1
|
Lee DH, Lee EC, Lee JY, Lee MR, Shim JW, Oh JS. Neuronal Cell Differentiation of iPSCs for the Clinical Treatment of Neurological Diseases. Biomedicines 2024; 12:1350. [PMID: 38927557 PMCID: PMC11201423 DOI: 10.3390/biomedicines12061350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Current chemical treatments for cerebrovascular disease and neurological disorders have limited efficacy in tissue repair and functional restoration. Induced pluripotent stem cells (iPSCs) present a promising avenue in regenerative medicine for addressing neurological conditions. iPSCs, which are capable of reprogramming adult cells to regain pluripotency, offer the potential for patient-specific, personalized therapies. The modulation of molecular mechanisms through specific growth factor inhibition and signaling pathways can direct iPSCs' differentiation into neural stem cells (NSCs). These include employing bone morphogenetic protein-4 (BMP-4), transforming growth factor-beta (TGFβ), and Sma-and Mad-related protein (SMAD) signaling. iPSC-derived NSCs can subsequently differentiate into various neuron types, each performing distinct functions. Cell transplantation underscores the potential of iPSC-derived NSCs to treat neurodegenerative diseases such as Parkinson's disease and points to future research directions for optimizing differentiation protocols and enhancing clinical applications.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Industry-Academic Cooperation Foundation, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eun Chae Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji young Lee
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Jae-won Shim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Jiang Z, Jiang C, Teng X, Hou Y, Dai S, Liu C, Tuo Z, Bi L, Yang C, Wang J. Exploring the crosstalk of immune cells: The impact of dysregulated RUNX family genes in kidney renal clear cell carcinoma. Heliyon 2024; 10:e29870. [PMID: 38707395 PMCID: PMC11066633 DOI: 10.1016/j.heliyon.2024.e29870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Abnormally expressed Runt-associated transcription factor (RUNX) family has been reported in multiple tumors. Nevertheless, the immunological role of RUNX family in kidney renal clear cell carcinoma (KIRC) remains unknown. METHODS We studied the RNA-seq data regarding tumor and healthy subjects from several public databases in detail for evaluating the prognostic and immunological functions owned by three RUNX genes in cancer patients. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical (IHC) staining served for detecting their expressions in tumor and normal samples. RESULTS We observed that KIRC patients presented high expressions of RUNX1, RUNX2, and RUNX3. The expressions of three genes were validated by qRT-PCR, which was same as bioinformatical results. Prognostic analysis indicated that the overexpression of RUNX1 and RUNX2 negatively affects the outcomes in patients with KIRC. Related functional predictions indicated that the RUNXs and co-expression genes were significantly related to the immune response pathway. Moreover, three RUNX members were associated with immune infiltration cells and their related gene markers. The expression of RUNX family in several immune cells is positively or negatively correlated, and its dysregulation is obviously associated with the differential distribution of immune cells. RUNX family genes were abnormally expressed in KIRC patients, and were closely related to the crosstalk of immune cells. CONCLUSIONS Our findings may help to understand the pathogenesis and immunologic roles of the RUNX family in KIRC patients from new perspectives.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiangyu Teng
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yidong Hou
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shuxin Dai
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chang Liu
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Yang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
3
|
Luo M, Zhao Z, Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1150068. [PMID: 37415664 PMCID: PMC10321525 DOI: 10.3389/fendo.2023.1150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Godoi MA, Camilli AC, Gonzales KGA, Costa VB, Papathanasiou E, Leite FRM, Guimarães-Stabili MR. JAK/STAT as a Potential Therapeutic Target for Osteolytic Diseases. Int J Mol Sci 2023; 24:10290. [PMID: 37373437 PMCID: PMC10299676 DOI: 10.3390/ijms241210290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Several cytokines with major biological functions in inflammatory diseases exert their functions through the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signal transduction pathway. JAKs phosphorylate the cytoplasmic domain of the receptor, inducing the activation of its substrates, mainly the proteins known as STATs. STATs bind to these phosphorylated tyrosine residues and translocate from the cytoplasm to the nucleus, further regulating the transcription of several genes that regulate the inflammatory response. The JAK/STAT signaling pathway plays a critical role in the pathogenesis of inflammatory diseases. There is also increasing evidence indicating that the persistent activation of the JAK/STAT signaling pathway is related to several inflammatory bone (osteolytic) diseases. However, the specific mechanism remains to be clarified. JAK/STAT signaling pathway inhibitors have gained major scientific interest to explore their potential in the prevention of the destruction of mineralized tissues in osteolytic diseases. Here, our review highlights the importance of the JAK/STAT signaling pathway in inflammation-induced bone resorption and presents the results of clinical studies and experimental models of JAK inhibitors in osteolytic diseases.
Collapse
Affiliation(s)
- Mariely A. Godoi
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| | - Angelo C. Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| | - Karen G. A. Gonzales
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| | - Vitória B. Costa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| | - Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA;
| | - Fábio R. M. Leite
- National Dental Research Institute Singapore, National Dental Centre, Singapore 168938, Singapore;
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Morgana R. Guimarães-Stabili
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Araraquara 14801-385, Brazil; (M.A.G.)
| |
Collapse
|
5
|
Wiecek AJ, Cutty SJ, Kornai D, Parreno-Centeno M, Gourmet LE, Tagliazucchi GM, Jacobson DH, Zhang P, Xiong L, Bond GL, Barr AR, Secrier M. Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. Genome Biol 2023; 24:128. [PMID: 37221612 PMCID: PMC10204193 DOI: 10.1186/s13059-023-02963-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/07/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state.
Collapse
Affiliation(s)
- Anna J. Wiecek
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Stephen J. Cutty
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Daniel Kornai
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mario Parreno-Centeno
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Lucie E. Gourmet
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - Daniel H. Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, UK
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lingyun Xiong
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gareth L. Bond
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Cell Cycle Control Team, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
6
|
Fujii S, Takebe H, Mizoguchi T, Nakamura H, Shimo T, Hosoya A. Bone formation ability of Gli1 + cells in the periodontal ligament after tooth extraction. Bone 2023; 173:116786. [PMID: 37164217 DOI: 10.1016/j.bone.2023.116786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
During the process of socket healing after tooth extraction, osteoblasts appear in the tooth socket and form alveolar bone; however, the source of these osteoblasts is still uncertain. Recently, it has been demonstrated that cells expressing Gli1, a downstream factor of sonic hedgehog signaling, exhibit stem cell properties in the periodontal ligament (PDL). Therefore, in the present study, the differentiation ability of Gli1+-PDL cells after tooth extraction was analyzed using Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice. After the final administration of tamoxifen to iGli1/Tomato mice, Gli1/Tomato+ cells were rarely detected in the PDL. One day after the tooth extraction, although inflammatory cells appeared in the tooth socket, Periostin+ PDL-like tissues having a few Gli1/Tomato+ cells remained near the alveolar bone. Three days after the extraction, the number of Gli1/Tomato+ cells increased as evidenced by numerous PCNA+ cells in the socket. Some of these Gli1/Tomato+ cells expressed BMP4 and Phosphorylated (P)-Smad1/5/8. After seven days, the Osteopontin+ bone matrix was formed in the tooth socket apart from the alveolar bone. Many Gli1/Tomato+ osteoblasts that were positive for Runx2+ were arranged on the surface of the newly formed bone matrix. In the absence of Gli1+-PDL cells in Gli1-CreERT2/Rosa26-loxP-stop-loxP-tdDTA (iGli1/DTA) mice, the amount of newly formed bone matrix was significantly reduced in the tooth socket. Therefore, these results collectively suggest that Gli1+-PDL cells differentiate into osteoblasts to form the bone matrix in the tooth socket; thus, this differentiation might be regulated, at least in part, by bone morphogenetic protein (BMP) signaling.
Collapse
Affiliation(s)
- Saki Fujii
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan; Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
7
|
Liu H, Yan G, Li L, Wang D, Wang Y, Jin S, Jin Z, Li L, Zhu L. RUNX3 mediates keloid fibroblast proliferation through deacetylation of EZH2 by SIRT1. BMC Mol Cell Biol 2022; 23:52. [PMID: 36476345 PMCID: PMC9730640 DOI: 10.1186/s12860-022-00451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Keloid is a benign proliferative fibrous disease featured by excessive fibroblast proliferation after skin injury. However, the mechanism of abnormal cell proliferation is still unclear. Herein, we investigated the mechanism of abnormal proliferation in keloids involving Sirtuin 1(SIRT1)/ Zeste Homolog 2 (EZH2)/ Runt-related transcription factor 3 (RUNX3). METHODS: HE staining was used to observe the histopathological changes. Western blot was performed to detect SIRT1/EZH2/RUNX3 and cell cycle related proteins. RT-PCR detected EZH2 mRNA. After knockdown of EZH2 or overexpression of RUNX3, cell proliferation and cell cycle was analyzed. Immunoprecipitation was used to detect acetylated EZH2. RESULTS The results showed that overexpression of RUNX3 inhibited cell proliferation and arrested cell cycle at G1/S phase, whereas inhibition of SIRT1 promoted cell proliferation and G1/S phase of the cell cycle. Knockdown of EZH2 promoted the expression of RUNX3, inhibited cell proliferation and shortened the progression of G1 to S phase. Simultaneous knockdown of EZH2 and inhibition of SIRT1 reversed these effects. Inhibition of SIRT1 increased its protein stability by increasing EZH2 acetylation, thereby reducing the expression of RUNX3 and promoting cell proliferation. CONCLUSIONS Conclusively, the SIRT1/EZH2/RUNX3 axis may be an important pathway in the regulation of abnormal proliferation in keloids.
Collapse
Affiliation(s)
- Hanye Liu
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Guanghai Yan
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Li Li
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Dandan Wang
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Yu Wang
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Dermatology, Yanbian University Hospital, Yanji, 133002 People’s Republic of China
| | - Shan Jin
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Dermatology, Yanbian University Hospital, Yanji, 133002 People’s Republic of China
| | - Zhehu Jin
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Dermatology, Yanbian University Hospital, Yanji, 133002 People’s Republic of China
| | - Liangchang Li
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.440752.00000 0001 1581 2747Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, No. 977 Gongyuan Road, Yanji, 133002 People’s Republic of China
| | - Lianhua Zhu
- grid.440752.00000 0001 1581 2747Jilin Key Laboratory for Immune and Targeting Research On Common Allergic Diseases, Yanbian University, Yanji, 133000 People’s Republic of China ,grid.459480.40000 0004 1758 0638Department of Dermatology, Yanbian University Hospital, Yanji, 133002 People’s Republic of China
| |
Collapse
|
8
|
Hu Y, Pan Q, Zhou K, Ling Y, Wang H, Li Y. RUNX1 inhibits the antiviral immune response against influenza A virus through attenuating type I interferon signaling. Virol J 2022; 19:39. [PMID: 35248104 PMCID: PMC8897766 DOI: 10.1186/s12985-022-01764-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Influenza A viruses (IAVs) are zoonotic, segmented negative-stranded RNA viruses. The rapid mutation of IAVs results in host immune response escape and antiviral drug and vaccine resistance. RUNX1 is a transcription factor that not only plays essential roles in hematopoiesis, but also functions as a regulator in inflammation. However, its role in the innate immunity to IAV infection has not been well studied. Methods To investigate the effects of RUNX1 on IAV infection and explore the mechanisms that RUNX1 uses during IAV infection. We infected the human alveolar epithelial cell line (A549) with influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) and examined RUNX1 expression by Western blot and qRT-PCR. We also knocked down or overexpressed RUNX1 in A549 cells, then evaluated viral replication by Western blot, qRT-PCR, and viral titration. Results We found RUNX1 expression is induced by IAV H1N1 PR8 infection, but not by poly(I:C) treatment, in the human alveolar epithelial cell line A549. Knockdown of RUNX1 significantly inhibited IAV infection. Conversely, overexpression of RUNX1 efficiently promoted production of progeny viruses. Additionally, RUNX1 knockdown increased IFN-β and ISGs production while RUNX1 overexpression compromised IFN-β and ISGs production upon PR8 infection in A549 cells. We further showed that RUNX1 may attenuate the interferon signaling transduction by hampering the expression of IRF3 and STAT1 during IAV infection. Conclusions Taken together, we found RUNX1 attenuates type I interferon signaling to facilitate IAV infection in A549 cells.
Collapse
|
9
|
Komori T, Ji Y, Pham H, Jani P, Kilts TM, Kram V, Li L, Young MF. Type
VI
collagen regulates endochondral ossification in the temporomandibular joint. JBMR Plus 2022; 6:e10617. [PMID: 35509631 PMCID: PMC9059467 DOI: 10.1002/jbm4.10617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
For many years there has been a keen interest in developing regenerative treatment for temporomandibular joint–osteoarthritis (TMJ‐OA). Currently, there is no consensus treatment due to the limited self‐healing ability of articular cartilage and lack of understanding of the complex mechanisms regulating cartilage development in the TMJ. Endochondral ossification, the process of subchondral bone formation through chondrocyte differentiation, is critical for TMJ growth and development, and is tightly regulated by the composition of the extracellular matrix (ECM). Type VI collagen is a highly expressed ECM component in the TMJ cartilage, yet its specific functions are largely unknown. In this study, we investigated α2(VI)‐deficient (Col6a2‐knockout [KO]) mice, which are unable to secret or incorporate type VI collagen into their ECM. Compared with wild‐type (WT) mice, the TMJ condyles of Col6a2‐KO mice exhibit decreased bone volume/tissue volume (BV/TV) and a larger bone marrow space, suggesting the α2(VI)‐deficient condyles have a failure in endochondral ossification. Differentiating chondrocytes are the main source of bone cells during endochondral ossification. Our study shows there is an increased number of chondrocytes in the proliferative zone and decreased Col10‐expressing chondrocytes in Col6a2‐KO cartilage, all pointing to abnormal chondrocyte differentiation and maturation. In addition, RNA sequencing (RNAseq) analysis identified distinct gene expression profiles related to cell cycle and ECM organization that were altered in the mutant condyles. These data also suggest that bone morphogenetic protein 2 (BMP2) activity was deregulated during chondrocyte differentiation. Immunohistochemical analysis indicated an upregulation of Col2 and Acan expression in Col6a2‐KO cartilage. Moreover, the expression of pSmad1/5/8 and Runx2 was decreased in the Col6a2‐KO cartilage compared with WT controls. Taken together, our data indicate that type VI collagen expressed in the TMJ cartilage is important for endochondral ossification, possibly by modulating the ECM and altering/disrupting signaling pathways important for TMJ chondrocyte differentiation. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Taishi Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Youngmi Ji
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Hai Pham
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Tina M. Kilts
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Li Li
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| | - Marian F. Young
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Department of Health and Human Services Bethesda Maryland US
| |
Collapse
|
10
|
Damaola A, Aierken M, Muertizha M, Abudoureheman A, Lin H, Wang L. Differential Expression of MicroRNA-3148 in Patients with Osteoporosis and Its Impacts on the Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected
with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to
investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis
in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis
and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.
Collapse
Affiliation(s)
- Ainiwaerjiang Damaola
- Department of Joint Surgery & Geriatric Orthopaedics, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Maerdan Aierken
- First Department of Spine Surgery, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Mieralimu Muertizha
- Department of Joint Surgery & Geriatric Orthopaedics, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| | | | - Haishan Lin
- Department of Joint Surgery & Geriatric Orthopaedics, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Li Wang
- Department of Joint Surgery & Geriatric Orthopaedics, Orthopaedic Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830000, China
| |
Collapse
|
11
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Sanpaolo ER, Rotondo C, Cici D, Corrado A, Cantatore FP. JAK/STAT pathway and molecular mechanism in bone remodeling. Mol Biol Rep 2020; 47:9087-9096. [PMID: 33099760 PMCID: PMC7674338 DOI: 10.1007/s11033-020-05910-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
JAK/STAT signaling pathway is involved in many diseases, including autoimmune diseases, which are characterized by a close interconnection between immune and bone system. JAK/STAT pathway is involved in bone homeostasis and plays an important role in proliferation and differentiation of some cell types, including osteoblasts and osteoclasts. Different molecules, such as cytokines, hormones, and growth factors are responsible for the activation of the JAK/STAT pathway, which leads, at the nuclear level, to start DNA transcription of target genes. Bone cells and remodeling process are often influenced by many cytokines, which act as strong stimulators of bone formation and resorption. Our aim, through careful research in literature, has been to provide an overview of the role of the JAK/STAT pathway in bone remodeling and on bone cells, with a focus on cytokines involved in bone turnover through this signal cascade. The JAK/STAT pathway, through the signal cascade activation mediated by the interaction with many cytokines, acts on bone cells and appears to be involved in bone remodeling process. However, many other studies are needed to completely understand the molecular mechanism underlying these bone process.
Collapse
Affiliation(s)
- Eliana Rita Sanpaolo
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy.
| | - Cinzia Rotondo
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Daniela Cici
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Ada Corrado
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| | - Francesco Paolo Cantatore
- Department of Medical and Surgical Sciences, Rheumatology Clinic, University of Foggia Medical School, Foggia, Italy
| |
Collapse
|
13
|
Song J, Liu Y, Wang T, Li B, Zhang S. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer. Biomed Pharmacother 2020; 128:110246. [PMID: 32447210 DOI: 10.1016/j.biopha.2020.110246] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Dysregulated microRNAs (miRNAs/miRs) directly modulate the biological functions of gastric cancer (GC) cells and contribute to the initiation and progression of GC. MiR-17-5p and runt-related transcription factor 3 (RUNX3) have been reported to be related to GC progression; however, the specific interaction between miR-17-5p and RUNX3 in GC require further investigation. METHODS Western blotting, real-time PCR and immunohistochemistry were used to study the expression level of miR-17-5p and RUNX3 in gastric cancer tissues and plasma. The biological function of miR-17-5p was examined by measuring cell proliferation, apoptosis and cell invasion in vitro; the target gene of miR17-5p was identified by luciferase reporter assays, RNA Binding protein immunoprecipitation (RIP) and western blotting. In vivo animal study was conducted to confirm the role of miR-17-5p during tumorigensis of gastric cancer. RESULTS This study showed that miR17-5p was upregulated in the plasma and tissues of patients with GC, while RUNX3 was downregulated in GC tissues. Functional experiments indicated that miR-17-5p mimics promoted the proliferation and invasion of GC via suppressing apoptosis in vitro. Furthermore, bioinformatics prediction, luciferase reporter assays, reverse transcription quantitative polymerase chain reaction assays, RIP and western blotting analysis demonstrated that RUNX3 was a direct target gene of miR-17-5p in GC. In addition, overexpression of RUNX3 suppressed the proliferation and invasiveness of GC cells. In vivo data indicated miR-17-5p agomir significantly promoted tumor growth. In contrast, miR-17-5p antagomir notably decreased tumor volume compared with control group. CONCLUSIONS MiR-17-5p promoted the progression of GC via directly targeting RUNX3, suggesting that miR-17-5p and RUNX3 could be considered as diagnostic and therapeutic targets for patients with GC.
Collapse
Affiliation(s)
- Jin Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Yingjun Liu
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianyuan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Bo Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China.
| | - Shengsheng Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
14
|
Xiao Z, Tian Y, Jia Y, Shen Q, Jiang W, Chen G, Shang B, Shi M, Wang Z, Zhao X. RUNX3 inhibits the invasion and migration of esophageal squamous cell carcinoma by reversing the epithelial‑mesenchymal transition through TGF‑β/Smad signaling. Oncol Rep 2020; 43:1289-1299. [PMID: 32323849 PMCID: PMC7057941 DOI: 10.3892/or.2020.7508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Runt‑related transcription factor 3 (RUNX3) is a candidate tumor suppressor, and its inactivation may play a crucial role in the carcinogenesis process of numerous cancer types, including esophageal squamous cell carcinoma (ESCC). We previously revealed that RUNX3 inactivation was correlated with lymph node metastasis (LNM) and ESCC recurrence. However, the exact mechanisms of this process are still under investigation. The aim of the present study was to examine the potential roles and underlying molecular mechanisms of RUNX3 in ESCC metastasis and the epithelial‑mesenchymal transition (EMT). According to the results, RUNX3 expression in ESCC tissue was significantly reduced compared with that in adjacent normal tissue (0.50±0.20 vs. 0.83±0.16; P<0.001). In addition, statistical analysis revealed a close association between decreased RUNX3 expression and T status (P=0.027) and LNM (P=0.017) in ESCC patients. Pearson's correlation coefficient analysis was then used to evaluate correlations between RUNX3 and EMT‑related marker expression. The results revealed that RUNX3 expression in ESCC tissues was negatively correlated with the expression of N‑cadherin (r=‑0.429; P<0.01) and Snail (r=‑0.364; P<0.01) and positively correlated with the expression of E‑cadherin (r=0.580; P<0.01). Moreover, Eca109 and EC9706 cell invasion, migration, MMP‑9 expression and EMT were significantly inhibited by RUNX3 overexpression. Notably, further analysis revealed that RUNX3 overexpression markedly inhibited the phosphorylation of Smad2/3; RUNX3‑overexpressing cells also displayed less sensitivity to TGF‑β1‑induced EMT than control cells. Thus, RUNX3 may inhibit the invasion and migration of ESCC cells by reversing EMT through TGF‑β/Smad signaling and may be useful as a therapeutic target.
Collapse
Affiliation(s)
- Zhaohua Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yu Tian
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qi Shen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenpeng Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
- Correspondence to: Professor Zhou Wang, Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, P.R. China, E-mail:
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
- Key Laboratory of Thoracic Cancer in Universities of Shandong, Jinan, Shandong 250033, P.R. China
- Professor Xiaogang Zhao, Department of Thoracic Surgery, The Second Hospital of Shandong University, 247 Beiyuan Avenue, Jinan, Shandong 250033, P.R. China, E-mail:
| |
Collapse
|
15
|
Mou X, Zhou DY, Zhou D, Liu K, Chen LJ, Liu WH. A bioinformatics and network pharmacology approach to the mechanisms of action of Shenxiao decoction for the treatment of diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153192. [PMID: 32200292 DOI: 10.1016/j.phymed.2020.153192] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells is the main pathological alteration in diabetic nephropathy (DN). Traditional Chinese medicine (TCM) has been used for the treatment of DN in clinical practice and has been proven to be effective. PURPOSE This aim of this study was to shed light on the efficacy of Shenxiao decoction (SXD) on the EMT of renal tubular epithelial cells and the molecular mechanisms of SXD in mice with DN, as well as on the high glucose (HG)- and TGF-β1-induced EMT of NRK-52E and HK-2 cells. STUDY DESIGN AND METHODS A bioinformatics and network pharmacology method were utilized to construct the active ingredient-target networks of SXD that were responsible for the beneficial effects against DN. The effects of RUNX3 were validated in HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells. RESULTS Bioinformatics analysis revealed that 122 matching targets were closely associated with the regulation of cell migration and the AGE-RAGE signaling pathway in diabetic complications. The results also revealed that, relative to the mice with DN, the mice in the treatment group had an improved general state and reduced blood glucose levels. The degradation of renal function was ameliorated by SXD. Moreover, the protective effects of SXD were also observed on renal structural changes. Furthermore, SXD suppressed the activation of the transforming growth factor (TGF)-β1/Smad pathway and upregulated the RUNX3 and E-cadherin levels and downregulated the extracellular matrix (ECM) protein levels in mice with DN. SXD was further found to prevent the HG- and TGF-β1-induced EMT processes in NRK-52E and HK-2 cells. Additionally, the overexpression of RUNX3 markedly inhibited the EMT and TGF-β1/Smad pathway induced by HG and TGF-β1 in NRK-52E and HK-2 cells. CONCLUSION Taken together, these results suggest that SXD maybe alleviate EMT in DN via the inhibition of the TGF-β1/Smad/RUNX3 signaling pathway under hyperglycemic conditions.
Collapse
Affiliation(s)
- Xin Mou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Di Yi Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Danyang Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Kaiyuan Liu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Li Jun Chen
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, PR China
| | - Wen Hong Liu
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
16
|
Sun Z, Cai S, Zabkiewicz C, Liu C, Ye L. Bone morphogenetic proteins mediate crosstalk between cancer cells and the tumour microenvironment at primary tumours and metastases (Review). Int J Oncol 2020; 56:1335-1351. [PMID: 32236571 DOI: 10.3892/ijo.2020.5030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic proteins (BMP) are pluripotent molecules, co‑ordinating cellular functions from early embryonic and postnatal development to tissue repair, regeneration and homeostasis. They are also involved in tumourigenesis, disease progression and the metastasis of various solid tumours. Emerging evidence has indicated that BMPs are able to promote disease progression and metastasis by orchestrating communication between cancer cells and the surrounding microenvironment. The interactions occur between BMPs and epidermal growth factor receptor, hepatocyte growth factor, fibroblast growth factor, vascular endothelial growth factor and extracellular matrix components. Overall, these interactions co‑ordinate the cellular functions of tumour cells and other types of cell in the tumour to promote the growth of the primary tumour, local invasion, angiogenesis and metastasis, and the establishment and survival of cancer cells in the metastatic niche. Therefore, the present study aimed to provide an informative summary of the involvement of BMPs in the tumour microenvironment.
Collapse
Affiliation(s)
- Zhiwei Sun
- VIP‑II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
17
|
Circulating methylated RUNX3 and SFRP1 genes as a noninvasive panel for early detection of colorectal cancer. Eur J Gastroenterol Hepatol 2019; 31:1342-1349. [PMID: 31524773 DOI: 10.1097/meg.0000000000001532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study was conducted to assess the methylation status of runt-related transcription factor 3 (RUNX3) and secreted frizzled-related protein 1 (SFRP1) genes in paired tissue and serum samples of colorectal cancer (CRC), adenomatous, and control subjects and elucidate the association between methylation status on RUNX3 and SFRP1 mRNA expression. METHODS Methylation status of RUNX3 and SFRP1 in paired tissue and serum samples and RUNX3 and SFRP1 mRNA expression in tissue from 85 patients with CRC, 40 with adenoma, and 40 healthy controls were determined using methylation-specific PCR and reverse transcription PCR. RESULTS The frequency RUNX3 and SFRP1 genes methylation was significantly higher in both tissues and serum of CRC patients and was significantly associated with absence of its corresponding mRNA expression. The concordance between tissue and serum methylation status was 94.4% for RUNX3 and 94.3% for SFRP1. Tissue RUNX3 methylation status detected CRC with 63.53% sensitivity and 80.00% specificity, while serum RUNX3 methylation status detected CRC with 60.00% sensitivity and 82.50% specificity. Tissue SFRP1 methylation status showed a sensitivity of 82.35% and specificity of 65.00%, while serum SFRP1 methylation status showed a sensitivity of 77.65% and specificity of 70.00% in detection of CRC. RUNX3/SFRP1/carcinoembryonic antigen (CEA) panel identified CRC with sensitivity of 89.41% in tissue and 84.71% in serum. CONCLUSION Our results verified the reliability of using serum RUNX3 and SFRP1 methylation status as a noninvasive biomarker for diagnosis of CRC and that combined detection of RUNX3/SFRP1/CEA panel might be a promising strategy for early detection of CRC.
Collapse
|
18
|
Ruiz-Gaspà S, Guañabens N, Jurado S, Dubreuil M, Combalia A, Peris P, Monegal A, Parés A. Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases. Gene 2019; 725:144167. [PMID: 31639434 DOI: 10.1016/j.gene.2019.144167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis in advanced cholestatic and end-stage liver disease is related to low bone formation. Previous studies have demonstrated the deleterious consequences of lithocholic acid (LCA) and bilirubin on osteoblastic cells. These effects are partially or completely neutralized by ursodeoxycholic acid (UDCA). We have assessed the differential gene expression of osteoblastic cells under different culture conditions. The experiments were performed in human osteosarcoma cells (Saos-2) cultured with LCA (10 μM), bilirubin (50 μM) or UDCA (10 and 100 μM) at 2 and 24 h. Expression of 87 genes related to bone metabolism and other signalling pathways were assessed by TaqMan micro fluidic cards. Several genes were up-regulated by LCA, most of them pro-apoptotic (BAX, BCL10, BCL2L13, BCL2L14), but also MGP (matrix Gla protein), BGLAP (osteocalcin), SPP1 (osteopontin) and CYP24A1, and down-regulated bone morphogenic protein genes (BMP3 and BMP4) and DKK1 (Dickkopf-related protein 1). Parallel effects were observed with bilirubin, which up-regulated apoptotic genes and CSF2 (colony-stimulating factor 2) and down-regulated antiapoptotic genes (BCL2 and BCL2L1), BMP3, BMP4 and RUNX2. UDCA 100 μM had specific consequences since differential expression was observed, up-regulating BMP2, BMP4, BMP7, CALCR (calcitonin receptor), SPOCK3 (osteonectin), BGLAP (osteocalcin) and SPP1 (osteopontin), and down-regulating pro-apoptotic genes. Furthermore, most of the differential expression changes induced by both LCA and bilirubin were partially or completely neutralized by UDCA. Conclusion: Our observations reveal novel target genes, whose regulation by retained substances of cholestasis may provide additional insights into the pathogenesis of osteoporosis in cholestatic and end-stage liver diseases.
Collapse
Affiliation(s)
- Silvia Ruiz-Gaspà
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Nuria Guañabens
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain.
| | - Susana Jurado
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Marta Dubreuil
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Andres Combalia
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Pilar Peris
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Ana Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, IDIBAPS, University of Barcelona, Spain
| | - Albert Parés
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Liver Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Vrathasha V, Weidner H, Nohe A. Mechanism of CK2.3, a Novel Mimetic Peptide of Bone Morphogenetic Protein Receptor Type IA, Mediated Osteogenesis. Int J Mol Sci 2019; 20:E2500. [PMID: 31117181 PMCID: PMC6567251 DOI: 10.3390/ijms20102500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. METHODS Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. RESULTS Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. CONCLUSION CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
20
|
Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY. Signal Transducer and Activator of Transcription (STATs) Proteins in Cancer and Inflammation: Functions and Therapeutic Implication. Front Oncol 2019; 9:48. [PMID: 30847297 PMCID: PMC6393348 DOI: 10.3389/fonc.2019.00048] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) pathway is connected upstream with Janus kinases (JAK) family protein and capable of integrating inputs from different signaling pathways. Each family member plays unique functions in signal transduction and crucial in mediating cellular responses to different kind of cytokines. STAT family members notably STAT3 and STAT5 have been involved in cancer progression whereas STAT1 plays opposite role by suppressing tumor growth. Persistent STAT3/5 activation is known to promote chronic inflammation, which increases susceptibility of healthy cells to carcinogenesis. Here, we review the role of STATs in cancers and inflammation while discussing current therapeutic implications in different cancers and test models, especially the delivery of STAT3/5 targeting siRNA using nanoparticulate delivery system.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Ahmed Fadhil Naema
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad, Iraq
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
21
|
Choo SY, Yoon SH, Lee DJ, Lee SH, Li K, Koo IH, Lee W, Bae SC, Lee YM. Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity. Int J Oncol 2019; 54:1327-1336. [PMID: 30968151 DOI: 10.3892/ijo.2019.4713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are bone marrow (BM)‑derived progenitor cells that can differentiate into mature endothelial cells, contributing to vasculogenesis in the blood vessel formation process. Runt‑related transcription factor 3 (RUNX3) belongs to the Runt domain family and is required for the differentiation of specific immune cells and neurons. The tumor suppressive role of RUNX3, via the induction of apoptosis and cell cycle arrest in a variety of cancers, and its deletion or frequent silencing by epigenetic mechanisms have been studied extensively; however, its role in the differentiation of EPCs is yet to be investigated. Therefore, in the present study, adult BM‑derived hematopoietic stem cells (HSCs) were isolated from Runx3 heterozygous (Rx3+/‑) or wild‑type (WT) mice. The differentiation of EPCs from the BM‑derived HSCs of Rx3+/‑ mice was found to be significantly increased compared with those of the WT mice, as determined by the number of small or large colony‑forming units. The migration and tube formation abilities of Rx3+/‑ EPCs were also observed to be significantly increased compared with those of WT EPCs. Furthermore, the number of circulating EPCs, defined as CD34+/vascular endothelial growth factor receptor 2 (VEGFR2)+ cells, was also significantly increased in Rx3+/‑ mice. Hypoxia‑inducible factor (HIF)‑1α was upregulated in Rx3+/‑ EPCs compared with WT EPCs, even under normoxic conditions. Furthermore, in a hindlimb ischemic mouse models, the recovery of blood flow was observed to be highly stimulated in Rx3+/‑ mice compared with WT mice. Also, in a Lewis lung carcinoma cell allograft model, the tumor size in Rx3+/‑ mice was significantly larger than that in WT mice, and the EPC cell population (CD34+/VEGFR2+ cells) recruited to the tumor was greater in the Rx3+/‑ mice compared with the WT mice. In conclusion, the present study revealed that Runx3 inhibits vasculogenesis via the inhibition of EPC differentiation and functions via the suppression of HIF‑1α activity.
Collapse
Affiliation(s)
- So-Yun Choo
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Hyun Yoon
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Jin Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sun Hee Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kang Li
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Hye Koo
- National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wooin Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute of Tumor Research, Chungbuk National University, Chungju 28644, Republic of Korea
| | - You Mie Lee
- BK21 Plus KNU Multi-Omics Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
22
|
Petridis X, Beems BP, Tomson PL, Scheven B, Giepmans BNG, Kuipers J, van der Sluis LWM, Harmsen MC. Effect of Dentin Matrix Components on the Mineralization of Human Mesenchymal Stromal Cells. Tissue Eng Part A 2018; 25:1104-1115. [PMID: 30444193 DOI: 10.1089/ten.tea.2018.0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPACT STATEMENT This research has been conducted with the aim to contribute to the development of treatment modalities for the reconstruction of lost/damaged mineralized tissues. Currently, determining the most appropriate stromal cell population and signaling cues stands at the core of developing effective treatments. We provide new insights into the effect of innate inductive cues found in human dentin matrix components, on the osteogenic differentiation of various human stromal cell types. The effects of dentin extracellular matrix components on umbilical cord mesenchymal stromal cells have not been investigated before. The findings of this study could underpin translational research based on the development of techniques for mineralized tissue engineering and will be of great interest for the readership of Tissue Engineering Part A.
Collapse
Affiliation(s)
- Xenos Petridis
- 1Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bas P Beems
- 1Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Phillip L Tomson
- 2School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ben Scheven
- 2School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ben N G Giepmans
- 3Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Kuipers
- 3Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Luc W M van der Sluis
- 1Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin C Harmsen
- 4Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Yao F, Yin L, Feng S, Wang X, Zhang A, Zhou H. Functional characterization of grass carp runt-related transcription factor 3: Involvement in TGF-β1-mediated c-Myc transcription in fish cells. FISH & SHELLFISH IMMUNOLOGY 2018; 82:130-135. [PMID: 30099141 DOI: 10.1016/j.fsi.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
In mammals, both runt-related transcription factor 3 (RUNX3) and c-Myc are the downstream effectors of transforming growth factor-β1 (TGF-β1) signaling to mediate various cellular responses. However, information of their interaction especially in fish is lacking. In the present study, grass carp (Ctenopharyngodon idella) runx3 (gcrunx3) cDNA was cloned and identified. Interestingly, opposing effects of recombinant grass carp TGF-β1 (rgcTGF-β1) on c-myc and runx3 mRNA expression were observed in grass carp periphery blood lymphocytes (PBLs). Parallelly, Runx3 protein levels were enhanced by rgcTGF-β1 in the cells. These findings prompted us to examine whether Runx3 can mediate the inhibition of TGF-β1 on c-myc expression in fish cells. In line with this, overexpression of grass carp Runx3 and Runx3 DN (a dominant-negative form of Runx3) in grass carp kidney cell line (CIK) cells decreased and increased c-myc transcript levels, respectively. Particularly, the regulation of Runx3 and Runx3 DN on c-myc mRNA expression was direct since they were presented in the nucleus without any stimulation. In addition, rgcTGF-β1 alone suppressed c-myc mRNA expression in CIK cells as in PBLs. Moreover, this inhibitory effect was also observed when grass carp Runx3 and Runx3 DN were overexpressed. These results strengthened the role of TGF-β1 signaling in controlling c-myc transcription. Taken together, TGF-β1-mediated c-myc expression was affected at least in part by Runx3, thereby firstly exploring the functional role of Runx3 in TGF-β1 down-regulation on c-myc mRNA expression in fish.
Collapse
Affiliation(s)
- Fuli Yao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Department of Biochemistry and Molecular Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
24
|
Gao K, Wang P, Peng J, Xue J, Chen K, Song Y, Wang J, Li G, An X, Cao B. Regulation and function of runt-related transcription factors (RUNX1 and RUNX2) in goat granulosa cells. J Steroid Biochem Mol Biol 2018; 181:98-108. [PMID: 29626608 DOI: 10.1016/j.jsbmb.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Transcription factors, runt-related transcription factor 1 (RUNX1) and 2 (RUNX2), belong to the runt-related (RUNX) gene family and play critical roles in mammalian reproduction processes. However, the regulatory mechanisms of RUNX1 and RUNX2 expression or their functions in goat follicles remain largely unknown. Herein, RUNX1 and RUNX2 proteins were detected in the oocytes and granulosa cells of preantral and antral follicles, as well as corpus luteum by immunohistochemistry. Treatments with human chorionic gonadotropin (hCG) or with the agonists and inhibitors of hCG-induced intracellular signaling pathways in granulosa cells in vitro, we found that hCG increased RUNX1 expression by activating PKC and PI3K signaling molecules, and increased RUNX2 expression by activating adenylate cyclase, PKC, and PI3K signaling molecules. We also demonstrated that miR-181b expression is dependent on the hCG-induced activation of PKC and PKA, and miR-222 expression is dependent on the hCG-induced activation of PI3K and PKC in cultured granulosa cells. Meanwhile, miR-181b and miR-222 suppressed RUNX1 and RUNX2 expression by targeting RUNX1 and RUNX2 3' untranslated regions (3'UTRs) with or without hCG, respectively. These results suggested that hCG-mediated miR-181b and miR-222 expression are important for the regulation of RUNX1 and RUNX2 expression levels in granulosa cells. To explore the specific functions of RUNX1 and RUNX2, we transfected RUNX1 and RUNX2 small interfering RNAs into primary cultured granulosa cells. Knockdown of RUNX1 and RUNX2 significantly decreased progesterone productions and the mRNA abundance of key steroidogenic enzymes (StAR, CYP11A1 and HSD3B) after hCG treatment. But only miR-222 increased estradiol secretion in goat granulosa cells. In addition, knockdown of RUNX1 and RUNX2 also promoted granulosa cell proliferation. The hormonally regulated expression of RUNX1 and RUNX2 in granulosa cells, their involvement in progesterone production, and promoted granulosa cell proliferation suggest important roles of RUNX1 and RUNX2 in follicular development and luteinization.
Collapse
Affiliation(s)
- Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiayin Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Junjun Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kaiwen Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiangang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
25
|
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment. Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.
Collapse
Affiliation(s)
- X Peng
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| | - X Wu
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| | - J Zhang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - G Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China
| | - G Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - X Pan
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| |
Collapse
|
26
|
Wang S, Huang Y, Mu X, Qi T, Qiao S, Lu Z, Li H. DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation. Exp Ther Med 2018; 15:3173-3180. [PMID: 29545832 PMCID: PMC5841015 DOI: 10.3892/etm.2018.5809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore whether culture method had an influence on DNA methylation in colorectal cancer (CRC). In the present study, CRC cells were cultured in two-dimensional (2D), three-dimensional (3D) and mouse orthotopic transplantation (Tis) cultures. Principal component analysis (PCA) was used for global visualization of the three samples. A Venn diagram was applied for intersection and union analysis for different comparisons. The methylation condition of 5′-C-phosphate-G-3′ (CpG) location was determined using unsupervised clustering analysis. Scatter plots and histograms of the mean β values between 3D vs. 2D, 3D vs. Tis and Tis vs. 2D were constructed. In order to explore the biological function of the genes, gene ontology and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analyses were utilized. To explore the influence of culture condition on genes, quantitative methylation specific polymerase chain reaction (QMSP) was performed. The three samples connected with each other closely, as demonstrated by PCA. Venn diagram analysis indicated that some differential methylation positions were commonly shared in the three groups of samples and 16 CpG positions appeared hypermethylated in the three samples. The methylation patterns between the 3D and 2D cultures were more similar than those of 3D and Tis, and Tis and 2D. Results of gene ontology demonstrated that differentially expressed genes were involved in molecular function, cellular components and biological function. KEGG analysis indicated that genes were enriched in 13 pathways, of which four pathways were the most evident. These pathways were pathways in cancer, mitogen-activated protein kinase signaling, axon guidance and insulin signaling. Furthermore, QMSP demonstrated that methylation of mutL homolog, phosphatase and tensin homolog, runt-related transcription factor, Ras association family member, cadherin-1, O-6-methylguanine-DNA-methyltransferase and P16 genes had no obvious difference in 2D, 3D and Tis culture conditions. In conclusion, the culture method had no influence on DNA methylation in CRC cells.
Collapse
Affiliation(s)
- Shibao Wang
- Department of Oncology and Hematology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yinghui Huang
- Science Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xupeng Mu
- Science Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tianyang Qi
- Science Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Sha Qiao
- Department of Oncology and Hematology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhenxia Lu
- Department of Oncology and Hematology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hongjun Li
- Physical Examination Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
27
|
Tang Y, Zheng L, Zhou J, Chen Y, Yang L, Deng F, Hu Y. miR‑203‑3p participates in the suppression of diabetes‑associated osteogenesis in the jaw bone through targeting Smad1. Int J Mol Med 2018; 41:1595-1607. [PMID: 29328402 PMCID: PMC5819914 DOI: 10.3892/ijmm.2018.3373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022] Open
Abstract
Certain microRNAs (miRs) have important roles in the maintenance of bone development and metabolism, and a variety of miRs are known to be deregulated in diabetes. The present study investigated the role of miR-203-3p in the regulation of bone loss by assessing jaw bones of a rat model of type 2 diabetes. The results indicated that miR-203-3p inhibited osteogenesis in the jaws of diabetic rats and in rat bone marrow mesenchymal stem cells cultured in high-glucose medium. A luciferase re porter assay was used to verify the bioinformatics prediction that miR-203-3p targets the 3′-untranslated region of Smad1, which is an important mediator of the bone morphogenetic protein (BMP)/Smad pathway. Overexpression of Smad1 attenuated the miR-203-3p-mediated suppres sion of osteogenic differentiation. It was therefore indicated that the BMP/Smad pathway is attenuated and the transforming growth factor-β/activin pathway is promoted by Smad1 reduction. Taken together, it was indicated that miR-203-3p inhibits osteogenesis in jaw bones of diabetic rats by targeting Smad1 to inhibit the BMP/Smad pathway.
Collapse
Affiliation(s)
- Yuying Tang
- Department of Endodontics, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Leilei Zheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Jie Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Yang Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lan Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Yun Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
28
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
29
|
Widbiller M, Eidt A, Lindner SR, Hiller KA, Schweikl H, Buchalla W, Galler KM. Dentine matrix proteins: isolation and effects on human pulp cells. Int Endod J 2017; 51 Suppl 4:e278-e290. [PMID: 28211068 DOI: 10.1111/iej.12754] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
AIM To establish a simplified and efficient protocol for the isolation and concentration of matrix proteins from human dentine, and to assess the effects of extracted dentine matrix proteins (eDMP) on the behaviour of human pulp cells. METHODOLOGY Matrix proteins were isolated from human dentine, purified, concentrated and characterized with protein and enzyme-linked immunosorbent assays (ELISA). Culture media were supplemented with eDMP in different concentrations, referred to as eDMP 1-10 000, to assess viability and proliferation of human pulp cells by DNA and MTT assays; apoptotic events were quantified by flow cytometry. Chemotactic effects of eDMP were assessed in a modified Boyden chamber assay. Expression levels of odontoblastic marker genes in pulp cells cultured with eDMPs were determined by real-time quantitative PCR, and the ability to induce mineralization was demonstrated by alizarin red staining. Nonparametric statistical analysis was performed to pairwise compare different groups at all time-points (Mann-Whitney U-test, α = 0.05). RESULTS High concentrations of eDMP exhibited significant antiproliferative effects (P ≤ 0.023) after 5 (eDMP 1000) and 7 days (eDMP 500) without affecting cell viability. Apoptosis was barely influenced (P ≥ 0.089). eDMP exerted a concentration-dependent chemotactic stimulus on dental pulp cells with statistical significance already at low dosage (P = 0.006 at eDMP 10). Changes in gene expression indicated a differentiation into odontoblast-like cells, which was corroborated by findings of mineral nodule formation. CONCLUSIONS A novel, effective and time-saving protocol for isolation and concentration of dentine matrix proteins is presented. As eDMP stimulates chemotaxis, differentiation and mineralization without affecting viability, endogenous dentine matrix proteins might be valuable for approaches to regenerate or engineer dental pulp.
Collapse
Affiliation(s)
- M Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - A Eidt
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - S R Lindner
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - K-A Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - H Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - W Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - K M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
30
|
Brusgard JL, Choe M, Chumsri S, Renoud K, MacKerell AD, Sudol M, Passaniti A. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget 2016; 6:28132-50. [PMID: 26320173 PMCID: PMC4695049 DOI: 10.18632/oncotarget.4654] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022] Open
Abstract
Intratumoral heterogeneity and treatment resistance drive breast cancer (BC) metastasis and recurrence. The RUNX2 transcription factor is upregulated in early stage luminal BC. However, the precise mechanism by which RUNX2 regulates an oncogenic phenotype in luminal BCs remains an enigma. We show that RUNX2 is predictive of poor overall survival in BC patients. RUNX2 associated with the TAZ transcriptional co-activator to promote a tumorigenic phenotype that was inhibited by knockdown of TAZ. RUNX2 increased endogenous TAZ translocation to the nucleus, which was prevented by inhibiting RUNX2. RUNX2/TAZ interaction was associated with ectodomain shedding of an oncogenic soluble E-Cadherin fragment (sE-Cad), which is known to cooperate with human epidermal growth factor receptor-2 (HER2/ErbB2) to increase BC growth. Neutralizing E-Cadherin antibodies or TAZ knockdown reduced the levels of sE-Cad in RUNX2-expressing BC cells and inhibited tumorsphere formation. RUNX2 expression also increased HER2-mediated tumorsphere size, which was reduced after treatment with the HER2-targeting agents Herceptin and lapatinib. These data support a novel role for RUNX2 in promoting an oncogenic phenotype in luminal BC in the context of TAZ, sE-Cad, and HER2. Using this signaling pathway to monitor BC cell oncogenic activity will accelerate the discovery of new therapeutic modalities to treat BC patients.
Collapse
Affiliation(s)
- Jessica L Brusgard
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Moran Choe
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Laboratory of Genitourinary Cancer Pathogenesis, NCI, Bethesda, MD, USA
| | - Saranya Chumsri
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Keli Renoud
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Marius Sudol
- Mechanobiology Institute, Department of Physiology, National University of Singapore, Singapore
| | - Antonino Passaniti
- Department of Pathology and Department of Biochemistry & Molecular Biology, The Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,The Veteran's Health Administration Research & Development Service, Baltimore, MD, USA
| |
Collapse
|
31
|
Curry AS, Pensa NW, Barlow AM, Bellis SL. Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds. Matrix Biol 2016; 52-54:397-412. [PMID: 26940231 DOI: 10.1016/j.matbio.2016.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022]
Abstract
There is an ongoing need for effective materials that can replace autologous bone grafts in the clinical treatment of bone injuries and deficiencies. In recent years, research efforts have shifted away from a focus on inert biomaterials to favor scaffolds that mimic the biochemistry and structure of the native bone extracellular matrix (ECM). The expectation is that such scaffolds will integrate with host tissue and actively promote osseous healing. To further enhance the osteoinductivity of bone graft substitutes, ECM-mimetic scaffolds are being engineered with a range of growth factors (GFs). The technologies used to generate GF-modified scaffolds are often inspired by natural processes that regulate the association between endogenous ECMs and GFs. The purpose of this review is to summarize research centered on the development of regenerative scaffolds that replicate the fundamental collagen-hydroxyapatite structure of native bone ECM, and the functionalization of these scaffolds with GFs that stimulate critical events in osteogenesis.
Collapse
Affiliation(s)
- Andrew S Curry
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Nicholas W Pensa
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Abby M Barlow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Susan L Bellis
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States.
| |
Collapse
|
32
|
Melrose J, Shu C, Whitelock JM, Lord MS. The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation. Matrix Biol 2016; 52-54:363-383. [PMID: 26807757 DOI: 10.1016/j.matbio.2016.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The cartilage growth plate is a specialized developmental tissue containing characteristic zonal arrangements of chondrocytes. The proliferative and differentiative states of chondrocytes are tightly regulated at all stages including the initial limb bud and rudiment cartilage stages of development, the establishment of the primary and secondary ossification centers, development of the growth plates and laying down of bone. A multitude of spatio-temporal signals, including transcription factors, growth factors, morphogens and hormones, control chondrocyte maturation and terminal chondrocyte differentiation/hypertrophy, cell death/differentiation, calcification and vascular invasion of the growth plate and bone formation during morphogenetic transition of the growth plate. This involves hierarchical, integrated signaling from growth and factors, transcription factors, mechanosensory cues and proteases in the extracellular matrix to regulate these developmental processes to facilitate progressive changes in the growth plate culminating in bone formation and endochondral ossification. This review provides an overview of selected components which have particularly important roles in growth plate biology including collagens, proteoglycans, glycosaminoglycans, growth factors, proteases and enzymes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cindy Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
| | - John M Whitelock
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Megan S Lord
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
33
|
Ye L, Jiang WG. Bone morphogenetic proteins in tumour associated angiogenesis and implication in cancer therapies. Cancer Lett 2015; 380:586-597. [PMID: 26639195 DOI: 10.1016/j.canlet.2015.10.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 02/09/2023]
Abstract
Bone morphogenetic protein (BMP) belongs to transforming growth factor-β superfamily. To date, more than 20 BMPs have been identified in humans. BMPs play a critical role in embryonic and postnatal development, and also in maintaining homeostasis in different organs and tissues by regulating cell differentiation, proliferation, survival and motility. They play important roles in the development and progression of certain malignancies, including prostate cancer, breast cancer, lung cancer, etc. Recently, more evidence shows that BMPs are also involved in tumour associated angiogenesis. For example BMP can either directly regulate the functions of vascular endothelial cells or indirectly influence the angiogenesis via regulation of angiogenic factors, such as vascular endothelial growth factor (VEGF). Such crosstalk can also be reflected in the interaction with other angiogenic factors, like hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). All these factors are involved in the orchestration of the angiogenic process during tumour development and progression. Review of the relevant studies will provide a comprehensive prospective on current understanding and shed light on the corresponding therapeutic opportunity.
Collapse
Affiliation(s)
- Lin Ye
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
34
|
Zhong L, Huang X, Karperien M, Post JN. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. Int J Mol Sci 2015; 16:19225-47. [PMID: 26287176 PMCID: PMC4581295 DOI: 10.3390/ijms160819225] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.
Collapse
Affiliation(s)
- Leilei Zhong
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Xiaobin Huang
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
- School of Life Sciences, Chongqing University, Chongqing 400030, China.
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
35
|
Cohen-Solal KA, Boregowda RK, Lasfar A. RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer 2015. [PMID: 26204939 PMCID: PMC4513933 DOI: 10.1186/s12943-015-0404-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
From the first reported role of the transcription factor RUNX2 in osteoblast and chondrocyte differentiation and migration to its involvement in promigratory/proinvasive behavior of breast, prostate, and thyroid cancer cells, osteosarcoma, or melanoma cells, RUNX2 currently emerges as a key player in metastasis. In this review, we address the interaction of RUNX2 with the PI3K/AKT signaling pathway, one of the critical axes controlling cancer growth and metastasis. AKT, either by directly phosphorylating/activating RUNX2 or phosphorylating/inactivating regulators of RUNX2 stability or activity, contributes to RUNX2 transcriptional activity. Reciprocally, the activation of the PI3K/AKT pathway by RUNX2 regulation of its different components has been described in non-transformed and transformed cells. This mutual activation in the context of cancer cells exhibiting constitutive AKT activation and high levels of RUNX2 might constitute a major driving force in tumor progression and aggressiveness.
Collapse
Affiliation(s)
- Karine A Cohen-Solal
- Rutgers Cancer Institute of New Jersey, Department of Medicine, Division of Medical Oncology - Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey, 08903, USA.
| | - Rajeev K Boregowda
- Rutgers Cancer Institute of New Jersey, Department of Medicine, Division of Medical Oncology - Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, New Jersey, 08903, USA
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, 08903, USA
| |
Collapse
|
36
|
He SY, Jiang RF, Jiang J, Xiang YS, Wang L. Investigation of methylation and protein expression of the Runx3 gene in colon carcinogenesis. Biomed Rep 2015; 3:687-690. [PMID: 26405546 DOI: 10.3892/br.2015.479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 01/15/2023] Open
Abstract
In the present study, the methylation and protein expression of the runt-related transcription factor 3 (Runx3) gene was detected in sporadic colorectal cancer, colonic adenoma and normal colon tissue to evaluate their clinical significance in colorectal carcinogenesis. A total of 34 colonic cancer specimens, 34 colonic adenoma specimens and 34 normal colonic tissue specimens were used in the study. The CpG island methylation status of the Runx3 gene was detected by methylation-specific polymerase chain reaction and the protein expression of Runx3 was detected by immunohistochemistry. The results showed that the rates of methylation of the Runx3 gene in colonic cancer and colonic adenomas were significantly higher than that in the normal colonic tissue (23.5, 20.6 vs. 0.0%; P<0.05). There was no significant difference in the percentage of methylation of the Runx3 gene between colonic adenoma and colonic cancer (P>0.05). The positive percentage of Runx3 protein expression was significantly lower in colonic cancer compared with colonic adenoma and normal tissue (17.7 vs. 61.8, 76.5%; P<0.05). Methylation of the promoter CpG islands of the Runx3 gene is an important genetic event of colon carcinogenesis and may be associated with an altered protein level of Runx3.
Collapse
Affiliation(s)
- Shao-Ya He
- Department of Gastroenterology, Anyue People's Hospital, Ziyang, Sichuan 642350, P.R. China
| | - Ren-Fa Jiang
- Department of Gastroenterology, Anyue People's Hospital, Ziyang, Sichuan 642350, P.R. China
| | - Jie Jiang
- Department of Respiration, Chongqing Sixth People's Hospital, Chongqing 404100, P.R. China
| | - Yang-Sheng Xiang
- Department of Gastroenterology, Anyue People's Hospital, Ziyang, Sichuan 642350, P.R. China
| | - Ling Wang
- Department of Gastroenterology, Anyue People's Hospital, Ziyang, Sichuan 642350, P.R. China
| |
Collapse
|
37
|
Ibuka S, Matsumoto S, Fujii S, Kikuchi A. The P2Y₂ receptor promotes Wnt3a- and EGF-induced epithelial tubular formation by IEC6 cells by binding to integrins. J Cell Sci 2015; 128:2156-68. [PMID: 25908848 DOI: 10.1242/jcs.169060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Epithelial tubular structures are essential units in various organs. Here, we used rat intestinal epithelial IEC6 cells to investigate tubulogenesis and we found that tubular formation was induced by a combination of Wnt3a and EGF signaling during three-dimensional culture. Wnt3a and EGF induced the expression of the P2Y2 receptor (P2Y2R, also known as P2RY2), and knockdown of P2Y2R suppressed tubular formation. A P2Y2R mutant that lacks nucleotide responsiveness rescued the phenotypes resulting from P2Y2R knockdown, suggesting that nucleotide-dependent responses are not required for P2Y2R functions in tubular formation. The Arg-Gly-Asp (RGD) sequence of P2Y2R has been shown to interact with integrins, and a P2Y2R mutant lacking integrin-binding activity was unable to induce tubular formation. P2Y2R expression inhibited the interaction between integrins and fibronectin, and induced cell morphological changes and proliferation. Inhibition of integrin and fibronectin binding by treatment with the cyclic RGD peptide and fibronectin knockdown induced tubular formation in the presence of EGF alone, but a fibronectin coat suppressed Wnt3a- and EGF-induced tubular formation. These results suggest that Wnt3a- and EGF-induced P2Y2R expression causes tubular formation by preventing the binding of integrins and fibronectin rather than by mediating nucleotide responses.
Collapse
Affiliation(s)
- Souji Ibuka
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan Pediatric Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Fujii
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
A guide for building biological pathways along with two case studies: hair and breast development. Methods 2014; 74:16-35. [PMID: 25449898 DOI: 10.1016/j.ymeth.2014.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/26/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022] Open
Abstract
Genomic information is being underlined in the format of biological pathways. Building these biological pathways is an ongoing demand and benefits from methods for extracting information from biomedical literature with the aid of text-mining tools. Here we hopefully guide you in the attempt of building a customized pathway or chart representation of a system. Our manual is based on a group of software designed to look at biointeractions in a set of abstracts retrieved from PubMed. However, they aim to support the work of someone with biological background, who does not need to be an expert on the subject and will play the role of manual curator while designing the representation of the system, the pathway. We therefore illustrate with two challenging case studies: hair and breast development. They were chosen for focusing on recent acquisitions of human evolution. We produced sub-pathways for each study, representing different phases of development. Differently from most charts present in current databases, we present detailed descriptions, which will additionally guide PESCADOR users along the process. The implementation as a web interface makes PESCADOR a unique tool for guiding the user along the biointeractions, which will constitute a novel pathway.
Collapse
|
39
|
Lee YF, Nimura K, Lo WN, Saga K, Kaneda Y. Histone H3 lysine 36 methyltransferase Whsc1 promotes the association of Runx2 and p300 in the activation of bone-related genes. PLoS One 2014; 9:e106661. [PMID: 25188294 PMCID: PMC4154728 DOI: 10.1371/journal.pone.0106661] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
The orchestration of histone modifiers is required to establish the epigenomic status that regulates gene expression during development. Whsc1 (Wolf-Hirschhorn Syndrome candidate 1), a histone H3 lysine 36 (H3K36) trimethyltransferase, is one of the major genes associated with Wolf-Hirshhorn syndrome, which is characterized by skeletal abnormalities. However, the role of Whsc1 in skeletal development remains unclear. Here, we show that Whsc1 regulates gene expression through Runt-related transcription factor (Runx) 2, a transcription factor central to bone development, and p300, a histone acetyltransferase, to promote bone differentiation. Whsc1-/- embryos exhibited defects in ossification in the occipital bone and sternum. Whsc1 knockdown in pre-osteoblast cells perturbed histone modification patterns in bone-related genes and led to defects in bone differentiation. Whsc1 increased the association of p300 with Runx2, activating the bone-related genes Osteopontin (Opn) and Collagen type Ia (Col1a1), and Whsc1 suppressed the overactivation of these genes via H3K36 trimethylation. Our results suggest that Whsc1 fine-tunes the expression of bone-related genes by acting as a modulator in balancing H3K36 trimethylation and histone acetylation. Our results provide novel insight into the mechanisms by which this histone methyltransferase regulates gene expression.
Collapse
Affiliation(s)
- Yu Fei Lee
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Wan Ning Lo
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kotaro Saga
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
40
|
Moon JS, Kim SH, Oh SH, Jeong YW, Kang JH, Park JC, Son HJ, Bae S, Park BI, Kim MS, Koh JT, Ko HM. Relaxin augments BMP-2-induced osteoblast differentiation and bone formation. J Bone Miner Res 2014; 29:1586-96. [PMID: 24643989 DOI: 10.1002/jbmr.2197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 01/26/2014] [Accepted: 02/06/2014] [Indexed: 12/19/2022]
Abstract
Relaxin (Rln), a polypeptide hormone of the insulin superfamily, is an ovarian peptide hormone that is involved in a diverse range of physiological and pathological reactions. In this study, we investigated the effect of Rln on bone morphogenetic protein 2 (BMP-2)-induced osteoblast differentiation and bone formation. Expression of Rln receptors was examined in the primary mouse bone marrow stem cells (BMSCs) and mouse embryonic fibroblast cell line C3H/10T1/2 cells by RT-PCR and Western blot during BMP-2-induced osteoblast differentiation. The effect of Rln on osteoblast differentiation and mineralization was evaluated by measuring the alkaline phosphatase activity, osteocalcin production, and Alizarin red S staining. For the in vivo evaluation, BMP-2 and/or Rln were administered with type I collagen into the back of mice, and after 3 weeks, bone formation was analyzed by micro-computed tomography (µCT). Western blot was performed to determine the effect of Rln on osteoblast differentiation-related signaling pathway. Expression of Rxfp 1 in BMSCs and C3H/10T1/2 cells was significantly increased by BMP-2. In vitro, Rln augmented BMP-2-induced alkaline phosphatase expression, osteocalcin production, and matrix mineralization in BMSCs and C3H/10T1/2 cells. In addition, in vivo administration of Rln enhanced BMP-2-induced bone formation in a dose-dependent manner. Interestingly, Rln synergistically increased and sustained BMP-2-induced Smad, p38, and transforming growth factor-β activated kinase (TAK) 1 phosphorylation. BMP-2-induced Runx 2 expression and activity were also significantly augmented by Rln. These results show that Rln enhanced synergistically BMP-2-induced osteoblast differentiation and bone formation through its receptor, Rxfp 1, by augmenting and sustaining BMP-2-induced Smad and p38 phosphorylation, which upregulate Runx 2 expression and activity. These results suggest that Rln might be useful for therapeutic application in destructive bone diseases.
Collapse
Affiliation(s)
- Jung-Sun Moon
- Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mokrani M, Klibi J, Bluteau D, Bismuth G, Mami-Chouaib F. Smad and NFAT Pathways Cooperate To Induce CD103 Expression in Human CD8 T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2014; 192:2471-9. [DOI: 10.4049/jimmunol.1302192] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Associations between genetic variants in the TGF-β signaling pathway and breast cancer risk among Hispanic and non-Hispanic white women. Breast Cancer Res Treat 2013; 141:287-97. [PMID: 24036662 DOI: 10.1007/s10549-013-2690-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/17/2022]
Abstract
The TGF-β signaling pathway has a significant role in breast cancer initiation and promotion by regulating various cellular processes. We evaluated whether genetic variation in eight genes (TGF-β1, TGF-β2, TGF-βR1, TGF-βR2, TGF-βR3, RUNX1, RUNX2, and RUNX3) is associated with breast cancer risk in women from the Breast Cancer Health Disparities Study. A total of 3,524 cases (1,431 non-Hispanic whites (NHW); 2,093 Hispanics/Native Americans(NA)) and 4,209 population-based controls (1,599 NHWs; 2,610 Hispanics/NAs) were included in analyses. Genotypes for 47 single nucleotide polymorphisms (SNPs) were determined. Additionally, 104 ancestral informative markers estimated proportion of NA ancestry. Associations with breast cancer risk overall, by menopausal status, NA ancestry, and estrogen receptor (ER)/progesterone receptor tumor phenotype were evaluated. After adjustment for multiple comparisons, two SNPs were significantly associated with breast cancer risk: RUNX3 (rs906296 ORCG/GG = 1.15 95 % CI 1.04-1.26) and TGF-β1 (rs4803455 ORCA/AA = 0.89 95 % CI 0.81-0.98). RUNX3 (rs906296) and TGF-βR2 (rs3773644) were associated with risk in pre-menopausal women (p adj = 0.002 and 0.02, respectively) and in those with intermediate to high NA ancestry (p adj = 0.04 and 0.01, respectively). Self-reported race was strongly correlated with NA ancestry (r = 0.86). There was a significant interaction between NA ancestry and RUNX1 (rs7279383, p adj = 0.04). Four RUNX SNPs were associated with increased risk of ER- tumors. Results provide evidence that genetic variation in TGF-β and RUNX genes are associated with breast cancer risk. This is the first report of significant associations between genetic variants in TGF-β and RUNX genes and breast cancer risk among women of NA ancestry.
Collapse
|
43
|
Darvin P, Joung YH, Yang YM. JAK2-STAT5B pathway and osteoblast differentiation. JAKSTAT 2013; 2:e24931. [PMID: 24470975 PMCID: PMC3894232 DOI: 10.4161/jkst.24931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
Osteoblast differentiation is a critical step in the maintenance of bone homeostasis. Osteoblast differentiation is generally maintained by growth hormone (GH) and various other endocrine and autocrine/paracrine factors. JAK2-STAT5B pathway is a central axis in the mechanism of GH signaling. Similarly, the autocrine/paracrine signaling factor IGF-1 also mediates its effects through this pathway. Analysis on JAK2-STAT5B pathway showed its importance in the IGF-1/IGF-1R mediated regulation of gene expression and osteoblast differentiation. Persistent activation of STAT5B and inhibition of STAT5B degradation showed increased osteoblastic differentiation and STAT5B/Runx-2 activities. Conditional gene silencing studies showed the importance of the JAK2-STAT5B pathway in stimulation of other transcription factors and expression of various differentiation markers.
Collapse
Affiliation(s)
- Pramod Darvin
- Department of Pathology; School of Medicine; and Institute of Biomedical Science and Technology; Konkuk University; Seoul, Republic of Korea
| | - Youn Hee Joung
- Department of Pathology; School of Medicine; and Institute of Biomedical Science and Technology; Konkuk University; Seoul, Republic of Korea
| | - Young Mok Yang
- Department of Pathology; School of Medicine; and Institute of Biomedical Science and Technology; Konkuk University; Seoul, Republic of Korea
| |
Collapse
|
44
|
Evaluation of the immunosuppressive activity of artesunate in vitro and in vivo. Int Immunopharmacol 2013; 16:306-12. [PMID: 23583335 DOI: 10.1016/j.intimp.2013.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/19/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
Artemisinin and its derivatives have been reported to have immunosuppressive activity in some laboratory studies. However, the detail of mechanism remains to be demonstrated. The objective of this study is to clarify the immunosuppressive activity of artesunate (AST), one kind of artemisinin derivatives, and to find its unexplored mode of action. In vitro, the proliferation of T lymphocytes and its cytotoxicity were measured by WST-1 and MTT assay. In vivo, the immunomodulatory effect of AST was evaluated in a mouse model of delayed type hypersensitivity reaction (DTH), which was based on a T cell-mediated immune response. The data displayed that AST had a relatively high immunosuppressive activity with low toxicity, and could inhibit T lymphocyte proliferation induced by mitogen and alloantigen. Meanwhile, topical administration of AST could suppress DTH response significantly. Moreover, AST could also increase the secretion of TFG-β, coupling with the striking enhance of NF-κB/p65 and Smad2/3 signaling. The promotion of CD4(+)CD25(+) regulatory T cells (Tregs) was shown to be a possible mechanism involved in AST-mediated regulation. Taken together, these observations exhibit the potential of developing AST as a novel safe remedy for the treatment of T cell-mediated immune disorders.
Collapse
|
45
|
Logan TT, Villapol S, Symes AJ. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS One 2013; 8:e59250. [PMID: 23555640 PMCID: PMC3605457 DOI: 10.1371/journal.pone.0059250] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/13/2013] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) increases neurogenesis in the forebrain subventricular zone (SVZ) and the hippocampal dentate gyrus (DG). Transforming growth factor-β (TGF-β) superfamily cytokines are important regulators of adult neurogenesis, but their involvement in the regulation of this process after brain injury is unclear. We subjected adult mice to controlled cortical impact (CCI) injury, and isolated RNA from the SVZ and DG at different post-injury time points. qPCR array analysis showed that cortical injury caused significant alterations in the mRNA expression of components and targets of the TGF-β, BMP, and activin signaling pathways in the SVZ and DG after injury, suggesting that these pathways could regulate post-injury neurogenesis. In both neurogenic regions, the injury also induced expression of Runt-related transcription factor-1 (Runx1), which can interact with intracellular TGF-β Smad signaling pathways. CCI injury strongly induced Runx1 expression in activated and proliferating microglial cells throughout the neurogenic regions. Runx1 protein was also expressed in a subset of Nestin- and GFAP-expressing putative neural stem or progenitor cells in the DG and SVZ after injury. In the DG only, these Runx1+ progenitors proliferated. Our data suggest potential roles for Runx1 in the processes of microglial cell activation and proliferation and in neural stem cell proliferation after TBI.
Collapse
Affiliation(s)
- Trevor T. Logan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aviva J. Symes
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Chuang LSH, Ito K, Ito Y. RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer 2012. [PMID: 23180629 DOI: 10.1002/ijc.27964] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Runt-related transcription factors (RUNX) belong to an ancient family of metazoan genes involved in developmental processes. Through multiple protein-interacting partners, RUNX proteins have been implicated in diverse signaling pathways and cellular processes. The frequent inactivation of RUNX genes in cancer indicates crucial roles for RUNX in tumor suppression. This review discusses the abilities of RUNX proteins, in particular RUNX3, to integrate oncogenic signals or environmental cues and to initiate appropriate tumor suppressive responses.
Collapse
|
47
|
Differential requirements for HIV-1 Vif-mediated APOBEC3G degradation and RUNX1-mediated transcription by core binding factor beta. J Virol 2012; 87:1906-11. [PMID: 23175372 DOI: 10.1128/jvi.02199-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Core binding factor beta (CBFβ), a transcription regulator through RUNX binding, was recently reported critical for Vif function. Here, we mapped the primary functional domain important for Vif function to amino acids 15 to 126 of CBFβ. We also revealed that different lengths and regions are required for CBFβ to assist Vif or RUNX. The important interaction domains that are uniquely required for Vif but not RUNX function represent novel targets for the development of HIV inhibitors.
Collapse
|
48
|
Park SS, Kim KA, Lee SY, Lim SS, Jeon YM, Lee JC. X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts. BMB Rep 2012; 45:571-6. [DOI: 10.5483/bmbrep.2012.45.10.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
49
|
Chuang LSH, Lai SK, Murata-Hori M, Yamada A, Li HY, Gunaratne J, Ito Y. RUNX3 interactome reveals novel centrosomal targeting of RUNX family of transcription factors. Cell Cycle 2012; 11:1938-47. [PMID: 22544322 DOI: 10.4161/cc.20278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RUNX family proteins are critical regulators of lineage differentiation during development. The high prevalence of RUNX mutation/epigenetic inactivation in human cancer indicates a causative role for dysfunctional RUNX in carcinogenesis. This is supported by well-documented evidence of functional interaction of RUNX with components of major oncogenic or tumor suppressive signaling pathways such as TGFβ and Wnt. Here, we explore the binding partners of RUNX3 proteins to further define the scope of RUNX3 function. Using a mass spectrometry-based approach, we found that RUNX3 binds to centrosomal protein rootletin. This led us to uncover the presence of RUNX proteins at the centrosome. Our findings suggest a potential function for RUNX3 during mitosis.
Collapse
|
50
|
Nishimori H, Ehata S, Suzuki HI, Katsuno Y, Miyazono K. Prostate cancer cells and bone stromal cells mutually interact with each other through bone morphogenetic protein-mediated signals. J Biol Chem 2012; 287:20037-46. [PMID: 22532569 DOI: 10.1074/jbc.m112.353094] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Functional interactions between cancer cells and the bone microenvironment contribute to the development of bone metastasis. Although the bone metastasis of prostate cancer is characterized by increased ossification, the molecular mechanisms involved in this process are not fully understood. Here, the roles of bone morphogenetic proteins (BMPs) in the interactions between prostate cancer cells and bone stromal cells were investigated. In human prostate cancer LNCaP cells, BMP-4 induced the production of Sonic hedgehog (SHH) through a Smad-dependent pathway. In mouse stromal MC3T3-E1 cells, SHH up-regulated the expression of activin receptor IIB (ActR-IIB) and Smad1, which in turn enhanced BMP-responsive reporter activities in these cells. The combined stimulation with BMP-4 and SHH of MC3T3-E1 cells cooperatively induced the expression of osteoblastic markers, including alkaline phosphatase, bone sialoprotein, collagen type II α1, and osteocalcin. When MC3T3-E1 cells and LNCaP cells were co-cultured, the osteoblastic differentiation of MC3T3-E1 cells, which was induced by BMP-4, was accelerated by SHH from LNCaP cells. Furthermore, LNCaP cells and BMP-4 cooperatively induced the production of growth factors, including fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) in MC3T3-E1 cells, and these may promote the proliferation of LNCaP cells. Taken together, our findings suggest that BMPs provide favorable circumstances for the survival of prostate cancer cells and the differentiation of bone stromal cells in the bone microenvironment, possibly leading to the osteoblastic metastasis of prostate cancer.
Collapse
Affiliation(s)
- Hikaru Nishimori
- Department of Molecular Pathology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|