specific nucleotide are consistent with template-dependent repair of staggered DNA ends with 1-bp 5' overhangs. We confirm that such staggered ends are induced by Cas9 in mouse pre-B cells. To explain observed insertions, we propose a model generating primarily blunt and occasionally staggered DNA ends. Mutation patterns indicate that gRNA-sequence controls the fraction of staggered ends, which could be used to optimize Cas9-based insertion efficiency.
Collapse
Affiliation(s)
- Santiago Gisler
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Joana P Gonçalves
- Department of Intelligent Systems, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628 XE, The Netherlands
- Division of Molecular Carcinogenesis, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Johann de Jong
- Division of Molecular Carcinogenesis, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Data & Translational Sciences Group, UCB Biosciences GmbH, Alfred-Nobel-Straße 10, Monheim am Rhein, 40789, Germany
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, Novosibirsk, 630090, Russia
- Division of Gene Regulation, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Lodewyk F A Wessels
- Department of Intelligent Systems, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628 XE, The Netherlands.
- Division of Molecular Carcinogenesis, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
| | - Maarten van Lohuizen
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
47
|
Insights into the antineoplastic mechanism of Chelidonium majus via systems pharmacology approach. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Kulkarni T, Tam A, Mukhopadhyay D, Bhattacharya S. AFM study: Cell cycle and probe geometry influences nanomechanical characterization of Panc1 cells. Biochim Biophys Acta Gen Subj 2019; 1863:802-812. [PMID: 30763604 DOI: 10.1016/j.bbagen.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Abstract
Atomic force microscope (AFM) is emerging as an immensely promising tool to study the cellular morphology with a nanometer scale resolution and to analyze nanomechanical properties (NPs) at various physiological conditions. Advancement of AFM technology enables studying living cells and differentiating cancer cell from normal cells based on topography and NPs. Though the trend overlaps from different literature; numerical values of nanomechanical readouts depict variations over a wide range. These anomalies are associated with the experimental setup under study. In this manuscript, we have identified heterogeneity in cell culture system in addition to the selection of AFM probe with specific tip geometry as the major contributors to the above mentioned anomalies. To test our hypothesis, we have used Panc1 cells, which is a pancreatic ductal adenocarcinoma cell type. Our results suggest that the cellular morphology, membrane roughness and NPs calculated from AFM study are distinctly influenced by cell cycle. Furthermore, we found that the NPs readout is also significantly associated with AFM tip geometries. The cells were found to be softer in their early resting phase when indented with pyramidal probe and became increasingly stiffer as they progressed through the cell cycles. On the contrary, when indented with the spherical probe, cells in G0/G1 phase were observed to be the stiffest. Such an exhaustive study of the role of cell cycle in influencing the NPs in Panc1 cell line along with the impact of tip geometry on NPs is the first of its kind, to the best of our knowledge.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alex Tam
- Electrical Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Pathology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Pathology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
49
|
Guo L, Lin L, Wang X, Gao M, Cao S, Mai Y, Wu F, Kuang J, Liu H, Yang J, Chu S, Song H, Li D, Liu Y, Wu K, Liu J, Wang J, Pan G, Hutchins AP, Liu J, Pei D, Chen J. Resolving Cell Fate Decisions during Somatic Cell Reprogramming by Single-Cell RNA-Seq. Mol Cell 2019; 73:815-829.e7. [DOI: 10.1016/j.molcel.2019.01.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 01/07/2023]
|
50
|
Yu M, Wei Y, Xu K, Liu S, Ma L, Pei Y, Hu Y, Liu Z, Zhang X, Wang B, Mu Y, Li K. EGFR deficiency leads to impaired self-renewal and pluripotency of mouse embryonic stem cells. PeerJ 2019; 7:e6314. [PMID: 30713819 PMCID: PMC6357870 DOI: 10.7717/peerj.6314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Background Self-renewal and pluripotency are considered as unwavering features of embryonic stem cells (ESCs). How ESCs regulate the self-renewal and differentiation is a central question in development and regenerative medicine research. Epidermal growth factor receptor (EGFR) was identified as a critical regulator in embryonic development, but its role in the maintenance of ESCs is poorly understood. Methods Here, EGFR was disrupted by its specific inhibitor AG1478 in mouse ESCs (mESCs), and its self-renewal and pluripotency were characterized according to their proliferation, expression of pluripotency markers, embryoid body (EB) formation, and mRNA expression patterns. We also used another EGFR inhibitor (gefitinib) and RNA interference assay to rule out the possibility of non-specific effects of AG1478. Results EGFR inhibition by AG1478 treatment in mESCs markedly reduced cell proliferation, caused cell cycle arrest at G0/G1 phase, and altered protein expressions of the cell cycle regulatory genes (CDK2 (decreased 11.3%) and proliferating cell nuclear antigen (decreased 25.2%)). The immunoreactivities and protein expression of pluripotency factors (OCT4 (decreased 26.9%)) also dramatically decreased, while the differentiation related genes (GATA4 (increased 1.6-fold)) were up-regulated in mESCs after EGFR inhibition. Meanwhile, EGFR inhibition in mESCs disrupted EB formation, indicating its impaired pluripotency. Additionally, the effects observed by EGFR inhibition with another inhibitor gefitinib and siRNA were consistent with those observed by AG1478 treatment in mESCs. These effects were manifested in the decreased expression of proliferative and pluripotency-related genes and the increased expression of genes involved in differentiation. Moreover, RNA-seq analysis displayed that transcript profiling was changed significantly after EGFR inhibition by AG1478. A large number of differentially expressed genes were involved in cell cycle, apoptotic process, epigenetic modification, and metabolic process, which were related to self-renewal and pluripotency, confirming that EGFR deficiency impaired self-renewal and pluripotency in mESCs. Conclusions Taken together, our results demonstrated the importance of EGFR in guarding the stemness of mESCs.
Collapse
Affiliation(s)
- Miaoying Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Science, Shangrao Normal University, Shangrao, Jiangxi, China
| | - Yinghui Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kui Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shasha Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Yangli Pei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanqing Hu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|