1
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
2
|
Mohammadi SM, Mohammadnejad D, Hosseinpour Feizi AA, Movassaghpour AA, Montazersaheb S, Nozad Charoudeh H. Inhibition of c-REL using siRNA increased apoptosis and decreased proliferation in pre-B ALL blasts: Therapeutic implications. Leuk Res 2017; 61:53-61. [PMID: 28892661 DOI: 10.1016/j.leukres.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/03/2023]
Abstract
The c-Rel transcription factor is a unique member of the NF-kB family that has a role in apoptosis, proliferation and cell survival. Overexpression of c-Rel is detected in many human B cell tumors, including B-cell leukemia and several cancers. The study aimed to investigate the effects of c-Rel siRNA on the proliferation and apoptosis of relapsed pre-B acute leukemia cells. The c-Rel siRNA was transfected into Leukemia cells using an Amaxa cell line Nucleofector kit L (Lonza). Quantitative real-time RT-PCR (qRT-PCR) and western blot were done to measure the expression levels of mRNA and protein, respectively. The flow cytometry was used to analyze the effect of c-Rel siRNA on the apoptosis and proliferation of Leukemia cells. Observed c-Rel expression in the 5 pre-B Acute lymphoblastic leukemia (ALL) patients were higher than the normal cells. The c-Rel siRNA transfection significantly blocked the expression of c-Rel mRNA in a time-dependent manner, leading to a strong growth inhibition and enhanced apoptosis (P<0.05). Our results demonstrated that c-Rel plays a fundamental role in the survival. Therefore, c-Rel can be considered as an attractive target for gene therapy in ALL patients. Also siRNA-mediated silencing of this gene may be a novel strategy in ALL treatment.
Collapse
Affiliation(s)
| | - Daryosh Mohammadnejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
3
|
Hunter JE, Butterworth JA, Zhao B, Sellier H, Campbell KJ, Thomas HD, Bacon CM, Cockell SJ, Gewurz BE, Perkins ND. The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma. Oncogene 2016; 35:3476-84. [PMID: 26522720 PMCID: PMC4853301 DOI: 10.1038/onc.2015.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 09/04/2015] [Indexed: 12/15/2022]
Abstract
The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting transcription factor. Here we report the surprising result that c-rel-/- mice display significantly earlier lymphomagenesis in the c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but, counterintuitively, c-rel-/- Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel-/- Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quantitative PCR and western blot analysis confirmed loss of Bach2 in c-Rel mutant Eμ-Myc tumours at both 4 weeks and the terminal stages of disease. Moreover, Bach2 expression was also downregulated in c-rel-/- TCL1-Tg mice and RelA Thr505Ala mutant Eμ-Myc mice. Analysis of wild-type Eμ-Myc mice demonstrated that the population expressing low levels of Bach2 exhibited the earlier onset of lymphoma seen in c-rel-/- mice. Confirming the relevance of these findings to human disease, analysis of chromatin immunoprecipitation sequencing data revealed that Bach2 is a c-Rel and NF-κB target gene in transformed human B cells, whereas treatment of Burkitt's lymphoma cells with inhibitors of the NF-κB/IκB kinase pathway or deletion of c-Rel or RelA resulted in loss of Bach2 expression. These data reveal a surprising tumour suppressor role for c-Rel in lymphoma development explained by regulation of Bach2 expression, underlining the context-dependent complexity of NF-κB signalling in cancer.
Collapse
Affiliation(s)
- J E Hunter
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - J A Butterworth
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - B Zhao
- Brigham and Women's Hospital, Boston, MA, USA
| | - H Sellier
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - K J Campbell
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - H D Thomas
- Northern Institute for Cancer Research, Newcastle Upon Tyne, UK
| | - C M Bacon
- Northern Institute for Cancer Research, Newcastle Upon Tyne, UK
| | - S J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - B E Gewurz
- Brigham and Women's Hospital, Boston, MA, USA
| | - N D Perkins
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Gilmore TD, Gélinas C. Methods for assessing the in vitro transforming activity of NF-κB transcription factor c-Rel and related proteins. Methods Mol Biol 2015; 1280:427-46. [PMID: 25736765 DOI: 10.1007/978-1-4939-2422-6_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among NF-κB transcription factors, c-Rel and c-Rel-derived proteins, including v-Rel, are the only ones that have shown consistent and frank transforming activity in cell culture. In particular, viral, chicken, mouse, and human Rel proteins can rapidly transform primary chicken spleen and bone marrow cells. Overexpression of a human Rel protein missing a C-terminal transactivation domain can also enhance the transformed state of the human B-lymphoma cell line BJAB. As described in this chapter, these in vitro assays can be used to quantitatively assess the transforming activity of Rel proteins.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA,
| | | |
Collapse
|
5
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
6
|
Abstract
Cigarette smoke (CS), a major risk factor for developing lung cancer, is known to activate transcriptional activator nuclear factor kappa B (NF-κB). However, the underlying mechanism of this activation remains unclear because of conflicting reports. As NF-κB has a pivotal role in the generation and maintenance of malignancies, efforts were targeted towards understanding its activation mechanism using both ex vivo and in vivo studies. The results show that CS-induced NF-κB activation mechanism is different from that of other pro-inflammatory signals such as lipopolysaccharide (LPS). The NF-κB dimer that translocates to the nucleus upon stimulation with CS is predominantly composed of c-Rel/p50 and this translocation involves degradation of I-κBɛ and not I-κBα. This degradation of I-κBɛ depends on IKKβ activity, which preferentially targets I-κBɛ. Consistently, CS-activated form of IKKβ was found to be different from that involved in LPS activation as neither Ser177 nor Ser181 of IKKβ is crucial for CS-induced NF-κB activation. Thus, unlike other pro-inflammatory stimulations where p65 and I-κBα have a central role, the predominantly active signaling cascade in CS-induced NF-κB activation in the lung epithelial cells comprises of IKKβ–I-κBɛ–c-Rel/p50. Thus, this study uncovers a new axis of NF-κB activation wherein I-κBɛ and c-Rel have the central role.
Collapse
|
7
|
Horst D, Budczies J, Brabletz T, Kirchner T, Hlubek F. Invasion associated up-regulation of nuclear factor kappaB target genes in colorectal cancer. Cancer 2009; 115:4946-58. [PMID: 19658179 DOI: 10.1002/cncr.24564] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND : Colorectal cancer (CRC) displays intratumoral heterogeneity with less differentiated tumor cells at the invasive front (IF) than in the tumor center (TC). The authors previously observed that several genes were overexpressed at the IF of CRC with relations to inflammatory processes. Because nuclear factor kappaB (NF-kappaB), a dimeric transcription factor, is a major regulator of such processes, and because its target genes are involved in immune response, cell growth control, and cell survival, the expression of NF-kappaB target genes was investigated comparatively in CRC. METHODS : By using gene array profiling, NF-kappaB target gene expression was assessed in CRCs that expressed human mutL homolog 1 (hMLH1), hMSH2, and nuclear beta-catenin by comparing expression at the IF, in the TC, and in normal mucosa. In addition, 5 NF-kappaB target genes with high differential expression were validated by using immunohistochemistry. RESULTS : The expression of NF-kappaB target genes in the TC, at the IF, and in normal mucosa was distinct; whereas, specifically at the IF, most differentially expressed NF-kappaB targets were up-regulated. Moreover, the results indicated that the expression diverged between epithelial tumor cells and inflammatory stromal cells. CONCLUSIONS : Because the results demonstrated that inflammation and the activation of NF-kappaB signaling promoted CRC invasiveness, the current study provided further evidence that downstream targets of NF-kappaB signaling may be specifically relevant in invasion and progression of CRC. Finally, as has been suggested for colitis-associated cancer, the authors of this report concluded that the inhibition of NF-kappaB signaling also may be an additional option for the treatment of sporadic CRC. Cancer 2009. (c) 2009 American Cancer Society.
Collapse
Affiliation(s)
- David Horst
- Pathologisches Institut der Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | |
Collapse
|
8
|
Drawid A, Gupta N, Nagaraj VH, Gélinas C, Sengupta AM. OHMM: a Hidden Markov Model accurately predicting the occupancy of a transcription factor with a self-overlapping binding motif. BMC Bioinformatics 2009; 10:208. [PMID: 19583839 PMCID: PMC2718928 DOI: 10.1186/1471-2105-10-208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/07/2009] [Indexed: 12/29/2022] Open
Abstract
Background DNA sequence binding motifs for several important transcription factors happen to be self-overlapping. Many of the current regulatory site identification methods do not explicitly take into account the overlapping sites. Moreover, most methods use arbitrary thresholds and fail to provide a biophysical interpretation of statistical quantities. In addition, commonly used approaches do not include the location of a site with respect to the transcription start site (TSS) in an integrated probabilistic framework while identifying sites. Ignoring these features can lead to inaccurate predictions as well as incorrect design and interpretation of experimental results. Results We have developed a tool based on a Hidden Markov Model (HMM) that identifies binding location of transcription factors with preference for self-overlapping DNA motifs by combining the effects of their alternative binding modes. Interpreting HMM parameters as biophysical quantities, this method uses the occupancy probability of a transcription factor on a DNA sequence as the discriminant function, earning the algorithm the name OHMM: Occupancy via Hidden Markov Model. OHMM learns the classification threshold by training emission probabilities using unaligned sequences containing known sites and estimating transition probabilities to reflect site density in all promoters in a genome. While identifying sites, it adjusts parameters to model site density changing with the distance from the transcription start site. Moreover, it provides guidance for designing padding sequences in gel shift experiments. In the context of binding sites to transcription factor NF-κB, we find that the occupancy probability predicted by OHMM correlates well with the binding affinity in gel shift experiments. High evolutionary conservation scores and enrichment in experimentally verified regulated genes suggest that NF-κB binding sites predicted by our method are likely to be functional. Conclusion Our method deals specifically with identifying locations with multiple overlapping binding sites by computing the local occupancy of the transcription factor. Moreover, considering OHMM as a biophysical model allows us to learn the classification threshold in a principled manner. Another feature of OHMM is that we allow transition probabilities to change with location relative to the TSS. OHMM could be used to predict physical occupancy, and provides guidance for proper design of gel-shift experiments. Based upon our predictions, new insights into NF-κB function and regulation and possible new biological roles of NF-κB were uncovered.
Collapse
Affiliation(s)
- Amar Drawid
- BioMAPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ, USA.
| | | | | | | | | |
Collapse
|
9
|
Fan G, Fan Y, Gupta N, Matsuura I, Liu F, Zhou XZ, Lu KP, Gélinas C. Peptidyl-prolyl isomerase Pin1 markedly enhances the oncogenic activity of the rel proteins in the nuclear factor-kappaB family. Cancer Res 2009; 69:4589-97. [PMID: 19458071 DOI: 10.1158/0008-5472.can-08-4117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 is frequently up-regulated in human cancers in which Rel/nuclear factor-kappaB (NF-kappaB) is constitutively activated, but its role in these cancers remains to be determined, and evidence is still lacking to show that Pin1 contributes to cell transformation by Rel/NF-kappaB. Rel/NF-kappaB transcriptional and oncogenic activities are modulated by several posttranslational modifications and coregulatory proteins, and previous studies showed that cytokine treatment induces binding of Pin1 to the RelA subunit of NF-kappaB, thereby enhancing RelA nuclear localization and stability. Here we show that Pin1 associates with the Rel subunits of NF-kappaB that are implicated in leukemia/lymphomagenesis and modulates their transcriptional and oncogenic activities. Pin1 markedly enhanced transformation of primary lymphocytes by the human c-Rel protein and also increased cell transformation by the potent viral Rel/NF-kappaB oncoprotein v-Rel, in contrast to a Pin1 mutant in the WW domain involved in interaction with NF-kappaB. Pin1 promoted nuclear accumulation of Rel proteins in the absence of activating stimuli. Importantly, inhibition of Pin1 function with the pharmacologic inhibitor juglone or with Pin1-specific shRNA led to cytoplasmic relocalization of endogenous c-Rel in human lymphoma-derived cell lines, markedly interfered with lymphoma cell proliferation, and suppressed endogenous Rel/NF-kappaB-dependent gene expression. Together, these results show that Pin1 is an important regulator of Rel/NF-kappaB transforming activity and suggest that Pin1 may be a potential therapeutic target in Rel/NF-kappaB-dependent leukemia/lymphomas.
Collapse
Affiliation(s)
- Gaofeng Fan
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tian W, Liou HC. RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo. PLoS One 2009; 4:e5028. [PMID: 19347041 PMCID: PMC2661141 DOI: 10.1371/journal.pone.0005028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/05/2009] [Indexed: 12/13/2022] Open
Abstract
c-Rel is a member of the Rel/NF-κB transcription factor family and is predominantly expressed in lymphoid and myeloid cells, playing a critical role in lymphocyte proliferation and survival. Persistent activation of the c-Rel signal transduction pathway is associated with allergies, inflammation, autoimmune diseases, and a variety of human malignancies. To explore the potential of targeting c-Rel as a therapeutic agent for these disorders, we designed a small interfering RNA (siRNA) to silence c-Rel expression in vitro and in vivo. C-Rel-siRNA expression via a retroviral vector in a B cell tumor cell line leads to growth arrest and apoptosis of the tumor cells. Silencing c-Rel in primary B cells in vitro compromises their proliferative and survival response to CD40 activation signals, similar to the impaired response of c-Rel knockout B cells. Most important, in vivo silencing of c-Rel results in significant impairment in T cell-mediated immune responses to antigenic stimulation. Our study thus validates the efficacy of c-Rel-siRNA, and suggests the development of siRNA-based therapy, as well as small molecular inhibitors for the treatment of B cell tumors as well as autoimmune diseases.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
CAPERalpha is a novel Rel-TAD-interacting factor that inhibits lymphocyte transformation by the potent Rel/NF-kappaB oncoprotein v-Rel. J Virol 2008; 82:10792-802. [PMID: 18753212 DOI: 10.1128/jvi.00903-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Rel/NF-kappaB transcription factors are constitutively activated in many human cancers. The Rel proteins in this family are implicated in leukemia/lymphomagenesis, but the mechanism is not completely understood. Previous studies showed that the transcription activation domains (TADs) of the viral oncoprotein v-Rel and its cellular Rel/NF-kappaB homologues c-Rel and RelA are key determinants of their different transforming activities in primary lymphocytes. Substitution of a Rel TAD for that of RelA conferred a strong transforming phenotype upon RelA, which otherwise failed to transform cells. To gain insights into protein interactions that influence cell transformation by the Rel TADs, we identified factors that interact with the TAD of v-Rel, the most oncogenic member of the Rel/NF-kappaB family. We report that the coactivator for transcription factors AP-1 and estrogen receptors, CAPERalpha, interacts with the v-Rel TAD and potently synergizes v-Rel-mediated transactivation. Importantly, coexpression of CAPERalpha markedly reduced and delayed v-Rel's transforming activity in primary lymphocytes, whereas a dominant-negative mutant enhanced the kinetics of v-Rel-mediated transformation. Furthermore, small interfering RNA-mediated knockdown of CAPERalpha in v-Rel-transformed lymphocytes significantly enhanced colony formation in soft agar. Since the potency of Rel-mediated transactivation is an important determinant of lymphocyte transformation, as is Rel's ability to induce transcriptional repression, these data suggest that CAPERalpha's interaction with the Rel TAD could modulate Rel/NF-kappaB's transforming activity by facilitating expression or dampening repression of specific gene subsets important for oncogenesis. Overall, this study identifies CAPERalpha as a new transcriptional coregulator for v-Rel and reveals an important role in modulating Rel's oncogenic activity.
Collapse
|
12
|
King KE, Ponnamperuma RM, Allen C, Lu H, Duggal P, Chen Z, Van Waes C, Weinberg WC. The p53 homologue DeltaNp63alpha interacts with the nuclear factor-kappaB pathway to modulate epithelial cell growth. Cancer Res 2008; 68:5122-31. [PMID: 18593911 DOI: 10.1158/0008-5472.can-07-6123] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The p53 homologue DeltaNp63alpha is overexpressed and inhibits apoptosis in a subset of human squamous cell carcinomas (SCC). Here, we report that in normal keratinocytes overexpressing DeltaNp63alpha and in human squamous carcinoma cells, DeltaNp63alpha physically associates with phosphorylated, transcriptionally active nuclear c-Rel, a nuclear factor-kappaB family member, resulting in increased c-Rel nuclear accumulation. This accumulation and the associated enhanced proliferation driven by elevated DeltaNp63alpha are attenuated by c-Rel small interfering RNA or overexpression of mutant IkappaBalphaM, indicating that c-Rel-containing complex formation is critical to the ability of elevated DeltaNp63alpha to maintain proliferation in the presence of growth arresting signals. Consistent with a role in growth regulation, DeltaNp63alpha-c-Rel complexes bind a promoter motif and repress the cyclin-dependent kinase inhibitor p21WAF1 in both human squamous carcinoma cells and normal keratinocytes overexpressing DeltaNp63alpha. The relationship between DeltaNp63alpha and activated c-Rel is reflected in their strong nuclear staining in the proliferating compartment of primary head and neck SCC. This is the first report indicating that high levels of DeltaNp63alpha interact with activated c-Rel in keratinocytes and SCC, thereby promoting uncontrolled proliferation, a key alteration in the pathogenesis of cancers.
Collapse
Affiliation(s)
- Kathryn E King
- Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vaira S, Johnson T, Hirbe AC, Alhawagri M, Anwisye I, Sammut B, O'Neal J, Zou W, Weilbaecher KN, Faccio R, Novack DV. RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci U S A 2008; 105:3897-902. [PMID: 18322009 PMCID: PMC2268780 DOI: 10.1073/pnas.0708576105] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Indexed: 12/11/2022] Open
Abstract
NF-kappaB inducing kinase (NIK) is required for osteoclastogenesis in response to pathologic stimuli, and its loss leads to functional blockade of both alternative and classical NF-kappaB caused by cytoplasmic retention by p100. We now show that deletion of p100 restores the capacity of NIK-deficient osteoclast (OC) precursors to differentiate and normalizes RelB and p65 signaling. Differentiation of NIK-/- precursors is also restored by overexpression of RelB, but not p65. Additionally, RelB-/- precursors fail to form OCs in culture, and this defect is rescued by re-expression of RelB, but not by overexpression of p65. To further support the role of RelB in OCs, we challenged RelB-/- mice with TNF-alpha in vivo and found a diminished osteoclastogenic response. We then examined tumor-induced osteolysis in both RelB-/- and NIK-/- mice by using the B16 melanoma model. Growth of tumor cells in the bone marrow was similar to WT controls, but the absence of either RelB or NIK completely blocked the tumor-induced loss of trabecular bone. Thus, the alternative NF-kappaB pathway, culminating in activation of RelB, has a key and specific role in the differentiation of OCs that cannot be compensated for by p65.
Collapse
Affiliation(s)
- Sergio Vaira
- *Division of Bone and Mineral Diseases, Department of Medicine
| | - Trevor Johnson
- *Division of Bone and Mineral Diseases, Department of Medicine
| | | | | | - Imani Anwisye
- *Division of Bone and Mineral Diseases, Department of Medicine
| | | | | | | | | | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | - Deborah Veis Novack
- *Division of Bone and Mineral Diseases, Department of Medicine
- Department of Pathology
| |
Collapse
|
14
|
Gupta N, Delrow J, Drawid A, Sengupta AM, Fan G, Gélinas C. Repression of B-cell linker (BLNK) and B-cell adaptor for phosphoinositide 3-kinase (BCAP) is important for lymphocyte transformation by rel proteins. Cancer Res 2008; 68:808-14. [PMID: 18245482 DOI: 10.1158/0008-5472.can-07-3169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Persistent Rel/nuclear factor-kappaB (NF-kappaB) activity is a hallmark of many human cancers, and the Rel proteins are implicated in leukemia/lymphomagenesis but the mechanism is not fully understood. Microarray analysis to identify transformation-impacting genes regulated by NF-kappaB's oncogenic v-Rel and c-Rel proteins uncovered that Rel protein expression leads to transcriptional repression of key B-cell receptor (BCR) components and signaling molecules like B-cell linker (BLNK), the B-cell adaptor for phosphoinositide 3-kinase (BCAP) and immunoglobulin lambda light chain (Ig lambda), and is accompanied by a block in BCR-mediated activation of extracellular signal-regulated kinase, Akt, and c-Jun-NH(2)-kinase in response to anti-IgM. The BLNK and BCAP proteins were also down-regulated in lymphoid cells expressing a transformation-competent chimeric RelA/v-Rel protein, suggesting a correlation with the capacity of Rel proteins to transform lymphocytes. DNA-binding studies identified functional NF-kappaB-binding sites, and chromatin immunoprecipitation (ChIP) data showed binding of Rel to the endogenous blnk and bcap promoters in vivo. Importantly, restoration of either BLNK or BCAP expression strongly inhibited transformation of primary chicken lymphocytes by the potent NF-kappaB oncoprotein v-Rel. These findings are interesting because blnk and other BCR components and signaling molecules are down-regulated in primary mediastinal large B-cell lymphomas and Hodgkin's lymphomas, which depend on c-Rel for survival, and are consistent with the tumor suppressor function of BLNK. Overall, our results indicate that down-regulation of BLNK and BCAP is an important contributing factor to the malignant transformation of lymphocytes by Rel and suggest that gene repression may be as important as transcriptional activation for Rel's transforming activity.
Collapse
Affiliation(s)
- Nupur Gupta
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
15
|
Fan Y, Gélinas C. An optimal range of transcription potency is necessary for efficient cell transformation by c-Rel to ensure optimal nuclear localization and gene-specific activation. Oncogene 2006; 26:4038-43. [PMID: 17173064 DOI: 10.1038/sj.onc.1210164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
c-Rel is overexpressed in several B-cell lymphomas and c-rel gene overexpression can transform primary chicken lymphoid cells and induce tumors in animals. Although c-Rel is generally a stronger transcriptional activator than its viral derivative v-Rel, its oncogenic activity is significantly weaker. Among the mutations acquired during c-Rel's evolution into v-Rel are deletion of c-Rel's transactivation domain 2 (cTAD2) and mutations in cTAD1. Given the critical role of the Rel TADs in cell transformation, we investigated how mutations in c-Rel's cTAD1 and cTAD2 contribute to its oncogenicity and that of v-Rel. Mutations in cTAD2 noticeably increased c-Rel's transforming activity by promoting its nuclear localization and gene-specific transactivation, despite an overall decrease in kappaB site-dependent transactivation potency. Conversely, substitution of vTAD by cTAD1 increased v-Rel's transactivation and transforming efficiencies, whereas its substitution by the stronger cTAD2 compromised activation of mip-1beta but not irf-4 and was detrimental to cell transformation. These results suggest that the Rel TADs differentially contribute to gene-specific activation and that an optimal range of transcription potency is necessary for efficient transformation. These findings may have important implications for understanding how Rel TAD mutations can lead to a more oncogenic phenotype.
Collapse
Affiliation(s)
- Y Fan
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5638, USA
| | | |
Collapse
|
16
|
Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F, Thompson B, Spaulding C, Macaroun S, Alegre ML, Kee BL, Ferrando A, Miele L, Aifantis I. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2006; 13:70-7. [PMID: 17173050 DOI: 10.1038/nm1524] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 11/20/2006] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), unlike other ALL types, is only infrequently associated with chromosomal aberrations, but it was recently shown that most individuals with T-ALL carry activating mutations in the NOTCH1 gene. However, the signaling pathways and target genes responsible for Notch1-induced neoplastic transformation remain undefined. We report here that constitutively active Notch1 activates the NF-kappaB pathway transcriptionally and via the IkappaB kinase (IKK) complex, thereby causing increased expression of several well characterized target genes of NF-kappaB in bone marrow hematopoietic stem cells and progenitors. Our observations demonstrate that the NF-kappaB pathway is highly active in established human T-ALL and that inhibition of the pathway can efficiently restrict tumor growth both in vitro and in vivo. These findings identify NF-kappaB as one of the major mediators of Notch1-induced transformation and suggest that the NF-kappaB pathway is a potential target of future therapies of T-ALL.
Collapse
MESH Headings
- Animals
- Boronic Acids/pharmacology
- Bortezomib
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- COS Cells
- Cell Line
- Cell Line, Tumor
- Cell Survival/drug effects
- Chlorocebus aethiops
- DNA-Binding Proteins/genetics
- Gene Expression Profiling
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Interleukin Receptor Common gamma Subunit/genetics
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/metabolism
- Leukemia, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Mutation
- NF-kappa B/metabolism
- Pyrazines/pharmacology
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Survival Analysis
Collapse
Affiliation(s)
- Tomas Vilimas
- Department of Medicine, Section of Rheumatology, University of Chicago, 5841 South Maryland Avenue Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The nuclear factor-kappa B (NF-kappaB) signaling pathway is a multi-component pathway that regulates the expression of hundreds of genes that are involved in diverse and key cellular and organismal processes, including cell proliferation, cell survival, the cellular stress response, innate immunity and inflammation. Not surprisingly, mis-regulation of the NF-kappaB pathway, either by mutation or epigenetic mechanisms, is involved in many human and animal diseases, especially ones associated with chronic inflammation, immunodeficiency or cancer. This review describes human diseases in which mutations in the components of the core NF-kappaB signaling pathway have been implicated and discusses the molecular mechanisms by which these alterations in NF-kappaB signaling are likely to contribute to the disease pathology. These mutations can be germline or somatic and include gene amplification (e.g., REL), point mutations and deletions (REL, NFKB2, IKBA, CYLD, NEMO) and chromosomal translocations (BCL-3). In addition, human genetic diseases are briefly described wherein mutations affect protein modifiers or transducers of NF-kappaB signaling or disrupt NF-kappaB-binding sites in promoters/enhancers.
Collapse
Affiliation(s)
- G Courtois
- INSERM U697, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
18
|
Lu KT, Sinquett FL, Dryer RL, Song C, Covey LR. c-Rel plays a key role in deficient activation of B cells from a non-X-linked hyper-IgM patient. Blood 2006; 108:3769-76. [PMID: 16896156 PMCID: PMC1895478 DOI: 10.1182/blood-2006-03-008839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our previous results demonstrated that B cells from a patient (pt1) with non-X-linked hyper-IgM syndrome (HIGM) possess an atypical CD23(lo) phenotype that is unaffected by CD40-mediated activation. To investigate the molecular mechanism underlying defective CD23 expression in pt1 B cells, we used lymphoblastoid cell lines that express LMP1 under the control of a tetracycline-inducible promoter (LCL(tet)). Our analysis revealed that the CD23(lo) phenotype in the pt1-LCL(tet) cells is a direct consequence of diminished CD23 transcription. We demonstrate a marked decrease in c-Rel-containing complexes that bind to the proximal CD23a/b promoters in pt1-LCL(tet) extracts, resulting from an overall lower expression of c-Rel in pt1-LCL(tet) cells. Analysis of c-Rel mRNA revealed relatively equal amounts in pt1-LCL(tet) and control LCL(tet) cells, indicating that diminished c-Rel protein expression is unrelated to decreased transcription. Finally, a critical role for c-Rel in CD23 regulation was demonstrated by effectively altering c-Rel expression that resulted in the direct modulation of CD23 surface expression. Collectively, these findings demonstrate that low levels of c-Rel are the underlying cause of aberrant CD23 expression in pt1 B cells and are likely to play a critical role in the pathophysiology of this form of HIGM.
Collapse
Affiliation(s)
- Kristina T Lu
- Dept of Cell Biology and Neuroscience, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, 604 Allison Rd, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
19
|
Stoffel A. The NF-κB signalling pathway: a therapeutic target in lymphoid malignancies? Expert Opin Ther Targets 2005; 9:1045-61. [PMID: 16185157 DOI: 10.1517/14728222.9.5.1045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nuclear factor-kappaB/reticuloendotheliosis (NF-kappaB/Rel) designates a family of transcription factors that influence the activation of a multitude of genes critically involved in immune and inflammatory responses. Recently, genetic and biochemical evidence has accumulated, suggesting that constitutive activation of NF-kappaB/Rel proteins plays an important role in the development/progression of B and T cell lymphoid malignancies. In particular, genetic and molecular alterations of NF-kappaB family members and their transcriptional target genes have been implicated in the development of diffuse large B cell lymphoma and mucosa-associated lymphoid tissue lymphoma. Although NF-kappaB/Rel proteins represent an integrating point of several pathways, potentially contributing to several diseases, their unique activation depends on cell type and stimulus. Considering the NF-kappaB specificity in lymphoid cells, molecules that finely modulate the activity of these NF-kappaB components and dampen the inappropriate proliferation of lymphocytes may represent a novel pharmacological intervention to several lymphoid malignancies.
Collapse
Affiliation(s)
- Archontoula Stoffel
- The Rockefeller University, Laboratory for Cancer Biology, 1230 York Avenue, Box 290, New York, NY 10021, USA.
| |
Collapse
|
20
|
Starczynowski DT, Reynolds JG, Gilmore TD. Mutations of tumor necrosis factor α-responsive serine residues within the C-terminal transactivation domain of human transcription factor REL enhance its in vitro transforming ability. Oncogene 2005; 24:7355-68. [PMID: 16027730 DOI: 10.1038/sj.onc.1208902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human c-rel gene (REL), encoding an NF-kappaB transcription factor, is amplified or mutated in several human B-cell lymphomas and can transform chicken lymphoid cells in vitro. We have previously shown that certain deletions of C-terminal transactivation sequences enhance REL's transforming ability in chicken spleen cells. In this report, we have analysed the effect of single amino-acid changes at select serine residues in the C-terminal transactivation domain on REL's transforming ability. Mutation of either of two TNFalpha-inducible serine residues (Ser460 and Ser471) to nonphosphorylatable residues (alanine, asparagine, phenylalanine) made REL more efficient at transforming chicken spleen cells in vitro. In contrast, mutation of Ser471 to a phosphorylation mimetic aspartate residue impaired REL's transforming ability, even though it increased REL's inherent transactivation ability as a GAL4-fusion protein. Alanine mutations of several other serine residues within the transactivation domain did not substantially affect REL's transforming ability. Transactivation by GAL4-REL fusion proteins containing either transformation enhancing or nonenhancing mutations at serine residues was generally similar to wild-type GAL4-REL. However, more transforming mutants with mutations at either Ser460 or Ser471 differed from wild-type REL in their ability to transactivate certain kappaB-site reporter genes. In particular, the SOD2 promoter, encoding manganese superoxide dismutase, was activated less strongly by the more transforming REL mutant REL-S471N in transient assays, but REL-S471N-transformed chicken spleen cells had increased levels of MnSOD protein as compared to wild-type REL-transformed cells. Taken together, our results show that mutations of certain serine residues can enhance REL's transforming ability in vitro and suggest that these mutations increase REL-mediated transformation by altering REL's ability to modulate the expression of select target genes. Furthermore, phosphorylation of Ser471 may be involved in REL-mediated modulation of transformation-specific target gene expression. Lastly, these results suggest that similar mutations in the REL transactivation domain contribute to the development of certain human B-cell lymphomas.
Collapse
|
21
|
Iwai K, Lee BR, Hashiguchi M, Fukushima A, Iwashima M. IkB-α-specific transcript regulation by the C-terminal end of c-Rel. FEBS Lett 2004; 579:141-4. [PMID: 15620703 DOI: 10.1016/j.febslet.2004.11.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/12/2004] [Accepted: 11/16/2004] [Indexed: 02/06/2023]
Abstract
The NF-kB family transcription factor c-Rel is a critical molecule for inducing expression of cytokine genes by T cells. Here, we report that a deletion of the C-terminal end, similar to the deletion in the highly oncogenic chicken v-Rel gene, renders c-Rel hyperactive toward cytokine gene promoters. At the same time, this mutation dramatically reduced c-Rel activity in induction of IkB-alpha mRNA expression. Moreover, ectopic expression of IkB-alpha, along with the C-terminal truncated c-Rel, abrogates hyperactivity of this mutant. IkB-alpha co-expression did not affect the function of wild-type c-Rel. The data demonstrate that the C-terminal end of c-Rel has specific activity for IkB-alpha mRNA expression and is dispensable for IL-2 gene expression.
Collapse
Affiliation(s)
- Kazuyuki Iwai
- Program in Molecular Immunology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120, 15th Street, Augusta, GA 30912-2600, USA
| | | | | | | | | |
Collapse
|
22
|
Kalaitzidis D, Ok J, Sulak L, Starczynowski DT, Gilmore TD. Characterization of a human REL-estrogen receptor fusion protein with a reverse conditional transforming activity in chicken spleen cells. Oncogene 2004; 23:7580-7. [PMID: 15326488 DOI: 10.1038/sj.onc.1207912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Overexpression of the human REL transcription factor can malignantly transform chicken spleen cells in vitro. In this report, we have created and characterized a cDNA encoding a chimeric protein (RELDelta424-490-ER) in which sequences of a highly transforming REL mutant (RELDelta424-490) are fused to the ligand-binding domain of the human estrogen receptor (ER). Surprisingly, RELDelta424-490-ER is constitutively nuclear in A293 cells, and RELDelta424-490-ER activates transcription in the absence, but not in the presence, of estrogen in kappaB-site reporter gene assays. Furthermore, RELDelta424-490-ER transforms chicken spleen cells in the absence of estrogen, but the addition of estrogen blocks the ability of RELDelta424-490-ER-transformed cells to form colonies in soft agar, even though estrogen induces increased nuclear translocation of RELDelta424-490-ER in these cells. ERalpha can also inhibit REL-dependent transactivation in trans in an estrogen-dependent manner, and ERalpha can interact with REL in vitro. Thus, the RELDelta424-490-ER fusion protein shows an unusual, reverse hormone regulation, in that its most prominent biological activities (transformation and transactivation) are inhibited by estrogen, probably due to an estrogen-induced interaction between the ER sequences and sequences in the Rel homology domain. Nevertheless, these results indicate that the continual activity of REL is required to sustain the transformed state of chicken spleen cells in culture, suggesting that direct and specific inhibitors of REL may have therapeutic efficacy in certain human lymphoid cancers.
Collapse
|