1
|
Zboril EK, Grible JM, Boyd DC, Hairr NS, Leftwich TJ, Esquivel MF, Duong AK, Turner SA, Ferreira-Gonzalez A, Olex AL, Sartorius CA, Dozmorov MG, Harrell JC. Stratification of Tamoxifen Synergistic Combinations for the Treatment of ER+ Breast Cancer. Cancers (Basel) 2023; 15:3179. [PMID: 37370789 PMCID: PMC10296623 DOI: 10.3390/cancers15123179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer alone accounts for the majority of cancer deaths among women, with the most commonly diagnosed subtype being estrogen receptor positive (ER+). Survival has greatly improved for patients with ER+ breast cancer, due in part to the development of antiestrogen compounds, such as tamoxifen. While treatment of the primary disease is often successful, as many as 30% of patients will experience recurrence and metastasis, mainly due to developed endocrine therapy resistance. In this study, we discovered two tamoxifen combination therapies, with simeprevir and VX-680, that reduce the tumor burden in animal models of ER+ breast cancer more than either compound or tamoxifen alone. Additionally, these tamoxifen combinations reduced the expression of HER2, a hallmark of tamoxifen treatment, which can facilitate acquisition of a treatment-resistant phenotype. These combinations could provide clinical benefit by potentiating tamoxifen treatment in ER+ breast cancer.
Collapse
Affiliation(s)
- Emily K. Zboril
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jacqueline M. Grible
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - David C. Boyd
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole S. Hairr
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - Tess J. Leftwich
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - Madelyn F. Esquivel
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - Alex K. Duong
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | - Scott A. Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
| | | | - Amy L. Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.K.Z.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Zhao Z, Wang H, Kang N, Wang Z, Hou X, Hu L, Qie S, Guo J, Wei S, Ruan X, Zheng X. Aurora kinase a promotes the progression of papillary thyroid carcinoma by activating the mTORC2-AKT signalling pathway. Cell Biosci 2022; 12:195. [PMID: 36471438 PMCID: PMC9721059 DOI: 10.1186/s13578-022-00934-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Treatment failure is the main cause of death from papillary thyroid carcinoma (PTC). It is urgent to look for new intervention targets and to develop new therapies for treating PTC. Aurora-A kinase (AURKA) functionally regulates cell mitosis and is closely related to the occurrence and development of a variety of tumours. However, the expression and potential functions of AURKA in PTC remain largely elusive. RESULTS Clinicopathologically, AURKA is highly expressed in PTC tissues compared to normal tissues and is correlated with lymph node metastasis, TNM stage and patient prognosis. Biologically, AURKA functions as an oncoprotein to promote the proliferation and migration of PTC cells. Mechanistically, AURKA directly binds to SIN1 and compromises CUL4B-based E3 ligase-mediated ubiquitination and subsequent degradation of SIN1, leading to hyperactivation of the mTORC2-AKT pathway in PTC cells. CONCLUSIONS We found that AURKA plays critical roles in regulating the progression of PTC by activating the mTORC2-AKT pathway, highlighting the potential of targeting AURKA to treat PTC.
Collapse
Affiliation(s)
- Zewei Zhao
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Huijuan Wang
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Ning Kang
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Zhongyu Wang
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xiukun Hou
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Linfei Hu
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Shuo Qie
- grid.411918.40000 0004 1798 6427Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Jianping Guo
- grid.412615.50000 0004 1803 6239Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275 Guangdong China
| | - Songfeng Wei
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xianhui Ruan
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Xiangqian Zheng
- grid.411918.40000 0004 1798 6427Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| |
Collapse
|
3
|
Forst CV, Martin-Sancho L, Tripathi S, Wang G, Dos Anjos Borges LG, Wang M, Geber A, Lashua L, Ding T, Zhou X, Carter CE, Metreveli G, Rodriguez-Frandsen A, Urbanowski MD, White KM, Stein DA, Moulton H, Chanda SK, Pache L, Shaw ML, Ross TM, Ghedin E, García-Sastre A, Zhang B. Common and species-specific molecular signatures, networks, and regulators of influenza virus infection in mice, ferrets, and humans. SCIENCE ADVANCES 2022; 8:eabm5859. [PMID: 36197970 PMCID: PMC9534503 DOI: 10.1126/sciadv.abm5859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/11/2022] [Indexed: 05/04/2023]
Abstract
Molecular responses to influenza A virus (IAV) infections vary between mammalian species. To identify conserved and species-specific molecular responses, we perform a comparative study of transcriptomic data derived from blood cells, primary epithelial cells, and lung tissues collected from IAV-infected humans, ferrets, and mice. The molecular responses in the human host have unique functions such as antigen processing that are not observed in mice or ferrets. Highly conserved gene coexpression modules across the three species are enriched for IAV infection-induced pathways including cell cycle and interferon (IFN) signaling. TDRD7 is predicted as an IFN-inducible host factor that is up-regulated upon IAV infection in the three species. TDRD7 is required for antiviral IFN response, potentially modulating IFN signaling via the JAK/STAT/IRF9 pathway. Identification of the common and species-specific molecular signatures, networks, and regulators of IAV infection provides insights into host-defense mechanisms and will facilitate the development of novel therapeutic interventions against IAV infection.
Collapse
Affiliation(s)
- Christian V. Forst
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Laura Martin-Sancho
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shashank Tripathi
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Guojun Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | | | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Adam Geber
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Lauren Lashua
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Tao Ding
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Chalise E. Carter
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Ariel Rodriguez-Frandsen
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Matthew D. Urbanowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Kris M. White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - David A. Stein
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Sumit K. Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megan L. Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Ted M. Ross
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- The Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
4
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
5
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
6
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
7
|
TACC3 promotes prostate cancer cell proliferation and restrains primary cilium formation. Exp Cell Res 2020; 390:111952. [PMID: 32156598 DOI: 10.1016/j.yexcr.2020.111952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
Although primary cilia abnormalities have been frequently observed in multiple cancers, including prostate cancer (PCa), the molecular mechanisms underlying primary ciliogenesis repression in PCa cells remain unclear. Transforming acidic coiled-coil protein-3 (TACC3), whose deregulation has been implicated in the pathogenesis of several types of cancer, is a key centrosomal protein that plays a crucial role in centrosome/microtubule dynamics, potentially impacting primary cilium generation. Here, we showed that TACC3 was markedly upregulated in PCa and that knockdown of TACC3 restrained tumorigenesis and tumor growth in vitro and in vivo. Additionally, we found that TACC3 interacts with filamin A, and elevated levels of TACC3 disrupted the interaction between filamin A and meckelin, thereby restraining primary cilium formation in PCa cells.
Collapse
|
8
|
Navarro-Serer B, Childers EP, Hermance NM, Mercadante D, Manning AL. Aurora A inhibition limits centrosome clustering and promotes mitotic catastrophe in cells with supernumerary centrosomes. Oncotarget 2019; 10:1649-1659. [PMID: 30899434 PMCID: PMC6422193 DOI: 10.18632/oncotarget.26714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/29/2023] Open
Abstract
The presence of supernumerary centrosomes is prevalent in cancer, where they promote the formation of transient multipolar mitotic spindles. Active clustering of supernumerary centrosomes enables the formation of a functional bipolar spindle that is competent to complete a bipolar division. Disruption of spindle pole clustering in cancer cells promotes multipolar division and generation of non-proliferative daughter cells with compromised viability. Hence molecular pathways required for spindle pole clustering in cells with supernumerary centrosomes, but dispensable in normal cells, are promising therapeutic targets. Here we demonstrate that Aurora A kinase activity is required for spindle pole clustering in cells with extra centrosomes. While cells with two centrosomes are ultimately able to build a bipolar spindle and proceed through a normal cell division in the presence of Aurora A inhibition, cells with supernumerary centrosomes form multipolar and disorganized spindles that are not competent for chromosome segregation. Instead, following a prolonged mitosis, these cells experience catastrophic divisions that result in grossly aneuploid, and non-proliferative daughter cells. Aurora A inhibition in a panel of Acute Myeloid Leukemia cancer cells has a similarly disparate impact on cells with supernumerary centrosomes, suggesting that centrosome number and spindle polarity may serve as predictive biomarkers for response to therapeutic approaches that target Aurora A kinase function.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Eva P Childers
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Nicole M Hermance
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Dayna Mercadante
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Amity L Manning
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| |
Collapse
|
9
|
Kimura M, Takagi S, Nakashima S. Aurora A regulates the architecture of the Golgi apparatus. Exp Cell Res 2018; 367:73-80. [PMID: 29571950 DOI: 10.1016/j.yexcr.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
The Golgi apparatus plays roles in cell polarity, directional cell migration, and bipolar spindle assembly, as well as the secretary pathway. In addition, recent studies have suggested the Golgi-dependent control of mitotic entry. We studied the role of the centrosomal kinase Aurora A in maintaining the Golgi apparatus. Knockdown of Aurora A resulted in Golgi dispersal during interphase. Golgi dispersal was also induced by a selective Aurora A inhibitor, MLN8237. Conversely, overexpression of Aurora A led to tightly packed Golgi apparatus during interphase. Knockdown or inhibition of Aurora A had little or no effect on Golgi vesiculation during mitosis. By synchronizing cell division, we studied whether mitosis was required to induce Golgi dispersal during interphase. Aurora A inhibition induced aberrant mitotic spindle and Golgi dispersal only after mitosis. However, the cells treated with the inhibitor MLN8237 at earlier cell cycle stages (wherein the cells remained undivided) had a normal Golgi architecture. Knockdown or inhibition of Aurora A also led to aberrant integrity of centrosome and Golgi apparatus during interphase. These results suggest that Aurora A activity is involved in the maintenance of Golgi architecture and the relationship between the Golgi apparatus and centrosome.
Collapse
Affiliation(s)
- Masashi Kimura
- Department of Cell Signaling, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501 1194, Japan.
| | - Shuta Takagi
- Department of Cell Signaling, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501 1194, Japan
| | - Shigeru Nakashima
- Department of Cell Signaling, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501 1194, Japan
| |
Collapse
|
10
|
Zwang Y, Jonas O, Chen C, Rinne ML, Doench JG, Piccioni F, Tan L, Huang HT, Wang J, Ham YJ, O'Connell J, Bhola P, Doshi M, Whitman M, Cima M, Letai A, Root DE, Langer RS, Gray N, Hahn WC. Synergistic interactions with PI3K inhibition that induce apoptosis. eLife 2017; 6:e24523. [PMID: 28561737 PMCID: PMC5479695 DOI: 10.7554/elife.24523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition. We showed that small molecule inhibitors of the PIM2 and ZAK kinases synergize with PI3K inhibition. In addition, using a microscale implementable device to deliver either siRNAs or small molecule inhibitors in vivo, we showed that suppressing these 5 genes with PI3K inhibition induced tumor regression. These observations identify targets whose inhibition synergizes with PI3K inhibitors and nominate potential combination therapies involving PI3K inhibition.
Collapse
Affiliation(s)
- Yaara Zwang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Oliver Jonas
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Casandra Chen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Mikael L Rinne
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - John G Doench
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
| | - Federica Piccioni
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
| | - Li Tan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Hai-Tsang Huang
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Young Jin Ham
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Joyce O'Connell
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Patrick Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Mihir Doshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Matthew Whitman
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael Cima
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Materials Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
| | - Robert S Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Nathanael Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - William C Hahn
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
11
|
Vertii A, Hehnly H, Doxsey S. The Centrosome, a Multitalented Renaissance Organelle. Cold Spring Harb Perspect Biol 2016; 8:8/12/a025049. [PMID: 27908937 DOI: 10.1101/cshperspect.a025049] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The centrosome acts as a microtubule-organizing center (MTOC) from the G1 to G2 phases of the cell cycle; it can mature into a spindle pole during mitosis and/or transition into a cilium by elongating microtubules (MTs) from the basal body on cell differentiation or cell cycle arrest. New studies hint that the centrosome functions in more than MT organization. For instance, it has recently been shown that a specific substructure of the centrosome-the mother centriole appendages-are required for the recycling of endosomes back to the plasma membrane. This alone could have important implications for a renaissance in our understanding of the development of primary cilia, endosome recycling, and the immune response. Here, we review newly identified roles for the centrosome in directing membrane traffic, the immunological synapse, and the stress response.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
12
|
He JC, Yao W, Wang JM, Schemmer P, Yang Y, Liu Y, Qian YW, Qi WP, Zhang J, Shen Q, Yang T. TACC3 overexpression in cholangiocarcinoma correlates with poor prognosis and is a potential anti-cancer molecular drug target for HDAC inhibitors. Oncotarget 2016; 7:75441-75456. [PMID: 27705912 PMCID: PMC5342751 DOI: 10.18632/oncotarget.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/13/2016] [Indexed: 01/03/2023] Open
Abstract
Histone deacetylases (HDACs) have been implicated in multiple malignant tumors, and HDAC inhibitors (HDACIs) exert anti-cancer effects. However, the expression of HDACs and the anti-tumor mechanism of HDACIs in cholangiocarcinoma (CCA) have not yet been elucidated. In this study, we found that expression of HDACs 2, 3, and 8 were up-regulated in CCA tissues and those patients with high expression of HDAC2 and/or HDAC3 had a worse prognosis. In CCA cells, two HDACIs, trichostatin (TSA) and vorinostat (SAHA), suppressed proliferation and induced apoptosis and G2/M cycle arrest. Microarray analysis revealed that TACC3 mRNA was down-regulated in CCA cells treated with TSA. TACC3 was highly expressed in CCA tissues and predicted a poor prognosis in CCA patients. TACC3 knockdown induced G2/M cycle arrest and suppressed the invasion, metastasis, and proliferation of CCA cells, both in vitro and in vivo. TACC3 overexpression reversed the effects of its knockdown. These findings suggest TACC3 may be a useful prognostic biomarker for CCA and is a potential therapeutic target for HDACIs.
Collapse
Affiliation(s)
- Jun-chuang He
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Yao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian-ming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Peter Schemmer
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Yan Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya-wei Qian
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei-peng Qi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian Zhang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qi Shen
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
13
|
Rutherford EL, Lowery LA. Exploring the developmental mechanisms underlying Wolf-Hirschhorn Syndrome: Evidence for defects in neural crest cell migration. Dev Biol 2016; 420:1-10. [PMID: 27777068 PMCID: PMC5193094 DOI: 10.1016/j.ydbio.2016.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023]
Abstract
Wolf-Hirschhorn Syndrome (WHS) is a neurodevelopmental disorder characterized by mental retardation, craniofacial malformation, and defects in skeletal and heart development. The syndrome is associated with irregularities on the short arm of chromosome 4, including deletions of varying sizes and microduplications. Many of these genotypic aberrations in humans have been correlated with the classic WHS phenotype, and animal models have provided a context for mapping these genetic irregularities to specific phenotypes; however, there remains a significant knowledge gap concerning the cell biological mechanisms underlying these phenotypes. This review summarizes literature that has made recent contributions to this topic, drawing from the vast body of knowledge detailing the genetic particularities of the disorder and the more limited pool of information on its cell biology. Finally, we propose a novel characterization for WHS as a pathophysiology owing in part to defects in neural crest cell motility and migration during development.
Collapse
Affiliation(s)
- Erin L Rutherford
- Boston College, Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States
| | - Laura Anne Lowery
- Boston College, Department of Biology, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, United States.
| |
Collapse
|
14
|
Zhou DS, Wang HB, Zhou ZG, Zhang YJ, Zhong Q, Xu L, Huang YH, Yeung SC, Chen MS, Zeng MS. TACC3 promotes stemness and is a potential therapeutic target in hepatocellular carcinoma. Oncotarget 2016. [PMID: 26219398 PMCID: PMC4695177 DOI: 10.18632/oncotarget.4643] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is essential for cell mitosis and transcriptional functions. In the present study, we first demonstrated that both TACC3 protein and mRNA levels were elevated in HCC tissue samples compared with non-cancerous tissue biopsies according to western blot analyses, immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR) assays. Moreover, high TACC3 expression was positively correlated with poor overall survival (OS) and disease-free survival (DFS) (p < 0.001). Using HCC cell lines, we then demonstrated that either TACC3 knockdown or treatment with the potential TACC3 inhibitor KHS101 suppressed cell growth and sphere formation as well as the expression of stem cell transcription factors, including Bmi1, c-Myc and Nanog. Silencing TACC3 may suppress the Wnt/β-catenin and PI3K/AKT signaling pathways, which regulate cancer stem cell-like characteristics. Taken together, these data suggest that TACC3 is enriched in HCC and that TACC3 down-regulation inhibits the proliferation, clonogenicity, and cancer stem cell-like phenotype of HCC cells. KHS101, a TACC3 inhibitor, may serve as a novel therapeutic agent for HCC patients with tumors characterized by high TACC3 expression.
Collapse
Affiliation(s)
- Dong-Sheng Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Shandong Provincial Qianfoshan Hospital, Jinan, P. R. China
| | - Hong-Bo Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhong-Guo Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yao-Jun Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Li Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sai-Ching Yeung
- Department of General Internal Medicine, Ambulatory Treatment and Emergency Care, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min-Shan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
15
|
Fish L, Pencheva N, Goodarzi H, Tran H, Yoshida M, Tavazoie SF. Muscleblind-like 1 suppresses breast cancer metastatic colonization and stabilizes metastasis suppressor transcripts. Genes Dev 2016; 30:386-98. [PMID: 26883358 PMCID: PMC4762424 DOI: 10.1101/gad.270645.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Post-transcriptional deregulation is a defining feature of metastatic cancer. While many microRNAs have been implicated as regulators of metastatic progression, less is known about the roles and mechanisms of RNA-binding proteins in this process. We identified muscleblind-like 1 (MBNL1), a gene implicated in myotonic dystrophy, as a robust suppressor of multiorgan breast cancer metastasis. MBNL1 binds the 3' untranslated regions (UTRs) of DBNL (drebrin-like protein) and TACC1 (transforming acidic coiled-coil containing protein 1)-two genes that we implicate as metastasis suppressors. By enhancing the stability of these genes' transcripts, MBNL1 suppresses cell invasiveness. Consistent with these findings, elevated MBNL1 expression in human breast tumors is associated with reduced metastatic relapse likelihood. Our findings delineate a post-transcriptional network that governs breast cancer metastasis through RNA-binding protein-mediated transcript stabilization.
Collapse
Affiliation(s)
- Lisa Fish
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Nora Pencheva
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Hani Goodarzi
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Hien Tran
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Mitsukuni Yoshida
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
16
|
Suppression of intestinal tumors by targeting the mitotic spindle of intestinal stem cells. Oncogene 2016; 35:6109-6119. [PMID: 27157623 DOI: 10.1038/onc.2016.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
Abstract
Human colorectal cancer is often initiated by the aberrant activation of Wnt signaling, notably following adenomatous polyposis coli (Apc) inactivation. Recent studies identified adult intestinal stem cells (ISCs) and demonstrated their role as the cells of origin for intestinal tumors. However, the early consequences of aberrant Wnt signaling activation remain to be fully elucidated. Here, using organoid cultures established from conditional knockout mice and in vitro gene ablation, we show that Apc inactivation led to aberrant ISC proliferation and the expansion of the crypt domain. This system was used to evaluate the potential of a cancer-related spindle protein, Tacc3, as a target of cancer therapy, as its disruption led to the suppression of tumor formation in an animal model of intestinal tumors. We found that Tacc3 is required for the proper mitosis of Apc-deficient ISCs, and its disruption significantly attenuated the expansion of the crypt domain. In vivo analysis of corresponding mutant mice demonstrated that Tacc3 disruption led to a significant decrease in tumor number and prolonged survival. These observations demonstrated that Tacc3 is a potential chemotherapeutic target for intestinal tumors by perturbing the aberrant cell proliferation of Apc-deficient ISCs and provides an opportunity for the development of novel cancer prevention and treatment.
Collapse
|
17
|
Huang ZL, Lin ZR, Xiao YR, Cao X, Zhu LC, Zeng MS, Zhong Q, Wen ZS. High expression of TACC3 in esophageal squamous cell carcinoma correlates with poor prognosis. Oncotarget 2016; 6:6850-61. [PMID: 25760075 PMCID: PMC4466654 DOI: 10.18632/oncotarget.3190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022] Open
Abstract
To analyze the expression of the transforming acidic coiled-coil protein 3 (TACC3) in esophageal squamous cell carcinoma (ESCC) samples, and to identify whether TACC3 can serve as a biomarker for the diagnosis and prognosis of ESCC, qPCR, western blotting and immunohistochemistry staining (IHC) were utilized to detect the expression of TACC3. Furthermore, cell growth, colony formation, migration ability and the epithelial-mesenchymal transition markers of ESCC cells in which TACC3 were knocked-down were measured. The mRNA and protein levels of TACC3 were higher in ESCC specimens compared to non-tumorous esophageal epithelial tissues. IHC results revealed TACC3 expression was significantly correlated to differentiation (p = 0.017) and lymphoid nodal status (p = 0.028). The patients with high-expression of TACC3 had a significantly poor prognosis compared to those of low-expression (p = 0.017), especially in the patients at stages I–II (p = 0.028). Multivariate analysis indicated that TACC3 expression was an independent prognostic factor for ESCC patients (p = 0.025). Knockdown of TACC3 inhibited the ability of cell proliferation, colony formation and migration. This study first identifies TACC3 not only as a useful biomarker for diagnose and prognosis of ESCC, but also as a potential therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Zhi-Liang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi-Ren Xiao
- South China Institute for Stem Cell Biology and Regenerative Medicine Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xun Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Critical Care Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin-Chun Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhe-Sheng Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
18
|
Jiang F, Kuang B, Que Y, Lin Z, Yuan L, Xiao W, Peng R, Zhang X, Zhang X. The clinical significance of transforming acidic coiled-coil protein 3 expression in non-small cell lung cancer. Oncol Rep 2015; 35:436-46. [PMID: 26531241 DOI: 10.3892/or.2015.4373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
The relationship between TACC3, a member of the transforming acidic coiled-coil proteins (TACCs) family, and lung carcinoma remains unclear. The present study was designed to explore the prognostic and clinical significance of TACC3 in non-small cell lung cancer (NSCLC). An immunohistochemistry (IHC) assay was performed to analyze the expression of TACC3 in 195 lung cancer cases. The mRNA and protein levels of TACC3 were examined by quantitative reverse transcription-PCR or western blotting. The correlation between TACC3 expression and clinicopathological factors was analyzed by χ2 analysis and Fisher's exact test. Kaplan-Meier analysis and the Cox proportional hazards model were used to examine the correlation of prognostic outcomes with TACC3. The results showed that the levels of TACC3 mRNA and total protein were higher in lung cancer lesions than paired non-cancerous tissues. IHC analysis revealed that TACC3 was highly expressed in 94 (48.2%) cases. The expression of TACC3 was strongly correlated with smoking status, histological classification, differentiation, cytokeratin 19 fragment levels, T stage and the clinical stage of NSCLC patients. Univariate and multivariate analyses demonstrated that TACC3 is a useful biomarker for NSCLC prognosis. The low TACC3 expression group exhibited better progression-free survival (PFS) among patients who received anti-microtubule chemotherapy. In conclusion, the results showed that a high level of TACC3 expression was correlated with advanced clinicopathological classifications, poor overall survival (OS) and poor recurrence-free survival (RFS) in NSCLC patients. Our findings indicate that TACC3 is a potential prognostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Feng Jiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bohua Kuang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yi Que
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhirui Lin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Li Yuan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wei Xiao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ruiqing Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaoshi Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xing Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| |
Collapse
|
19
|
Flores-Nunes F, Gomes T, Company R, Moraes RRM, Sasaki ST, Taniguchi S, Bicego MC, Melo CMR, Bainy ACD, Bebianno MJ. Changes in protein expression of pacific oyster Crassostrea gigas exposed in situ to urban sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17267-17279. [PMID: 25398216 DOI: 10.1007/s11356-014-3821-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
The composition and concentration of substances in urban effluents are complex and difficult to measure. These contaminants elicit biological responses in the exposed organisms. Proteomic analysis is a powerful tool in environmental toxicology by evidencing alterations in protein expression due to exposure to contaminants and by providing a useful framework for the development of new potential biomarkers. The aim of this study was to determine changes in protein expression signatures (PES) in the digestive gland of oysters Crassostrea gigas transplanted to two farming areas (LIS and RIB) and to one area contaminated by sanitary sewage (BUC) after 14 days of exposure. This species is one of the most cultivated molluscs in the world. The identified proteins are related to the cytoskeleton (CKAP5 and ACT2), ubiquitination pathway conjugation (UBE3C), G protein-coupled receptor and signal transduction (SVEP1), and cell cycle/division (CCNB3). CKAP5 showed higher expression in oysters kept at BUC in comparison with those kept at the farming areas, while ACT2, UBE3C, SVEP1, and CCNB3 were suppressed. The results suggest that these changes might lead to DNA damage, apoptosis, and interference with the immune system in oyster C. gigas exposed to sewage and give initial information on PES of C. gigas exposed to sanitary sewage, which can subsequently be useful in the development of more sensitive tools for biomonitoring coastal areas, particularly those devoted mainly to oyster farming activities.
Collapse
Affiliation(s)
- Fabrício Flores-Nunes
- Laboratory for Biomarkers of Aquatic Contamination and Immunochemistry, Federal University Santa Catarina, Florianópolis, Brazil
| | - Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rui Company
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Roberta R M Moraes
- Laboratory for Biomarkers of Aquatic Contamination and Immunochemistry, Federal University Santa Catarina, Florianópolis, Brazil
| | - Silvio T Sasaki
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Márcia C Bicego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Cláudio M R Melo
- Laboratory of Marine Molluscs, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Afonso C D Bainy
- Laboratory for Biomarkers of Aquatic Contamination and Immunochemistry, Federal University Santa Catarina, Florianópolis, Brazil
| | - Maria J Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
20
|
Venghateri JB, Jindal B, Panda D. The centrosome: a prospective entrant in cancer therapy. Expert Opin Ther Targets 2015; 19:957-72. [PMID: 25787715 DOI: 10.1517/14728222.2015.1018823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The centrosome plays an essential role in the cell cycle. The centrosome and its associated proteins assist in nucleating and organizing microtubules. A structural or a functional aberration in the centrosome is known to cause abnormal cell proliferation leading to tumors. Therefore, the centrosome is considered as a promising anti-cancer target. AREAS COVERED This review begins with a brief introduction to the centrosome and its role in the cell cycle. We elaborate on the centrosome-associated proteins that regulate microtubule dynamics. In addition, we discuss the centrosomal protein kinase targets such as cyclin-dependent, polo-like and aurora kinases. Inhibitors targeting these kinases are undergoing clinical trials for cancer chemotherapy. Further, we shed light on new approaches to target the centrosomal proteins for cancer therapy. EXPERT OPINION Insights into the functioning of the centrosomal proteins will be extremely beneficial in validating the centrosome as a target in cancer therapy. New strategies either as a single entity or in combination with current chemotherapeutic agents should be researched or exploited to reveal the promises that the centrosome holds for future cancer therapy.
Collapse
Affiliation(s)
- Jubina B Venghateri
- Indian Institute of Technology Bombay, IITB-Monash Research Academy , Powai, Mumbai 400076 , India
| | | | | |
Collapse
|
21
|
Gutiérrez-Caballero C, Burgess SG, Bayliss R, Royle SJ. TACC3-ch-TOG track the growing tips of microtubules independently of clathrin and Aurora-A phosphorylation. Biol Open 2015; 4:170-9. [PMID: 25596274 PMCID: PMC4365485 DOI: 10.1242/bio.201410843] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 01/09/2023] Open
Abstract
The interaction between TACC3 (transforming acidic coiled coil protein 3) and the microtubule polymerase ch-TOG (colonic, hepatic tumor overexpressed gene) is evolutionarily conserved. Loading of TACC3-ch-TOG onto mitotic spindle microtubules requires the phosphorylation of TACC3 by Aurora-A kinase and the subsequent interaction of TACC3 with clathrin to form a microtubule-binding surface. Recent work indicates that TACC3 can track the plus-ends of microtubules and modulate microtubule dynamics in non-dividing cells via its interaction with ch-TOG. Whether there is a pool of TACC3-ch-TOG that is independent of clathrin in human cells, and what is the function of this pool, are open questions. Here, we describe the molecular interaction between TACC3 and ch-TOG that permits TACC3 recruitment to the plus-ends of microtubules. This TACC3-ch-TOG pool is independent of EB1, EB3, Aurora-A phosphorylation and binding to clathrin. We also describe the distinct combinatorial subcellular pools of TACC3, ch-TOG and clathrin. TACC3 is often described as a centrosomal protein, but we show that there is no significant population of TACC3 at centrosomes. The delineation of distinct protein pools reveals a simplified view of how these proteins are organized and controlled by post-translational modification.
Collapse
Affiliation(s)
| | - Selena G Burgess
- Cancer Research UK Leicester Centre and Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Richard Bayliss
- Cancer Research UK Leicester Centre and Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Stephen J Royle
- Division of Biomedical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
22
|
Purrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, Bojesen SE, Andrulis IL, Cox A, Hall P, Carpenter J, Yannoukakos D, Haiman CA, Fasching PA, Mannermaa A, Winqvist R, Brenner H, Lindblom A, Chenevix-Trench G, Benitez J, Swerdlow A, Kristensen V, Guénel P, Meindl A, Darabi H, Eriksson M, Fagerholm R, Aittomäki K, Blomqvist C, Nordestgaard BG, Nielsen SF, Flyger H, Wang X, Olswold C, Olson JE, Mulligan AM, Knight JA, Tchatchou S, Reed MWR, Cross SS, Liu J, Li J, Humphreys K, Clarke C, Scott R, Fostira F, Fountzilas G, Konstantopoulou I, Henderson BE, Schumacher F, Le Marchand L, Ekici AB, Hartmann A, Beckmann MW, Hartikainen JM, Kosma VM, Kataja V, Jukkola-Vuorinen A, Pylkäs K, Kauppila S, Dieffenbach AK, Stegmaier C, Arndt V, Margolin S, Balleine R, Arias Perez JI, Pilar Zamora M, Menéndez P, Ashworth A, Jones M, Orr N, Arveux P, Kerbrat P, Truong T, Bugert P, Toland AE, Ambrosone CB, Labrèche F, Goldberg MS, Dumont M, Ziogas A, Lee E, Dite GS, Apicella C, Southey MC, Long J, Shrubsole M, Deming-Halverson S, Ficarazzi F, Barile M, Peterlongo P, Durda K, Jaworska-Bieniek K, Tollenaar RAEM, Seynaeve C, Brüning T, Ko YD, Van Deurzen CHM, Martens JWM, Kriege M, et alPurrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, Bojesen SE, Andrulis IL, Cox A, Hall P, Carpenter J, Yannoukakos D, Haiman CA, Fasching PA, Mannermaa A, Winqvist R, Brenner H, Lindblom A, Chenevix-Trench G, Benitez J, Swerdlow A, Kristensen V, Guénel P, Meindl A, Darabi H, Eriksson M, Fagerholm R, Aittomäki K, Blomqvist C, Nordestgaard BG, Nielsen SF, Flyger H, Wang X, Olswold C, Olson JE, Mulligan AM, Knight JA, Tchatchou S, Reed MWR, Cross SS, Liu J, Li J, Humphreys K, Clarke C, Scott R, Fostira F, Fountzilas G, Konstantopoulou I, Henderson BE, Schumacher F, Le Marchand L, Ekici AB, Hartmann A, Beckmann MW, Hartikainen JM, Kosma VM, Kataja V, Jukkola-Vuorinen A, Pylkäs K, Kauppila S, Dieffenbach AK, Stegmaier C, Arndt V, Margolin S, Balleine R, Arias Perez JI, Pilar Zamora M, Menéndez P, Ashworth A, Jones M, Orr N, Arveux P, Kerbrat P, Truong T, Bugert P, Toland AE, Ambrosone CB, Labrèche F, Goldberg MS, Dumont M, Ziogas A, Lee E, Dite GS, Apicella C, Southey MC, Long J, Shrubsole M, Deming-Halverson S, Ficarazzi F, Barile M, Peterlongo P, Durda K, Jaworska-Bieniek K, Tollenaar RAEM, Seynaeve C, Brüning T, Ko YD, Van Deurzen CHM, Martens JWM, Kriege M, Figueroa JD, Chanock SJ, Lissowska J, Tomlinson I, Kerin MJ, Miller N, Schneeweiss A, Tapper WJ, Gerty SM, Durcan L, Mclean C, Milne RL, Baglietto L, dos Santos Silva I, Fletcher O, Johnson N, Van'T Veer LJ, Cornelissen S, Försti A, Torres D, Rüdiger T, Rudolph A, Flesch-Janys D, Nickels S, Weltens C, Floris G, Moisse M, Dennis J, Wang Q, Dunning AM, Shah M, Brown J, Simard J, Anton-Culver H, Neuhausen SL, Hopper JL, Bogdanova N, Dörk T, Zheng W, Radice P, Jakubowska A, Lubinski J, Devillee P, Brauch H, Hooning M, García-Closas M, Sawyer E, Burwinkel B, Marmee F, Eccles DM, Giles GG, Peto J, Schmidt M, Broeks A, Hamann U, Chang-Claude J, Lambrechts D, Pharoah PDP, Easton D, Pankratz VS, Slager S, Vachon CM, Couch FJ. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Hum Mol Genet 2014; 23:6034-6046. [PMID: 24927736 PMCID: PMC4204763 DOI: 10.1093/hmg/ddu300] [Show More Authors] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/20/2014] [Accepted: 06/10/2014] [Indexed: 01/01/2023] Open
Abstract
Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.
Collapse
Affiliation(s)
- Kristen S Purrington
- Department of Health Sciences Research, Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, USA
| | | | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics
| | | | - Stig E Bojesen
- Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Irene L Andrulis
- Ontario Cancer Genetics Network, Department of Molecular Genetics
| | - Angela Cox
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, USA
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | | | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, Division of Breast Cancer Research, Institute of Cancer Research, Sutton, UK
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway, Faculty of Medicine (Faculty Division Ahus), University of Oslo (UiO), Oslo, Norway
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics
| | | | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, Oncology and Clinical Genetics
| | | | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
| | | | | | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Julia A Knight
- Prosserman Centre for Health Research, Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sandrine Tchatchou
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Malcolm W R Reed
- CRUK/YCR Sheffield Cancer Research Centre, Department of Oncology
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore
| | | | - Christine Clarke
- Westmead Institute for Cancer Research, Sydney Medical School Westmead, University of Sydney at the Westmead Millennium Institute, Westmead, Australia
| | - Rodney Scott
- Division of Genetics, Hunter Area Pathology Service and University of Newcastle, Newcastle, Australia
| | - Florentia Fostira
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - George Fountzilas
- Department of Medical Oncology, "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, USA
| | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Imaging Center, Department of Clinical Pathology
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Oncology, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland, Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Aida Karina Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research
| | - Sara Margolin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rosemary Balleine
- Westmead Millenium Institute for Medical Research, Sydney, Australia
| | | | - M Pilar Zamora
- Servicio de Oncología Médica, Hospital Universitario La Paz, Madrid, Spain
| | | | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre and Division of Breast Cancer Research
| | | | - Nick Orr
- Breakthrough Breast Cancer Research Centre and Division of Breast Cancer Research
| | - Patrick Arveux
- Center Georges-Francois Leclerc, Registry of Gynecologic Tumors, Dijon, France
| | - Pierre Kerbrat
- Centre Eugène Marquis, Department of Medical Oncology, Rennes, France
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France, University Paris-Sud, UMRS 1018, Villejuif, France
| | - Peter Bugert
- German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Heidelberg, Germany
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - France Labrèche
- Department of Environmental & Occupational Health and of Social & Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montreal, Canada, Division of Clinical Epidemiology, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada
| | - Martine Dumont
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
| | - Argyrios Ziogas
- Department of Epidemiology, University of California Irvine, Irvine, USA
| | - Eunjung Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gillian S Dite
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | - Carmel Apicella
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | | | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Martha Shrubsole
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Sandra Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Filomena Ficarazzi
- Cogentech Cancer Genetic Test Laboratory, Milan, Italy, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Caroline Seynaeve
- Family Cancer Clinic, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Centrer, Rotterdam, The Netherlands
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | | | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mieke Kriege
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Michael J Kerin
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Nicola Miller
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | | | - Susan M Gerty
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lorraine Durcan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Catriona Mclean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Roger L Milne
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Laura Baglietto
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Isabel dos Santos Silva
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Laura J Van'T Veer
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Sten Cornelissen
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, Center for Primary Health Care Research, University of Lund, Malmö, Sweden
| | - Diana Torres
- Molecular Genetics of Breast Cancer, Institute of Human Genetics, Pontificia University Javeriana, Bogota, Colombia
| | - Thomas Rüdiger
- Institute of Pathology, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Matthieu Moisse
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium, Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Judith Brown
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care
| | - Jacques Simard
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, USA
| | | | - John L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health
| | | | - Thilo Dörk
- Department of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy and
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Peter Devillee
- Department of Human Genetics & Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, University of Tübingen, Tübingen, Germany
| | - Maartje Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Elinor Sawyer
- Division of Cancer Studies, Kings College London, Guy's Hospital, London, UK
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederick Marmee
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Graham G Giles
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia, Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Julian Peto
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Marjanka Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium, Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | - Fergus J Couch
- Department of Health Sciences Research, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA,
| |
Collapse
|
23
|
Aurora A kinase modulates actin cytoskeleton through phosphorylation of Cofilin: Implication in the mitotic process. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2719-29. [PMID: 25090971 DOI: 10.1016/j.bbamcr.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022]
Abstract
Aurora A kinase regulates early mitotic events through phosphorylation and activation of a variety of proteins. Specifically, Aur-A is involved in centrosomal separation and formation of mitotic spindles in early prophase. The effect of Aur-A on mitotic spindles is mediated by the modulation of microtubule dynamics and association with microtubule binding proteins. In this study we show that Aur-A exerts its effects on spindle organization through the regulation of the actin cytoskeleton. Aurora A phosphorylates Cofilin at multiple sites including S(3) resulting in the inactivation of its actin depolymerizing function. Aur-A interacts with Cofilin in early mitotic phases and regulates its phosphorylation status. Cofilin phosphorylation follows a dynamic pattern during the progression of prophase to metaphase. Inhibition of Aur-A activity induced a delay in the progression of prophase to metaphase. Aur-A inhibitor also disturbed the pattern of Cofilin phosphorylation, which correlated with the mitotic delay. Our results establish a novel function of Aur-A in the regulation of actin cytoskeleton reorganization, through Cofilin phosphorylation during early mitotic stages.
Collapse
|
24
|
Thakur HC, Singh M, Nagel-Steger L, Prumbaum D, Fansa EK, Gremer L, Ezzahoini H, Abts A, Schmitt L, Raunser S, Ahmadian MR, Piekorz RP. Role of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division. Biol Chem 2014; 394:1411-23. [PMID: 23787465 DOI: 10.1515/hsz-2013-0184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 02/04/2023]
Abstract
During the mitotic division cycle, cells pass through an extensive microtubule rearrangement process where microtubules forming the mitotic spindle apparatus are dynamically instable. Several centrosomal- and microtubule-associated proteins are involved in the regulation of microtubule dynamics and stability during mitosis. Here, we focus on members of the transforming acidic coiled coil (TACC) family of centrosomal adaptor proteins, in particular TACC3, in which their subcellular localization at the mitotic spindle apparatus is controlled by Aurora-A kinase-mediated phosphorylation. At the effector level, several TACC-binding partners have been identified and characterized in greater detail, in particular, the microtubule polymerase XMAP215/ch-TOG/CKAP5 and clathrin heavy chain (CHC). We summarize the recent progress in the molecular understanding of these TACC3 protein complexes, which are crucial for proper mitotic spindle assembly and dynamics to prevent faulty cell division and aneuploidy. In this regard, the (patho)biological role of TACC3 in development and cancer will be discussed.
Collapse
|
25
|
Skorokhod O, Panasyuk G, Nemazanyy I, Gout I, Filonenko V. Identification of Tudor domain containing 7 protein as a novel partner and a substrate for ribosomal protein S6 kinaseS – S6K1 and S6K2. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Impact of NPM, TFF3 and TACC1 on the prognosis of patients with primary gastric cancer. PLoS One 2013; 8:e82136. [PMID: 24358147 PMCID: PMC3864846 DOI: 10.1371/journal.pone.0082136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023] Open
Abstract
Background NPM, TFF3 and TACC1 are molecular markers that play important roles in cell differentiation. Herein, we investigated their prognostic impact in patients with primary gastric cancer (GC) and determined whether they could be used as markers of more aggressive gastric carcinomas by detecting the extent of expression in human gastric carcinoma samples. Methodology/Principal Findings Tumor tissue specimens from 142 GC patients were retrospectively retrieved and immunohistochemically evaluated. Correlations between NPM, TFF3 and TACC1 over-expression and clincopathologic parameters, and their prognostic values were investigated with χ2, Kaplan-Meier method, and Cox uni- and multivariate survival models. NPM, TFF3 and TACC1 expression was significantly higher in GC patients with poorly differentiated histologic type than that in patients with well differentiated histologic type. NPM expression was significantly higher in patients with hepatic metastasis or recurrence than that in patients without metastasis. TFF3 expression was significantly higher in patients with positive lymph node metastasis than that in patients with negative lymph node metastasis. Age, lymph node metastasis, and TFF3 and TACC1 over-expression were significantly correlated with low survival (P<0.05, P<0.05, P = 0.005 and P = 0.009, respectively). Multivariate analysis showed that lymph node metastasis and TFF3 and TACC1 over-expression were independent prognostic factors. Conclusions TFF3 and TACC1 over-expression in epithelial cells of surgically resected GC tissues was an independent predictor of short survival in GC patients. The prognosis was poorer in patients with positive expression of both TFF3 and TACC1 than that in patients with positive expression of TFF3 or TACC1 alone, or with negative expression of TFF3 and TACC1.
Collapse
|
27
|
Hood FE, Williams SJ, Burgess SG, Richards MW, Roth D, Straube A, Pfuhl M, Bayliss R, Royle SJ. Coordination of adjacent domains mediates TACC3-ch-TOG-clathrin assembly and mitotic spindle binding. J Cell Biol 2013; 202:463-78. [PMID: 23918938 PMCID: PMC3734082 DOI: 10.1083/jcb.201211127] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/20/2013] [Indexed: 12/16/2022] Open
Abstract
A complex of transforming acidic coiled-coil protein 3 (TACC3), colonic and hepatic tumor overexpressed gene (ch-TOG), and clathrin has been implicated in mitotic spindle assembly and in the stabilization of kinetochore fibers by cross-linking microtubules. It is unclear how this complex binds microtubules and how the proteins in the complex interact with one another. TACC3 and clathrin have each been proposed to be the spindle recruitment factor. We have mapped the interactions within the complex and show that TACC3 and clathrin were interdependent for spindle recruitment, having to interact in order for either to be recruited to the spindle. The N-terminal domain of clathrin and the TACC domain of TACC3 in tandem made a microtubule interaction surface, coordinated by TACC3-clathrin binding. A dileucine motif and Aurora A-phosphorylated serine 558 on TACC3 bound to the "ankle" of clathrin. The other interaction within the complex involved a stutter in the TACC3 coiled-coil and a proposed novel sixth TOG domain in ch-TOG, which was required for microtubule localization of ch-TOG but not TACC3-clathrin.
Collapse
Affiliation(s)
- Fiona E. Hood
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, England, UK
| | - Samantha J. Williams
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, England, UK
| | - Selena G. Burgess
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, England, UK
| | - Mark W. Richards
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, England, UK
| | - Daniel Roth
- Division of Biomedical Cell Biology, University of Warwick, Coventry CV4 7AL, England, UK
| | - Anne Straube
- Division of Biomedical Cell Biology, University of Warwick, Coventry CV4 7AL, England, UK
| | - Mark Pfuhl
- Cardiovascular and Randall Division, King’s College London, London SE1 1UL, England, UK
| | - Richard Bayliss
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, England, UK
| | - Stephen J. Royle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, England, UK
- Division of Biomedical Cell Biology, University of Warwick, Coventry CV4 7AL, England, UK
| |
Collapse
|
28
|
Ha GH, Kim JL, Breuer EKY. Transforming acidic coiled-coil proteins (TACCs) in human cancer. Cancer Lett 2013; 336:24-33. [PMID: 23624299 DOI: 10.1016/j.canlet.2013.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Fine-tuned regulation of the centrosome/microtubule dynamics during mitosis is essential for faithful cell division. Thus, it is not surprising that deregulations in this dynamic network can contribute to genomic instability and tumorigenesis. Indeed, centrosome loss or amplification, spindle multipolarity and aneuploidy are often found in a majority of human malignancies, suggesting that defects in centrosome and associated microtubules may be directly or indirectly linked to cancer. Therefore, future research to identify and characterize genes required for the normal centrosome function and microtubule dynamics may help us gain insight into the complexity of cancer, and further provide new avenues for prognostic, diagnostics and therapeutic interventions. Members of the transforming acidic coiled-coil proteins (TACCs) family are emerging as important players of centrosome and microtubule-associated functions. Growing evidence indicates that TACCs are involved in the progression of certain solid tumors. Here, we will discuss our current understanding of the biological function of TACCs, their relevance to human cancer and possible implications for cancer management.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
29
|
Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL, Golemis EA. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 2013; 70:661-87. [PMID: 22864622 PMCID: PMC3607959 DOI: 10.1007/s00018-012-1073-7] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022]
Abstract
Temporally and spatially controlled activation of the Aurora A kinase (AURKA) regulates centrosome maturation, entry into mitosis, formation and function of the bipolar spindle, and cytokinesis. Genetic amplification and mRNA and protein overexpression of Aurora A are common in many types of solid tumor, and associated with aneuploidy, supernumerary centrosomes, defective mitotic spindles, and resistance to apoptosis. These properties have led Aurora A to be considered a high-value target for development of cancer therapeutics, with multiple agents currently in early-phase clinical trials. More recently, identification of additional, non-mitotic functions and means of activation of Aurora A during interphase neurite elongation and ciliary resorption have significantly expanded our understanding of its function, and may offer insights into the clinical performance of Aurora A inhibitors. Here we review the mitotic and non-mitotic functions of Aurora A, discuss Aurora A regulation in the context of protein structural information, and evaluate progress in understanding and inhibiting Aurora A in cancer.
Collapse
Affiliation(s)
- Anna S. Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Igor Astsaturov
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Ilya G. Serebriiskii
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Roland L. Dunbrack
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|
30
|
Xiang J, Qiu W, Wang X, Zhou F, Wang Z, Liu S, Yue L. Efficient downregulation of ErbB-2 induces TACC1 upregulation in breast cancer cell lines. Oncol Rep 2013; 29:1517-23. [PMID: 23354013 DOI: 10.3892/or.2013.2253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/11/2012] [Indexed: 11/05/2022] Open
Abstract
The ErbB-2 gene, whose overexpression is observed in many types of tumors including breast cancer, plays an important role in carcinoma formation. Dysregulation of the human transforming acidic coiled-coil 1 (TACC1) and ErbB-2 genes is thought to be important in the development and progression of breast cancer. However, a putative interaction between ErbB-2 and TACC1 remains undetermined in breast cancer. After infecting BT474 cells with lentiviral-mediated ErbB2-specific shRNA, we detected the expression of ErbB-2 and TACC1 by real-time PCR and western blotting. ErbB-2 mRNA expression was decreased in the Lenti-ShERBB2 infected cells, and western blotting indicated a concordant reduction in ErbB-2 protein. TACC1 expression at the mRNA and protein levels was significantly upregulated by ErbB-2 silencing in BT474 cells. CCK-8 assay indicated that the inhibition of ErbB-2 expression increased the sensitivity of BT474 cells to docetaxel treatment. These findings provide proof and the foundation for the molecular and biological relationships of ErbB-2 and TACC1 in breast cancer.
Collapse
Affiliation(s)
- Jinyu Xiang
- Department of Oncology, The Affiliated Hospital of the Medical College, Qingdao University, Qingdao 266003, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DSB, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L. A landscape of driver mutations in melanoma. Cell 2012; 150:251-63. [PMID: 22817889 DOI: 10.1016/j.cell.2012.06.024] [Citation(s) in RCA: 1979] [Impact Index Per Article: 152.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 12/30/2022]
Abstract
Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.
Collapse
Affiliation(s)
- Eran Hodis
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ito A, Mimae T, Yamamoto YSZ, Hagiyama M, Nakanishi J, Ito M, Hosokawa Y, Okada M, Murakami Y, Kondo T. Novel application for pseudopodia proteomics using excimer laser ablation and two-dimensional difference gel electrophoresis. J Transl Med 2012; 92:1374-85. [PMID: 22751350 DOI: 10.1038/labinvest.2012.98] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We developed a novel application to conduct pseudopodia proteomics. Pseudopodia are ventral actin-rich protrusions and play functional roles in cell migrations. Identification of pseudopodia proteins leads to a further understanding of malignant phenotypes of tumor cells and novel therapeutic strategies. In our application, tumor cells were placed on a fibronectin-coated porous membrane to form pseudopodia. According to the motile potentials of the cells, the cells formed pseudopodial microprocesses in the pores. An excimer laser, which was used for ophthalmic refractive surgeries, horizontally ablated cells at the membrane surface to remove the cell body. The microscopic observations and the protein expression studies suggested that the laser treatment caused no apparent damages to pseudopodia. Proteins in whole cells and pseudopodia fractions were individually solubilized, labeled with a highly sensitive fluorescent dye, and separated using two-dimensional difference gel electrophoresis. Among 2508 protein spots observed, 211 had different intensity between whole cells and pseudopodia fractions (more than fourfold differences and P-value of <0.05). The protein enrichment depended on the pore size. Mass spectrometric protein identification revealed 46 pseudopodia-localizing proteins. The localization of novel pseudopodia-localizing proteins such as RAB1A, HSP90B, TDRD7, and vimentin was confirmed using immunohistochemical examinations. The previous studies demonstrated that these four proteins may function in the cell migration process. This method will provide insights into the molecular details of pseudopodia and a further understanding of malignant phenotypes of tumor cells and novel therapeutic strategies.
Collapse
Affiliation(s)
- Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Multiple cancer testis antigens function to support tumor cell mitotic fidelity. Mol Cell Biol 2012; 32:4131-40. [PMID: 22869527 DOI: 10.1128/mcb.00686-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the expression of genes that are normally involved in spermatogenesis is frequently detected in tumors, the extent to which these gene products are required for neoplastic behaviors is unclear. To begin to address their functional relevance to tumorigenesis, we identified a cohort of proteins which display synthetic lethality with paclitaxel in non-small-cell lung cancer and whose expression is biased toward testes and tumors. Remarkably, these testis proteins, FMR1NB, NXF2, MAGEA5, FSIP1, and STARD6, are required for accurate chromosome segregation in tumor cells. Their individual depletion enhances the generation of multipolar spindles, increases mitotic transit time, and induces micronucleation in response to an otherwise innocuous dose of paclitaxel. The underlying basis for abnormal mitosis is an alteration in microtubule function, as their depletion increases microtubule cytaster formation and disrupts microtubule stability. Given these observations, we hypothesize that reactivated testis proteins may represent unique tumor cell vulnerabilities which, if targeted, could enhance responsiveness to antimitotic therapy. Indeed, we demonstrate that combining paclitaxel with a small-molecule inhibitor of the gametogenic and tumor cell mitotic protein TACC3 leads to enhanced centrosomal abnormalities, activation of death programs, and loss of anchorage-independent growth.
Collapse
|
34
|
Zeng T, Chen L. Tracing dynamic biological processes during phase transition. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 1:S12. [PMID: 23046764 PMCID: PMC3403121 DOI: 10.1186/1752-0509-6-s1-s12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Phase transition widely exists in the biological world, such as transformation of cell cycle phases, cell differentiation stages, disease development, and so on. Such a nonlinear phenomenon is considered as the conversion of a biological system from one phenotype/state to another. Studies on the molecular mechanisms of biological phase transition have attracted much attention, in particular, on different genotypes (or expression variations) in a specific phase, but with less of focus on cascade changes of genes' functions (or system state) during the phase shift or transition process. However, it is a fundamental but important mission to trace the temporal characteristics of a biological system during a specific phase transition process, which can offer clues for understanding dynamic behaviors of living organisms. Results By overcoming the hurdles of traditional time segmentation and temporal biclustering methods, a causal process model (CPM) in the present work is proposed to study the biological phase transition in a systematic manner, i.e. first, we make gene-specific segmentation on time-course expression data by developing a new boundary gene estimation scheme, and then infer functional cascade dynamics by constructing a temporal block network. After the computational validation on synthetic data, CPM was used to analyze the well-known Yeast cell cycle data. It was found that the dynamics of the boundary genes are periodic and consistent with the phases of the cell cycle, and the temporal block network indeed demonstrates a meaningful cascade structure of the enriched biological functions. In addition, we further studied protein modules based on the temporal block network, which reflect temporal features in different cycles. Conclusions All of these results demonstrate that CPM is effective and efficient comparing to traditional methods, and is able to elucidate essential regulatory mechanism of a biological system even with complicated nonlinear phase transitions.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
35
|
Takayama KI, Horie-Inoue K, Suzuki T, Urano T, Ikeda K, Fujimura T, Takahashi S, Homma Y, Ouchi Y, Inoue S. TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer. Mol Endocrinol 2012; 26:748-61. [PMID: 22456197 DOI: 10.1210/me.2011-1242] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the existence of effective antiandrogen therapy for prostate cancer, the disease often progresses to castration-resistant states. Elucidation of the molecular mechanisms underlying the resistance for androgen deprivation in terms of the androgen receptor (AR)-regulated pathways is a requisite to manage castration-resistant prostate cancer (CRPC). Using a ChIP-cloning strategy, we identified functional AR binding sites (ARBS) in the genome of prostate cancer cells. We discovered that a centrosome- and microtubule-interacting gene, transforming acidic coiled-coil protein 2 (TACC2), is a novel androgen-regulated gene. We identified a functional AR-binding site (ARBS) including two canonical androgen response elements in the vicinity of TACC2 gene, in which activated hallmarks of histone modification were observed. Androgen-dependent TACC2 induction is regulated by AR, as confirmed by AR knockdown or its pharmacological inhibitor bicalutamide. Using long-term androgen-deprived cells as cellular models of CRPC, we demonstrated that TACC2 is highly expressed and contributes to hormone-refractory proliferation, as small interfering RNA-mediated knockdown of TACC2 reduced cell growth and cell cycle progression. By contrast, in TACC2-overexpressing cells, an acceleration of the cell cycle was observed. In vivo tumor formation study of prostate cancer in castrated immunocompromised mice revealed that TACC2 is a tumor-promoting factor. Notably, the clinical significance of TACC2 was demonstrated by a correlation between high TACC2 expression and poor survival rates. Taken together with the critical roles of TACC2 in the cell cycle and the biology of prostate cancer, we infer that the molecule is a potential therapeutic target in CRPC as well as hormone-sensitive prostate cancer.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lehman NL, O'Donnell JP, Whiteley LJ, Stapp RT, Lehman TD, Roszka KM, Schultz LR, Williams CJ, Mikkelsen T, Brown SL, Ecsedy JA, Poisson LM. Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma and is a potential chemotherapeutic target in gliomas. Cell Cycle 2012; 11:489-502. [PMID: 22274399 DOI: 10.4161/cc.11.3.18996] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aurora A is critical for mitosis and is overexpressed in several neoplasms. Its overexpression transforms cultured cells, and both its overexpression and knockdown cause genomic instability. In transgenic mice, Aurora A haploinsufficiency, not overexpression, leads to increased malignant tumor formation. Aurora A thus appears to have both tumor-promoting and tumor-suppressor functions. Here, we report that Aurora A protein, measured by quantitative protein gel blotting, is differentially expressed in major glioma types in lineage-specific patterns. Aurora A protein levels in WHO grade II oligodendrogliomas (n=16) and grade III anaplastic oligodendrogliomas (n=16) are generally low, similar to control epilepsy cerebral tissue (n=11). In contrast, pilocytic astrocytomas (n=6) and ependymomas (n=12) express high Aurora A levels. Among grade II to grade III astrocytomas (n=7, n=14, respectively) and grade IV glioblastomas (n=31), Aurora A protein increases with increasing tumor grade. We also found that Aurora A expression is induced by hypoxia in cultured glioblastoma cells and is overexpressed in hypoxic regions of glioblastoma tumors. Retrospective Kaplan-Meier analysis revealed that both lower Aurora A protein measured by quantitative protein gel blot (n=31) and Aurora A mRNA levels measured by real-time quantitative RT-PCR (n=58) are significantly associated with poorer patient survival in glioblastoma. Furthermore, we report that the selective Aurora A inhibitor MLN8237 is potently cytotoxic to glioblastoma cells, and that MLN8237 cytotoxicty is potentiated by ionizing radiation. MLN8237 also appeared to induce senescence and differentiation of glioblastoma cells. Thus, in addition to being significantly associated with survival in glioblastoma, Aurora A is a potential new drug target for the treatment of glioblastoma and possibly other glial neoplasms.
Collapse
Affiliation(s)
- Norman L Lehman
- Department of Pathology and Laboratory Medicine, The Hermelin Brain Tumor Center, Henry Ford Hospital, and Department of Pathology, Wayne State University, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ritchey L, Ottman R, Roumanos M, Chakrabarti R. A functional cooperativity between Aurora A kinase and LIM kinase1: implication in the mitotic process. Cell Cycle 2012; 11:296-309. [PMID: 22214762 DOI: 10.4161/cc.11.2.18734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aurora kinase A (Aur-A), a mitotic kinase, regulates initiation of mitosis through centrosome separation and proper assembly of bipolar spindles. LIM kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, is involved in the mitotic process through inactivating phosphorylation of cofilin. Phosphorylated LIMK1 is recruited to the centrosomes during early prophase, where it colocalizes with γ-tubulin. Here, we report a novel functional cooperativity between Aur-A and LIMK1 through mutual phosphorylation. LIMK1 is recruited to the centrosomes during early prophase and then to the spindle poles, where it colocalizes with Aur-A. Aur-A physically associates with LIMK1 and activates it through phosphorylation, which is important for its centrosomal and spindle pole localization. Aur-A also acts as a substrate of LIMK1, and the function of LIMK1 is important for its specific localization and regulation of spindle morphology. Taken together, the novel molecular interaction between these two kinases and their regulatory roles on one another's function may provide new insight on the role of Aur-A in manipulation of actin and microtubular structures during spindle formation.
Collapse
Affiliation(s)
- Lisa Ritchey
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | | | | |
Collapse
|
38
|
Silva AS, Wood SH, van Dam S, Berres S, McArdle A, de Magalhães JP. Gathering insights on disease etiology from gene expression profiles of healthy tissues. ACTA ACUST UNITED AC 2011; 27:3300-5. [PMID: 21994229 DOI: 10.1093/bioinformatics/btr559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MOTIVATION Gene expression profiles have been widely used to study disease states. It may be possible, however, to gather insights into human diseases by comparing gene expression profiles of healthy organs with different disease incidence or severity. We tested this hypothesis and developed an approach to identify candidate genes associated with disease development by focusing on cancer incidence since it varies greatly across human organs. RESULTS We normalized organ-specific cancer incidence by organ weight and found that reproductive organs tend to have a higher mass-normalized cancer incidence, which could be due to evolutionary trade-offs. Next, we performed a genome-wide scan to identify genes whose expression across healthy organs correlates with organ-specific cancer incidence. We identified a large number of genes, including genes previously associated with tumorigenesis and new candidate genes. Most genes exhibiting a positive correlation with cancer incidence were related to ribosomal and transcriptional activity, translation and protein synthesis. Organs with enhanced transcriptional and translational activation may have higher cell proliferation and therefore be more likely to develop cancer. Furthermore, we found that organs with lower cancer incidence tend to express lower levels of known cancer-associated genes. Overall, these results demonstrate how genes and processes that predispose organs to specific diseases can be identified using gene expression profiles from healthy tissues. Our approach can be applied to other diseases and serve as foundation for further oncogenomic analyses. CONTACT jp@senescence.info SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- A Sofia Silva
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
39
|
Yasuhara H, Oe Y. TMBP200, a XMAP215 homologue of tobacco BY-2 cells, has an essential role in plant mitosis. PROTOPLASMA 2011; 248:493-502. [PMID: 20703504 DOI: 10.1007/s00709-010-0189-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/28/2010] [Indexed: 05/26/2023]
Abstract
TMBP200 from tobacco BY-2 cells is a member of the highly conserved family of microtubule-associated proteins that includes Xenopus XMAP215, human TOGp, and Arabidopsis MOR1/GEM1. XMAP215 homologues have an essential role in spindle assembly and function in animals and yeast, but their role in plant mitosis is not fully clarified. Here, we show by immunoblot analysis that TMBP200 levels in synchronously cultured BY-2 cells increased when the cells entered mitosis, thus indicating that TMBP200 plays an important role in mitosis in tobacco. To investigate the role of TMBP200 in mitosis, we employed inducible RNA interference to silence TMBP200 expression in BY-2 cells. The resulting depletion of TMBP200 caused severe defects in bipolar spindle formation and resulted in the appearance of multinucleated cells with variable-sized nuclei. This finding indicates that TMBP200 has an essential role in bipolar spindle formation and function.
Collapse
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan.
| | | |
Collapse
|
40
|
Aurora-C interacts with and phosphorylates the transforming acidic coiled-coil 1 protein. Biochem Biophys Res Commun 2011; 408:647-53. [PMID: 21531210 DOI: 10.1016/j.bbrc.2011.04.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/16/2011] [Indexed: 11/22/2022]
|
41
|
Kashevarova AA, Tolmacheva EN, Sazhenova EA, Sukhanova NN, Lebedev IN. Epigenetic status of cell cycle regulation genes in the placenta of human embryos with chromosomal mosaicism. Mol Biol 2011. [DOI: 10.1134/s0026893311020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Wang LH, Xiang J, Yan M, Zhang Y, Zhao Y, Yue CF, Xu J, Zheng FM, Chen JN, Kang Z, Chen TS, Xing D, Liu Q. The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Res 2010; 70:9118-28. [PMID: 21045147 DOI: 10.1158/0008-5472.can-10-1246] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitotic kinase Aurora-A (Aur-A) is required to form the bipolar spindle and ensure accurate chromosome segregation before cell division. Aur-A dysregulation represents an oncogenic event that promotes tumor formation. Here, we report that Aur-A promotes breast cancer metastasis. Aur-A overexpression enhanced mammary cell migration by dephosphorylation and activation of cofilin, which facilitates actin reorganization and polymerization. Cofilin knockdown impaired Aur-A-driven cell migration and protrusion of the cell membrane. Conversely, overexpression of activated cofilin abrogated the effects of Aur-A knockdown on cell migration. Moreover, Aur-A overexpession increased the expression of the cofilin phosphatase Slingshot-1 (SSH1), contributing to cofilin activation and cell migration. We found that phosphatidylinositol 3-kinase (PI3K) inhibition blocked Aur-A-induced cofilin dephosphorylation, actin reorganization, and cell migration, suggesting crosstalk with PI3K signaling and a potential benefit of PI3K inhibition in tumors with deregulated Aur-A. Additionally, we found an association between Aur-A overexpression and cofilin activity in breast cancer tissues. Our findings indicate that activation of the cofilin-F-actin pathway contributes to tumor cell migration and metastasis enhanced by Aur-A, revealing a novel function for mitotic Aur-A kinase in tumor progression.
Collapse
Affiliation(s)
- Li-hui Wang
- State Key Laboratory of Oncology in South China, Cancer Center, and Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The Aurora are a conserved family of serine/threonine kinases with essential functions in cell division. In mitosis, Aurora kinases are required for chromosome segregation, condensation and orientation in the metaphase plate, spindle assembly, and the completion of cytokinesis. This review presents the Aurora kinases, their partners and how their interactions impact on the different mitotic functions.
Collapse
|
44
|
Antiproliferative effect of Aurora kinase targeting in mesothelioma. Lung Cancer 2010; 70:271-9. [PMID: 20371132 DOI: 10.1016/j.lungcan.2010.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/14/2010] [Accepted: 03/09/2010] [Indexed: 01/14/2023]
Abstract
The Aurora proteins are a small family of serine/threonine kinase that function in various stages of mitosis. Current interest in Aurora kinase relates to its role in tumours, and its potential as a therapeutic target. In this work we studied the expression of Aurora kinases A and B and related genes in human mesothelioma tissues and in five mesothelioma cell lines. Moreover, we analyzed the effects of ZM447439 (ZM), an Aurora kinase inhibitor, on cellular growth. Results evidenced an over-expression of Aurora kinase A and related genes in human mesothelioma tissues and an over-expression of Aurora kinases A and B in all cell lines. Moreover, we demonstrated that ZM447439 was able to inhibit cell growth in all cell lines and that this inhibition was due to a specific effect as demonstrated by the reduction in the level of Histone H3 phosphorylation. Our findings support a role of Aurora kinase in mesothelioma and the possibility of using Aurora kinase inhibitors in therapeutic modalities.
Collapse
|
45
|
Cross MK, Powers MA. Learning about cancer from frogs: analysis of mitotic spindles in Xenopus egg extracts. Dis Model Mech 2010; 2:541-7. [PMID: 19892884 DOI: 10.1242/dmm.002022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mitotic spindle is responsible for correctly segregating chromosomes during cellular division. Disruption of this process leads to genomic instability in the form of aneuploidy, which can contribute to the development of cancer. Therefore, identification and characterization of factors that are responsible for the assembly and regulation of the spindle are crucial. Not only are these factors often altered in cancer, but they also serve as potential therapeutic targets. Xenopus egg extract is a powerful tool for studying spindle assembly and other cell cycle-related events owing, in large part, to the ease with which protein function can be manipulated in the extract. Importantly, the spindle factors that have been characterized in egg extract are conserved in human spindle assembly. In this review, we explain how the extract is prepared and manipulated to study the function of individual factors in spindle assembly and the spindle checkpoint. Furthermore, we provide examples of several spindle factors that have been defined functionally using the extract system and discuss how these factors are altered in human cancer.
Collapse
Affiliation(s)
- Marie K Cross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
46
|
Guyot R, Vincent S, Bertin J, Samarut J, Ravel-Chapuis P. The transforming acidic coiled coil (TACC1) protein modulates the transcriptional activity of the nuclear receptors TR and RAR. BMC Mol Biol 2010; 11:3. [PMID: 20078863 PMCID: PMC2822774 DOI: 10.1186/1471-2199-11-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 01/15/2010] [Indexed: 11/23/2022] Open
Abstract
Background The transcriptional activity of Nuclear hormone Receptors (NRs) is regulated by interaction with coactivator or corepressor proteins. Many of these cofactors have been shown to have a misregulated expression or to show a subcellular mislocalization in cancer cell lines or primary tumors. Therefore they can be factors involved in the process of oncogenesis. Results We describe a novel NR coregulator, TACC1, which belongs to the Transforming Acidic Coiled Coil (TACC) family. The interaction of TACC1 with Thyroid Hormone Receptors (TR) and several other NRs has been shown in a yeast two-hybrid screen and confirmed by GST pulldown, colocalization and co-immunoprecipitation experiments. TACC1 interacts preferentially with unliganded NRs. In F9 cells, endogenous TACC1 localized in the chromatin-enriched fraction of the nucleus and interacted with Retinoid Acid Receptors (RARα) in the nucleus. TACC1 depletion in the cell led to decreased RARα and TRα ligand-dependent transcriptional activity and to delocalization of TR from the nucleus to the cytoplasm. Conclusions From these experimental studies we propose that TACC1 might be a scaffold protein building up a transcriptional complex around the NRs we studied. This function of TACC1 might account for its involvement in several forms of tumour development.
Collapse
Affiliation(s)
- Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, Universitéde Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
47
|
Cassimeris L, Becker B, Carney B. TOGp regulates microtubule assembly and density during mitosis and contributes to chromosome directional instability. ACTA ACUST UNITED AC 2009; 66:535-45. [PMID: 19373773 DOI: 10.1002/cm.20359] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TOGp, a member of the XMAP215 MAP family, is required for bipolar mitotic spindle assembly. To understand how TOGp contributes to spindle assembly, we examined microtubule dynamics after depleting TOGp by siRNA. Fluorescence recovery after photobleaching of GFP-tubulin demonstrated that spindle microtubule turnover is slowed two-fold in the absence of TOGp. Consistent with photobleaching results, microtubule regrowth after washout of the microtubule depolymerizing drug nocodazole was slower at the centrosomes and in the vicinity of mitotic chromatin in cells depleted of TOGp. The slower microtubule turnover is likely due to either nucleation or the transitions of dynamic instability because TOGp depletion did not effect the rate of plus end growth, measured by tracking EB1-GFP at microtubule ends. In contrast, microtubule regrowth after nocodazole washout was unaffected by prior depletion of TACC3, a centrosomal protein that interacts with TOGp. Kinetochore fibers in both untreated and TOGp-depleted cells were stable to incubation at 4 degrees C or lysis in buffer containing calcium indicating that stable kinetochore-microtubule attachments are formed in the absence of TOGp. Depletion of TOGp, but not TACC3, reduced kinetochore oscillations during prometaphase/metaphase. Defects in oscillations are not due simply to multipolarity or loss of centrosome focus in the TOGp-depleted cells, since kinetochore oscillations appear normal in cells treated with the proteosome inhibitor MG132, which also results in multipolar spindles and centrosome fragmentation. We hypothesize that TOGp is required for chromosome motility as a downstream consequence of reduced microtubule dynamics and/or density. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA.
| | | | | |
Collapse
|
48
|
Cheung CHA, Coumar MS, Hsieh HP, Chang JY. Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin Investig Drugs 2009; 18:379-98. [PMID: 19335272 DOI: 10.1517/13543780902806392] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mitosis is a key step in the cell cycle governing the distribution of genetic material to the daughter cells. Any aberration in this process could lead to genomic instability. Aurora A, B and C, are members of the serine/threonine kinase family. Aurora kinases are essential for spindle assembly, centrosome maturation, chromosomal segregation and cytokinesis during mitosis. Abnormalities in the mitotic process through overexpression/amplification of aurora kinase have been linked to genomic instability leading to tumorigenesis. Hence, use of aurora kinase small molecule inhibitors as potential molecular-targeted therapeutic intervention for cancer is being pursued by various researchers. OBJECTIVE To review the literature of aurora kinase inhibitors in clinical and preclinical testing. METHOD Pubmed, Scifinder and (www.clinicaltrials.gov) databases were used to search the literature for aurora kinase. CONCLUSION/RESULTS: Approximately 13 aurora kinase inhibitors are under Phase I/II evaluation at present for various cancers of different origins; and several others are in preclinical testing. Details of their preclinical/clinical results and important considerations for future aurora kinase inhibitor development are discussed. Considering the fact that aurora kinase plays an important role in the mitosis process and is involved in tumorigenesis, development of aurora kinase inhibitors for the treatment of cancer, either as a single agent or in combination with existing cancer treatment is warranted.
Collapse
|
49
|
Chen J, Zhou J, Sanders CK, Nolan JP, Cai H. A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping. Anal Biochem 2009; 390:29-37. [PMID: 19298787 DOI: 10.1016/j.ab.2009.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/04/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Despite the wide acceptance of yeast two-hybrid (Y2H) system for protein-protein interaction analysis and discovery, conventional Y2H assays are not well suited for high-throughput screening of the protein interaction network ("interactome") on a genomic scale due to several limitations, including labor-intensive agar plating and colony selection methods associated with the use of nutrient selection markers, complicated reporter analysis methods associated with the use of LacZ enzyme reporters, and incompatibility of the liquid handling robots. We recently reported a robust liquid culture Y2H system based on quantitative analysis of yeast-enhanced green fluorescent protein (yEGFP) reporters that greatly increased the analysis throughput and compatibility with liquid handling robots. To further advance its utility in high-throughput complementary DNA (cDNA) library screening, we report the development of a novel surface display Y2H (sdY2H) library screening system with uniquely integrated surface display hemagglutination (sdHA) antigen and yEGFP reporters. By introduction of a surface reporter sdHA into the yEGFP-based Y2H system, positive Y2H targets are quickly isolated from library cells by a simple magnetic separation without a large plating effort. Moreover, the simultaneous scoring of multiple reporters, including sdHA, yEGFP, and conventional nutrient markers, greatly increased the specificity of the Y2H assay. The feasibility of the sdY2H assay on large cDNA library screening was demonstrated by the successful recovery of positive P53/T interaction pairs at a target-to-background ratio of 1:1,000,000. Together with the massive parallel DNA sequencing technology, it may provide a powerful proteomic tool for high-throughput interactome mapping on a genomic scale.
Collapse
Affiliation(s)
- Jun Chen
- Biosciences Division, National Flow Cytometry Resource, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
50
|
Ajuba: a new microtubule-associated protein that interacts with BUBR1 and Aurora B at kinetochores in metaphase. Biol Cell 2009; 101:221-35. [PMID: 18710370 DOI: 10.1042/bc20080060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND INFORMATION The role of the LIM-domain-containing protein Ajuba was initially described in cell adhesion and migration processes and recently in mitosis as an activator of the Aurora A kinase. RESULTS In the present study, we show that Ajuba localizes to centrosomes and kinetochores during mitosis. This localization is microtubule-dependent and Ajuba binds microtubules in vitro. A microtubule regrowth assay showed that Ajuba follows nascent microtubules from centrosomes to kinetochores. Owing to its contribution to mitotic commitment and its microtubule-dependent localization, Ajuba could also play a role during the metaphase-anaphase transition. We show that Ajuba interacts with Aurora B and BUBR1 [BUB (budding uninhibited by benomyl)-related 1], two major components of the mitotic checkpoint. Inhibition of BUBR1 by siRNA (small interfering RNA) disrupts chromosome alignment at the metaphase plate and modifies Ajuba localization due to premature mitotic exit. CONCLUSIONS Ajuba is a microtubule-associated protein that collaborates with Aurora B and BUBR1 at the metaphase-anaphase transition and this may be important to ensure proper chromosome segregation.
Collapse
|