1
|
Cui Z, Liu X, Gao X, Yu Z, Pan W, Liu T. Rotenone-driven DNA hypermethylation of the miR-6991-3p promoter induces death of mouse brain organoids. Tissue Cell 2025; 95:102831. [PMID: 40048830 DOI: 10.1016/j.tice.2025.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 05/15/2025]
Abstract
Rotenone has potential chemical toxicity in the nervous system of both insects and mammals, but its deep molecular biological mechanisms have not been clarified. Here, the epigenetic regulatory mechanism underlying the toxicity of rotenone was studied using murine brain organoids (mBOs). Transmission electron microscopy indicated that rotenone destroyed mBOs'mitochondrial structure. RRBS-Seq showed that some promoter regions from the DLK1-DIO3 imprinted microRNA clusters were hypomethylated. But, rotenone stimulated hypermethylation significantly on the promoter DNA of miR-6991-3p. MiR-6991-3p in the rotenone-treated mBOs had the greatest decreased miRNA expression compared with the control. Meanwhile, luciferase report assay indicated that miR-6991-3p induced a decrease in luciferase activity via binding to specific sites on the 3'UTR of DEDD2 gene. To overexpression of miR-6991-3p attenuated mBO proliferated inhibition and cell death, accumulation for lipid peroxidation products significantly by rotenone inducing. Subsequently, results of cell staining and molecular biology experiment revealed that overexpression for miR-6991-3p significantly weakened expression levels of death-related genes (DEDD2, caspase-8, caspase-3, and caspase-1), but significantly elevated expression levels of cell proliferation-related genes (Ki67 and BCL2) in rotenone treated mBOs group. Here, we reveal a novel epigenetic mechanism of rotenone-induced neuronal death, in which rotenone induced promoter DNA hypermethylation of miR-6991-3p in the DLK1-DIO3 imprinted cluster. This caused miR-6991-3p transcriptional activity to be downregulated, which subsequently significantly increased the expression of its target gene, DEDD2, ultimately leading to neural organoid cell death.
Collapse
Affiliation(s)
- Zeyu Cui
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xin Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200092, China
| | - Xijin Gao
- Department of Neurology, Daishan County First People's Hospital, Zhejiang 316299, China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Weidong Pan
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| |
Collapse
|
2
|
Hu R, Yagan M, Wang Y, Tong X, Hamilton N, Doss TD, Liu J, Xu Y, Simmons AJ, Lau KS, Stein R, Kaverina I, Coate KC, Liu Q, Gu G. Diabetes-associated MYT1 and MYT3 regulate human β-cell insulin secretion and survival via other diabetes-risk genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639737. [PMID: 40060649 PMCID: PMC11888307 DOI: 10.1101/2025.02.24.639737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Genetic and environmental factors together cause islet β-cell failure, leading to Type 2 diabetes (T2D). Yet how they integrate to regulate β-cells remains largely unclear. Here, we examined how two members of the Myelin transcription factor family (MYT1, 2, and 3) prevent human β-cell failure under obesity-related stress. We have reported that obesity-related nutrient levels induce these factors. They prevent β-cell failure in mouse islets and human β-cell lines. Their variants are all associated with human T2D, and their downregulation accompanies β-cell dysfunction. By knocking down MYT1 or MYT3 separately in primary human donor islets, we show here that they have overlapping but distinct functions. Under normal culture conditions, MYT1 - knockdown (KD) causes β-cell death, while MYT3 - KD compromises glucose-stimulated insulin secretion. Under obesity-induced metabolic stress in vivo , MYT3 - KD also causes β-cell death. Accordingly, these TFs regulate common and unique genes, with MYT1 - KD de-regulating several genes in cell death and Ca 2+ binding, while MYT3-KD de-regulating genes involved in mitochondria, ER, etc. Intriguingly, the MYT1 and MYT3-regulated genes are enriched for T2D-associated genes. These findings suggest that the MYT TFs complement each other to serve as a node that integrates genetic and environmental factors to prevent β-cell failure and T2D. Research in Context It is now known that: All MYT TFs (including MYT1, 2, 3) are associated with the risk of T2D, and their downregulation accompanies β-cell failure during human T2D development.besity-related high glucose/free fatty acids regulate the levels and/or nuclear localization of MYT1 and MYT3 in primary human β-cells, implying them as integrators of genetic and nutrition factors to determine the risk of β-cell failure and T2D.Myt TFs, via coregulators including Sin3, work together to prevent postnatal β-cell failure in mice and the death of a human β-cell line, suggesting they are essential switches for β-cell protection.The key remaining question is: How do these TFs regulate primary human β-cell failure in response to different nutritional signals?Our new findings are: Reduced MYT1 or MYT3 expression levels in primary human islets via knockdown compromised β-cell survival or secretion, respectively, under normal physiology.MYT3-knockdown compromises human β-cell survival in obesity.MYT1/MYT3-regulated genes are enriched for those associated with T2D risk.Impact: Manipulating MYT TF activities, via modulating their associations with coregulators, could be explored to attenuate β-cell failure and risk of T2D.
Collapse
|
3
|
Szewczyk A, Rembiałkowska N, Saczko J, Daczewska M, Novickij V, Kulbacka J. Calcium electroporation induces stress response through upregulation of HSP27, HSP70, aspartate β-hydroxylase, and CD133 in human colon cancer cells. Biol Res 2025; 58:10. [PMID: 39980072 PMCID: PMC11844013 DOI: 10.1186/s40659-025-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Electroporation (EP) leverages electric pulses to permeabilize cell membranes, enabling the delivery of therapeutic agents like calcium in cancer treatment. Calcium electroporation (CaEP) induces a rapid influx of calcium ions, disrupting cellular calcium homeostasis and triggering cell death pathways. This study aims to compare the cellular responses between microsecond (µsEP) and nanosecond (nsEP) electroporation, particularly in terms of oxidative stress, immune response activation, and cancer stem cell (CSC) viability in drug-resistant (LoVo Dx) and non-resistant (LoVo) colorectal cancer cell lines. RESULTS Both µsEP and nsEP, particularly when combined with Ca2+, significantly reduced the viability of cancer cells, with nsEP showing greater efficacy. Reactive oxygen species (ROS) levels increased 5-fold in malignant cells following nsEP, correlating with decreased ATP production and mitochondrial dysfunction. Nanosecond CaEP (nsCaEP) also induced significant expression of aspartate-β-hydroxylase (ASPH), a protein linked to calcium homeostasis and tumor progression. Moreover, nsEP led to heightened expression of heat shock proteins (HSP27/70), indicating potential immune activation. Interestingly, nsEP without calcium drastically reduced the expression of CD133, a marker for CSCs, while the addition of Ca2+ preserved CD133 expression. The expression of death effector domain-containing DNA binding protein (DEDD), associated with apoptosis, was significantly elevated in treated cancer cells, especially in the nucleus after nsCaEP. CONCLUSIONS The study confirms that nsEP is more effective than µsEP in disrupting cancer cell viability, enhancing oxidative stress, and triggering immune responses, likely through HSP overexpression and ROS generation. nsEP also appears to reduce CSC viability, offering a promising therapeutic approach. However, preserving CD133 expression in the presence of calcium suggests complex interactions that require further investigation. These findings highlight the potential of nsCaEP as an innovative strategy for targeting both cancer cells and CSCs, potentially improving treatment outcomes in colorectal cancer. Further studies are needed to explore the exact cell death mechanisms and optimize protocols for clinical applications.
Collapse
Affiliation(s)
- Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland.
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Wrocław, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| |
Collapse
|
4
|
Walachowski S, Garo L, Sharma A, Jayaraman A, Noon J, Reinhardt C, Bosmann M. Disruption of the C5a/C5aR1 axis confers protection against hookworm infection in lung. Front Immunol 2024; 15:1475165. [PMID: 39628481 PMCID: PMC11611822 DOI: 10.3389/fimmu.2024.1475165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/23/2024] [Indexed: 12/06/2024] Open
Abstract
Hookworms are soil-transmitted parasitic nematodes that penetrate the host skin before migrating to the lungs. With an estimated 500-700 million people infected worldwide, hookworm infections are a neglected tropical disease and a significant cause of morbidity, particularly in children, pregnant women, and immunocompromised individuals. Although there is ample evidence that complement activation is pivotal to elicit a protective host immune response against invasive pathogens, its role in hookworm infection remains insufficiently explored. Here, we investigated the complement anaphylatoxin, C5a, during the early lung stage of infection with Nippostrongylus brasiliensis in C57BL/6J wild type and C5aR1-/- mice. Despite the previously reported ability of lung larvae to evade complement activation, C5a was detectable locally in lung tissue and bronchoalveolar lavages. Surprisingly, C5aR1 presence directly contributed to the pathogenicity of hookworm infection. The burden of viable parasites in the lungs was mitigated in C5aR1-/- mice, compared to C57BL/6J mice 48 hours post-infection. Additionally, C5aR1-/- mice showed significantly reduced lung injury, lower cytokine release, attenuated alveolar hemorrhage, and limited alveolar-capillary barrier disruption. Neutrophils were the most abundant and highest C5aR1-expressing cell type in the alveolar space after infection. Deficiency of C5aR1 reduced the influx of neutrophils, monocytes, and eosinophils to the pulmonary airways. RNA sequencing of alveolar neutrophils revealed C5aR1-dependent regulation of the novel nuclear protein, DEDD2. In conclusion, our findings highlight the impact of C5aR1 signaling in neutrophils during hookworm infection uncovering an unexpected downside of complement activation in parasitic infection.
Collapse
Affiliation(s)
- Sarah Walachowski
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Lucien Garo
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Archana Jayaraman
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jason Noon
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
5
|
Su H, Katz SG, Slavoff SA. Alternative transcripts recode human genes to express overlapping, frameshifted microproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619581. [PMID: 39484585 PMCID: PMC11526972 DOI: 10.1101/2024.10.22.619581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Overlapping genes were thought to be essentially absent from the human genome until the discovery of abundant, frameshifted internal open reading frames (iORFs) nested within annotated protein coding sequences. However, it is currently unclear how many functional human iORFs exist and how they are expressed. We demonstrate that, in hundreds of cases, alternative transcript variants that bypass the start codon of annotated coding sequences (CDSs) can recode a human gene to express the iORF-encoded microprotein. While many human genes generate such non-coding alternative transcripts, they are poorly annotated. Here we develope a new analysis pipeline enabling the assignment of translated human iORFs to alternative transcripts, and provide long-read sequencing and molecular validation of their expression in dozens of cases. Finally, we demonstrate that a conserved DEDD2 iORF switches the function of this gene from pro- to anti-apoptotic. This work thus demonstrates that alternative transcript variants can broadly reprogram human genes to express frameshifted iORFs, revealing new levels of complexity in the human transcriptome and proteome.
Collapse
Affiliation(s)
- Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| |
Collapse
|
6
|
Nies YH, Yahaya MF, Lim WL, Teoh SL. Microarray-based Analysis of Differential Gene Expression Profile in Rotenone-induced Parkinson's Disease Zebrafish Model. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:761-772. [PMID: 37291778 DOI: 10.2174/1871527322666230608122552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND & OBJECTIVES Despite much clinical and laboratory research that has been performed to explore the mechanisms of Parkinson's disease (PD), its pathogenesis remains elusive to date. Therefore, this study aimed to identify possible regulators of neurodegeneration by performing microarray analysis of the zebrafish PD model's brain following rotenone exposure. METHODS A total of 36 adult zebrafish were divided into two groups: control (n = 17) and rotenonetreated (n = 19). Fish were treated with rotenone water (5 μg/L water) for 28 days and subjected to locomotor behavior analysis. Total RNA was extracted from the brain tissue after rotenone treatment. The cDNA synthesized was subjected to microarray analysis and subsequently validated by qPCR. RESULTS Administration of rotenone has significantly reduced locomotor activity in zebrafish (p < 0.05), dysregulated dopamine-related gene expression (dat, th1, and th2, p < 0.001), and reduced dopamine level in the brain (p < 0.001). In the rotenone-treated group, genes involved in cytotoxic T lymphocytes (gzm3, cd8a, p < 0.001) and T cell receptor signaling (themis, lck, p < 0.001) were upregulated significantly. Additionally, gene expression involved in microgliosis regulation (tyrobp, p < 0.001), cellular response to IL-1 (ccl34b4, il2rb, p < 0.05), and regulation of apoptotic process (dedd1, p < 0.001) were also upregulated significantly. CONCLUSION The mechanisms of T cell receptor signaling, microgliosis regulation, cellular response to IL-1, and apoptotic signaling pathways have potentially contributed to PD development in rotenonetreated zebrafish.
Collapse
Affiliation(s)
- Yong Hui Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Liu H, Jiang M, Ma F, Qin J, Zhou X, Xu L, Yan X, Jiang T. JMJD6 functions as an oncogene and is associated with poor prognosis in esophageal squamous cell carcinoma. BMC Cancer 2023; 23:696. [PMID: 37488513 PMCID: PMC10367331 DOI: 10.1186/s12885-023-11171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors with a high prevalence and poor prognosis. It is an urgent problem to deeply understand the molecular mechanism of ESCC and develop effective diagnostic and prognostic methods. METHODS Using tumor tissue and corresponding paracancerous samples from 141 resected ESCC patients, we assessed Jumonji domain-containing protein 6 (JMJD6) expression using Immunohistochemical (IHC) staining. Kaplan-Meier survival analysis and univariate or multivariate analysis were used to investigate the relationship between JMJD6 expression and clinicopathological features. The expression status and prognostic value of JMJD6 were analyzed by bioinformatics and enrichment analysis. RESULTS The expression of JMJD6 in ESCC samples was higher than that in the corresponding paracancerous samples, and high expression of JMJD6 was positively associated with poor prognosis of ESCC patients. In addition, bioinformatics analysis of the expression and prognosis of JMJD6 in a variety of tumors showed that high expression of JMJD6 was significantly associated with poor overall survival (OS) in ESCC patients. Enrichment analysis indicated that the high expression of genes similar to JMJD6, such as Conserved oligomeric Golgi 1(COG1), Major facilitator superfamily domain 11 (MFSD11) and Death Effector Domain Containing 2 (DEDD2), was associated with poor prognosis of ESCC, suggesting that JMJD6 might be involved in the occurrence and prognosis of ESCC. CONCLUSION Our study found that JMJD6 expression was significantly increased in ESCC patients and positively correlated with prognosis, indicating that targeting JMJD6 might be an attractive prognostic biomarker and provides a potential treatment strategy for ESCC. TRIAL REGISTRATION The study was approved by Tangdu Hospital ethics committee (No. TDLL-202110-02).
Collapse
Affiliation(s)
- Honggang Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fenghui Ma
- Medical Examination Center, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Jiapei Qin
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqun Xu
- Department of Aerospace Medicine, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| |
Collapse
|
8
|
Zhao M, Zhou J, Tang Y, Liu M, Dai Y, Xie H, Wang Z, Chen L, Wu Y. Genome-wide analysis of RNA-binding proteins co-expression with alternative splicing events in mitral valve prolapse. Front Immunol 2023; 14:1078266. [PMID: 37180137 PMCID: PMC10171460 DOI: 10.3389/fimmu.2023.1078266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives We investigated the role and molecular mechanisms of RNA-binding proteins (RBPs) and their regulated alternative splicing events (RASEs) in the pathogenesis of mitral valve prolapse (MVP). Methods For RNA extraction, we obtained peripheral blood mononuclear cells (PBMCs) from five patients with MVP, with or without chordae tendineae rupture, and five healthy individuals. High-throughput sequencing was used for RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) analysis, alternative splicing (AS) analysis, functional enrichment analysis, co-expression of RBPs, and alternative splicing events (ASEs) analysis were conducted. Results The MVP patients exhibited 306 up-regulated genes and 198 down-regulated genes. All down- and up-regulated genes were enriched in both Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, MVP was closely associated with the top 10 enriched terms and pathways. In MVP patients, 2,288 RASEs were found to be significantly different, and four suitable RASEs (CARD11 A3ss, RBM5 ES, NCF1 A5SS, and DAXX A3ss) were tested. We identified 13 RNA-binding proteins (RBPs) from the DEGs and screened out four RBPs (ZFP36, HSPA1A, TRIM21, and P2RX7). We selected four RASEs based on the co-expression analyses of RBPs and RASEs, including exon skipping (ES) of DEDD2, alternative 3' splice site (A3SS) of ETV6, mutually exclusive 3'UTRs (3pMXE) of TNFAIP8L2, and A3SS of HLA-B. Furthermore, the selected four RBPs and four RASEs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and showed high consistency with RNA sequencing (RNA-seq). Conclusion Dysregulated RBPs and their associated RASEs may play regulatory roles in MVP development and may therefore be used as therapeutic targets in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Chen
- *Correspondence: Liang Chen, ; Yanhu Wu,
| | - Yanhu Wu
- *Correspondence: Liang Chen, ; Yanhu Wu,
| |
Collapse
|
9
|
Li C, Zhang L, Guo T, Zou L. Long Non-Coding RNA Prostate Cancer Non-Coding RNA 1/miR-211-5p/Death Effector Domain Containing 2 Axis Affects Preeclampsia by Modulating Trophoblast Cells Proliferation and Apoptosis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Preeclampsia (PE) is a pregnancy-specific hypertensive disorder that affects 5–7% of pregnant women and is characterized by edema, hypertension and proteinuria. It is one of the leading causes of morbidity and mortality in pregnant women and newborns. Evidences
reveal that the expression of long non-coding RNA (lncRNA) prostate cancer non-coding RNA 1 (PRNCR1) is abnormal in PE. Therefore, we investigated the role of lncRNA PRNCR1 in PE development and its molecular mechanism. Methods: Quantitative reverse transcription PCR (qRT-PCR) was used
to determine the expression levels of lncRNA PRNCR1, microRNA (miR)-211-5p and mRNA leval of death effector domain containing 2 (DEDD2). Besides, the expression level of DEDD2 was detected by western blot assay. Cell proliferation ability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay, and cell apoptosis was detected by flow cytometry assay. Transwell assay was used to detect the migration and invasion of HTR-8/SVneo cells. The relationship between miR-211-5p and lncRNA PRNCR1 or DEDD2 was verified by dual luciferase reporter gene assay. Results:
Over-expression of lncRNA PRNCR1 induced apoptosis, impeded proliferation, migration, invasion in HTR-8/SVneo cells. Knockdown of lncRNA PRNCR1 inhibited apoptosis, promoted cell proliferation, migration and invasion, and all these effects were offset by miR-211-5p inhibitor. The mRNA and
protein levels of DEDD2 were decreased by overexpressing miR-211-5p in HTR-8/SVneo cells, while miR-211-5p inhibitor significantly increased the mRNA and protein levels of DEDD2. Conclusions: lncRNA PRNCR1 regulated cell behavior (proliferation, apoptosis, migration, and invasion) via
the miR-211-5p/DEDD2 axis in HTR-8/SVneo cells. Thus, lncRNA PRNCR1 participated in the occurrence and development of PE.
Collapse
Affiliation(s)
- Caijuan Li
- Department of Obstetrics, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Lina Zhang
- Department of Obstetrics, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Taoying Guo
- Department of Obstetrics, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Lina Zou
- Department of Obstetrics, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| |
Collapse
|
10
|
Xu X, Wang Y, Zhang S, Zhu Y, Wang J. Exploration of Prognostic Biomarkers of Muscle-Invasive Bladder Cancer (MIBC) by Bioinformatics. Evol Bioinform Online 2021; 17:11769343211049270. [PMID: 34733102 PMCID: PMC8558584 DOI: 10.1177/11769343211049270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
We aimed to discover prognostic factors of muscle-invasive bladder cancer (MIBC) and investigate their relationship with immune therapies. Online data of MIBC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO) database. Weighted gene co-expression network analysis (WGCNA) and univariate Cox analysis were applied to classify genes into different groups. Venn diagram was used to find the intersection of genes, and prognostic efficacy was proved by Kaplan-Meier analysis. Heatmap was utilized for differential analysis. Riskscore (RS) was calculated according to multivariate Cox analysis and evaluated by receiver operating characteristic curve (ROC). MIBC samples from TCGA and GEO were analyzed by WGCNA and univariate Cox analysis and intersected at 4 genes, CLK4, DEDD2, ENO1, and SYTL1. Higher SYTL1 and DEDD2 expressions were significantly correlated with high tumor grades. Riskscore based on genes showed great prognostic efficiency in predicting overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in TCGA dataset (P < .001). The area under the ROC curve (AUC) of RS reached 0.671 in predicting 1-year survival and 0.653 in 3-year survival. KEGG pathways enrichment filtered 5 enriched pathways. xCell analysis showed increased T cell CD4+ Th2 cell, macrophage, macrophage M1, and macrophage M2 infiltration in high RS samples (P < .001). In immune checkpoints analysis, PD-L1 expression was significantly higher in patients with high RS. We have, therefore, constructed RS as a convincing prognostic index for MIBC patients and found potential targeted pathways.
Collapse
Affiliation(s)
- Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yelin Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sihong Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
A Genome-Wide Profiling of Glioma Patients with an IDH1 Mutation Using the Catalogue of Somatic Mutations in Cancer Database. Cancers (Basel) 2021; 13:cancers13174299. [PMID: 34503108 PMCID: PMC8428353 DOI: 10.3390/cancers13174299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Glioma patients that present a somatic mutation in the isocitrate dehydrogenase 1 (IDH1) gene have a significantly better prognosis and overall survival than patients with the wild-type genotype. An IDH1 mutation is hypothesized to occur early during cellular transformation and leads to further genetic instability. A genome-wide profiling of glioma patients in the Catalogue of Somatic Mutations in Cancer (COSMIC) database was performed to classify the genetic differences in IDH1-mutant versus IDH1-wildtype patients. This classification will aid in a better understanding of how this specific mutation influences the genetic make-up of glioma and the resulting prognosis. Key differences in co-mutation and gene expression levels were identified that correlate with an improved prognosis. Abstract Gliomas are differentiated into two major disease subtypes, astrocytoma or oligodendroglioma, which are then characterized as either IDH (isocitrate dehydrogenase)-wild type or IDH-mutant due to the dramatic differences in prognosis and overall survival. Here, we investigated the genetic background of IDH1-mutant gliomas using the Catalogue of Somatic Mutations in Cancer (COSMIC) database. In astrocytoma patients, we found that IDH1 is often co-mutated with TP53, ATRX, AMBRA1, PREX1, and NOTCH1, but not CHEK2, EGFR, PTEN, or the zinc finger transcription factor ZNF429. The majority of the mutations observed in these genes were further confirmed to be either drivers or pathogenic by the Cancer-Related Analysis of Variants Toolkit (CRAVAT). Gene expression analysis showed down-regulation of DRG2 and MSN expression, both of which promote cell proliferation and invasion. There was also significant over-expression of genes such as NDRG3 and KCNB1 in IDH1-mutant astrocytoma patients. We conclude that IDH1-mutant glioma is characterized by significant genetic changes that could contribute to a better prognosis in glioma patients.
Collapse
|
12
|
Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nat Commun 2019; 10:2860. [PMID: 31253784 PMCID: PMC6599020 DOI: 10.1038/s41467-019-10743-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Lacking targetable molecular drivers, triple-negative breast cancer (TNBC) is the most clinically challenging subtype of breast cancer. In this study, we reveal that Death Effector Domain-containing DNA-binding protein (DEDD), which is overexpressed in > 60% of TNBCs, drives a mitogen-independent G1/S cell cycle transition through cytoplasm localization. The gain of cytosolic DEDD enhances cyclin D1 expression by interacting with heat shock 71 kDa protein 8 (HSC70). Concurrently, DEDD interacts with Rb family proteins and promotes their proteasome-mediated degradation. DEDD overexpression renders TNBCs vulnerable to cell cycle inhibition. Patients with TNBC have been excluded from CDK 4/6 inhibitor clinical trials due to the perceived high frequency of Rb-loss in TNBCs. Interestingly, our study demonstrated that, irrespective of Rb status, TNBCs with DEDD overexpression exhibit a DEDD-dependent vulnerability to combinatorial treatment with CDK4/6 inhibitor and EGFR inhibitor in vitro and in vivo. Thus, our study provided a rationale for the clinical application of CDK4/6 inhibitor combinatorial regimens for patients with TNBC.
Collapse
|
13
|
Winge SB, Dalgaard MD, Jensen JM, Graem N, Schierup MH, Juul A, Rajpert-De Meyts E, Almstrup K. Transcriptome profiling of fetal Klinefelter testis tissue reveals a possible involvement of long non-coding RNAs in gonocyte maturation. Hum Mol Genet 2019; 27:430-439. [PMID: 29186436 DOI: 10.1093/hmg/ddx411] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
In humans, the most common sex chromosomal disorder is Klinefelter syndrome (KS), caused by the presence of one or more extra X-chromosomes. KS patients display a varying adult phenotype but usually present with azoospermia due to testicular degeneration, which accelerates at puberty. The timing of the germ cell loss and whether it is caused by dysgenetic fetal development of the testes is not known. We investigated eight fetal KS testes and found a marked reduction in MAGE-A4-positive pre-spermatogonia compared with testes from 15 age-matched controls, indicating a failure of the gonocytes to differentiate into pre-spermatogonia. Transcriptome analysis by RNA-sequencing of formalin-fixed, paraffin-embedded testes originating from four fetal KS and five age-matched controls revealed 211 differentially expressed transcripts in the fetal KS testis. We found a significant enrichment of upregulated X-chromosomal transcripts and validated the expression of the pseudoautosomal region 1 (PAR1) gene, AKAP17A. Moreover, we found enrichment of long non-coding RNAs in the KS testes (e.g. LINC01569 and RP11-485F13.1). In conclusion, our data indicate that the testicular phenotype observed among adult men with KS is initiated already in fetal life by failure of the gonocyte differentiation into pre-spermatogonia, which could be due to aberrant expression of long non-coding RNAs.
Collapse
Affiliation(s)
- Sofia B Winge
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), DK-2100 Copenhagen, Denmark
| | - Marlene D Dalgaard
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), DK-2100 Copenhagen, Denmark.,DTU Multi-Assay Core, DTU Bioinformatics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jacob M Jensen
- Bioinformatics Research Center, Aarhus University, DK-8000 Aarhus, Denmark
| | - Niels Graem
- Department of Pathology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Mikkel H Schierup
- Bioinformatics Research Center, Aarhus University, DK-8000 Aarhus, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), DK-2100 Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), DK-2100 Copenhagen, Denmark
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Nanson JD, Kobe B, Ve T. Death, TIR, and RHIM: Self-assembling domains involved in innate immunity and cell-death signaling. J Leukoc Biol 2018; 105:363-375. [PMID: 30517972 DOI: 10.1002/jlb.mr0318-123r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
The innate immune system consists of pattern recognition receptors (PRRs) that detect pathogen- and endogenous danger-associated molecular patterns (PAMPs and DAMPs), initiating signaling pathways that lead to the induction of cytokine expression, processing of pro-inflammatory cytokines, and induction of cell-death responses. An emerging concept in these pathways and associated processes is signaling by cooperative assembly formation (SCAF), which involves formation of higher order oligomeric complexes, and enables rapid and strongly amplified signaling responses to minute amounts of stimulus. Many of these signalosomes assemble through homotypic interactions of members of the death-fold (DF) superfamily, Toll/IL-1 receptor (TIR) domains, or the RIP homotypic interaction motifs (RHIM). We review the current understanding of the structure and function of these domains and their molecular interactions with a particular focus on higher order assemblies.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
15
|
Matsushita Y, Furutani Y, Matsuoka R, Furukawa T. Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:319. [PMID: 30514293 PMCID: PMC6280349 DOI: 10.1186/s12906-018-2385-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/26/2018] [Indexed: 02/18/2023]
Abstract
Background Pancreatic cancer is one of the most aggressive human malignancies. The development of a novel drug to treat pancreatic cancer is imperative, and it is thought that complementary and alternative medicine (CAM) could yield such a candidate. Agaricus blazei Murrill is a CAM that has been tested as an anticancer drug, but its efficacy against pancreatic cancer is poorly understood. To study the potential of A. blazei in the treatment of pancreatic cancer, we examined the effects of its hot water extract on the proliferation and global gene expression profile of human pancreatic cancer cells. Methods Three distinct human pancreatic cancer cell lines, MIAPaCa-2, PCI-35, and PK-8, and the immortalized human pancreatic duct-epithelial cell line, HPDE, were employed. The cells were incubated with the appropriate growth medium supplemented with the hot water extract of A. blazei at final concentrations of 0.005, 0.015%, or 0.045%, and cellular proliferation was assessed for five consecutive days using an MTT assay. Apoptosis was examined by using flow cytometry and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Caspase-dependent apoptosis was assayed using immunoblotting. Global gene expression profiles were examined using a whole human genome 44 K microarray, and the microarray results were validated by using real-time reverse transcription PCR. Results The hot water extract of A. blazei significantly inhibited the proliferation of cultured pancreatic cancer cells through the induction of G0/G1 cell cycle arrest and caspase-dependent apoptosis; the effect was the smallest in HPDE cells. Furthermore, significant alterations in the global gene expression profiles of pancreatic cancer cells occurred following treatment with the hot water extract of A. blazei. Genes associated with kinetochore function, spindle formation, and centromere maintenance were particularly affected, as well as cyclins and cyclin-dependent kinases that are essential for cell cycle progression. In addition, proapoptotic genes were upregulated. Conclusions The hot water extract of A. blazei may be useful for the treatment of pancreatic cancer and is a potential candidate for the isolation of novel, active compounds specific for mitotic spindle dysfunction. Electronic supplementary material The online version of this article (10.1186/s12906-018-2385-4) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Kopeina GS, Prokhorova EA, Lavrik IN, Zhivotovsky B. Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Prolif 2018; 51:e12467. [PMID: 29947118 DOI: 10.1111/cpr.12467] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a mode of regulated cell death that is indispensable for the morphogenesis, development and homeostasis of multicellular organisms. Caspases are cysteine-dependent aspartate-specific proteases, which function as initiators and executors of apoptosis. Caspases are cytosolic proteins that can cleave substrates located in different intracellular compartments during apoptosis. Many years ago, the involvement of caspases in the regulation of nuclear changes, a hallmark of apoptosis, was documented. Accumulated data suggest that apoptosis-associated alterations in nucleocytoplasmic transport are also linked to caspase activity. Here, we aim to discuss the current state of knowledge regarding this process. Particular attention will be focused on caspase nuclear entry and their functions in the demolition of the nucleus upon apoptotic stimuli.
Collapse
Affiliation(s)
- Gelina S Kopeina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Inna N Lavrik
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Tucey TM, Verma J, Harrison PF, Snelgrove SL, Lo TL, Scherer AK, Barugahare AA, Powell DR, Wheeler RT, Hickey MJ, Beilharz TH, Naderer T, Traven A. Glucose Homeostasis Is Important for Immune Cell Viability during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metab 2018; 27:988-1006.e7. [PMID: 29719235 PMCID: PMC6709535 DOI: 10.1016/j.cmet.2018.03.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/18/2017] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
To fight infections, macrophages undergo a metabolic shift whereby increased glycolysis fuels antimicrobial inflammation and killing of pathogens. Here we demonstrate that the pathogen Candida albicans turns this metabolic reprogramming into an Achilles' heel for macrophages. During Candida-macrophage interactions intertwined metabolic shifts occur, with concomitant upregulation of glycolysis in both host and pathogen setting up glucose competition. Candida thrives on multiple carbon sources, but infected macrophages are metabolically trapped in glycolysis and depend on glucose for viability: Candida exploits this limitation by depleting glucose, triggering rapid macrophage death. Using pharmacological or genetic means to modulate glucose metabolism of host and/or pathogen, we show that Candida infection perturbs host glucose homeostasis in the murine candidemia model and demonstrate that glucose supplementation improves host outcomes. Our results support the importance of maintaining glucose homeostasis for immune cell survival during Candida challenge and for host survival in systemic infection.
Collapse
Affiliation(s)
- Timothy M Tucey
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Jiyoti Verma
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Paul F Harrison
- Bioinformatics Platform, Monash University, Clayton 3800, VIC, Australia
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Tricia L Lo
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Allison K Scherer
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Adele A Barugahare
- Bioinformatics Platform, Monash University, Clayton 3800, VIC, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton 3800, VIC, Australia
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Traude H Beilharz
- Development and Stem Cells Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Thomas Naderer
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia.
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|
18
|
Wang HB, Li T, Ma DZ, Ji YX, Zhi H. RETRACTED: Overexpression of FADD and Caspase-8 inhibits proliferation and promotes apoptosis of human glioblastoma cells. Biomed Pharmacother 2017; 93:1-7. [PMID: 28618251 DOI: 10.1016/j.biopha.2017.05.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/25/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the Western blot data in Figure 1B, which appear to represent a distinct phenotype found in many other publications, as detailed here: https://pubpeer.com/publications/52B13D77036B8927AFCF19CEFA0991; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Concerns were also expressed over the unusual flow cytometry plots in Figure 3A, and the provenance of these data. The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Hong-Bin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan 056029, PR China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan 056029, PR China
| | - Dong-Zhou Ma
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan 056029, PR China
| | - Yan-Xin Ji
- Department of Rehabilitation, Xingtai Hospital of Traditional Chinese Medicine, Xingtai 054000, PR China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital of Hebei University of Engineering, Handan 056029, PR China.
| |
Collapse
|
19
|
Waide EH, Tuggle CK, Serão NVL, Schroyen M, Hess A, Rowland RRR, Lunney JK, Plastow G, Dekkers JCM. Genomewide association of piglet responses to infection with one of two porcine reproductive and respiratory syndrome virus isolates. J Anim Sci 2017; 95:16-38. [PMID: 28177360 DOI: 10.2527/jas.2016.0874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease in the swine industry. Identification of host genetic factors that enable selection for improved performance during PRRS virus (PRRSV) infection would reduce the impact of this disease on animal welfare and production efficiency. We conducted genomewide association study (GWAS) analyses of data from 13 trials of approximately 200 commercial crossbred nursery-age piglets that were experimentally infected with 1 of 2 type 2 isolates of PRRSV (NVSL 97-7985 [NVSL] and KS2006-72109 [KS06]). Phenotypes analyzed were viral load (VL) in blood during the first 21 d after infection (dpi) and weight gain (WG) from 0 to 42 dpi. We accounted for the previously identified QTL in the region on SSC4 in our models to increase power to identify additional regions. Many regions identified by single-SNP analyses were not identified using Bayes-B, but both analyses identified the same regions on SSC3 and SSC5 to be associated with VL in the KS06 trials and on SSC6 in the NVSL trials ( < 5 × 10); for WG, regions on SSC5 and SSC17 were associated in the NVSL trials ( < 3 × 10). No regions were identified with either method for WG in the KS06 trials. Except for the region on SSC4, which was associated with VL for both isolates (but only with WG for NVSL), identified regions did not overlap between the 2 PRRSV isolate data sets, despite high estimates of the genetic correlation between isolates for traits based on these data. We also identified genomic regions whose associations with VL or WG interacted with either PRRSV isolate or with genotype at the SSC4 QTL. Gene ontology (GO) annotation terms for genes located near moderately associated SNP ( < 0.003) were enriched for multiple immunologically (VL) and metabolism- (WG) related GO terms. The biological relevance of these regions suggests that, although it may increase the number of false positives, the use of single-SNP analyses and a relaxed threshold also increased the identification of true positives. In conclusion, although only the SSC4 QTL was associated with response to both PRRSV isolates, genes near associated SNP were enriched for the same GO terms across PRRSV isolates, suggesting that host responses to these 2 isolates are affected by the actions of many genes that function together in similar biological processes.
Collapse
|
20
|
Han K, Meng W, Zhang JJ, Zhou Y, Wang YL, Su Y, Lin SC, Gan ZH, Sun YN, Min DL. Luteolin inhibited proliferation and induced apoptosis of prostate cancer cells through miR-301. Onco Targets Ther 2016; 9:3085-94. [PMID: 27307749 PMCID: PMC4888721 DOI: 10.2147/ott.s102862] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Luteolin is a falvonoid compound derived from Lonicera japonica Thunb. Numerous reports have demonstrated that luteolin has anticancer effects on many kinds of tumors. This study investigated the effects of luteolin on prostate cancer (PCa), assessing the PC3 and LNCaP cells. The cell viability and apoptosis were assessed by performing Cell Counting Kit-8 assay and Annexin V–fluorescein isothiocyanate/propidium iodide double staining. Luteolin was found to inhibit androgen-sensitive and androgen-independent PCa cell lines’ growth and induced apoptosis. To uncover the exact mechanisms and molecular targets, microRNA (miR) array analysis was performed. miR-301 was found to be markedly downregulated. Then, the expression of miR-301 was retrospectively analyzed in the primary PCa tissues by quantitative reverse transcription polymerase chain reaction and in situ hybridization methods. According to the quantitative reverse transcription polymerase chain reaction results of miR-301, the 54 PCa patients were divided into two groups: high and low miR-301 groups. The division indicator is a relative expression ≥5. Compared to the low-expression group, high miR-301 expression was associated with a significantly shorter overall survival (P=0.029). The proapoptotic gene, DEDD2, was predicted to be the direct target of miR-301. It was clarified in accordance with bioinformatics and luciferase activity analyses. The overexpression of miR-301 by plasmid decreased the luteolin effect. Taken together, these results suggest that luteolin inhibits PCa cell proliferation through miR-301, the poor predictive factor of PCa.
Collapse
Affiliation(s)
- Kun Han
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Wei Meng
- Institute of Genetic Engineering of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jian-Jun Zhang
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yan Zhou
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Ya-Ling Wang
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yang Su
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Shu-Chen Lin
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhi-Hua Gan
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yong-Ning Sun
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Da-Liu Min
- Oncology Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Park MH, Kim JH, Chung YH, Lee SH. Bakuchiol sensitizes cancer cells to TRAIL through ROS- and JNK-mediated upregulation of death receptors and downregulation of survival proteins. Biochem Biophys Res Commun 2016; 473:586-92. [DOI: 10.1016/j.bbrc.2016.03.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 10/22/2022]
|
22
|
Chukkapalli S, Levi E, Rishi AK, Datta NS. PTHrP attenuates osteoblast cell death and apoptosis induced by a novel class of anti-cancer agents. Endocrine 2016; 51:534-44. [PMID: 26260694 DOI: 10.1007/s12020-015-0699-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
The effectiveness of chemotherapeutic agents often limits their use due to their negative effects on normal cells. Apoptosis regulatory protein (CARP)-1 functional mimetics (CFMs) belong to a novel class of compounds that possess anti-cancer properties with potential utility in breast and other cancers. In this study, we investigated the growth inhibitory action of CFM-4 and -5 in bone-forming osteoblasts and role of a skeletal regulator, parathyroid hormone (PTH)-related peptide (PTHrP), which is frequently associated with oncologic pathologies. MC3T3E1-clone4 (MC-4) or primary osteoblasts were treated with CFMs. Western blots were performed to determine specific protein expressions. MTT, TUNEL assay, ethidium bromide/acridine orange staining, and ApoAlert caspase profiling were used to investigate cell viability and apoptosis of osteoblasts. Immunofluorescence staining was performed to observe intracellular localization of CARP-1. Our studies revealed that CFM-4 and -5 suppressed growths of mature differentiated, but not proliferating, MC-4 cells and PTHrP attenuated this effect. Mechanistically, induction of CARP-1 protein by CFM-4 and -5 was partially decreased by PTHrP. While CARP-1 increased by CFM-4 or -5 correlated with activated caspase-3, PTHrP remarkably blocked caspase-3 activation. PTHrP also influenced translocation of CFM-induced CARP-1 from the nucleus to the cytoplasm. Our data identify a new function of PTHrP in maintaining osteoblast homeostasis in chemotherapy and define a role of CARP-1 in this process. The crosstalk of PTHrP and CFM-4 and -5 signaling highlights the importance of CFMs as potential anti-cancer therapeutics in breast and other cancers which adversely affect bone.
Collapse
Affiliation(s)
- Sahiti Chukkapalli
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Edi Levi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- VA Medical Center, Detroit, MI, 48201, USA
| | - Arun K Rishi
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- VA Medical Center, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Nabanita S Datta
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, MI, 48201, USA.
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
23
|
Lu L, Pandey AK, Houseal MT, Mulligan MK. The Genetic Architecture of Murine Glutathione Transferases. PLoS One 2016; 11:e0148230. [PMID: 26829228 PMCID: PMC4734686 DOI: 10.1371/journal.pone.0148230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.
Collapse
Affiliation(s)
- Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Ashutosh K. Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
| | - M. Trevor Houseal
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
- * E-mail:
| |
Collapse
|
24
|
CARP-1/CCAR1: a biphasic regulator of cancer cell growth and apoptosis. Oncotarget 2016; 6:6499-510. [PMID: 25894788 PMCID: PMC4466629 DOI: 10.18632/oncotarget.3376] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/12/2015] [Indexed: 12/03/2022] Open
Abstract
Targeted cancer therapy using small molecule inhibitors (SMIs) has been useful in targeting the tumor cells while sparing the normal cells. Despite clinical success of many targeted therapies, their off-target effects and development of resistance are emerging as significant and challenging problems. Thus, there is an urgent need to identify targets to devise new means to treat cancers and their drug-resistant phenotypes. CARP-1/CCAR1 (Cell division cycle and apoptosis regulator 1), a peri-nuclear phospho-protein, plays a dynamic role in regulating cell growth and apoptosis by serving as a co-activator of steroid/thyroid nuclear receptors, β-catenin, Anaphase Promoting Complex/Cyclosome (APC/C) E3 ligase, and tumor suppressor p53. CARP-1/CCAR1 also regulates chemotherapy-dependent apoptosis. CARP-1/CCAR1 functional mimetics (CFMs) are a novel SMIs of CARP-1/CCAR1 interaction with APC/C. CFMs promote apoptosis in a manner independent of p53. CFMs are potent inhibitors of a variety of cancer cells including the drug (Adriamycin or Tamoxifen)-resistant breast cancer cells but not the immortalized breast epithelial cells, while a nano-lipid formulation of the lead compound CFM-4 improves its bioavailability and efficacy in vivo when administered orally. This review focuses on the background and pleiotropic roles of CARP-1/CCAR1 as well as its apoptosis signaling mechanisms in response to chemotherapy in cancer cells.
Collapse
|
25
|
Li K, Wu D, Chen X, Zhang T, Zhang L, Yi Y, Miao Z, Jin N, Bi X, Wang H, Xu J, Wang D. Current and emerging biomarkers of cell death in human disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:690103. [PMID: 24949464 PMCID: PMC4052120 DOI: 10.1155/2014/690103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 01/18/2023]
Abstract
Cell death is a critical biological process, serving many important functions within multicellular organisms. Aberrations in cell death can contribute to the pathology of human diseases. Significant progress made in the research area enormously speeds up our understanding of the biochemical and molecular mechanisms of cell death. According to the distinct morphological and biochemical characteristics, cell death can be triggered by extrinsic or intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe. Nevertheless, the realization that all of these efforts seek to pursue an effective treatment and cure for the disease has spurred a significant interest in the development of promising biomarkers of cell death to early diagnose disease and accurately predict disease progression and outcome. In this review, we summarize recent knowledge about cell death, survey current and emerging biomarkers of cell death, and discuss the relationship with human diseases.
Collapse
Affiliation(s)
- Kongning Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Deng Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xi Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ting Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zhengqiang Miao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Nana Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaoman Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jianzhen Xu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
26
|
Li P, Harris D, Liu Z, Rozovski U, Ferrajoli A, Wang Y, Bueso-Ramos C, Hazan-Halevy I, Grgurevic S, Wierda W, Burger J, O'Brien S, Faderl S, Keating M, Estrov Z. STAT3-activated GM-CSFRα translocates to the nucleus and protects CLL cells from apoptosis. Mol Cancer Res 2014; 12:1267-82. [PMID: 24836891 DOI: 10.1158/1541-7786.mcr-13-0652-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Here, it was determined that chronic lymphocytic leukemia (CLL) cells express the α subunit, but not the β subunit, of the granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR/CSF2R). GM-CSFRα was detected on the surface, in the cytosol, and in the nucleus of CLL cells via confocal microscopy, cell fractionation, and GM-CSFRα antibody epitope mapping. Because STAT3 is frequently activated in CLL and the GM-CSFRα promoter harbors putative STAT3 consensus binding sites, MM1 cells were transfected with truncated forms of the GM-CSFRα promoter, then stimulated with IL6 to activate STAT3 and to identify STAT3-binding sites. Chromatin immunoprecipitation (ChIP) and an electoromobility shift assay (EMSA) confirmed STAT3 occupancy to those promoter regions in both IL6-stimulated MM1 and CLL cells. Transfection of MM1 cells with STAT3-siRNA or CLL cells with STAT3-shRNA significantly downregulated GM-CSFRα mRNA and protein levels. RNA transcripts, involved in regulating cell survival pathways, and the proteins KAP1 (TRIM28) and ISG15 coimmunoprecipitated with GM-CSFRα. GM-CSFRα-bound KAP1 enhanced the transcriptional activity of STAT3, whereas GM-CSFRα-bound ISG15 inhibited the NF-κB pathway. Nevertheless, overexpression of GM-CSFRα protected MM1 cells from dexamethasone-induced apoptosis, and GM-CSFRα knockdown induced apoptosis in CLL cells, suggesting that GM-CSFRα provides a ligand-independent survival advantage. IMPLICATIONS Constitutively, activation of STAT3 induces the expression of GM-CSFRα that protects CLL cells from apoptosis, suggesting that inhibition of STAT3 or GM-CSFRα may benefit patients with CLL.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Bueso-Ramos
- Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen Y, Chen J, Loo A, Jaeger S, Bagdasarian L, Yu J, Chung F, Korn J, Ruddy D, Guo R, McLaughlin ME, Feng F, Zhu P, Stegmeier F, Pagliarini R, Porter D, Zhou W. Targeting HSF1 sensitizes cancer cells to HSP90 inhibition. Oncotarget 2014; 4:816-29. [PMID: 23615731 PMCID: PMC3757240 DOI: 10.18632/oncotarget.991] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) facilitates the appropriate folding of various oncogenic proteins and is necessary for the survival of some cancer cells. HSP90 is therefore an attractive drug target, but the efficacy of HSP90 inhibitor may be limited by HSP90 inhibition induced feedback mechanisms. Through pooled RNA interference screens, we identified that heat shock factor 1(HSF1) is a sensitizer of HSP90 inhibitor. A striking combinational effect was observed when HSF1 knockdown plus with HSP90 inhibitors treatment in various cancer cell lines and tumor mouse models. Interestingly, HSF1 is highly expressed in hepatocellular carcinoma (HCC) patient samples and HCC is sensitive to combinational treatment, indicating a potential indication for the combinational treatment. To understand the mechanism of the combinational effect, we identified that a HSF1-target gene DEDD2 is involved in attenuating the effect of HSP90 inhibitors. Thus, the transcriptional activities of HSF1 induced by HSP90 inhibitors provide a feedback mechanism of limiting the HSP90 inhibitor's activity, and targeting HSF1 may provide a new avenue to enhance HSP90 inhibitors activity in human cancers.
Collapse
Affiliation(s)
- Yaoyu Chen
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Riester M, Werner L, Bellmunt J, Selvarajah S, Guancial EA, Weir BA, Stack EC, Park RS, O'Brien R, Schutz FAB, Choueiri TK, Signoretti S, Lloreta J, Marchionni L, Gallardo E, Rojo F, Garcia DI, Chekaluk Y, Kwiatkowski DJ, Bochner BH, Hahn WC, Ligon AH, Barletta JA, Loda M, Berman DM, Kantoff PW, Michor F, Rosenberg JE. Integrative analysis of 1q23.3 copy-number gain in metastatic urothelial carcinoma. Clin Cancer Res 2014; 20:1873-83. [PMID: 24486590 DOI: 10.1158/1078-0432.ccr-13-0759] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Metastatic urothelial carcinoma of the bladder is associated with multiple somatic copy-number alterations (SCNAs). We evaluated SCNAs to identify predictors of poor survival in patients with metastatic urothelial carcinoma treated with platinum-based chemotherapy. EXPERIMENTAL DESIGN We obtained overall survival (OS) and array DNA copy-number data from patients with metastatic urothelial carcinoma in two cohorts. Associations between recurrent SCNAs and OS were determined by a Cox proportional hazard model adjusting for performance status and visceral disease. mRNA expression was evaluated for potential candidate genes by NanoString nCounter to identify transcripts from the region that are associated with copy-number gain. In addition, expression data from an independent cohort were used to identify candidate genes. RESULTS Multiple areas of recurrent significant gains and losses were identified. Gain of 1q23.3 was independently associated with a shortened OS in both cohorts [adjusted HR, 2.96; 95% confidence interval (CI), 1.35-6.48; P = 0.01 and adjusted HR, 5.03; 95% CI, 1.43-17.73; P < 0.001]. The F11R, PFDN2, PPOX, USP21, and DEDD genes, all located on 1q23.3, were closely associated with poor outcome. CONCLUSIONS 1q23.3 copy-number gain displayed association with poor survival in two cohorts of metastatic urothelial carcinoma. The identification of the target of this copy-number gain is ongoing, and exploration of this finding in other disease states may be useful for the early identification of patients with poor-risk urothelial carcinoma. Prospective validation of the survival association is necessary to demonstrate clinical relevance.
Collapse
Affiliation(s)
- Markus Riester
- Authors' Affiliations: Departments of Biostatistics and Computational Biology, and Medical Oncology; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute; Department of Biostatistics, Harvard School of Public Health; Department of Pathology; Translational Medicine Division, Brigham and Women's Hospital, Boston; Broad Institute of Harvard and MIT, Cambridge, Massachusetts; Sidney Kimmel Cancer Center; Department of Pathology, Johns Hopkins University, Baltimore, Maryland; Department of Urology, Memorial Sloan-Kettering Cancer Center, New York, New York; and Hospital del Mar Research Institute-IMIM, Barcelona; and Hospital Parc Tauli, Sabadell, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tian P, Sun Y, Li Y, Liu X, Wan L, Li J, Ma Y, Xu A, Fu Y, Zou H. A global analysis of tandem 3'UTRs in eosinophilic chronic rhinosinusitis with nasal polyps. PLoS One 2012. [PMID: 23185289 PMCID: PMC3501494 DOI: 10.1371/journal.pone.0048997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Alternative polyadenylation (APA) is emerging as a widespread mechanism of gene regulation. The usage of APA sites allows a single gene to encode multiple mRNA transcripts with different 3′-untranslated region (3′UTR) lengths. Many disease processes reflect the importance of the regulation of APA site switching. The objective of this study was to explore the profiling of tandem APA sites in nasal polyps compared with nasal uncinate process mucosa. Methods Sequencing of APA sites (SAPAS) based on second-generation sequencing technology was undertaken to investigate the use of tandem APA sites and identify gene expression patterns in samples from the nasal polyps and nasal uncinate process mucosa of two patients with chronic rhinosinusitis with nasal polyps. The findings of the SAPAS analysis were validated via quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results First, the results showed a switching of 3′UTR lengths in nasal polyps compared with nasal uncinate process mucosa. From the two patients, 105 genes that were detected in both patients in the nasal polyps were switched to distal poly(A) sites, and 90 such genes were switched to proximal poly(A) sites. Several Gene Ontology terms were enriched in the list of genes with switched APA sites, including transcription regulation, cell cycle, apoptosis, and metabolism. Second, we detected genes that showed differential expression with at least a 3-fold difference between nasal polyp tissue and nasal uncinate process mucosa. Between the two sample types, 627 genes exhibited differential expression. The qRT-PCR results confirmed our SAPAS results. Conclusion APA site-switching events of 3′UTRs are prevalent in nasal polyp tissue, and the regulation of gene expression mediated by APA may play an important role in the formation and persistence of nasal polyps. Our results may provide new insights into the possible pathophysiologic processes involved in nasal polyps.
Collapse
Affiliation(s)
- Peng Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yu Sun
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, P.R. China
| | - Yuxin Li
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, P.R. China
| | - Xiang Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Liang Wan
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, P.R. China
| | - Jie Li
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, P.R. China
| | - Yun Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Anlong Xu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, P.R. China
| | - Yonggui Fu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, P.R. China
- * E-mail: (YF); (HZ)
| | - Hua Zou
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- * E-mail: (YF); (HZ)
| |
Collapse
|
30
|
Jarboui MA, Bidoia C, Woods E, Roe B, Wynne K, Elia G, Hall WW, Gautier VW. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS One 2012; 7:e48702. [PMID: 23166591 PMCID: PMC3499507 DOI: 10.1371/journal.pone.0048702] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these proteins collectively participate in interconnected networks converging to adapt the nucleolus dynamic activities, which favor host biosynthetic activities and may contribute to create a cellular environment supporting robust HIV-1 production.
Collapse
Affiliation(s)
- Mohamed Ali Jarboui
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Carlo Bidoia
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Elena Woods
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Barbara Roe
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Kieran Wynne
- Mass Spectrometry Resource (MSR), Conway Institute for Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - Giuliano Elia
- Mass Spectrometry Resource (MSR), Conway Institute for Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - William W. Hall
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Virginie W. Gautier
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
31
|
Won M, Jun EJ, Khim M, Hong SH, Park NH, Kim YK, Lee H. Antiviral protection against enterovirus 71 mediated by autophagy induction following FLICE-inhibitory protein inactivation. Virus Res 2012; 169:316-20. [PMID: 22960766 DOI: 10.1016/j.virusres.2012.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/24/2022]
Abstract
Even with the recent awareness of enterovirus 71 (EV71) as a major public health issue, there are no preventive or therapeutic agents that are effective against EV71 infection. Although FLICE-like inhibitory protein (FLIP) has been identified as a factor that modulates virus pathogenesis, there are no reports regarding its effects on EV71 infection. The aim of the present study was to identify whether FLIP influences EV71 pathogenesis and to understand the underlying mechanisms. Virus replication was markedly reduced in MRC5 cells preincubated with anti-FLIP peptides, and infected cells were rescued from the cytopathic effects of the virus. The anti-FLIP peptides induced autophagy by disrupting intrinsic FLIP functions. The antiviral activity of these peptides was reduced when autophagy was inhibited by treatment with siRNA targeted to beclin-1. Thus, the present study provides evidence that anti-FLIP peptides induce autophagy by inactivating cFLIP, and that this is associated with antiviral effects against EV71.
Collapse
Affiliation(s)
- Minah Won
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Lv Q, Wang W, Xue J, Hua F, Mu R, Lin H, Yan J, Lv X, Chen X, Hu ZW. DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer. Cancer Res 2012; 72:3238-50. [PMID: 22719072 DOI: 10.1158/0008-5472.can-11-3832] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a crucial developmental program, contributes to cancer invasion and metastasis. In this study, we show that death-effector domain-containing DNA-binding protein (DEDD) attenuates EMT and acts as an endogenous suppressor of tumor growth and metastasis. We found that expression levels of DEDD were conversely correlated with poor prognosis in patients with breast and colon cancer. Both in vitro and in vivo, overexpression of DEDD attenuated the invasive phenotype of highly metastatic cells, whereas silencing of DEDD promoted the invasion of nonmetastatic cells. Via direct interaction with the class III PI-3-kinase (PI3KC3)/Beclin1, DEDD activated autophagy and induced the degradation of Snail and Twist, two master regulators of EMT. The DEDD-PI3KC3 interaction led to stabilization of PI3KC3, which further contributed to autophagy and the degradation of Snail and Twist. Together, our findings highlight a novel mechanism in which the intracellular signaling protein DEDD functions as an endogenous tumor suppressor. DEDD expression therefore may represent a prognostic marker and potential therapeutic target for the prevention and treatment of cancer metastasis.
Collapse
Affiliation(s)
- Qi Lv
- Molecular Immunology and Cancer Pharmacology Groups, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Genome-wide impact of a recently expanded microRNA cluster in mouse. Proc Natl Acad Sci U S A 2011; 108:15804-9. [PMID: 21911408 DOI: 10.1073/pnas.1112772108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Variations in microRNA (miRNA) gene and/or target repertoire are likely to be key drivers of phenotypic differences between species. To better understand these changes, we developed a computational method that identifies signatures of species-specific target site gain and loss associated with miRNA acquisition. Interestingly, several of the miRNAs implicated in mouse 3' UTR evolution derive from a single rapidly expanded rodent-specific miRNA cluster. Located in the intron of Sfmbt2, a maternally imprinted polycomb gene, these miRNAs (referred to as the Sfmbt2 cluster) are expressed in both embryonic stem cells and the placenta. One abundant miRNA from the cluster, miR-467a, functionally overlaps with the mir-290-295 cluster in promoting growth and survival of mouse embryonic stem cells. Predicted novel targets of the remaining cluster members are enriched in pathways regulating cell survival. Two relevant species-specific target candidates, Lats2 and Dedd2, were validated in cultured cells. We suggest that the rapid evolution of the Sfmbt2 cluster may be a result of intersex conflict for growth regulation in early mammalian development and could provide a general model for the genomic response to acquisition of miRNAs and similar regulatory factors.
Collapse
|
34
|
Gagnière N, Jollivet D, Boutet I, Brélivet Y, Busso D, Da Silva C, Gaill F, Higuet D, Hourdez S, Knoops B, Lallier F, Leize-Wagner E, Mary J, Moras D, Perrodou E, Rees JF, Segurens B, Shillito B, Tanguy A, Thierry JC, Weissenbach J, Wincker P, Zal F, Poch O, Lecompte O. Insights into metazoan evolution from Alvinella pompejana cDNAs. BMC Genomics 2010; 11:634. [PMID: 21080938 PMCID: PMC3018142 DOI: 10.1186/1471-2164-11-634] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 11/16/2010] [Indexed: 11/29/2022] Open
Abstract
Background Alvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures. Results We have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity. Conclusions Our study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates.
Collapse
Affiliation(s)
- Nicolas Gagnière
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CERBM F-67400 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chiang SF, Lin TY, Chow KC, Chiou SH. SARS spike protein induces phenotypic conversion of human B cells to macrophage-like cells. Mol Immunol 2010; 47:2575-86. [PMID: 20667598 PMCID: PMC7112600 DOI: 10.1016/j.molimm.2010.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 12/25/2022]
Abstract
Massive aggregations of macrophages are frequently detected in afflicted lungs of patients with severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection. In vitro, ectopic expression of transcription factors, in particular CCAAT/enhancer-binding protein alpha (C/EBPα) and C/EBPβ, can convert B cells into functional macrophages. However, little is known about the specific ligands responsible for such phenotype conversion. Here, we investigated whether spike protein of SARS-CoV can act as a ligand to trigger the conversion of B cells to macrophages. We transduced SARS-CoV spike protein-displayed recombinant baculovirus (SSDRB), vAtEpGS688, into peripheral B cells and B lymphoma cells. Cell surface expression of CD19 or Mac-1 (CD11b) was determined by flow cytometry. SSDRB-mediated changes in gene expression profiles of B lymphoma cells were analyzed by microarray. In this report, we showed that spike protein of SARS virus could induce phenotypic conversion of human B cells, either from peripheral blood or B lymphoma cells, to macrophage-like cells that were steadily losing the B-cell marker CD19 and in turn expressing the macrophage-specific marker Mac-1. Furthermore, we found that SSDRB enhanced the expression of CD86, hypoxia-inducible factor-1α (HIF1α), suppressor of cytokine signaling (SOCS or STAT-induced STAT inhibitor)-3, C/EBPβ, insulin-like growth factor-binding protein 3 (IGFBP3), Krüpple-like factor (KLF)-5, and CD54, without marked influence on C/EBPα or PU.1 expression in transduced cells. Prolonged exposure to hypoxia could also induce macrophage-like conversion of B cells. These macrophage-like cells were defective in phagocytosis of red fluorescent beads. In conclusion, our results suggest that conversion of B cells to macrophage-like cells, similar to a pathophysiological response, could be mediated by a devastating viral ligand, in particular spike protein of SARS virus, or in combination with severe local hypoxia, which is a condition often observed in afflicted lungs of SARS patients.
Collapse
Affiliation(s)
- Shu-Fen Chiang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
36
|
Changes in Apoptotic Gene Expression in Lymphocytes from Rheumatoid Arthritis and Systemic Lupus Erythematosus Patients Compared with Healthy Lymphocytes. J Clin Immunol 2010; 30:649-58. [DOI: 10.1007/s10875-010-9429-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/24/2010] [Indexed: 01/09/2023]
|
37
|
Abstract
Shiga toxins comprise a family of structurally and functionally related protein toxins expressed by Shigella dysenteriae serotype 1 and multiple serotypes of Escherichia coli. While the capacity of Shiga toxins to inhibit protein synthesis by catalytic inactivation of eukaryotic ribosomes has been well described, it is also apparent that Shiga toxins trigger apoptosis in many cell types. This review presents evidence that Shiga toxins induce apoptosis of epithelial, endothelial, leukocytic, lymphoid and neuronal cells. Apoptotic signaling pathways activated by the toxins are reviewed with an emphasis on signaling mechanisms that are shared among different cell types. Data suggesting that Shiga toxins induce apoptosis through the endoplasmic reticulum stress response and clinical evidence demonstrating apoptosis in humans infected with Shiga toxin-producing bacteria are briefly discussed. The potential for use of Shiga toxins to induce apoptosis in cancer cells is briefly reviewed.
Collapse
Affiliation(s)
- Vernon L Tesh
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|
38
|
Converting redox signaling to apoptotic activities by stress-responsive regulators HSF1 and NRF2 in fenretinide treated cancer cells. PLoS One 2009; 4:e7538. [PMID: 19844581 PMCID: PMC2760443 DOI: 10.1371/journal.pone.0007538] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 09/30/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pharmacological intervention of redox balance in cancer cells often results in oxidative stress-mediated apoptosis, attracting much attention for the development of a new generation of targeted therapy in cancer. However, little is known about mechanisms underlying the conversion from oxidative signaling to downstream activities leading cells to death. METHODOLOGY/PRINCIPAL FINDINGS We here report a systematic detection of transcriptome changes in response to oxidative signals generated in leukemia cells upon fenretinide treatment, implicating the occurrence of numerous stress-responsive events during the fenretinide induced apoptosis, such as redox response, endoplasmic reticulum stress/unfolded protein response, translational repression and proteasome activation. Moreover, the configuration of these relevant events is primarily orchestrated by stress responsive transcription factors, as typically highlighted by NF-E2-related factor-2 (NRF2) and heat shock factor 1 (HSF1). Several lines of evidence suggest that the coordinated regulation of these transcription factors and thus their downstream genes are involved in converting oxidative signaling into downstream stress-responsive events regulating pro-apoptotic and apoptotic activities at the temporal and spatial levels, typifying oxidative stress-mediated programmed death rather than survival in cancer cells. CONCLUSIONS/SIGNIFICANCE This study provides a roadmap for understanding oxidative stress-mediated apoptosis in cancer cells, which may be further developed into more sophisticated therapeutic protocols, as implicated by synergistic induction of cell apoptosis using proteasome inhibitors with fenretinide.
Collapse
|
39
|
Abstract
Death effector domains (DEDs) are protein interaction modules found in a number of proteins known to regulate apoptosis from death receptors. The core DED family members that orchestrate programmed cell death from death receptors include the adaptor protein FADD, the initiator caspases procaspases-8 and -10 and the regulatory protein c-FLIP. Through homotypic DED interactions, these proteins assemble into the death-inducing signaling complex (DISC) to regulate initiator caspase activation and launch the apoptotic proteolytic cascade. A considerable body of evidence, however, is revealing that the same core group of DED-containing proteins also paradoxically promotes survival and proliferation in lymphocytes and possibly other cell types. This review delves into recent findings regarding these two opposing functional aspects of the core DED proteins. We discuss the current effort expanding our structural and biochemical view of how DED proteins assemble into the DISC to fully activate initiator caspases and execute cell death, and finally we examine details linking the same proteins to proliferation and describe how this outcome might be achieved through restricted activation of initiator caspases.
Collapse
Affiliation(s)
- J W Yu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, 08544 USA.
| | | |
Collapse
|
40
|
Ranheim T, Mattingsdal M, Lindvall JM, Holla OL, Berge KE, Kulseth MA, Leren TP. Genome-wide expression analysis of cells expressing gain of function mutant D374Y-PCSK9. J Cell Physiol 2008; 217:459-67. [PMID: 18570182 DOI: 10.1002/jcp.21519] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of serum cholesterol. The possibility that PCSK9 also functions in other pathways needs to be addressed. We have transfected HepG2 cells with mutant D374Y-PCSK9 or control vector. Gene expression signatures were determined using the Affymetrix GeneChip technology, and the expression pattern of selected genes was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Data was normalized and analyzed using a model-based background adjustment for oligonucleotide expression arrays, then filtered based upon expression within treatments group, and subjected to moderated t-statistics. Five hundred twenty transcripts had altered expression levels between D374Y-PCSK9 and control vector. Among the 520 probes on our top list, 312 were found to have an assigned Gene Ontology (GO) term, and 96 were found in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Genome-wide expression profiling revealed that "steroid biosynthesis," "sterol metabolism," and "cholesterol biosynthsis" were affected by D374Y-PCSK9. Also, the GO biological process terms "response to stresss," "response to virus," "response to unfolded protein," and "immune response" were influenced by D374Y-PCSK9. Our results suggest that D374Y-PCSK9 results in up-regulation of genes involved in sterol biosynthesis and down-regulation of stress-response genes and specific inflammation pathways.
Collapse
Affiliation(s)
- Trine Ranheim
- Department of Medical Genetics, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhao X, Qiu W, Kung J, Zhao X, Peng X, Yegappan M, Yen-Lieberman B, Hsi ED. Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: A gene expression profiling study with implications for potential combination therapies. Leuk Res 2008; 32:275-85. [PMID: 17659339 DOI: 10.1016/j.leukres.2007.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 05/10/2007] [Accepted: 05/19/2007] [Indexed: 01/09/2023]
Abstract
The Hodgkin cells and Reed-Sternberg cells (HRS) of classical Hodgkin lymphoma (CHL) are derived from germinal center B cells. The pathogenesis of CHL is unclear but constitutive activation of NFkappaB may contribute. Proteasome inhibition aimed at inhibiting NFkappaB has been shown to result in apoptosis in HRS cells. Here we investigated the effects of bortezomib, a proteasome inhibitor, in HRS cells with a combination of functional assays and gene expression profiling (GEP). Exposure of KMH2 and L428 cells to bortezomib resulted in inhibition of proliferation and induction of apoptosis. Gene expression analysis of KMH2 cells by oligonucleotide cDNA microarrays showed that a limited set of genes were differentially expressed involving several key cellular pathways including cell cycle and apoptosis. Among them, the caspase 8 inhibitor cFLIP was down-regulated and confirmed by Q-PCR. Given the evidence that cFLIP in HRS cells contribute to cells' insensitive to death receptor-mediated apoptosis, we combined bortezomib and TRAIL. This combination caused further down-regulation of cFLIP protein and increased apoptosis in CHL cells demonstrated by PARP p85 immunohistochemistry and immunoblotting. Such apoptotic effects were inhibited by caspase inhibitor z-VAD-FMK, confirming the pro-apoptotic effects of bortezomib and TRAIL are caspase-dependent. Bortezomib has no detectable effect on expression of TRAIL receptor DR4/DR5 in these two cell lines. Tissue microarray analysis of primary Hodgkin lymphomas displayed that 82% cases (95/116) expressed cFLIP in Reed-Sternberg cells. The discovery of apoptotic pathways that can be manipulated by proteasome inhibition provides rationale for the combination of bortezomib and agents such as TRAIL in CHL treatment.
Collapse
|
42
|
Abstract
Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma. We present a localization map of 85 HHV-8-encoded proteins in mammalian cells. Viral open reading frames were cloned with a Myc tag in expression plasmids, confirmed by full-length sequencing, and expressed in HeLa cells. Protein localizations were analyzed by immunofluorescence microscopy. Fifty-one percent of all proteins were localized in the cytoplasm, 22% were in the nucleus, and 27% were found in both compartments. Surprisingly, we detected viral FLIP (v-FLIP) in the nucleus and in the cytoplasm, whereas cellular FLIPs are generally localized exclusively in the cytoplasm. This suggested that v-FLIP may exert additional or alternative functions compared to cellular FLIPs. In addition, it has been shown recently that the K10 protein can bind to at least 15 different HHV-8 proteins. We noticed that K10 and only five of its 15 putative binding factors were localized in the nucleus when the proteins were expressed in HeLa cells individually. Interestingly, in coexpression experiments K10 colocalized with 87% (13 of 15) of its putative binding partners. Colocalization was induced by translocation of either K10 alone or both proteins. These results indicate active intracellular translocation processes in virus-infected cells. Specifically in this framework, the localization map may provide a useful reference to further elucidate the function of HHV-8-encoded genes in human diseases.
Collapse
|
43
|
Takashina T, Nakayama M. Modifications enhance the apoptosis-inducing activity of FADD. Mol Cancer Ther 2007; 6:1793-803. [PMID: 17575108 DOI: 10.1158/1535-7163.mct-06-0522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to enhance apoptosis-inducing activity in specific cells, despite the presence of cellular antiapoptotic proteins, would allow the removal of target cells from a cell population. Here, we show that modification of Fas-associated protein with death domain (FADD) by fusing the tandem death effector domains (DED) of FADD to the E protein of lambda phage, a head coat protein with self-assembly activity, greatly increases the apoptosis-inducing activity of FADD in both adherent NIH3T3 and HEK293 cells. Induction of apoptosis in cell lines that stably express modified FADD (2DEDplusE) resulted in rapid blebbing, and most cells detached from the flask within 5 h. In contrast, following induction of apoptosis, it took over 24 h for the cells expressing unmodified FADD to exhibit these signs. The cells expressing the modified FADD underwent apoptosis through the typical apoptosis cascade via activation of caspase-3, and apoptosis was inhibited by a caspase inhibitor (i.e., z-VAD-fmk). Theoretically, as our adhesive stable cell lines undergo apoptosis rapidly and in synchrony following mifepristone- or tetracycline-controlled production of a single apoptosis protein without affecting any other cellular pathways, they provide excellent model systems in which to analyze the phenomenon of apoptosis in adhesive cell lines, in particular, blebbing and detachment.
Collapse
Affiliation(s)
- Tomoki Takashina
- Laboratory of Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Chiba University, Kisarazu, Chiba, Japan
| | | |
Collapse
|
44
|
Prock TL, Miranda RC. Embryonic cerebral cortical progenitors are resistant to apoptosis, but increase expression of suicide receptor DISC-complex genes and suppress autophagy following ethanol exposure. Alcohol Clin Exp Res 2007; 31:694-703. [PMID: 17374049 PMCID: PMC2913539 DOI: 10.1111/j.1530-0277.2007.00354.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In utero exposure to ethanol can result in severe fetal brain defects. Previous studies showed that ethanol induces apoptosis in differentiated cortical neurons. However, we know little about ethanol's effects on proliferating embryonic cortical progenitors. This study investigated the impact of ethanol exposure on the Fas/Apo-1/CD95 suicide receptor pathway, and on the survival of proliferating cortical neuroepithelial progenitors. METHODS Murine embryonic-derived primary cortical neuroepithelial cells were maintained as neurosphere cultures and exposed to a dose range of ethanol for periods ranging from 1 to 5 days. Programmed cell death was measured by 4 independent means (Annexin-V staining, caspase activation, DNA fragmentation, and autophagic vacuole formation). Surface Fas/Apo-1 suicide receptor expression was measured by flow cytometry. Expression of Fas/Apo-1-associated DISC-complex genes was measured by quantitative polymerase chain reaction. RESULTS Ethanol exposure did not substantially increase apoptosis, necrosis, or surface Fas/Apo-1 expression. Moreover, ethanol significantly decreased caspase activation and autophagic activity. Finally, ethanol exposure induced mRNA expression of genes that constitute the death receptor complex. CONCLUSIONS This study provides surprising evidence that ethanol does not induce either programmed cell death or necrosis of immature progenitors during neurogenesis, although ethanol may render neural progenitors susceptible to future apoptotic insults. Furthermore, our novel observation that ethanol suppresses autophagy is consistent with a hypothesis that ethanol promotes premature neural progenitor maturation. Taken together with our previous data regarding the role of the Fas/Apo-1 receptor in neural development, we conclude that ethanol disrupts basic proliferation and differentiation machinery rather than initiating cell death per se.
Collapse
Affiliation(s)
- Terasa L. Prock
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, 211 Reynolds Medical Building MS 1114, College Station, TX 77843, (979) 862-3418, (979) 845-0790 (fax)
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, 211 Reynolds Medical Building MS 1114, College Station, TX 77843, (979) 862-3418, (979) 845-0790 (fax)
- Center for Environmental and Rural Health
| |
Collapse
|
45
|
Arai S, Miyake K, Voit R, Nemoto S, Wakeland EK, Grummt I, Miyazaki T. Death-effector domain-containing protein DEDD is an inhibitor of mitotic Cdk1/cyclin B1. Proc Natl Acad Sci U S A 2007; 104:2289-94. [PMID: 17283331 PMCID: PMC1793902 DOI: 10.1073/pnas.0611167104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has shown that many molecules, including some cyclin-dependent kinases (Cdks) and cyclins, as well as the death-effector domain (DED)-containing FADD, function for both apoptosis and cell cycle. Here we identified that DEDD, which also possesses the DED domain, acts as a novel inhibitor of the mitotic Cdk1/cyclin B1 complex. DEDD associates with mitotic Cdk1/cyclin B1 complexes via direct binding to cyclin B1 and reduces their function. In agreement, kinase activity of nuclear Cdk1/cyclin B1 in DEDD-null (DEDD-/-) embryonic fibroblasts is increased compared with that in DEDD+/+ cells, which results in accelerated mitotic progression, thus exhibiting a shortened G2/M stage. Interestingly, DEDD-/- cells also demonstrated decreased G1 duration, which perhaps enhanced the overall reduction in rRNA amounts and cell volume, primarily caused by the rapid termination of rRNA synthesis before cell division. Likewise, DEDD-/- mice show decreased body and organ weights relative to DEDD+/+ mice. Thus, DEDD is an impeder of cell mitosis, and its absence critically influences cell and body size via modulation of rRNA synthesis.
Collapse
Affiliation(s)
- Satoko Arai
- *Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NA7200, Dallas, TX 75390-9093; and
| | - Katsuhisa Miyake
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NA7200, Dallas, TX 75390-9093; and
| | - Renate Voit
- Department of Molecular Biology of the Cell II, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Shino Nemoto
- *Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Edward K. Wakeland
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NA7200, Dallas, TX 75390-9093; and
| | - Ingrid Grummt
- Department of Molecular Biology of the Cell II, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Toru Miyazaki
- *Division of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, NA7200, Dallas, TX 75390-9093; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Ali M, Rahman S, Rehman H, Bhatia K, Ansari RA, Raisuddin S. Pro-apoptotic effect of fly ash leachates in hepatocytes of freshwater fish (Channa punctata Bloch). Toxicol In Vitro 2007; 21:63-71. [PMID: 17052884 DOI: 10.1016/j.tiv.2006.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/25/2006] [Accepted: 08/23/2006] [Indexed: 11/26/2022]
Abstract
The pro-apoptotic effect of fly ash leachates (FAL) was studied in the hepatocytes of an Indian freshwater fish, Channa punctata Bloch. Hepatocytes were exposed to different concentrations of '7-day' FAL for 24 and 48h and various parameters of apoptosis were studied using standardized procedures. FAL-induced apoptosis in hepatocytes was indicated by cytological examination, DNA fragmentation and DNA laddering. The induction in cytochrome-c release, caspases 3, 7, 10 and 9 activities and lactate dehydrogenase level provide mechanistic platform for FAL-induced apoptosis. Cytological examination showed an unambiguous apoptotic effect of ash leachates in fish hepatocytes. Exposed hepatocytes also showed increased production of H(2)O(2), superoxide ions and an increase in lipid peroxidation (LPO). The present study suggests a possible role of reactive oxygen species (ROS) in FAL-induced apoptosis in hepatocytes. Lactate dehydrogenase, LPO and apoptosis as biomarkers of cytotoxicity have recently been used for assessment of ecotoxicological impact of environmental chemicals. Our findings show that these biomarkers may also be used for evaluation of ecotoxicological impact of complex chemical mixture such as fly ash and its leachates.
Collapse
Affiliation(s)
- Mehboob Ali
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- David M Hockenbery
- Fred Hutchinson Cancer Research Center, Division of Clinical Research and Human Biology, 1100 Fairview Avenue North, C3-168, Seattle, WA 98109-1024, USA.
| |
Collapse
|
48
|
Lucerna M, Pomyje J, Mechtcheriakova D, Kadl A, Gruber F, Bilban M, Sobanov Y, Schabbauer G, Breuss J, Wagner O, Bischoff M, Clauss M, Binder BR, Hofer E. Sustained expression of early growth response protein-1 blocks angiogenesis and tumor growth. Cancer Res 2006; 66:6708-13. [PMID: 16818645 PMCID: PMC2882226 DOI: 10.1158/0008-5472.can-05-2732] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transient induction of the transcription factor early growth response protein-1 (EGR-1) plays a pivotal role in the transcriptional response of endothelial cells to the angiogenic growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which are produced by most tumors and are involved in the angiogenic switch. We report here that sustained expression of EGR-1 by recombinant adenoviruses in endothelial cells, however, leads to the specific induction of potent feedback inhibitory mechanisms, including strong up-regulation of transcriptional repressors, negative cell cycle check point effectors, proteins with established antiangiogenic activity, and several proapoptotic genes. Sustained EGR-1 expression consistently leads to an antiangiogenic state characterized by an altered responsiveness to VEGF and bFGF and a striking inhibition of sprouting and tubule formation in vitro. Furthermore, EGR-1-expressing viruses potently inhibit cell invasion and vessel formation in the murine Matrigel model and repress tumor growth in a murine fibrosarcoma model. We propose that gene therapy involving sustained EGR-1 expression may constitute a novel therapeutic principle in the treatment of cancer due to the simultaneous induction of multiple pathways of antiangiogenesis, growth arrest, and apoptosis induction in proliferating cells leading to preferential inhibition of angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Markus Lucerna
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Jiri Pomyje
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kadl
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Clinical Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Clinical and Experimental Oncology, Medical University of Vienna, Vienna, Austria
| | - Yuri Sobanov
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Gernot Schabbauer
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Breuss
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Oswald Wagner
- Clinical Department of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Clinical and Experimental Oncology, Medical University of Vienna, Vienna, Austria
| | - Markus Bischoff
- Department of Cellular and Integrative Physiology, Indiana Center of Vascular Biology and Medicine, Indianapolis
| | - Matthias Clauss
- Department of Cellular and Integrative Physiology, Indiana Center of Vascular Biology and Medicine, Indianapolis
| | - Bernd R. Binder
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Erhard Hofer
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Frank B, Hemminki K, Wappenschmidt B, Meindl A, Klaes R, Schmutzler RK, Bugert P, Untch M, Bartram CR, Burwinkel B. Association of the CASP10 V410I variant with reduced familial breast cancer risk and interaction with the CASP8 D302H variant. Carcinogenesis 2005; 27:606-9. [PMID: 16251207 DOI: 10.1093/carcin/bgi248] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of apoptosis plays a crucial role in carcinogenesis. As part of death receptor- and mitochondrion-mediated apoptosis, the homologues caspases 10 and 8 may act as low-penetrance breast cancer (BC) susceptibility genes. In death receptor-mediated apoptosis, engagement of death receptors by their ligands involves the assembly of the death-inducing signalling complex (DISC). In mitochondrion-mediated apoptosis, the release of cytochrome c into the cytosol results in apoptosome formation. Recruitment of both caspases 10 and 8 (CASP10 and CASP8, respectively) to DISC and apoptosome leads to their activation by dimerization. We investigated the influence of the coding CASP10 variant V410I (G1228A) by performing a case-control study - using 511 familial BC cases and 547 control subjects - on BC risk and revealed a significant association of V410I with a reduced risk (OR = 0.62, 95% CI = 0.43-0.88, P = 0.0076) related to the number of variant alleles (P(trend) = 0.0039). As CASP10 and CASP8 functionally co-operate during apoptosis, we analysed the mutual effect of both CASP10 V410I and CASP8 D302H, resulting in a significant association between the number of the variant alleles I410 and H302 and a highly decreased familial BC risk (OR = 0.35, P(trend) = 0.007), pointing to the interaction between the CASP10 and CASP8 polymorphisms in breast carcinogenesis.
Collapse
Affiliation(s)
- Bernd Frank
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee JC, Wang GX, Schickling O, Peter ME. Fusing DEDD with ubiquitin changes its intracellular localization and apoptotic potential. Apoptosis 2005; 10:1483-95. [PMID: 16235027 DOI: 10.1007/s10495-005-1833-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DEDD, a highly conserved and ubiquitous death effector domain containing protein, exists in non, mono, and diubiquitinated forms. We previously reported that endogenous unmodified DEDD is only found in nucleoli and that mono- and diubiquitinated DEDD associate with caspase-3 in the cytosol suggesting that ubiquitination may be important to the apoptosis regulating functions of DEDD in the cytosol. We now demonstrate that many of its 16 lysine residues can serve as alternative acceptors for ubiquitination to maintain the monoubiquitination status of DEDD. A central region in DEDD (amino acids 109-305) outside the death effector domain was found to be essential for ubiquitination and/or the docking of the ubiquitination machinery. Fusion of ubiquitin to the C-terminus of DEDD to mimic monoubiquitinated DEDD relocated DEDD from nucleoli to the cytosol. This fusion protein also demonstrated a greater apoptosis potential than unmodified DEDD. Finally, we show that both mono- and polyubiquitination of DEDD can be achieved by the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP-1/2). In addition, the cotransfection of DEDD with cIAP-1 or cIAP-2 results in the relocalization of the IAPs to the nucleoli. Our data suggest that monoubiquitination of DEDD regulates both its cytoplasmic localization and its proapoptotic potential and that IAP proteins can regulate DEDD's ubiquitination status.
Collapse
Affiliation(s)
- J C Lee
- The Ben May Institute for Cancer Research, University of Chicago, 924 E. 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|