1
|
Zhang Y, Wei Y, Wu M, Liu M, Liang S, Zhu X, Liu X, Lin F. Cand2 inhibits CRL-mediated ubiquitination and suppresses autophagy to facilitate pathogenicity of phytopathogenic fungi. PLANT COMMUNICATIONS 2024; 5:100720. [PMID: 37718510 PMCID: PMC10873881 DOI: 10.1016/j.xplc.2023.100720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The ubiquitin-proteasome system and the autophagy system are the two primary mechanisms used by eukaryotes to maintain protein homeostasis, and both are closely related to the pathogenicity of the rice blast fungus. In this research, we identified MoCand2 as an inhibitor of ubiquitination in Magnaporthe oryzae. Through this role, MoCand2 participates in the regulation of autophagy and pathogenicity. Specifically, we found that deletion of MoCand2 increased the ubiquitination level in M. oryzae, whereas overexpression of MoCand2 inhibited the accumulation of ubiquitinated proteins. Interaction analyses showed that MoCand2 is a subunit of Cullin-RING ligases (CRLs). It suppresses ubiquitination by blocking the assembly of CRLs and downregulating the expression of key CRL subunits. Further research indicated that MoCand2 regulates autophagy through ubiquitination. MoCand2 knockout led to over-ubiquitination and over-degradation of MoTor, and we confirmed that MoTor content was negatively correlated with autophagy level. In addition, MoCand2 knockout accelerated the K63 ubiquitination of MoAtg6 and strengthened the assembly and activity of the phosphatidylinositol-3-kinase class 3 complex, thus enhancing autophagy. Abnormal ubiquitination and autophagy in ΔMocand2 resulted in defects in growth, conidiation, stress resistance, and pathogenicity. Finally, sequence alignment and functional analyses in other phytopathogenic fungi confirmed the high conservation of fungal Cand2s. Our research thus reveals a novel mechanism by which ubiquitination regulates autophagy and pathogenicity in phytopathogenic fungi.
Collapse
Affiliation(s)
- Yunran Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Yunyun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Minghua Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengyu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Harbs J, Rinaldi S, Keski-Rahkonen P, Liu X, Palmqvist R, Van Guelpen B, Harlid S. An epigenome-wide analysis of sex hormone levels and DNA methylation in male blood samples. Epigenetics 2023; 18:2196759. [PMID: 36994855 PMCID: PMC10072117 DOI: 10.1080/15592294.2023.2196759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Endogenous sex hormones and DNA methylation both play important roles in various diseases. However, their interplay is largely unknown. A deeper understanding of their interrelationships could provide new insights into the pathology of disease development. We, therefore, investigated associations between circulating sex hormones, sex hormone binding globulin (SHBG), and DNA methylation in blood, using samples from 77 men (65 with repeated samples), from the population-based Northern Sweden Health and Disease Study (NSHDS). DNA methylation was measured in buffy coat using the Infinium Methylation EPIC BeadChip (Illumina). Sex hormone (oestradiol, oestrone, testosterone, androstenedione, dehydroepiandrosterone, and progesterone) and SHBG concentrations were measured in plasma using a high-performance liquid chromatography tandem mass spectrometry (LC/MS-MS) method and an enzyme-linked immunoassay, respectively. Associations between sex hormones, SHBG, and DNA methylation were estimated using both linear regression and mixed-effects models. Additionally, we used the comb-p method to identify differentially methylated regions based on nearby P values. We identified one novel CpG site (cg14319657), at which DNA methylation was associated with dehydroepiandrosterone, surpassing a genome-wide significance level. In addition, more than 40 differentially methylated regions were associated with levels of sex hormones and SHBG and several of these mapped to genes involved in hormone-related diseases. Our findings support a relationship between circulating sex hormones and DNA methylation and suggest that further investigation is warranted, both for validation, further exploration and to gain a deeper understanding of the mechanisms and potential consequences for health and disease.
Collapse
Affiliation(s)
- Justin Harbs
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Sabina Rinaldi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Xijia Liu
- Department of Statistics, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Deparment of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Kumar S, Tripathi J, Maurya DK, Nuwad J, Gautam S. Anti-proliferative effect and underlying mechanism of ethoxy-substituted phylloquinone (vitamin K1 derivative) from Spinacia oleracea leaf and enhancement of its extractability using radiation technology. 3 Biotech 2022; 12:265. [PMID: 36091087 PMCID: PMC9452621 DOI: 10.1007/s13205-022-03264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
In our previous studies, a novel antimutagenic compound, 2-ethoxy-3-(3,7,11,15-tetramethylhexadec-2-ethyl) naphthaquinone-1,4-dione (ethoxy-substituted phylloquinone; ESP) from spinach was characterized and mechanism contributing to its antimutagenicity was deduced. In the current study, anti-proliferative activity of ESP was assessed in lung cancer (A549) cells using MTT [3-(4,5-dimethylthiazole-2yl)-2,5-diphenyl tetrazolium bromide], clonogenic assays and cell cycle analysis. ESP treatment showed selective cytotoxicity against lung cancer cells and no cytotoxicity in normal lung (WI38) cells. Cell cycle analysis revealed that ESP treatment arrests A549 cell population in G2-M phase. In-silico analysis indicated positive drug-likeness features of ESP. Molecular docking showed H-bonding and hydrophobic interactions between ESP and B-DNA dodecamer residues at minor groove. SWATH-MS (Sequential Window Acquisition of All Theoretical Mass Spectra) based proteomic analysis indicated down-regulation of proteins involved in EGFR signaling, NEDDylation and other metabolic pathways and up-regulation of tumor suppressor (STAT1 and NDRG1) proteins. Treatment of spinach powder with gamma radiation (5-20 kGy) from cobalt (Co-60) enhanced the extractability of ESP up to 4.4-fold at the highest dose of 20 kGy. Scanning electron microscopy of spinach powder displayed decrease in smoothness and compactness with increase in radiation dose attributing to its enhanced extractability. Increase in the extractability of ESP with increasing radiation doses as measured by fluorescence intensity and dry weight basis was strongly correlated. Nonetheless, radiation treatment did not affect the functionality of ESP in terms of anti-proliferative and antimutagenic activities. Current findings thus highlight broad spectrum bioactivity of ESP from spinach, its underlying mechanism and applicability of radiation technology in enhancing extractability. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03264-6.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Dharmendra K. Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
- Homi Bhabha National Institute, Mumbai, 400 094 India
| | - Jitendra Nuwad
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
- Homi Bhabha National Institute, Mumbai, 400 094 India
| |
Collapse
|
4
|
Li X, Zhang Y, Zhao Y, Zhou Y, Han Q, Yang Y, Zhang L, Shi L, Jin X, Zhang R, Gao H, Xue G, Li D, Zhang ZR, Lu Y, Yang B, Pan Z. Cullin-associated and neddylation-dissociated 1 protein (CAND1) governs cardiac hypertrophy and heart failure partially through regulating calcineurin degradation. Pharmacol Res 2022; 182:106284. [PMID: 35661710 DOI: 10.1016/j.phrs.2022.106284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
Pathological cardiac hypertrophy is a process characterized by significant disturbance of protein turnover. Cullin-associated and Neddylation-dissociated 1 (CAND1) acts as a coordinator to modulate substrate protein degradation by promoting the formation of specific cullin-based ubiquitin ligase 3 complex in response to substrate accumulation, which thereby facilitate the maintaining of normal protein homeostasis. Accumulation of calcineurin is critical in the pathogenesis of cardiac hypertrophy and heart failure. However, whether CAND1 titrates the degradation of hypertrophy related protein eg. calcineurin and regulates cardiac hypertrophy remains unknown. Therefore, we aim to explore the role of CAND1 in cardiac hypertrophy and heart failure and the underlying molecular mechanism. Here, we found that the protein level of CAND1 was increased in cardiac tissues from heart failure (HF) patients and TAC mice, whereas the mRNA level did not change. CAND1-KO+/- aggravated TAC-induced cardiac hypertrophic phenotypes; in contrast, CAND1-Tg attenuated the maladaptive cardiac remodeling. At the molecular level, CAND1 overexpression downregulated, whereas CAND1-KO+/- or knockdown upregulated calcineurin expression at both in vivo and in vitro conditions. Mechanistically, CAND1 overexpression favored the assembly of Cul1/atrogin1/calcineurin complex and rendered the ubiquitination and degradation of calcineurin. Notably, CAND1 deficiency-induced hypertrophic phenotypes were partially rescued by knockdown of calcineurin, and application of exogenous CAND1 prevented TAC-induced cardiac hypertrophy. Taken together, our findings demonstrate that CAND1 exerts a protective effect against cardiac hypertrophy and heart failure partially by inducing the degradation of calcineurin.
Collapse
Affiliation(s)
- Xingda Li
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yang Zhang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yue Zhao
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yang Zhou
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Qilong Han
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ying Yang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Lingmin Zhang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ling Shi
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xuexin Jin
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ruixin Zhang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Haiyu Gao
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Genlong Xue
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Desheng Li
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhi-Ren Zhang
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China; Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, China
| | - Baofeng Yang
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, China.
| | - Zhenwei Pan
- Department of Pharmacology, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150086, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
El-Far YM, El-Mesery M. Pevonedistat attenuates cisplatin-induced nephrotoxicity in mice by downregulating the release of inflammatory mediators. J Biochem Mol Toxicol 2021; 35:e22908. [PMID: 34476871 DOI: 10.1002/jbt.22908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023]
Abstract
Pevonedistat (MLN4924) is a specific NEDD8-activating enzyme inhibitor that inactivates cullin-RING ligases involved in ubiquitylation and turnover of different signaling molecules. In the current study, we evaluated the effect of pevonedistat on cisplatin (CIS)-induced nephrotoxicity in mice. Serum creatinine and urea levels were analyzed in different groups. Histopathological examination of renal tissue was done using hematoxylin and eosin staining. In addition, renal IL-6 and TNF-α expressions were analyzed using the enzyme-linked immunosorbent assay technique, and IL-1β and NF-κB expressions were analyzed by immunohistochemical staining of renal tissue. Caspase-3, A20, β-catenin, and Nrf2 gene expressions in renal tissue were analyzed using the reverse-transcription polymerase chain reaction technique. Western blot analysis was adopted to assess cleaved caspase-3 and β-catenin expressions in renal tissue. Pevonedistat coadministration with CIS improved kidney functions and attenuated CIS-induced nephrotoxicity as indicated by the significant decrease in serum creatinine and urea levels. In addition, pevonedistat coadministration with CIS showed a significant decrease in caspase-3 and a significant increase in A20, β-catenin, and Nrf2 gene expressions. Also, pevonedistat decreased caspase-3 cleavage to p19 in mice treated with CIS. Moreover, pevonedistat decreased CIS-induced upregulation of IL-6, TNF-α, IL-1β, and NF-κB protein expressions in renal tissue. Thus, pevonedistat alleviated CIS-induced nephrotoxicity that might be attributed to suppression of the inflammation induced in renal tissue.
Collapse
Affiliation(s)
- Yousra M El-Far
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Sarvari P, Rasouli SJ, Allanki S, Stone OA, Sokol AM, Graumann J, Stainier DYR. The E3 ubiquitin-protein ligase Rbx1 regulates cardiac wall morphogenesis in zebrafish. Dev Biol 2021; 480:1-12. [PMID: 34363825 DOI: 10.1016/j.ydbio.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/11/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022]
Abstract
Cardiac trabeculae are muscular ridge-like structures within the ventricular wall that are crucial for cardiac function. In zebrafish, these structures first form primarily through the delamination of compact wall cardiomyocytes (CMs). Although defects in proteasomal degradation have been associated with decreased cardiac function, whether they also affect cardiac development has not been extensively analyzed. Here we report a role during cardiac wall morphogenesis in zebrafish for the E3 ubiquitin-protein ligase Rbx1, which has been shown to regulate the degradation of key signaling molecules. Although development is largely unperturbed in zebrafish rbx1 mutant larvae, they exhibit CM multi-layering. This phenotype is not affected by blocking ErbB signaling, but fails to manifest itself in the absence of blood flow/cardiac contractility. Surprisingly, rbx1 mutants display ErbB independent Notch reporter expression in the myocardium. We generated tissue-specific rbx1 overexpression lines and found that endothelial, but not myocardial, specific rbx1 expression normalizes the cardiac wall morphogenesis phenotype. In addition, we found that pharmacological activation of Hedgehog signaling ameliorates the multi-layered myocardial wall phenotype in rbx1 mutants. Collectively, our data indicate that endocardial activity of Rbx1 is essential for cardiac wall morphogenesis.
Collapse
Affiliation(s)
- Pourya Sarvari
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - S Javad Rasouli
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Srinivas Allanki
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Oliver A Stone
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany
| | - Anna M Sokol
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany; Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, 61231, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany; Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, 61231, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, 61231, Germany.
| |
Collapse
|
7
|
A 3'-tRNA-derived fragment enhances cell proliferation, migration and invasion in gastric cancer by targeting FBXO47. Arch Biochem Biophys 2020; 690:108467. [PMID: 32592804 DOI: 10.1016/j.abb.2020.108467] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/27/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
Abstract
Increasing evidence demonstrates that tRNA-derived fragments (tRFs) exert important effects and are dysregulated in various human cancer types. However, their roles in gastric cancer (GC) remain unknown. Here we identified the functional effects of tRF-3019a (derived from tRNA-Ala-AGC-1-1) in GC. We demonstrated that tRF-3019a was upregulated in GC tissues and cell lines. Phenotypic studies revealed that tRF-3019a overexpression enhances GC cell proliferation, migration and invasion. Conversely, tRF-3019a knockdown inhibits GC cell malignant activities. Mechanistic investigation implies that tRF-3019a directly regulates tumor suppressor gene FBXO47. Furthermore, tRF-3019a levels may discriminate GC tissues from nontumorous tissues. Taken together, our results reveal that tRF-3019a modulates GC cell proliferation, migration and invasion by targeting FBXO47, and it may serve as a potential diagnostic biomarker for GC.
Collapse
|
8
|
Lin F, Tong F, He Q, Xiao S, Liu X, Yang H, Guo Y, Wang Q, Zhao H. In vitro effects of androgen on testicular development by the AR-foxl3-rec8/fbxo47 axis in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2020; 292:113435. [PMID: 32057909 DOI: 10.1016/j.ygcen.2020.113435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
In orange-spotted grouper, androgen can promote the development of testis and spermatogenesis, but the effect of androgen on testis development is unclear. Forkhead box L 3 (Foxl3) is important in the development of fish testis. Rec8 and fbxo47 are involved in meiosis, which impacts spermatogenesis. The present study investigated the plausible role of testis development through the Foxl3 transcriptional regulation of rec8 and fbxo47. The results of tissue distribution showed that rec8 and fbxo47 are highly expressed in gonad. In addition, the highest expression of foxl3, rec8, and fbxo47 was in the testis and intersex compared with the other stages of gonadal development, suggesting that foxl3, rec8, and fbxo47 are important in testis development. In addition, by using dual-luciferase assays, we found that the androgen can increase foxl3 promoter activity and Foxl3 can upregulate rec8 and fbxo47 promoter activity. Furthermore, the addition of β-testosterone significantly increased foxl3, rec8, and fbxo47 promoter activity. Together, these results suggest that foxl3 plays a decisive role in testis development by regulating the expression of rec8 or fbxo47 and imply that AR-foxl3-rec8/fbxo47 affects the testis development pathway.
Collapse
Affiliation(s)
- Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Feng Tong
- South China Agricultural University Hospital, Guangzhou 510642, Guangdong, People's Republic of China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Zou G, Liu T, Guo L, Huang Y, Feng Y, Duan T. MicroRNA‑32 silences WWP2 expression to maintain the pluripotency of human amniotic epithelial stem cells and β islet‑like cell differentiation. Int J Mol Med 2018; 41:1983-1991. [PMID: 29393344 PMCID: PMC5810217 DOI: 10.3892/ijmm.2018.3436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Abstract
Human amniotic epithelial stem cells (HuAECs) exhibit pluripotent characteristics, which are similar to those of embryonic stem cells, and can differentiate into various adult tissues and cells through directed induction. However, in culture, HuAECs tend to lose their pluripotency, and their directed differentiation capability declines with increasing passage number. The stem cell pluripotency factor octamer-binding protein 4 (Oct4) is an important transcription factor that promotes stem cell self-proliferation and maintains their pluripotency. Previous studies have demonstrated that WW domain containing E3 ubiquitin protein ligase 2 (WWP2) negatively regulates Oct4 expression and stem cell pluripotency. Therefore, the present study aimed to investigate the regulation of WWP2 by microRNAs (miRs), and to evaluate the expression of the downstream factor Oct4 and the maintenance of HuAEC pluripotency. Bioinformatics analysis identified a complementary binding site for miR-32 in the 3′untranslated region of the WWP2 gene, thus suggesting that it may be a target gene of miR-32. Post-infection of HuAECs with a vector overexpressing miR-32, the endogenous expression of WWP2 was significantly decreased, whereas Oct4 expression was significantly increased. Furthermore, miR-32-infected cells differentiated into β islet-like cells by directed induction. The results indicated that after induction, HuAECs overexpressing miR-32 also overexpressed the biomarkers of β islet-like cells. In addition, the ability to secrete insulin was markedly enhanced in response to glucose stimulation, in cells overexpressing miR-32. In conclusion, the present study suggested that miR-32 may effectively inhibit WWP2 expression in HuAECs and promote Oct4 overexpression to maintain their pluripotency.
Collapse
Affiliation(s)
- Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Te Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Yongyi Huang
- Laboratoire PROTEE, Batiment R, University du Sud Toulon‑Var, 83957 La Garde Cedex, France
| | - Ya Feng
- Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| |
Collapse
|
10
|
CUL2 overexpression driven by CUL2/E2F1/miR-424 regulatory loop promotes HPV16 E7 induced cervical carcinogenesis. Oncotarget 2017; 7:31520-33. [PMID: 27153550 PMCID: PMC5058775 DOI: 10.18632/oncotarget.9127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/11/2016] [Indexed: 01/07/2023] Open
Abstract
It has been shown that HPV16 E7, but not other genotypes, can bind to scaffold protein CUL2 during inducing cervical carcinogenesis, but the expression level, associated regulating mechanism, and potential carcinogenicity of CUL2 itself is still unknown as yet. Here, we demonstrated that CUL2 was specifically overexpressed in HPV16 positive cervical cancer cells and tissues, and CUL2 expression was significantly increased along with the cervical lesion progression and positively correlated with HPV16 E7. CUL2 knockdown slowed the growth of xenograft tumors in mouse models. Importantly, CUL2 specifically bound to HPV16 E7, but not HPV18 E7. Moreover, CUL2 acted as a direct target of miR-424, and reversely suppressed miR-424; E2F transcription factor 1 (E2F1) suppressed miR-424 expression; CUL2 bound to E2F1 and promoted E2F1 expression. Our results indicate the existence of a regulatory loop among CUL2, E2F1, and miR-424 in HPV16 positive cervical cancer cells. Our results suggest that E7 recruited CUL2, driven by CUL2/E2F1/miR-424 regulatory loop, is overexpressed and accelerates HPV16-induced cervical carcinogenesis. Our findings may serve as one of the explanations for a clinical phenomenon that HPV16 possesses the strongest cervical carcinogenicity among high-risk HPV genotypes.
Collapse
|
11
|
Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene 2017; 37:148-159. [PMID: 28925398 PMCID: PMC5770599 DOI: 10.1038/onc.2017.313] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Accumulative studies revealed that E3 ubiquitin ligases have important roles in colorectal carcinogenesis. The pathogenic mechanisms of colorectal cancer (CRC) initiation and progression are complex and heterogeneous, involving somatic mutations, abnormal gene fusion, deletion or amplification and epigenetic alteration, which may cause aberrant expression or altered function of E3 ligases in CRC. Defects of E3 ligases have been reported to be involved in the molecular etiology and pathogenesis of CRC. The aberrant expressed E3 ligases can function as either oncogenes or tumor suppressors depending on ubiquiting target substrates in CRC. Recently, considerable progress has been made in our understanding of the potential roles of E3 ligase-mediated ubiquitylation in colorectal carcinogenesis. There are mainly two subtypes of E3 ubiquitin ligases in humans, as defined by the presence of either a HECT domain or a RING finger domain on the basis of structural similitude. Most cancer-associated E3 ligases participate in regulating the cell cycle, apoptosis, gene transcription, cell signaling and DNA repair, the critical parts of CRC tumorigenesis. In this review, we have provided a comprehensive summary of abnormally expressed E3 ligases and their related pivotal mechanistic effects in CRC. In particular, we have highlighted the function of RING-type E3 ubiquitin enzymes in modulating cancer signaling pathways, immunity and tumor microenvironment in CRC development and progression; their mechanism(s) of action in CRC involving both ubiquitylation-dependent and ubiquitylation-independent effects; and the potential of RING E3 ligases as molecular biomarkers for predicting patient prognosis and as therapeutic targets in CRC. A better understanding of E3 ligase-mediated substrates' ubiquitylation involved in the development of CRC will provide new insights into the pathophysiology mechanisms of CRC, and unravel novel prognostic markers and therapeutic strategies for CRC.
Collapse
|
12
|
Small molecule perturbation of the CAND1-Cullin1-ubiquitin cycle stabilizes p53 and triggers Epstein-Barr virus reactivation. PLoS Pathog 2017; 13:e1006517. [PMID: 28715492 PMCID: PMC5531659 DOI: 10.1371/journal.ppat.1006517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/27/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
The chemical probe C60 efficiently triggers Epstein-Barr Virus (EBV) reactivation from latency through an unknown mechanism. Here, we identify the Cullin exchange factor CAND1 as a biochemical target of C60. We also identified CAND1 in an shRNA library screen for EBV lytic reactivation. Gene expression profiling revealed that C60 activates the p53 pathway and protein analysis revealed a strong stabilization and S15 phosphorylation of p53. C60 reduced Cullin1 association with CAND1 and led to a global accumulation of ubiquitylated substrates. C60 also stabilized the EBV immediate early protein ZTA through a Cullin-CAND1-interaction motif in the ZTA transcription activation domain. We propose that C60 perturbs the normal interaction and function of CAND1 with Cullins to promote the stabilization of substrates like ZTA and p53, leading to EBV reactivation from latency. Understanding the mechanism of action of C60 may provide new approaches for treatment of EBV associated tumors, as well as new tools to stabilize p53.
Collapse
|
13
|
Targeting the protein ubiquitination machinery in melanoma by the NEDD8-activating enzyme inhibitor pevonedistat (MLN4924). Invest New Drugs 2016; 35:11-25. [PMID: 27783255 DOI: 10.1007/s10637-016-0398-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/09/2016] [Indexed: 01/08/2023]
Abstract
Background The neddylation pathway conjugates NEDD8 to cullin-RING ligases and controls the proteasomal degradation of specific proteins involved in essential cell processes. Pevonedistat (MLN4924) is a selective small molecule targeting the NEDD8-activating enzyme (NAE) and inhibits an early step in neddylation, resulting in DNA re-replication, cell cycle arrest and death. We investigated the anti-tumor potential of pevonedistat in preclinical models of melanoma. Methods Melanoma cell lines and patient-derived tumor xenografts (PDTX) treated with pevonedistat were assessed for viability/apoptosis and tumor growth, respectively, to identify sensitive/resistant models. Gene expression microarray and gene set enrichment analyses were performed in cell lines to determine the expression profiles and pathways of sensitivity/resistance. Pharmacodynamic changes in treated-PDTX were also characterized. Results Pevonedistat effectively inhibited cell viability (IC50 < 0.3 μM) and induced apoptosis in a subset of melanoma cell lines. Sensitive and resistant cell lines exhibited distinct gene expression profiles; sensitive models were enriched for genes involved in DNA repair, replication and cell cycle regulation, while immune response and cell adhesion pathways were upregulated in resistant models. Pevonedistat also reduced tumor growth in melanoma cell line xenografts and PDTX with variable responses. An accumulation of pevonedistat-NEDD8 adduct and CDT1 was observed in sensitive tumors consistent with its mechanism of action. Conclusions This study provided preclinical evidence that NAE inhibition by pevonedistat has anti-tumor activity in melanoma and supports the clinical benefits observed in recent Phase 1 trials of this drug in melanoma patients. Further investigations are warranted to develop rational combinations and determine predictive biomarkers of pevonedistat.
Collapse
|
14
|
Pisano A, Ceglia S, Palmieri C, Vecchio E, Fiume G, de Laurentiis A, Mimmi S, Falcone C, Iaccino E, Scialdone A, Pontoriero M, Masci FF, Valea R, Krishnan S, Gaspari M, Cuda G, Scala G, Quinto I. CRL3IBTK Regulates the Tumor Suppressor Pdcd4 through Ubiquitylation Coupled to Proteasomal Degradation. J Biol Chem 2015; 290:13958-71. [PMID: 25882842 PMCID: PMC4447969 DOI: 10.1074/jbc.m114.634535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Indexed: 12/19/2022] Open
Abstract
The human inhibitor of Bruton's tyrosine kinase isoform α (IBtkα) is a BTB protein encoded by the IBTK gene, which maps to chromosomal locus 6q14.1, a mutational hot spot in lymphoproliferative disorders. Here, we demonstrate that IBtkα forms a CRL3IBTK complex promoting its self-ubiquitylation. We identified the tumor suppressor Pdcd4 as IBtkα interactor and ubiquitylation substrate of CRL3IBTK for proteasomal degradation. Serum-induced degradation of Pdcd4 required both IBtkα and Cul3, indicating that CRL3IBTK regulated the Pdcd4 stability in serum signaling. By promoting Pdcd4 degradation, IBtkα counteracted the suppressive effect of Pdcd4 on translation of reporter luciferase mRNAs with stem-loop structured or unstructured 5′-UTR. IBtkα depletion by RNAi caused Pdcd4 accumulation and decreased the translation of Bcl-xL mRNA, a well known target of Pdcd4 repression. By characterizing CRL3IBTK as a novel ubiquitin ligase, this study provides new insights into regulatory mechanisms of cellular pathways, such as the Pdcd4-dependent translation of mRNAs.
Collapse
Affiliation(s)
- Antonio Pisano
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Simona Ceglia
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Camillo Palmieri
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Eleonora Vecchio
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Fiume
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria de Laurentiis
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Selena Mimmi
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Falcone
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Enrico Iaccino
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Scialdone
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Marilena Pontoriero
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Fasanella Masci
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rosanna Valea
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Shibu Krishnan
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Marco Gaspari
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Scala
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ileana Quinto
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Li Y, Zhang L, Zhou J, Luo S, Huang R, Zhao C, Diao A. Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy. Cell Prolif 2015; 48:338-47. [PMID: 25809873 DOI: 10.1111/cpr.12184] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4) is a member of the HECT E3 ubiquitin ligases, and is elevated in prostate, bladder and colorectal cancers, and promotes colonic cell population expansion. Up to now, molecular mechanisms of how Nedd4 functions, have not been well understood. MATERIALS AND METHODS In this study, shRNA was used to reduce expression of Nedd4 in the human prostate carcinoma cell line DU145. To analyse effects of Nedd4 on cell proliferation, MTT and colony formation assays were performed. DAPI staining and FACS analysis were used to investigate outcomes of Nedd4 activity, on apoptosis. Results of Nedd4 expression on lysosomal membrane permeabilization and autophagy were further investigated using acridine orange (AO) staining, immunofluorescence and western blot analysis. RESULTS We found that in HeLa cells, expression of Nedd4 promoted cell proliferation, whereas its knockdown inhibited colony formation and induced apoptosis in DU145 cells. Furthermore, down-regulation of Nedd4 in DU145 cells promoted lysosomal membrane permeabilization. We also found that down-regulation of Nedd4 inhibited autophagy in both DU145 and A549 cells. Investigation into mechanisms involved revealed that knockdown of endogenous Nedd4 expression notably increased activated mTOR (p-mTOR) levels, which suggests that mTOR signalling was involved in the Nedd4-mediated autophagy. CONCLUSIONS Our results indicate that expression of Nedd4 promoted cell proliferation and colony formation but prevented apoptosis. Moreover, Nedd4 promoted autophagy and was associated with the mTOR signalling pathway.
Collapse
Affiliation(s)
- Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, 300457, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Rodrigues LCDS, Holmes KE, Thompson V, Piskun CM, Lana SE, Newton MA, Stein TJ. Osteosarcoma tissues and cell lines from patients with differing serum alkaline phosphatase concentrations display minimal differences in gene expression patterns. Vet Comp Oncol 2015; 14:e58-69. [PMID: 25643733 DOI: 10.1111/vco.12132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Abstract
Serum alkaline phosphatase (ALP) concentration is a prognostic factor for osteosarcoma in multiple studies, although its biological significance remains incompletely understood. To determine whether gene expression patterns differed in osteosarcoma from patients with differing serum ALP concentrations, microarray analysis was performed on 18 primary osteosarcoma samples and six osteosarcoma cell lines from dogs with normal and increased serum ALP concentration. No differences in gene expression patterns were noted between tumours or cell lines with differing serum ALP concentration using a gene-specific two-sample t-test. Using a more sensitive empirical Bayes procedure, defective in cullin neddylation 1 domain containing 1 (DCUN1D1) was increased in both the tissue and cell lines of the normal ALP group. Using quantitative PCR (qPCR), differences in DCUN1D1 expression between the two groups failed to reach significance. The homogeneity of gene expression patterns of osteosarcoma associated differing serum ALP concentrations are consistent with previous studies suggesting serum ALP concentration is not associated with intrinsic differences of osteosarcoma cells.
Collapse
Affiliation(s)
- L C de Sá Rodrigues
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - K E Holmes
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - V Thompson
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - C M Piskun
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - S E Lana
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft Collins, CO, USA
| | - M A Newton
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - T J Stein
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.,Institute for Clinical & Translational Research, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Hede SM, Savov V, Weishaupt H, Sangfelt O, Swartling FJ. Oncoprotein stabilization in brain tumors. Oncogene 2014; 33:4709-21. [PMID: 24166497 DOI: 10.1038/onc.2013.445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Proteins involved in promoting cell proliferation and viability need to be timely expressed and carefully controlled for the proper development of the brain but also efficiently degraded in order to prevent cells from becoming brain cancer cells. A major pathway for targeted protein degradation in cells is the ubiquitin-proteasome system (UPS). Oncoproteins that drive tumor development and tumor maintenance are often deregulated and stabilized in malignant cells. This can occur when oncoproteins escape degradation by the UPS because of mutations in either the oncoprotein itself or in the UPS components responsible for recognition and ubiquitylation of the oncoprotein. As the pathogenic accumulation of an oncoprotein can lead to effectively sustained cell growth, viability and tumor progression, it is an indisputable target for cancer treatment. The most common types of malignant brain tumors in children and adults are medulloblastoma and glioma, respectively. Here, we review different ways of how deregulated proteolysis of oncoproteins involved in major signaling cancer pathways contributes to medulloblastoma and glioma development. We also describe means of targeting relevant oncoproteins in brain tumors with treatments affecting their stability or therapeutic strategies directed against the UPS itself.
Collapse
Affiliation(s)
- S-M Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - V Savov
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - H Weishaupt
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - O Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - F J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Shi D, Tan Z, Lu R, Yang W, Zhang Y. MicroRNA-218 inhibits the proliferation of human choriocarcinoma JEG-3 cell line by targeting Fbxw8. Biochem Biophys Res Commun 2014; 450:1241-6. [PMID: 24973709 DOI: 10.1016/j.bbrc.2014.06.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are endogenous 19-25 nucleotide noncoding single-stranded RNAs that regulate gene expression by blocking the translation or decreasing the stability of mRNAs. In this study, we showed that miR-218 expression levels were decreased while Fbxw8 expression levels were increased in human choriocarcinoma cell lines, and identified Fbxw8 as a novel direct target of miR-218. Overexpression of miR-218 inhibited cell growth arrest at G2/M phase, suppressed the protein levels of cyclin A and up-regulated the expression levels of p27 through decreasing the levels of Fbxw8. On the other hand, forced expression of Fbxw8 partly rescued the effect of miR-218 in the cells, attenuated cell proliferation decrease the percentage of cells at G2/M phase, induced cyclin A protein expression and suppressed the protein level of p27 through up-regulating the levels of Fbxw8. Taken together, these findings will shed light the role to mechanism of miR-218 in regulating JEG-3 cells proliferation via miR-218/Fbxw8 axis, and miR-218 may serve as a novel potential therapeutic target in human choriocarcinoma in the future.
Collapse
Affiliation(s)
- Dazun Shi
- Department of Obstetric and Gynaecology, Xiangya Hospital, Xiangya Hospital of Central South University, Changsha, China
| | - Zhihui Tan
- Department of Obstetric and Gynaecology, Xiangya Hospital, Xiangya Hospital of Central South University, Changsha, China
| | - Rong Lu
- Department of Obstetric and Gynaecology, Xiangya Hospital, Xiangya Hospital of Central South University, Changsha, China
| | - Wenqing Yang
- Department of Obstetric and Gynaecology, Xiangya Hospital, Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zhang
- Department of Obstetric and Gynaecology, Xiangya Hospital, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
19
|
Zhou L, Yang Y, Zhang J, Guo X, Bi Y, Li X, Zhang P, Zhang J, Lin M, Zhou Z, Shen R, Guo X, Huo R, Ling X, Sha J. The role of RING box protein 1 in mouse oocyte meiotic maturation. PLoS One 2013; 8:e68964. [PMID: 23874827 PMCID: PMC3708900 DOI: 10.1371/journal.pone.0068964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
RING box protein-1 (RBX1) is an essential component of Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligase and participates in diverse cellular processes by targeting various substrates for degradation. However, the physiological function of RBX1 in mouse oocyte maturation remains unknown. Here, we examined the expression, localization and function of RBX1 during mouse oocyte meiotic maturation. Immunofluorescence analysis showed that RBX1 displayed dynamic distribution during the maturation process: it localized around and migrated along with the spindle and condensed chromosomes. Rbx1 knockdown with the appropriate siRNAs led to a decreased rate of first polar body extrusion and most oocytes were arrested at metaphase I. Moreover, downregulation of Rbx1 caused accumulation of Emi1, an inhibitor of the anaphase-promoting complex/cyclosome (APC/C), which is required for mouse meiotic maturation. In addition, we found apparently increased expression of the homologue disjunction-associated protein securin and cyclin B1, which are substrates of APC/C E3 ligase and need to be degraded for meiotic progression. These results indicate the essential role of the SCFβTrCP-EMI1-APC/C axis in mouse oocyte meiotic maturation. In conclusion, we provide evidence for the indispensable role of RBX1 in mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Yang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Juanjuan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ye Bi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Junqiang Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Min Lin
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- * E-mail: (RH); (XL)
| | - Xiufeng Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
- * E-mail: (RH); (XL)
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Ehrentraut SF, Kominsky DJ, Glover LE, Campbell EL, Kelly CJ, Bowers BE, Bayless AJ, Colgan SP. Central role for endothelial human deneddylase-1/SENP8 in fine-tuning the vascular inflammatory response. THE JOURNAL OF IMMUNOLOGY 2012; 190:392-400. [PMID: 23209320 DOI: 10.4049/jimmunol.1202041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A deeper understanding of the mechanisms that control responses to inflammation is critical to the development of effective therapies. We sought to define the most proximal regulators of the Cullin (Cul)-RING ligases, which play a central role in the stabilization of NF-κB and hypoxia-inducible factor (HIF). In these studies, we identify the human deneddylase-1 (SENP8) as a key regulator of Cul neddylation response in vitro and in vivo. Using human microvascular endothelial cells (HMECs), we examined inflammatory responses to LPS or TNF-α by assessing Cul neddylation status, NF-κB and HIF-1α stabilization, and inflammatory cytokine secretion. HMECs with an intact neddylation pathway showed a time-dependent induction of Cul-1 neddylation, nuclear translocation of NF-κB, stabilization of HIF-1α, and increased NF-κB/HIF-α promoter activity in response to LPS. HMECs lacking SENP8 were unable to neddylate Cul-1 and subsequently were unable to activate NF-κB or HIF-1α. Pharmacological targeting of neddylation (MLN4924) significantly abrogated NF-κB responses, induced HIF-1α promoter activity, and reduced secretion of TNF-α-elicited proinflammatory cytokines. MLN4924 stabilized HIF and abrogated proinflammatory responses while maintaining anti-inflammatory IL-10 responses in vivo following LPS administration. These studies identify SENP8 as a proximal regulator of Cul neddylation and provide an important role for SENP8 in fine-tuning the inflammatory response. Moreover, our findings provide feasibility for therapeutic targeting of the Culs during inflammation.
Collapse
Affiliation(s)
- Stefan F Ehrentraut
- Mucosal Inflammation Program, Department of Medicine and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Haagenson KK, Tait L, Wang J, Shekhar MP, Polin L, Chen W, Wu GS. Cullin-3 protein expression levels correlate with breast cancer progression. Cancer Biol Ther 2012; 13:1042-6. [PMID: 22825334 DOI: 10.4161/cbt.21046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cullin-3 is a component of the Cullin-Ring ubiquitin ligase (CRL) family that plays an important role in mediating protein degradation. Deregulation of Cullin-3 expression has been observed in human cancers; however, a role for Cullin-3 in tumor progression has not been previously recognized. Using the MCF10DCIS.com human breast cancer xenograft model, we show that Cullin-3 is increasingly expressed during progression from comedo ductal carcinoma in situ (DCIS) to invasive carcinomas. Cullin-3 protein is not detected in early lesions but is noticeably increased in DCIS tumors and significantly overexpressed in invasive cancers. In experimental metastasis assays, high expression of Cullin-3 was observed in the lung site. Importantly, Cullin-3 staining is detected in human breast cancer tissues, not in normal breast tissues and its expression level positively correlates with tumor stage. These data suggest that Cullin-3 may play an important role in tumor progression from DCIS to invasive cancer and may serve as a biomarker for the diagnosis of aggressive breast cancer.
Collapse
|
22
|
Tee JM, Sartori da Silva MA, Rygiel AM, Muncan V, Bink R, van den Brink GR, van Tijn P, Zivkovic D, Kodach LL, Guardavaccaro D, Diks SH, Peppelenbosch MP. asb11 is a regulator of embryonic and adult regenerative myogenesis. Stem Cells Dev 2012; 21:3091-103. [PMID: 22512762 DOI: 10.1089/scd.2012.0123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The specific molecular determinants that govern progenitor expansion and final compartment size in the myogenic lineage, either during gestation or during regenerative myogenesis, remain largely obscure. Recently, we retrieved d-asb11 from a zebrafish screen designed to identify gene products that are downregulated during embryogenesis upon terminal differentiation and identified it as a potential regulator of compartment size in the ectodermal lineage. A role in mesodermal derivatives remained, however, unexplored. Here we report pan-vertebrate expression of Asb11 in muscle compartments, where it highly specifically localizes to the Pax7(+) muscle satellite cell compartment. Forced expression of d-asb11 impaired terminal differentiation and caused enhanced proliferation in the myogenic progenitor compartment both in in vivo and in vitro model systems. Conversely, introduction of a germline hypomorphic mutation in the zebrafish d-asb11 gene produced premature differentiation of the muscle progenitors and delayed regenerative responses in adult injured muscle. Thus, the expression of d-asb11 is necessary for muscle progenitor expansion, whereas its downregulation marks the onset of terminal differentiation. Hence, we provide evidence that d-asb11 is a principal regulator of embryonic as well as adult regenerative myogenesis.
Collapse
Affiliation(s)
- Jin-Ming Tee
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen J, Shen BY, Deng XX, Zhan Q, Peng CH. SKP1-CULLIN1-F-box (SCF)-mediated DRG2 degradation facilitated chemotherapeutic drugs induced apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 420:651-5. [PMID: 22450327 DOI: 10.1016/j.bbrc.2012.03.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/11/2012] [Indexed: 01/21/2023]
Abstract
Developmentally regulated GTP-binding protein 2 (DRG2), an evolutionarily conserved member of the DRG subfamily in the GTP-binding protein, is thought to play an essential role in the control of cell growth and differentiation. However, the role of DRG2 in hepatocellular carcinoma cells is largely unknown. Here, we show that DRG2 is down-regulated during chemotherapeutic drug induced apoptosis in four hepatocellular carcinoma cell lines. We further provided evidence that DRG2 was a substrate of a SKP1-CULLIN1-F-box E3 ligase complex and inhibition the function of Cullin1 prevented the degradation of DRG2 during apoptosis. Moreover, over-expression of DRG2 inhibited doxorubicin induced apoptosis in hepatocellular carcinoma cells. Taken together, these results demonstrate that regulated degradation of DRG2 has a role in chemotherapeutic drug induced hepatocellular carcinoma cells apoptosis.
Collapse
Affiliation(s)
- Jie Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
24
|
Tanaka T, Nakatani T, Kamitani T. Inhibition of NEDD8-conjugation pathway by novel molecules: potential approaches to anticancer therapy. Mol Oncol 2012; 6:267-75. [PMID: 22306028 DOI: 10.1016/j.molonc.2012.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 11/25/2022] Open
Abstract
Cancer cells can survive through the upregulation of cell cycle and the escape from apoptosis induced by numerous cellular stresses. In the normal cells, these biological cascades depend on scheduled proteolytic degradation of regulatory proteins via the ubiquitin-proteasome pathway. Therefore, interruption of regulated proteolytic pathways leads to abnormal cell-proliferation. Ubiquitin ligases called SCF complex (consisting of Skp-1, cullin, and F-box protein) or CRL (cullin-RING ubiquitin ligase) are predominant in a family of E3 ubiquitin ligases that control a final step in ubiquitination of diverse substrates. To a great extent, the ubiquitin ligase activity of the SCF complex requires the conjugation of NEDD8 to cullins, i.e. scaffold proteins. This review is anticipated to review the downregulation system of NEDD8 conjugation by several factors including a chemical compound such as MLN4924 and protein molecules (e.g. COP9 signalosome, inactive mutant of Ubc12, and NUB1/NUB1L). Since the downregulation of NEDD8 conjugation affects cell-cycle progression by inhibiting the ligase activity of SCF complexes, such knowledge in the NEDD8-conjugation pathway will contribute to the more magnificent therapies that selectively suppress tumorigenesis.
Collapse
Affiliation(s)
- Tomoaki Tanaka
- Department of Urology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan.
| | | | | |
Collapse
|
25
|
Liao H, Liu XJ, Blank JL, Bouck DC, Bernard H, Garcia K, Lightcap ES. Quantitative proteomic analysis of cellular protein modulation upon inhibition of the NEDD8-activating enzyme by MLN4924. Mol Cell Proteomics 2011; 10:M111.009183. [PMID: 21873567 PMCID: PMC3226404 DOI: 10.1074/mcp.m111.009183] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/11/2011] [Indexed: 01/03/2023] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) are responsible for the ubiquitination of many cellular proteins, thereby targeting them for proteasomal degradation. In most cases the substrates of the CRLs have not been identified, although many of those that are known have cancer relevance. MLN4924, an investigational small molecule that is a potent and selective inhibitor of the Nedd8-activating enzyme (NAE), is currently being explored in Phase I clinical trials. Inhibition of Nedd8-activating enzyme by MLN4924 prevents the conjugation of cullin proteins with NEDD8, resulting in inactivation of the entire family of CRLs. We have performed stable isotope labeling with amino acids in cell culture analysis of A375 melanoma cells treated with MLN4924 to identify new CRL substrates, confidently identifying and quantitating 5122-6012 proteins per time point. Proteins such as MLX, EID1, KLF5, ORC6L, MAGEA6, MORF4L2, MRFAP1, MORF4L1, and TAX1BP1 are rapidly stabilized by MLN4924, suggesting that they are novel CRL substrates. Proteins up-regulated at later times were also identified and siRNA against their corresponding genes were used to evaluate their influence on MLN4924-induced cell death. Thirty-eight proteins were identified as being particularly important for the cytotoxicity of MLN4924. Strikingly, these proteins had roles in cell cycle, DNA damage repair, and ubiquitin transfer. Therefore, the combination of RNAi with stable isotope labeling with amino acids in cell culture provides a paradigm for understanding the mechanism of action of novel agents affecting the ubiquitin proteasome system and a path to identifying mechanistic biomarkers.
Collapse
Affiliation(s)
- Hua Liao
- ‡From the Discovery, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139
| | - Xiaozhen J. Liu
- ‡From the Discovery, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139
| | - Jonathan L. Blank
- ‡From the Discovery, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139
| | - David C. Bouck
- ‡From the Discovery, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139
| | - Hugues Bernard
- ‡From the Discovery, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139
| | - Khristofer Garcia
- ‡From the Discovery, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139
| | - Eric S. Lightcap
- ‡From the Discovery, Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139
| |
Collapse
|
26
|
Watson IR, Irwin MS, Ohh M. NEDD8 pathways in cancer, Sine Quibus Non. Cancer Cell 2011; 19:168-76. [PMID: 21316600 DOI: 10.1016/j.ccr.2011.01.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/05/2010] [Accepted: 12/22/2010] [Indexed: 01/24/2023]
Abstract
There are 17 known ubiquitin-like proteins (UBLs) from nine phylogenetically distinct classes (NEDD8, SUMO, ISG15, FUB1, FAT10, Atg8, Atg12, Urm1, and UFM1) that have been identified to conjugate to substrates in a manner analogous to ubiquitin. NEDD8 is one of the most studied UBLs and shares the highest amino acid similarity to ubiquitin. Here, we review the current knowledge of the NEDD8 conjugation cascade derived from functional studies in genetic model organisms, structural insights from crystallographic studies, biochemical studies identifying a growing list of NEDD8 substrates with oncogenic implications, and attempts to pharmacologically target the NEDD8 pathway in cancer.
Collapse
Affiliation(s)
- Ian R Watson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
27
|
Fbxw8 is involved in the proliferation of human choriocarcinoma JEG-3 cells. Mol Biol Rep 2010; 38:1741-7. [PMID: 20878477 DOI: 10.1007/s11033-010-0288-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Fbxw8 is the F-box component of a SCF-like E3 ubiquitin ligase complex. Mice lacking Fbxw8 exhibit pathological defects in placenta and embryo similar to fetal growth retardation, suggesting a role of Fbxw8 in placentation. Proliferative capacity of trophoblast cells is very important in placental development. In this context, we revealed that Fbxw8 was expressed in four different human trophoblast cell lines. Silencing of Fbxw8 expression by siRNA inhibited the growth of choriocarcinoma JEG-3 cells. By Western blotting, cell cycle analysis, we showed that down-regulation of Fbxw8 by RNAi induced cell-growth arrest at G2/M phase through decreasing the levels of CDK1, CDK2, cyclin A and cyclin B1 and up-regulation of p27 at protein level. Conversely, over-expression of Fbxw8 led to the opposite effect. These results suggest that Fbxw8 plays an essential role in the proliferation of human trophoblast cells, especially JEG-3 cells, via G2/M phase transition in association with regulation of CDK1, CDK2, cyclin A, cyclin B1 and p27 expression.
Collapse
|
28
|
SCCRO promotes glioma formation and malignant progression in mice. Neoplasia 2010; 12:476-84. [PMID: 20563250 DOI: 10.1593/neo.10202] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 12/20/2022] Open
Abstract
Originally identified as an oncogene activated by amplification in squamous cell carcinomas, several lines of evidence now suggest that squamous cell carcinoma-related oncogene (SCCRO; aka DCUN1D1) may play a role in the pathogenesis of a wide range of human cancers including gliomas. SCCRO's oncogenic function is substantiated by its ectopic expression, resulting in transformation of cells in culture and xenograft formation in nude mice. The aim of this study was to assess the in vivo oncogenicity of SCCRO in a murine model. Ubiquitous expression of SCCRO resulted in early embryonic lethality. Because SCCRO overexpression was detected in human gliomas, its in vivo oncogenic activity was assessed in an established murine glioma model. Conditional expression of SCCRO using a replication-competent ASLV long terminal repeat with splice acceptor/nestin-(tumor virus-A) tv-a model system was not sufficient to induce tumor formation in a wild-type genetic background, but tumors formed with increasing frequency and decreasing latency in facilitated background containing Ink4a deletion alone or in combination with PTEN loss. Ectopic expression of SCCRO in glial progenitor cells resulted in lower-grade gliomas in Ink4a(-/-) mice, whereas its expression in Ink4a(-/-)/PTEN(-/-) background produced high-grade glioblastoma-like lesions that were indistinguishable from human tumors. Expression of SCCRO with platelet-derived growth factor-beta (PDGF-beta) resulted in an increased proportion of mice forming glioblastoma-like tumors compared with those induced by PDGF-beta alone. This work substantiates SCCRO's function as an oncogene by showing its ability to facilitate malignant transformation and carcinogenic progression in vivo and supports a role for SCCRO in the pathogenesis of gliomas and other human cancers.
Collapse
|
29
|
Park G, Masi T, Choi CK, Kim H, Becker JM, Sparer TE. Screening for novel constitutively active CXCR2 mutants and their cellular effects. Methods Enzymol 2010; 485:481-97. [PMID: 21050933 DOI: 10.1016/b978-0-12-381296-4.00026-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemokines play an important role in inflammatory, developmental, and homeostatic processes. Deregulation of this system results in various diseases including tumorigenesis and cancer metastasis. Deregulation can occur when constitutively active mutant (CAM) chemokine receptors are locked in the "on" position. This can lead to cellular transformation/tumorigenesis. The CXC chemokine receptor 2 (CXCR2) is a G-protein-coupled receptor (GPCR) expressed on neutrophils, some monocytes, endothelial cells, and some epithelial cells. CXCR2 activation with CXC chemokines induces leukocyte migration, trafficking, leukocyte degranulation, cellular differentiation, and angiogenesis. Activation of CXCR2 can lead to cellular transformation. We hypothesized that CAM CXCR2s may play a role in cancer development. In order to identify CXCR2 CAMs, potential mutant CXCR2 receptors were screened using a modified Saccharomyces cerevisiae high-throughput system. S. cerevisiae has been used successfully to identify GPCR/G-protein interactions and autocrine selection for peptide agonists. The CXCR2 CAMs identified from this screen were characterized in mammalian cells. Their ability to transform cells in vitro was shown using foci formation, soft-agar growth, impedance measurement assays, and in vivo tumor growth following hind flank inoculation into mice. Signaling pathways contributing to cellular transformation were identified using luciferase reporter assays. Studying constitutively active GPCRs is an approach to "capturing" pluridimensional GPCRs in a "locked" activation state. In order to address the residues necessary for CXCR2 activation, we used S. cerevisiae for screening novel CAMs and characterized them using mammalian reporter assays.
Collapse
Affiliation(s)
- Giljun Park
- The University of Tennessee, Department of Microbiology, Knoxville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
30
|
Sato Y, Kamura T, Shirata N, Murata T, Kudoh A, Iwahori S, Nakayama S, Isomura H, Nishiyama Y, Tsurumi T. Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathog 2009; 5:e1000530. [PMID: 19649319 PMCID: PMC2712087 DOI: 10.1371/journal.ppat.1000530] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/06/2009] [Indexed: 11/30/2022] Open
Abstract
p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection. Inhibition of p53-mediated transactivation is essential for regulating the cellular environment advantageous for viral infection. Specially, DNA viruses target p53 for inactivation through the ubiquitin-proteasome pathway. The E6 protein of the high-risk human papillomaviruses and the cellular ubiquitin-protein ligase E6AP form a complex which causes ubiquitination and degradation of p53. The adenovirus E1B 55-kDa protein binds to both p53 and E4orf6, and recruits a Cullin-containing complex to direct the ubiquitin-mediated proteolysis of p53. However, in comparison with the effects of the smaller DNA viruses, much less is known regarding the precise mechanisms whereby the Epstein-Barr virus (EBV) inhibits functions of p53. EBV possesses two alternative life cycles, latent and lytic replication. In latent phase, p53 is regulated by MDM2 ubiquitin ligase while after induction of lytic replication p53 is phosphorylated and the level of activated p53 is regulated by a novel system independent of MDM2. This report describes a unique functional role of the BZLF1 protein encoded by EBV in the modulation of activated p53. In this pathway, BZLF1 protein serves as an adaptor molecule for both Cul2- and Cul5-containing E3 ubiquitin ligase complexes to stimulate the ubiquitination and degradation of p53 for inhibiting apoptosis, indicating redundancy in the EBV machinery to downregulate p53 level. Therefore, it would be possible that the complexes regulate not only p53 but also various proteins that interact with BZLF1 protein.
Collapse
Affiliation(s)
- Yoshitaka Sato
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Noriko Shirata
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Ayumi Kudoh
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Satoko Iwahori
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Sanae Nakayama
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Yukihiro Nishiyama
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
- * E-mail:
| |
Collapse
|
31
|
Zhang L, Hou Y, Wang M, Wu B, Li N. A study on the functions of ubiquitin metabolic system related gene FBG2 in gastric cancer cell line. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:78. [PMID: 19515249 PMCID: PMC2709112 DOI: 10.1186/1756-9966-28-78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 06/10/2009] [Indexed: 11/10/2022]
Abstract
Background FBG2 (F-BOX6) gene is an important member in ubiquitin metabolic system F-BOX family, and forms E3 complex with the other members in the family. But its role in gastric cancer is still not clear. In the present study, we intended to investigate the influence of FBG2 on the growth, proliferation, apoptosis, invasion and cell cycle of the gastric cancer line MKN45 and gastric cell line HFE145. Methods As a critical component of ubiquitin-protein ligase complex, FBG2 cDNA was subcloned into a constitutive vector PCDNA3.1 followed by transfection in MKN45 and HFE145 by using liposome. Then stable transfectants were selected and appraised. The apoptosis and cell cycles of these clones were analyzed by using flow cytometry. The growth and proliferation were analyzed by cell growth curves and colony-forming assay respectively. The invasion of these clones was tested by using cancer cell migration assay. The FBG2 stable expression clones(MKN-FBG2 and HFE-FBG2) and their control groups were detected and compared respectively. Results MKN-FBG2 grew faster than MKN45 and MKN-PC(MKN45 transfected with PCDNA3.1 vector). HFE-FBG2 grew faster than HFE145 and HFE-PC(HFE145 transfected with PCDNA3.1 vector). The cell counts of MKN-FBG2 in the forth, fifth, sixth and seventh days were significantly more than those of others (P < 0.05). Cell cycle analysis showed that MKN-FBG2 and HFE-FBG2 proliferated faster, proportions of cells in G2-M and S were different significantly with control groups (P < 0.05). Results of colony-forming assay showed that the colony formation rates of MKN-FBG2 and HFE-FBG2 were higher than those of control groups (P < 0.05). The results of cell migration assay were all negative. Conclusion FBG2 can promote the growth and proliferation of gastric cancer cells and normal gastric cells. It can help tumor cell maintain malignant phenotype too. But it can have a negative influence on the apoptosis or the ability of invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastroenterology, Second Affiliated Hospital of General Hospital of PLA, Beijing, PR China.
| | | | | | | | | |
Collapse
|
32
|
Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal development. Mol Cell Biol 2009; 29:3529-43. [PMID: 19398581 DOI: 10.1128/mcb.00364-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fbxo45 is an F-box protein that is restricted to the nervous system. Unlike other F-box proteins, Fbxo45 was found not to form an SCF complex as a result of an amino acid substitution in the consensus sequence for Cul1 binding. Proteomics analysis revealed that Fbxo45 specifically associates with PAM (protein associated with Myc), a RING finger-type ubiquitin ligase. Mice deficient in Fbxo45 were generated and found to die soon after birth as a result of respiratory distress. Fbxo45(-)(/)(-) embryos show abnormal innervation of the diaphragm, impaired synapse formation at neuromuscular junctions, and aberrant development of axon fiber tracts in the brain. Similar defects are also observed in mice lacking Phr1 (mouse ortholog of PAM), suggesting that Fbxo45 and Phr1 function in the same pathway. In addition, neuronal migration was impaired in Fbxo45(-)(/)(-) mice. These results suggest that Fbxo45 forms a novel Fbxo45-PAM ubiquitin ligase complex that plays an important role in neural development.
Collapse
|
33
|
Cummings CM, Bentley CA, Perdue SA, Baas PW, Singer JD. The Cul3/Klhdc5 E3 ligase regulates p60/katanin and is required for normal mitosis in mammalian cells. J Biol Chem 2009; 284:11663-75. [PMID: 19261606 DOI: 10.1074/jbc.m809374200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proper regulation of factors involved in mitosis is crucial to ensure normal cell division. Levels and activities of proteins are regulated in many ways, one of which is ubiquitin-mediated protein degradation. E3 ubiquitin ligases are involved in targeting specific substrates for degradation by facilitating their ubiquitination. In seeking to elucidate additional biological roles for Cul3 we performed a two-hybrid screen and identified Ctb9/KLHDC5 as a Cul3-interacting protein. Overexpression of Ctb9/KLHDC5 resulted in an increase in microtubule density as well as persistent microtubule bridges between post-mitotic cells. Conversely, down-regulation of Ctb9/KLHDC5 showed a pronounced reduction in microtubule density. Based on these observations, we examined the interactions between Cul3, Ctb9/KLHDC5, and the microtubule-severing protein, p60/katanin. Here we show that p60/katanin interacts with a complex consisting of Cul3 and Ctb9/KLHDC5, which results in ubiquitin laddering of p60/katanin. Also, Cul3-deficient cells or Ctb9/KLHDC5-deficient cells show an increase in p60/katanin levels, indicating that Cul3/Ctb9/KLHDC5 is required for efficient p60/katanin removal. We demonstrate a novel regulatory mechanism for p60/katanin that occurs at the level of targeted proteolysis to allow normal mitotic progression in mammalian cells.
Collapse
Affiliation(s)
- Cristina M Cummings
- Department of Molecular Biology, Cell Biology and Biochemistry and the Center for Genomics and Proteomics, Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | |
Collapse
|
34
|
Berthold J, Schenková K, Ramos S, Miura Y, Furukawa M, Aspenström P, Rivero F. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes--evidence for an autoregulatory mechanism. Exp Cell Res 2008; 314:3453-65. [PMID: 18835386 PMCID: PMC2749729 DOI: 10.1016/j.yexcr.2008.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 08/14/2008] [Accepted: 09/04/2008] [Indexed: 01/26/2023]
Abstract
RhoBTB proteins are atypical members of the Rho family of small GTPases. Two of the three RhoBTB proteins, RhoBTB1 and RhoBTB2, have been proposed as tumor suppressors and might function as adaptors of Cul3-dependent ubiquitin ligase complexes. Using yeast two-hybrid analysis and co-immunoprecipitation we show that all three RhoBTB proteins interact with Cul3. The interaction requires the N-terminal region of Cul3 and the first BTB domain of RhoBTB. RhoBTB3, the only RhoBTB with a prenylation motif, associates with vesicles that are frequently found in the vicinity of microtubules, suggesting a participation in some aspects of vesicle trafficking. We also show that RhoBTB2 and RhoBTB3 are capable of homo and heterodimerizing through the BTB domain region. The GTPase domain, which does not bind GTP, is able to interact with the BTB domain region, thus preventing proteasomal degradation of RhoBTB. This fits into a model in which an intramolecular interaction maintains RhoBTB in an inactive state, preventing the formation or the functionality of Cul3-dependent complexes. We also report a significantly decreased expression of RHOBTB and CUL3 genes in kidney and breast tumor samples and a very good correlation in the expression changes between RHOBTB and CUL3 that suggests that these genes are subject to a common inactivation mechanism in tumors.
Collapse
Affiliation(s)
- Jessica Berthold
- Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | - Kristína Schenková
- Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
- The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Sonia Ramos
- Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | - Yoshie Miura
- Eppley Cancer Institute and Nebraska Center for Cellular Signaling, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Manabu Furukawa
- Eppley Cancer Institute and Nebraska Center for Cellular Signaling, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Pontus Aspenström
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Francisco Rivero
- Center for Biochemistry, Medical Faculty, and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
- The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
35
|
Abstract
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27(Kip1) and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27(Kip1) or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27(Kip1). These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27(Kip1) degradation.
Collapse
Affiliation(s)
- Rong Hu
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | |
Collapse
|
36
|
Waning DL, Li B, Jia N, Naaldijk Y, Goebel WS, HogenEsch H, Chun KT. Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis. Blood 2008; 112:320-329. [PMID: 18339895 PMCID: PMC2442743 DOI: 10.1182/blood-2007-11-126300] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/03/2008] [Indexed: 12/11/2022] Open
Abstract
In vitro studies indicate that Cul4A ubiquitin ligases target for ubiquitin-mediated proteolysis regulators of cell-cycle progression, apoptosis, development, and DNA repair. In hematopoietic cell lines, studies by our group and others showed that Cul4A ligases regulate proliferation and differentiation in maturing myeloid and erythroid cells. In vivo, Cul4A-deficient embryos die in utero. Cul4A haploinsufficient mice are viable but have fewer erythroid and primitive myeloid progenitors. Yet, little more is known about Cul4A function in vivo. To examine Cul4A function in adults, we generated mice with interferon-inducible deletion of Cul4A. Cul4A deficiency resulted in DNA damage and apoptosis of rapidly dividing cells, and mutant mice died within 3 to 10 days after induction with dramatic atrophy of the intestinal villi, bone marrow, and spleen, and with hematopoietic failure. Cul4A deletion in vivo specifically increased cellular levels of the Cul4A ligase targets Cdt1 and p27(Kip1) but not other known targets. Bone marrow transplantation studies with Cul4A deletion in engrafted cells specifically isolated analysis of Cul4A function to hematopoietic cells and resulted in hematopoietic failure. These recipients died within 9 to 11 days, demonstrating that in hematopoietic cells, Cul4A is essential for survival.
Collapse
Affiliation(s)
- David L Waning
- Herman B Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Heuzé ML, Lamsoul I, Moog-Lutz C, Lutz PG. Ubiquitin-mediated proteasomal degradation in normal and malignant hematopoiesis. Blood Cells Mol Dis 2008; 40:200-10. [DOI: 10.1016/j.bcmd.2007.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 01/10/2023]
|
38
|
Abstract
RhoBTB proteins constitute a subfamily of atypical members within the Rho family of small guanosine triphosphatases (GTPases). Their most salient feature is their domain architecture: a GTPase domain (in most cases, non-functional) is followed by a prolinerich region, a tandem of 2 broadcomplex, tramtrack, bric a brac (BTB) domains, and a conserved Cterminal region. In humans, the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophila and Dictyostelium, but have been lost in plants and fungi. Interest in RhoBTB arose when RHOBTB2 was identified as the gene homozygously deleted in breast cancer samples and was proposed as a candidate tumor suppressor gene, a property that has been extended to RHOBTB1. The functions of RhoBTB proteins have not been defined yet, but may be related to the roles of BTB domains in the recruitment of cullin3, a component of a family of ubiquitin ligases. A model emerges in which RhoBTB proteins are required to maintain constant levels of putative substrates involved in cell cycle regulation or vesicle transport through targeting for degradation in the 26S proteasome. RhoBTB proteins are engrossing the list of Rho GTPases involved in tumorigenesis. Unlike typical Rho GTPases (usually overexpressed or hyperactive), RhoBTB proteins appear to play a part in the carcinogenic process through a mechanism that involves the decreased or abolished expression of the corresponding genes, or more rarely, mutations that result in impaired functioning of the protein, presumably leading to the accumulation of RhoBTB substrates and alterations of the cellular homeostasis.
Collapse
Affiliation(s)
- Jessica Berthold
- Centers for Biochemistry and Molecular Medicine, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
39
|
Cardozo T, Pagano M. Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. BMC BIOCHEMISTRY 2007; 8 Suppl 1:S9. [PMID: 18047746 PMCID: PMC2106342 DOI: 10.1186/1471-2091-8-s1-s9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Recently, the ubiquitin proteasome system (UPS) has matured as a drug discovery arena, largely on the strength of the proven clinical activity of the proteasome inhibitor Velcade in multiple myeloma. Ubiquitin ligases tag cellular proteins, such as oncogenes and tumor suppressors, with ubiquitin. Once tagged, these proteins are degraded by the proteasome. The specificity of this degradation system for particular substrates lies with the E3 component of the ubiquitin ligase system (ubiquitin is transferred from an E1 enzyme to an E2 enzyme and finally, thanks to an E3 enzyme, directly to a specific substrate). The clinical effectiveness of Velcade (as it theoretically should inhibit the output of all ubiquitin ligases active in the cell simultaneously) suggests that modulating specific ubiquitin ligases could result in an even better therapeutic ratio. At present, the only ubiquitin ligase leads that have been reported inhibit the degradation of p53 by Mdm2, but these have not yet been developed into clinical therapeutics. In this review, we discuss the biological rationale, assays, genomics, proteomics and three-dimensional structures pertaining to key targets within the UPS (SCFSkp2 and APC/C) in order to assess their drug development potential. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
Collapse
Affiliation(s)
- Timothy Cardozo
- Department of Pharmacology NYU Cancer Institute, New York University School of Medicine, 550 First Avenue MSB 599, New York, NY 10016, USA.
| | | |
Collapse
|
40
|
Bromberg KD, Kluger HM, Delaunay A, Abbas S, DiVito KA, Krajewski S, Ronai Z. Increased expression of the E3 ubiquitin ligase RNF5 is associated with decreased survival in breast cancer. Cancer Res 2007; 67:8172-9. [PMID: 17804730 PMCID: PMC2962863 DOI: 10.1158/0008-5472.can-07-0045] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The selective ubiquitination of proteins by ubiquitin E3 ligases plays an important regulatory role in control of cell differentiation, growth, and transformation and their dysregulation is often associated with pathologic outcomes, including tumorigenesis. RNF5 is an E3 ubiquitin ligase that has been implicated in motility and endoplasmic reticulum stress response. Here, we show that RNF5 expression is up-regulated in breast cancer tumors and related cell lines. Elevated expression of RNF5 was seen in breast cancer cell lines that became more sensitive to cytochalasin D- and paclitaxel-induced apoptosis following its knockdown with specific short interfering RNA. Inhibition of RNF5 expression markedly decreased cell proliferation and caused a reorganization of the actin cytoskeleton in response to stress in MCF-7 but not in p53 mutant breast cancer cells, suggesting a p53-dependent function. Significantly, high levels of RNF5 were associated with decreased survival in human breast cancer specimens. Similarly, RNF5 levels were higher in metastatic melanoma specimens and in melanoma, leukemia, ovarian, and renal tumor-derived cell lines, suggesting that increased RNF5 expression may be a common event during tumor progression. These results indicate that RNF5 is a novel regulator of breast cancer progression through its effect on actin cytoskeletal alterations, which also affect sensitivity of breast cancer cells to cytoskeletal targeting antineoplastic agents.
Collapse
Affiliation(s)
- Kenneth D. Bromberg
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York
| | - Harriet M. Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Agnes Delaunay
- Signal Transduction Program, The Burnham Institute for Medical Research, La Jolla, California
| | - Sabiha Abbas
- Signal Transduction Program, The Burnham Institute for Medical Research, La Jolla, California
| | - Kyle A. DiVito
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Stan Krajewski
- Signal Transduction Program, The Burnham Institute for Medical Research, La Jolla, California
| | - Ze’ev Ronai
- Signal Transduction Program, The Burnham Institute for Medical Research, La Jolla, California
| |
Collapse
|
41
|
Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, Harper JW, Munger K. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol 2007; 81:9737-47. [PMID: 17609271 PMCID: PMC2045412 DOI: 10.1128/jvi.00881-07] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) and other high-risk HPVs are etiologically linked to the development of cervical carcinomas and contribute to a number of other tumors of the anogenital tract, as well as oral cancers. The high-risk HPV E6 and E7 oncoproteins are consistently expressed in cervical cancer cells and are necessary for the induction and maintenance of the transformed phenotype. An important aspect of HPV16 E7's oncogenic activities is destabilization of the retinoblastoma tumor suppressor (pRB) through a ubiquitin/proteasome-dependent mechanism, although the exact molecular mechanism is unknown. Here, we report that HPV16 E7 is associated with an enzymatically active cullin 2 ubiquitin ligase complex and that the HPV16 E7/pRB complex contains cullin 2. Depletion of cullin 2 by RNA interference causes increased steady-state levels and stability of pRB in HPV16 E7-expressing cells, and ectopic expression of HPV16 E7 and the cullin 2 complex leads to pRB ubiquitination in vivo. Hence, we propose that the HPV16 E7-associated cullin 2 ubiquitin ligase complex contributes to aberrant degradation of the pRB tumor suppressor in HPV16 E7-expressing cells.
Collapse
Affiliation(s)
- KyungWon Huh
- The Channing Laboratory 861, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pisani DF, Coldefy AS, Elabd C, Cabane C, Salles J, Le Cunff M, Derijard B, Amri EZ, Dani C, Leger JJ, Dechesne CA. Involvement of BTBD1 in mesenchymal differentiation. Exp Cell Res 2007; 313:2417-26. [PMID: 17462629 DOI: 10.1016/j.yexcr.2007.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/28/2007] [Accepted: 03/22/2007] [Indexed: 12/25/2022]
Abstract
BTBD1 is a recently cloned BTB-domain-containing protein particularly expressed in skeletal muscle and interacting with DNA topoisomerase 1 (Topo1), a key enzyme of cell survival. We have previously demonstrated that stable overexpression of a N-terminal truncated BTBD1 inhibited ex vivo myogenesis but not adipogenesis of pluripotent C2C12 cells. Here, BTBD1 expression was studied in three models of cellular differentiation: myogenesis (C2C12 cells), adipogenesis (3T3-L1 cells) and osteogenesis (hMADS cells). BTBD1 mRNA was found to be upregulated during myogenesis. At the opposite, we have not observed BTBD1 upregulation in an altered myogenesis cellular model and we observed a downregulation of BTBD1 mRNA expression in adipogenesis. Interestingly, amounts of Topo1 protein, but not Topo1 mRNA, were found to be modulated at the opposite of BTBD1 mRNA. No variation of BTBD1 expression was measured during osteogenesis. Taken together, these results indicate that BTBD1 mRNA is specifically regulated during myogenic and adipogenic differentiation, in relation with Topo1 expression. Moreover, they corroborate observations made previously with truncated BTBD1 and show that BTBD1 is a key protein of balance between adipogenesis and myogenesis. Finally, a transcriptome analysis gave molecular clues to decipher BTBD1 role, with an emphasis on the involvement in ubiquitin/proteasome degradation pathway.
Collapse
Affiliation(s)
- Didier F Pisani
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Faculté des Sciences, Parc Valrose, Nice, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tarpey PS, Raymond FL, O'Meara S, Edkins S, Teague J, Butler A, Dicks E, Stevens C, Tofts C, Avis T, Barthorpe S, Buck G, Cole J, Gray K, Halliday K, Harrison R, Hills K, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Varian J, West S, Widaa S, Mallya U, Moon J, Luo Y, Holder S, Smithson SF, Hurst JA, Clayton-Smith J, Kerr B, Boyle J, Shaw M, Vandeleur L, Rodriguez J, Slaugh R, Easton DF, Wooster R, Bobrow M, Srivastava AK, Stevenson RE, Schwartz CE, Turner G, Gecz J, Futreal PA, Stratton MR, Partington M. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet 2007; 80:345-52. [PMID: 17236139 PMCID: PMC1785336 DOI: 10.1086/511134] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/20/2006] [Indexed: 12/23/2022] Open
Abstract
We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.
Collapse
Affiliation(s)
- Patrick S Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Ubiquitin is an important regulator of diverse biological functions including cell cycle progression, apoptosis, cell proliferation, and DNA damage responses. Crucial proteins involved in the control of such diverse functions are modified by ubiquitin and are frequently altered during oncogenesis. Here, we define such proteins as key-nodes regulated by ubiquitin, discuss examples of their oncogenic aberrations, and indicate how pharmacologic manipulation of such molecular hubs might improve anticancer therapy.
Collapse
Affiliation(s)
- Nicola Crosetto
- Institute of Biochemistry II, Goethe University Hospital, Frankfort on the Main, Germany
| | | | | |
Collapse
|
45
|
Dikic I, Crosetto N, Calatroni S, Bernasconi P. Targeting ubiquitin in cancers. Eur J Cancer 2006; 42:3095-102. [PMID: 17084074 DOI: 10.1016/j.ejca.2006.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 05/10/2006] [Indexed: 11/15/2022]
Abstract
Ubiquitin (Ub) is a small protein modifier involved in cellular functions such as cell cycle, apoptosis, cell signalling, endocytosis, transcription and DNA repair. Ubiquitin operates as a reversible and highly versatile regulatory signal, which may be read and interpreted by an expanding number of Ub-binding domains (UBD). There is accumulating evidence that mutations or altered expression of ubiquitylating or de-ubiquitylating enzymes as well as of Ub-binding proteins affect crucial mediators of such functions and are found in several malignancies. Here we discuss how oncogenic alterations in the Ub system can be targeted by anti-cancer therapies.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany.
| | | | | | | |
Collapse
|
46
|
Tsunematsu R, Nishiyama M, Kotoshiba S, Saiga T, Kamura T, Nakayama KI. Fbxw8 is essential for Cul1-Cul7 complex formation and for placental development. Mol Cell Biol 2006; 26:6157-69. [PMID: 16880526 PMCID: PMC1592786 DOI: 10.1128/mcb.00595-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cullin-based ubiquitin ligases (E3s) constitute one of the largest E3 families. Fbxw8 (also known as Fbw6 or Fbx29) is an F-box protein that is assembled with Cul7 in an SCF-like E3 complex. Here we show that Cul7 forms a heterodimeric complex with Cul1 in a manner dependent on Fbxw8. We generated mice deficient in Fbxw8 and found that Cul7 did not associate with Cul1 in cells of these mice. Two-thirds of Fbxw8-/- embryos die in utero, whereas the remaining one-third are born alive and grow to adulthood. Fbxw8-/- embryos show intrauterine growth retardation and abnormal development of the placenta, characterized by both a reduced thickness of the spongiotrophoblast layer and abnormal vessel structure in the labyrinth layer. Although the placental phenotype of Fbxw8-/- mice resembles that of Cul7-/- mice, other abnormalities of Cul7-/- mice are not apparent in Fbxw8-/- mice. These results suggest that the Cul7-based SCF-like E3 complex has both Fbxw8-dependent and Fbxw8-independent functions.
Collapse
Affiliation(s)
- Ryosuke Tsunematsu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Cullin 4 (Cul4), a member of the evolutionally conserved cullin protein family, serves as a scaffold to assemble multisubunit ubiquitin E3 ligase complexes. Cul4 interacts with the Ring finger-containing protein ROC1 through its C-terminal cullin domain and with substrate recruiting subunit(s) through its N-terminus. Previous studies have demonstrated that Cul4 E3 ligase ubiquitylates key regulators in cell cycle control and mediates their degradation through the proteasomal pathway, thus contributing to genome stability. Recent studies from several groups have revealed that Cul4 E3 ligase can target histones for ubiquitylation, and importantly, ubiquitylation of histones may facilitate the cellular response to DNA damage. Therefore, histone ubiquitylation by Cul4 E3 ligase constitutes a novel mechanism through which Cul4 regulates chromatin function and maintains genomic integrity. We outline these studies and suggest that histone ubiquitylation might play important roles in Cul4-regulated chromatin function including the cellular response to DNA damage and heterochromatin gene silencing.
Collapse
Affiliation(s)
- Qian Dai
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building Room 402A, 720 South 20th Street, Birmingham, AL 35294, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building Room 402A, 720 South 20th Street, Birmingham, AL 35294, USA
| |
Collapse
|
48
|
Wang P, Wang X, Wang F, Cai T, Luo Y. Interaction between Mnk2 and CBC(VHL) ubiquitin ligase E3 complex. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2006; 49:265-73. [PMID: 16856496 DOI: 10.1007/s11427-006-0265-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MAP kinase-interacting kinase-2 (Mnk2) is one of the downstream kinases activated by MAP kinases. It phosphorylates the eukaryotic initiation factor 4E (eIF4E), although the role of eIF4E phosphorylation and the role of Mnk2 in the process of protein translation are not well understood. Except for eIF4E, other physiological substrates of Mnk2 are still unidentified. To look for these unidentified substrates and to reveal the physiological function of Mnk2, we performed a yeast two-hybrid screening with Mnk2 as the bait. The results demonstrated Mnk2 could interact with VHL (von Hippel-Lindau tumor suppressor), Rbx1 (ring-box 1) and Cul2 (Cullin2) proteins in yeast cells. Furthermore, we validated the interaction between Mnk2 and VHL proteins in mammalian cells by co-immunoprecipitation analysis. Because the three proteins VHL, Rbx1 and Cul2 are all components of the CBC(VHL) ubiquitin ligase E3 complex, it has been shown that Mnk2 can interact with CBC(VHL) complex, and is probably one of the new substrates of the CBC(VHL) complex. Furthermore, during the interaction of Mnk2 with von Hippel-Lindau (VHL) tumor suppressor- binding protein 1 (VBP1), it appears that Mnk2 also joins to modulate cell shape as VBP1 plays an important role in the process of the maturation of the cytoskeleton and in the process of morphogenesis.
Collapse
Affiliation(s)
- Pingzhang Wang
- Chinese National Human Genome Center, Beijing 100176, China.
| | | | | | | | | |
Collapse
|
49
|
Stacy DR, Ely K, Massion PP, Yarbrough WG, Hallahan DE, Sekhar KR, Freeman ML. Increased expression of nuclear factor E2 p45-related factor 2 (NRF2) in head and neck squamous cell carcinomas. Head Neck 2006; 28:813-8. [PMID: 16637057 DOI: 10.1002/hed.20430] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) continues to cause significant morbidity and mortality. Overexpression of specific phase II gene products may represent an important biomarker. One regulator of phase II gene expression is the transcription factor nuclear factor E2 p45-related factor 2 (Nrf2). Nrf2 expression was evaluated in HNSCC, to determine whether it might serve as a biomarker for early detection of disease. METHODS A tissue microarray was constructed of 141 HNSCC biopsy cores from 47 HNSCCs. In addition, histologically normal squamous mucosa was obtained from 7 patients. Protein expression was evaluated by immunohistochemistry. RESULTS Nrf2 expression was increased in 91.5% of tumors. Expression of thioredoxin, a Nrf2-reguated gene product, was elevated in 75% of tumors. Keap1, which regulates the rate of Nrf2 ubiquitination and degradation, was relatively overexpressed in HNSCC compared with normal mucosa. CONCLUSIONS Nrf2 expression may be a possible HNSCC candidate biomarker.
Collapse
Affiliation(s)
- Donnie R Stacy
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
In the last several years, multiple lines of evidence have suggested that the COP9 signalosome (CSN) plays a significant role in the regulation of multiple cancers and could be an attractive target for therapeutic intervention. First, the CSN plays a key role in the regulation of Cullin-containing ubiquitin E3 ligases that are central mediators of a variety of cellular functions essential during cancer progression. Second, several studies suggest that the individual subunits of the CSN, particularly CSN5, might regulate oncogenic and tumor suppressive functions independently of, or coordinately with, the CSN holocomplex. Thus, deregulation of CSN subunit function can have a dramatic effect on diverse cellular functions, including the maintenance of DNA fidelity, cell cycle control, DNA repair, angiogenesis, and microenvironmental homeostasis that are critical for tumor development. Additionally, clinical studies have suggested that the expression or localization of some CSN subunits correlate to disease progression or clinical outcome in a variety of tumor types. Although the study of CSN function in relation to tumor progression is in its infancy, this review will address current studies in relation to cancer initiation, progression, and potential for therapeutic intervention.
Collapse
Affiliation(s)
- Katharine S Richardson
- Department of Pharmacology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | |
Collapse
|