1
|
Smith S, Lopez S, Kim A, Kasteri J, Olumuyide E, Punu K, de la Parra C, Sauane M. Interleukin 24: Signal Transduction Pathways. Cancers (Basel) 2023; 15:3365. [PMID: 37444474 PMCID: PMC10340555 DOI: 10.3390/cancers15133365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Interleukin 24 is a member of the IL-10 family with crucial roles in antitumor, wound healing responses, host defense, immune regulation, and inflammation. Interleukin 24 is produced by both immune and nonimmune cells. Its canonical pathway relies on recognition and interaction with specific Interleukin 20 receptors in the plasma membrane and subsequent cytoplasmic Janus protein tyrosine kinases (JAK)/signal transducer and activator of the transcription (STAT) activation. The identification of noncanonical JAK/STAT-independent signaling pathways downstream of IL-24 relies on the interaction of IL-24 with protein kinase R in the cytosol, respiratory chain proteins in the inner mitochondrial membrane, and chaperones such as Sigma 1 Receptor in the endoplasmic reticulum. Numerous studies have shown that enhancing or inhibiting the expression of Interleukin 24 has a therapeutic effect in animal models and clinical trials in different pathologies. Successful drug targeting will require a deeper understanding of the downstream signaling pathways. In this review, we discuss the signaling pathway triggered by IL-24.
Collapse
Affiliation(s)
- Simira Smith
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Sual Lopez
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Anastassiya Kim
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
| | - Justina Kasteri
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Ezekiel Olumuyide
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Kristian Punu
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
| | - Columba de la Parra
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
- Department of Chemistry, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; (S.S.); (S.L.); (J.K.); (E.O.); (K.P.)
- Ph.D. Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; (A.K.); (C.d.l.P.)
| |
Collapse
|
2
|
Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci 2021; 23:ijms23010072. [PMID: 35008495 PMCID: PMC8744595 DOI: 10.3390/ijms23010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.
Collapse
|
3
|
Mutant Kras as a Biomarker Plays a Favorable Role in FL118-Induced Apoptosis, Reactive Oxygen Species (ROS) Production and Modulation of Survivin, Mcl-1 and XIAP in Human Bladder Cancer. Cancers (Basel) 2020; 12:cancers12113413. [PMID: 33217967 PMCID: PMC7698790 DOI: 10.3390/cancers12113413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary FL118 is a novel orally available small molecule anticancer drug. We found that bladder cancer cells with a mutant Kras is highly sensitive to FL118-induced cell growth inhibition and cell death induction through inhibiting the anti-cancer cell death and drug resistance factors (survivin, Mcl-1, XIAP). In the Kras-mutation bladder cancer cells, FL118 can stimulate the reactive oxygen species (ROS) over-production for killing bladder cancer cells and inhibiting bladder cancer cell-established tumor growth. Elimination of mutant Kras by Kras-specific shRNA technology in mutant Kras-containing bladder cancer cell-established tumor decreased FL118 effectiveness to inhibit bladder cancer tumor growth. In this regard, mutant Kras is a potential favorable biomarker for FL118. This finding is significant because mutant Kras is known to be a formidable challenge treatment resistant factor in various types of cancer. Thus, FL118 could use mutant Kras as favorable biomarker for patient selection to carry out precision medicine. Abstract Tumor heterogeneity in key gene mutations in bladder cancer (BC) is a major hurdle for the development of effective treatments. Using molecular, cellular, proteomics and animal models, we demonstrated that FL118, an innovative small molecule, is highly effective at killing T24 and UMUC3 high-grade BC cells, which have Hras and Kras mutations, respectively. In contrast, HT1376 BC cells with wild-type Ras are insensitive to FL118. This concept was further demonstrated in additional BC and colorectal cancer cells with mutant Kras versus those with wild-type Kras. FL118 strongly induced PARP cleavage (apoptosis hallmark) and inhibited survivin, XIAP and/or Mcl-1 in both T24 and UMUC3 cells, but not in the HT1376 cells. Silencing mutant Kras reduced both FL118-induced PARP cleavage and downregulation of survivin, XIAP and Mcl-1 in UMUC3 cells, suggesting mutant Kras is required for FL118 to exhibit higher anticancer efficacy. FL118 increased reactive oxygen species (ROS) production in T24 and UMUC3 cells, but not in HT1376 cells. Silencing mutant Kras in UMUC3 cells reduced FL118-mediated ROS generation. Proteomics analysis revealed that a profound and opposing Kras-relevant signaling protein is changed in UMUC3 cells and not in HT1376 cells. Consistently, in vivo studies indicated that UMUC3 tumors are highly sensitive to FL118 treatment, while HT1376 tumors are highly resistant to this agent. Silencing mutant Kras in UMUC3 cell-derived tumors decreases UMUC3 tumor sensitivity to FL118 treatment. Together, our studies revealed that mutant Kras is a favorable biomarker for FL118 targeted treatment.
Collapse
|
4
|
Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic Adenovirus-A Nova for Gene-Targeted Oncolytic Viral Therapy in HCC. Front Oncol 2019; 9:1182. [PMID: 31781493 PMCID: PMC6857090 DOI: 10.3389/fonc.2019.01182] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide, particularly in China. Despite the development of HCC treatment strategies, the survival rate remains unpleasant. Gene-targeted oncolytic viral therapy (GTOVT) is an emerging treatment modality-a kind of cancer-targeted therapy-which creates viral vectors armed with anti-cancer genes. The adenovirus is a promising agent for GAOVT due to its many advantages. In spite of the oncolytic adenovirus itself, the host immune response is the determining factor for the anti-cancer efficacy. In this review, we have summarized recent developments in oncolytic adenovirus engineering and the development of novel therapeutic genes utilized in HCC treatment. Furthermore, the diversified roles the immune response plays in oncolytic adenovirus therapy and recent attempts to modulate immune responses to enhance the anti-cancer efficacy of oncolytic adenovirus have been discussed.
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Chuan Tian
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Abstract
Subtraction hybridization identified genes displaying differential expression as metastatic human melanoma cells terminally differentiated and lost tumorigenic properties by treatment with recombinant fibroblast interferon and mezerein. This approach permitted cloning of multiple genes displaying enhanced expression when melanoma cells terminally differentiated, called melanoma differentiation associated (mda) genes. One mda gene, mda-7, has risen to the top of the list based on its relevance to cancer and now inflammation and other pathological states, which based on presence of a secretory sequence, chromosomal location, and an IL-10 signature motif has been named interleukin-24 (MDA-7/IL-24). Discovered in the early 1990s, MDA-7/IL-24 has proven to be a potent, near ubiquitous cancer suppressor gene capable of inducing cancer cell death through apoptosis and toxic autophagy in cancer cells in vitro and in preclinical animal models in vivo. In addition, MDA-7/IL-24 embodied profound anticancer activity in a Phase I/II clinical trial following direct injection with an adenovirus (Ad.mda-7; INGN-241) in tumors in patients with advanced cancers. In multiple independent studies, MDA-7/IL-24 has been implicated in many pathological states involving inflammation and may play a role in inflammatory bowel disease, psoriasis, cardiovascular disease, rheumatoid arthritis, tuberculosis, and viral infection. This review provides an up-to-date review on the multifunctional gene mda-7/IL-24, which may hold potential for the therapy of not only cancer, but also other pathological states.
Collapse
|
6
|
Emdad L, Das SK, Wang XY, Sarkar D, Fisher PB. Cancer terminator viruses (CTV): A better solution for viral-based therapy of cancer. J Cell Physiol 2018; 233:5684-5695. [PMID: 29278667 DOI: 10.1002/jcp.26421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Ma C, Zhao LL, Zhao HJ, Cui JW, Li W, Wang NY. Lentivirus‑mediated MDA7/IL24 expression inhibits the proliferation of hepatocellular carcinoma cells. Mol Med Rep 2018; 17:5764-5773. [PMID: 29484443 PMCID: PMC5866019 DOI: 10.3892/mmr.2018.8616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
MDA7/IL24 is a member of the IL-10 gene family that functions as a cytokine. Notably, supra-physiological endogenous MDA7 levels have been indicated to suppress tumor growth and induce apoptosis in different cancer types. In the present study, MDA7 roles were investigated during the proliferation of hepatocellular carcinoma (HCC) cells and the molecular mechanisms underlying this process. A lentiviral vector expressing MDA7/IL24 (LV-MDA7/IL24) was constructed and used to infect HCC SMMC-7721 cells. The expression levels of MDA7/IL24 in these cells were determined using RT-qPCR and western blot analysis. The effects of LV-MDA7/IL24 on cell proliferation were analyzed using MTT and colony formation assays. Furthermore, the influence of LV-MDA7/IL24 on cell apoptosis and cell cycle distribution were detected using flow cytometry. The underlying molecular mechanisms were investigated using microarray and western blot analysis. The expression of MDA7/IL24 was confirmed to be significantly increased in the cells infected with LV-MDA7/IL24 compared with that the negative-control infected group. Lentivirus-mediated MDA7/IL24 expression was found to inhibit HCC cell proliferation and colony formation, and it also induced cell arrest and apoptosis. Microarray analysis and western blotting results indicated that multiple cancer-associated pathways and oncogenes are regulated by MDA7/IL24, including cell cycle regulatory and apoptosis activation pathway. In conclusion, it was determined that MDA7/IL24 inhibits the proliferation and reduces the tumorigenicity of HCC cells by regulating cell cycle progression and inducing apoptosis, indicating that it may be used as a potential prognostic and therapeutic target in HCC.
Collapse
Affiliation(s)
- Chao Ma
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ling-Ling Zhao
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Heng-Jun Zhao
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiu-Wei Cui
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Li
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nan-Ya Wang
- Oncology Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
Zhang J, Li C, Zheng Y, Lin Z, Zhang Y, Zhang Z. Inhibition of angiogenesis by arsenic trioxide via TSP-1-TGF-β1-CTGF-VEGF functional module in rheumatoid arthritis. Oncotarget 2017; 8:73529-73546. [PMID: 29088724 PMCID: PMC5650279 DOI: 10.18632/oncotarget.19867] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/11/2017] [Indexed: 01/25/2023] Open
Abstract
Angiogenesis is a critical factor for rheumatoid arthritis (RA). Although anti-TNF biologics work effectively on some RA patients, concerns have been raised about the possible increased development of malignancies alongside such treatments. Arsenic trioxide (As2O3) has attracted worldwide attention and has been reported to treat some cancers. However, the effects of As2O3 on angiogenesis in the RA synovium remain unclear. Here, we report a systematic increased expression of TSP-1, TGF-β1, CTGF and VEGF in supernatants of a RA fibroblast-like synoviocytes (RA-FLS) and human dermal microvascular endothelial cells (HDMECs) co-culture compared with those from a normal human fibroblast-like synoviocytes (NH-FLS) and HDMECs co-culture. This increased expression may up-regulate endothelial tube formation and transwell migration, as well as microvessel sprouting in ex vivo aortic ring assay. These networked angiogenic factors mainly form a functional module regulating angiogenesis in the RA synovium. We show that As2O3 inhibits angiogenesis in the collagen-induced arthritis (CIA) synovium and consequently arthritis severity via significant suppression of TSP-1, TGF-β1, CTGF and VEGF expression in the CIA synovium, plus in the RA-FLS and HDMECs co-culture as well as NH-FLS and HDMECs co-culture system along with the presence or absence of TNF-α treatment. Thus As2O3 has a significant anti-angiogenesis effect on the RA-FLS and CIA synovium via its inhibition of the RA angiogenic functional module of TSP-1, TGF-β1, CTGF and VEGF and may have a potential for treating RA beyond cancer therapy.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Nan Gang, Harbin, China
| | - Chunling Li
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Nan Gang, Harbin, China
| | - Yining Zheng
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Nan Gang, Harbin, China
| | - Zhiguo Lin
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Nan Gang, Harbin, China
| | - Yue Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Nan Gang, Harbin, China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Nan Gang, Harbin, China
| |
Collapse
|
9
|
Pradhan AK, Talukdar S, Bhoopathi P, Shen XN, Emdad L, Das SK, Sarkar D, Fisher PB. mda-7/IL-24 Mediates Cancer Cell-Specific Death via Regulation of miR-221 and the Beclin-1 Axis. Cancer Res 2016; 77:949-959. [PMID: 27940575 DOI: 10.1158/0008-5472.can-16-1731] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
Melanoma differentiation-associated gene-7/IL-24 (mda-7/IL-24) displays broad-spectrum anticancer activity in vitro, in vivo in preclinical animal models, and in a phase I/II clinical trial in patients with advanced cancers without harming normal cells or tissues. Here we demonstrate that mda-7/IL-24 regulates a specific subset of miRNAs, including cancer-associated miR-221. Either ectopic expression of mda-7/IL-24 or treatment with recombinant His-MDA-7 protein resulted in downregulation of miR-221 and upregulation of p27 and PUMA in a panel of cancer cells, culminating in cell death. Mda-7/IL-24-induced cancer cell death was dependent on reactive oxygen species induction and was rescued by overexpression of miR-221. Beclin-1 was identified as a new transcriptional target of miR-221, and mda-7/IL-24 regulated autophagy through a miR-221/beclin-1 feedback loop. In a human breast cancer xenograft model, miR-221-overexpressing MDA-MB-231 clones were more aggressive and resistant to mda-7/IL-24-mediated cell death than parental clones. This is the first demonstration that mda-7/IL-24 directly regulates miRNA expression in cancer cells and highlights the novelty of the mda-7/IL-24-miR-221-beclin-1 loop in mediating cancer cell-specific death. Cancer Res; 77(4); 949-59. ©2016 AACR.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
10
|
Li YJ, Liu G, Xia L, Xiao X, Liu JC, Menezes ME, Das SK, Emdad L, Sarkar D, Fisher PB, Archer MC, Zacksenhaus E, Ben-David Y. Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice. Oncotarget 2016; 6:36943-54. [PMID: 26460950 PMCID: PMC4741907 DOI: 10.18632/oncotarget.6046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) encodes a tumor suppressor gene implicated in the growth of various tumor types including breast cancer. We previously demonstrated that recombinant adenovirus-mediated mda-7/IL-24 expression in the mammary glands of carcinogen-treated (methylnitrosourea, MNU) rats suppressed mammary tumor development. Since most MNU-induced tumors in rats contain activating mutations in Ha-ras, which arenot frequently detected in humans, we presently examined the effect of MDA-7/IL-24 on Her2/Neu-induced mammary tumors, in which the RAS pathway is induced. We generated tet-inducible MDA-7/IL-24 transgenic mice and crossed them with Her2/Neu transgenic mice. Triple compound transgenic mice treated with doxycycline exhibited a strong inhibition of tumor development, demonstrating tumor suppressor activity by MDA-7/IL-24 in immune-competent mice. MDA-7/IL-24 induction also inhibited growth of tumors generated following injection of Her2/Neu tumor cells isolated from triple compound transgenic mice that had not been treated with doxycycline, into the mammary fat pads of isogenic FVB mice. Despite initial growth suppression, tumors in triple compound transgenic mice lost mda-7/IL-24 expression and grew, albeit after longer latency, indicating that continuous presence of this cytokine within tumor microenvironment is crucial to sustain tumor inhibitory activity. Mechanistically, MDA-7/IL-24 exerted its tumor suppression effect on HER2+ breast cancer cells, at least in part, through PERP, a member of PMP-22 family with growth arrest and apoptosis-inducing capacity. Overall, our results establish mda-7/IL-24 as a suppressor of mammary tumor development and provide a rationale for using this cytokine in the prevention/treatment of human breast cancer.
Collapse
Affiliation(s)
- You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Guodong Liu
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lei Xia
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Xiao Xiao
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Jeff C Liu
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Michael C Archer
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Yaacov Ben-David
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
11
|
Ma G, Zhong B, Okamoto S, Jiang Y, Kawamura K, Liu H, Li Q, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. A combinatory use of adenoviruses expressing melanoma differentiation-associated gene-7 and replication-competent adenoviruses produces synergistic effects on pancreatic carcinoma cells. Tumour Biol 2015; 36:8137-45. [PMID: 25990458 DOI: 10.1007/s13277-015-3555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Type 5 adenoviruses expressing mda-7 gene (Ad-mda-7) induced cell death in various kinds of human tumors, but pancreatic carcinoma cells were relatively resistant to Ad-mda-7-mediated cytotoxicity. We then examined whether infection of Ad-mda-7 together with replication-competent Ad produced combinatory cytotoxic effects. We prepared replication-competent Ad, defective of the E1B55kDa gene or activated by a transcriptional regulatory region of the midkine or the survivin gene of which the expression was up-regulated in human tumors. Type 5 Ad bearing the exogenous regulatory region were further modified by replacing the fiber-knob region with that of type 35 Ad. Pancreatic carcinoma cells were infected with replication-incompetent Ad-mda-7 and the replication-competent Ad. Combinatory effects were examined with the CalcuSyn software and cell cycle analyses. Ad-mda-7 and the replication-competent Ad achieved cytotoxicity to pancreatic carcinoma. A combinatory use of Ad-mda-7 and either Ad defective of the E1B55kDa gene or Ad activated by the regulatory region produced synergistic cytotoxic effects. Cell cycle analyses demonstrated that the combination increased sub-G1 populations. These data collectively suggest that expression of MDA-7 augments cytotoxicity of replication-competent Ad and achieves adjuvant effects on Ad-mediated cell death.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Boya Zhong
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinya Okamoto
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Hongdan Liu
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Quanhai Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Cell Therapy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Masato Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Ikuo Sekine
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
12
|
Sarkar S, Quinn BA, Shen X, Dent P, Das SK, Emdad L, Sarkar D, Fisher PB. Reversing translational suppression and induction of toxicity in pancreatic cancer cells using a chemoprevention gene therapy approach. Mol Pharmacol 2015; 87:286-95. [PMID: 25452327 PMCID: PMC4293448 DOI: 10.1124/mol.114.094375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/01/2014] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is an aggressive disease with limited therapeutic options. Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a potent antitumor cytokine, shows cancer-specific toxicity in a vast array of human cancers, inducing endoplasmic reticulum stress and apoptosis, toxic autophagy, an antitumor immune response, an antiangiogenic effect, and a significant "bystander" anticancer effect that leads to enhanced production of this cytokine through autocrine and paracrine loops. Unfortunately, mda-7/IL-24 application in pancreatic cancer has been restricted because of a "translational block" occurring after Ad.5-mda-7 gene delivery. Our previous research focused on developing approaches to overcome this block and increase the translation of the MDA-7/IL-24 protein, thereby promoting its subsequent toxic effects in pancreatic cancer cells. We demonstrated that inducing reactive oxygen species (ROS) after adenoviral infection of mda-7/IL-24 leads to greater translation into MDA-7/IL-24 protein and results in toxicity in pancreatic cancer cells. In this study we demonstrate that a novel chimeric serotype adenovirus, Ad.5/3-mda-7, displays greater efficacy in delivering mda-7/IL-24 compared with Ad.5-mda-7, although overall translation of the protein still remains low. We additionally show that d-limonene, a dietary monoterpene known to induce ROS, is capable of overcoming the translational block when used in combination with adenoviral gene delivery. This novel combination results in increased polysome association of mda-7/IL-24 mRNA, activation of the preinitiation complex of the translational machinery in pancreatic cancer cells, and culminates in mda-7/IL-24-mediated toxicity.
Collapse
Affiliation(s)
- Siddik Sarkar
- Department of Human and Molecular Genetics (S.S., B.A.Q., X.S., S.K.D., L.E., D.S., P.B.F.), Department of Biochemistry and Molecular Biology (P.D.), VCU Institute of Molecular Medicine (P.D., S.K.D., L.E., D.S., P.B.F.), and VCU Massey Cancer Center (P.D., L.E., D.S. P.B.F.), Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Bridget A Quinn
- Department of Human and Molecular Genetics (S.S., B.A.Q., X.S., S.K.D., L.E., D.S., P.B.F.), Department of Biochemistry and Molecular Biology (P.D.), VCU Institute of Molecular Medicine (P.D., S.K.D., L.E., D.S., P.B.F.), and VCU Massey Cancer Center (P.D., L.E., D.S. P.B.F.), Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xuening Shen
- Department of Human and Molecular Genetics (S.S., B.A.Q., X.S., S.K.D., L.E., D.S., P.B.F.), Department of Biochemistry and Molecular Biology (P.D.), VCU Institute of Molecular Medicine (P.D., S.K.D., L.E., D.S., P.B.F.), and VCU Massey Cancer Center (P.D., L.E., D.S. P.B.F.), Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul Dent
- Department of Human and Molecular Genetics (S.S., B.A.Q., X.S., S.K.D., L.E., D.S., P.B.F.), Department of Biochemistry and Molecular Biology (P.D.), VCU Institute of Molecular Medicine (P.D., S.K.D., L.E., D.S., P.B.F.), and VCU Massey Cancer Center (P.D., L.E., D.S. P.B.F.), Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics (S.S., B.A.Q., X.S., S.K.D., L.E., D.S., P.B.F.), Department of Biochemistry and Molecular Biology (P.D.), VCU Institute of Molecular Medicine (P.D., S.K.D., L.E., D.S., P.B.F.), and VCU Massey Cancer Center (P.D., L.E., D.S. P.B.F.), Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics (S.S., B.A.Q., X.S., S.K.D., L.E., D.S., P.B.F.), Department of Biochemistry and Molecular Biology (P.D.), VCU Institute of Molecular Medicine (P.D., S.K.D., L.E., D.S., P.B.F.), and VCU Massey Cancer Center (P.D., L.E., D.S. P.B.F.), Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics (S.S., B.A.Q., X.S., S.K.D., L.E., D.S., P.B.F.), Department of Biochemistry and Molecular Biology (P.D.), VCU Institute of Molecular Medicine (P.D., S.K.D., L.E., D.S., P.B.F.), and VCU Massey Cancer Center (P.D., L.E., D.S. P.B.F.), Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics (S.S., B.A.Q., X.S., S.K.D., L.E., D.S., P.B.F.), Department of Biochemistry and Molecular Biology (P.D.), VCU Institute of Molecular Medicine (P.D., S.K.D., L.E., D.S., P.B.F.), and VCU Massey Cancer Center (P.D., L.E., D.S. P.B.F.), Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
13
|
Ma G, Kawamura K, Shan Y, Okamoto S, Li Q, Namba M, Shingyoji M, Tada Y, Tatsumi K, Hiroshima K, Shimada H, Tagawa M. Combination of adenoviruses expressing melanoma differentiation-associated gene-7 and chemotherapeutic agents produces enhanced cytotoxicity on esophageal carcinoma. Cancer Gene Ther 2014; 21:31-7. [PMID: 24434574 DOI: 10.1038/cgt.2013.79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Abstract
We examined the combinatory antitumor effects of adenoviruses expressing human mda-7/IL-24 gene (Ad-mda-7) and chemotherapeutic agents on nine kinds of human esophageal carcinoma cells. All the carcinoma cells expressed the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24) receptor complexes, IL-20R2 and either IL-20R1 or IL-22R1, and were susceptible to Ad-mda-7, whereas fibroblasts were positive only for IL-20R2 gene and resistant to Ad-mda-7-mediated cytotoxicity. Sensitivity of these esophageal carcinoma cells to Ad-mda-7 was however lower than that to Ad expressing the wild-type p53 gene. We thereby investigated a possible combination of Ad-mda-7 and anticancer agents and found that Ad-mda-7 with 5-fluorouracil (5-FU), cisplatin, mitomycin C or etoposide produced greater cytotoxic effects than those by Ad-mda-7 or the agent alone. Half-maximal inhibitory concentration values of the agents in respective cells were decreased by the combination with Ad-mda-7. Cell cycle analyses showed that Ad-mda-7 and 5-FU increased G2/M-phase and S-phase populations, respectively, and the combination augmented sub-G1 populations. Ad-mda-7-treated cells showed cleavages of caspase-8, -9 and -3 and poly (ADP-ribose) polymerase, but the cleavage levels were not different from those of the combination-treated cells. Ad-mda-7 treatments upregulated Akt phosphorylation but suppressed IκB-α levels, whereas 5-FU treatments induced phosphorylation of p53 and extracellular signal-regulated protein kinases 1 and 2. Molecular changes caused by the combination were similar to those by Ad-mda-7 treatments, but the Ad-mda-7-mediated upregulation of Akt phosphorylation decreased with the combination. These data collectively suggest that Ad-mda-7 induced apoptosis despite Akt activation and that the combinatory antitumor effects with 5-FU were produced partly by downregulating the Ad-mda-7-induced Akt activation.
Collapse
Affiliation(s)
- G Ma
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - K Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Y Shan
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Okamoto
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Q Li
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - M Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Y Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - H Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - M Tagawa
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
14
|
Molecular targets and signaling pathways regulated by interleukin (IL)-24 in mediating its antitumor activities. J Mol Signal 2013; 8:15. [PMID: 24377906 PMCID: PMC3879428 DOI: 10.1186/1750-2187-8-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/21/2013] [Indexed: 01/06/2023] Open
Abstract
Cancer remains a major health issue in the world and the effectiveness of current therapies is limited resulting in disease recurrence and resistance to therapy. Therefore to overcome disease recurrence and have improved treatment efficacy there is a continued effort to develop and test new anticancer drugs that are natural or synthetic - (conventional chemotherapeutics, small molecule inhibitors) and biologic (antibody, tumor suppressor genes, oligonucleotide) product. In parallel, efforts for identifying molecular targets and signaling pathways to which cancer cells are "addicted" are underway. By inhibiting critical signaling pathways that is crucial for cancer cell survival, it is expected that the cancer cells will undergo a withdrawal symptom akin to "de-addiction" resulting in cell death. Thus, the key for having an improved and greater control on tumor growth and metastasis is to develop a therapeutic that is able to kill tumor cells efficiently by modulating critical signaling pathways on which cancer cells rely for their survival.Currently several small molecule inhibitors targeted towards unique molecular signaling pathways have been developed and tested in the clinic. Few of these inhibitors have shown efficacy while others have failed. Thus, targeting a single molecule or pathway may be insufficient to completely block cancer cell proliferation and survival. It is therefore important to identify and test an anticancer drug that can inhibit multiple signaling pathways in a cancer cell, control growth of both primary and metastatic tumors and is safe.One biologic agent that has the characteristics of serving as a potent anticancer drug is interleukin (IL)-24. IL-24 suppresses multiple signaling pathways in a broad-spectrum of human cancer cells leading to tumor cell death, inhibition of tumor angiogenesis and metastasis. Additionally, combining IL-24 with other therapies demonstrated additive to synergistic antitumor activity. Clinical testing of IL-24 as a gene-based therapeutic for the treatment of solid tumors demonstrated that IL-24 is efficacious and is safe. The unique features of IL-24 support its further development as an anticancer drug for cancer treatment.In this review we summarize the current understanding on the molecular targets and signaling pathways regulated by IL-24 in mediating its anticancer activity.
Collapse
|
15
|
Zhang Z, Kawamura K, Jiang Y, Shingyoji M, Ma G, Li Q, Hu J, Qi Y, Liu H, Zhang F, Kang S, Shan B, Wang S, Chada S, Tagawa M. Heat-shock protein 90 inhibitors synergistically enhance melanoma differentiation-associated gene-7-mediated cell killing of human pancreatic carcinoma. Cancer Gene Ther 2013; 20:663-70. [PMID: 24263157 DOI: 10.1038/cgt.2013.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/15/2013] [Indexed: 11/09/2022]
Abstract
Pancreatic cancer is one of the intractable diseases and an effective therapeutic strategy is required to improve the prognosis. We examined possible antitumor effects of adenoviruses expressing melanoma differentiation-associated gene-7/interleukin-24 (Ad-mda-7) and a heat-shock protein 90 (Hsp90) inhibitor to human pancreatic carcinoma cells. Ad-mda-7 and an Hsp90 inhibitor, geldanamycin (GA), produced cytotoxic effects, and a combinatory use of Ad-mda-7 and GA further achieved synergistic effects. Administration of N-acetyl-L-cysteine, an inhibitor of reactive oxygen species, eliminated Ad-mda-7- and GA-mediated cytotoxicity. Ad-mda-7 augmented phosphorylated AKT levels but GA did not influence the phosphorylation. GA-treated cells showed cleavage of poly-(ADP-ribose) polymerase but not caspase-3, and upregulated Hsp70 and LC3A/B II levels, whereas Ad-mda-7-treated cells did not. GA treatments augmented ubiquitination and markedly increased melanoma differentiation-associated gene-7 (MDA-7) expression levels. These findings suggest that Ad-mda-7-mediated cytotoxicity is dependent on reactive oxygen species but independent of apoptosis or autophagy, and that GA-mediated cytotoxicity was linked with caspase-independent apoptosis and/or autophagy. A mechanism underlying the combinatory effects of Ad-mda-7 and GA remained complex and the synergism is attributable to multiple factors including increased MDA-7 protein stability by GA.
Collapse
Affiliation(s)
- Z Zhang
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan [2] Department of Gynecology and Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - K Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan
| | - Y Jiang
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - M Shingyoji
- Department of Thoracic Diseases, Chiba Cancer Center, Chuo-ku, Chiba, Japan
| | - G Ma
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan [2] Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Q Li
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan [3] Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China [4] Cell Therapy Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - J Hu
- Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, China
| | - Y Qi
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - H Liu
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan
| | - F Zhang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - S Kang
- Department of Gynecology and Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - B Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - S Wang
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - S Chada
- SVP Translational Medicine, Intrexon Corporation, Germantown, MD, USA
| | - M Tagawa
- 1] Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chuo-ku, Chiba, Japan [2] Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
16
|
Zeng L, Li J, Wang Y, Qian C, Chen Y, Zhang Q, Wu W, Lin Z, Liang J, Shuai X, Huang K. Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:463-72. [PMID: 24028894 DOI: 10.1016/j.nano.2013.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED The synergetic inhibitory effects on human pancreatic cancer by nanoparticle-mediated siRNA and arsenic therapy were investigated both in vitro and in vivo. Poly(ethylene glycol)-block-poly(L-lysine) were prepared to form siRNA-complexed polyplex and poly(ethylene glycol)-block-poly(DL-lactide) were prepared to form arsenic-encapsulated vesicle, respectively. Down-regulation of the mutant Kras gene by siRNA caused defective abilities of proliferation, clonal formation, migration, and invasion of pancreatic cancer cells, as well as cell cycle arrest at the G0/G1 phase, which substantially enhanced the apoptosis-inducing effect of arsenic administration. Consequently, co-administration of the two nanomedicines encapsulating siRNA or arsenic showed ideal tumor growth inhibition both in vitro and in vivo as a result of synergistic effect of the siRNA-directed Kras oncogene silencing and arsenic-induced cell apoptosis. These results suggest that the combination of mutant Kras gene silencing and arsenic therapy using nanoparticle-mediated delivery strategy is promising for pancreatic cancer treatment. FROM THE CLINICAL EDITOR Treatment of pancreatic cancer remains a major challenge. These authors demonstrate a method that combines a siRNA-based Kras silencing with arsenic delivery to pancreatic cancer cells using nanoparticles, resulting in enhanced apoptosis induction in the treated cells.
Collapse
Affiliation(s)
- Linjuan Zeng
- Department of Gastroenterology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jingguo Li
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yong Wang
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chenchen Qian
- Department of Gastroenterology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinting Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiubo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhong Lin
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianzhong Liang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Kaihong Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Randhawa H, Kibble K, Zeng H, Moyer MP, Reindl KM. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol In Vitro 2013; 27:1626-33. [PMID: 23603476 PMCID: PMC3749270 DOI: 10.1016/j.tiv.2013.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objective was to identify the intracellular signaling mechanisms by which PPLGM leads to enhanced colon cancer cell death. We found that PPLGM inhibited the growth of colon cancer cells in time- and concentration-dependent manners, but was not toxic toward normal colon mucosal cells at concentrations below 10 μM. Acute (0-60 min) and prolonged (24h) exposure of HT-29 cells to PPLGM resulted in phosphorylation of ERK. To investigate whether ERK signaling was involved in PPLGM-mediated cell death, we treated HT-29 cells with the MEK inhibitor U0126, prior to treating with PPLGM. We found that U0126 attenuated PPLGM-induced activation of ERK and partially protected against PPLGM-induced cell death. These results suggest that PPLGM works, at least in part, through the MEK/ERK pathway to result in colon cancer cell death. A more thorough understanding of the molecular mechanisms by which PPLGM induces colon cancer cell death will be useful in developing therapeutic strategies to treat colon cancer.
Collapse
Affiliation(s)
- H Randhawa
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 51808-6050, USA
| | - K Kibble
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 51808-6050, USA
| | - H Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, 58203
| | - MP Moyer
- INCELL Corporation, San Antonio, Texas, 78249
| | - KM Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 51808-6050, USA
| |
Collapse
|
18
|
Huo W, Li ZM, Zhu XM, Bao YM, An LJ. MDA-7/IL-24 suppresses tumor adhesion and invasive potential in hepatocellular carcinoma cell lines. Oncol Rep 2013; 30:986-92. [PMID: 23722307 DOI: 10.3892/or.2013.2507] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/12/2013] [Indexed: 01/11/2023] Open
Abstract
Melanoma differentiation associated gene-7 (MDA-7)/interleukin‑24 (IL-24) has been considered as a tumor-suppressor gene, which suppresses the growth and induces the apoptosis of cancer cells. In the present study, we investigated the effect and mechanisms of MDA-7/IL-24 regarding the inhibition of metastasis of HepG2 and BEL-7402 human hepatocellular carcinoma (HCC) cells in vitro. We established MDA-7/IL-24-overexpressing HepG2 and BEL-7402 cell lines and found that MDA-7/IL-24 overexpression inhibited tumor cell adhesion and invasion, and induced G2/M arrest in tumor cells. To explore its mechanism of action, western blotting and real-time-PCR assay were used to investigate the expression of E-cadherin, CD44, ICAM-1, matrix metalloproteinase (MMP)-2 and -9, CyclinB, Twist, survivin, p-ERK and p-Akt. ELISA assay was used to measure the secretion of TGF-β, and a reporter gene assay was used to detected the transcriptional activity of NF-κB and AP-1 in HepG2 and BEL-7402 cells. The results showed that MDA-7/IL-24 overexpression decreased the expression of CD44, ICAM-1, MMP-2/-9, CyclinB, Twist, survivin, TGF-β and p-Akt, transcriptional activity of NF-κB, and increased the expression of E-cadherin and p-ERK and transcriptional activity of AP-1 in HepG2 and BEL-7402 cells. Our results revealed that MDA-7/IL-24 mediated the inhibition of adhesion and invasion in HepG2 and BEL-7402 cells by suppressing metastasis-related gene expression. Thus, MDA-7/IL-24 may be used as a novel cancer-suppressor gene for the therapy of human HCC.
Collapse
Affiliation(s)
- Wei Huo
- Department of Medical Oncology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, PR China
| | | | | | | | | |
Collapse
|
19
|
Oxidative stress and cancer: an overview. Ageing Res Rev 2013; 12:376-90. [PMID: 23123177 DOI: 10.1016/j.arr.2012.10.004] [Citation(s) in RCA: 958] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022]
Abstract
Reactive species, which mainly include reactive oxygen species (ROS), are products generated as a consequence of metabolic reactions in the mitochondria of eukaryotic cells. In normal cells, low-level concentrations of these compounds are required for signal transduction before their elimination. However, cancer cells, which exhibit an accelerated metabolism, demand high ROS concentrations to maintain their high proliferation rate. Different ways of developing ROS resistance include the execution of alternative pathways, which can avoid large amounts of ROS accumulation without compromising the energy demand required by cancer cells. Examples of these processes include the guidance of the glycolytic pathway into the pentose phosphate pathway (PPP) and/or the generation of lactate instead of employing aerobic respiration in the mitochondria. Importantly, ROS levels can be used as a thermostat to monitor the damage that cells can bear. The implications for ROS regulation are highly significant for cancer therapy because commonly used radio- and chemotherapeutic drugs influence tumor outcome through ROS modulation. Moreover, the discovery of novel biomarkers that are able to predict the clinical response to pro-oxidant therapies is a crucial challenge to overcome to allow for the personalization of cancer therapies.
Collapse
|
20
|
Overcoming Drug Resistance Through Elevation of ROS in Cancer. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Whitaker EL, Filippov VA, Duerksen-Hughes PJ. Interleukin 24: Mechanisms and therapeutic potential of an anti-cancer gene. Cytokine Growth Factor Rev 2012; 23:323-31. [DOI: 10.1016/j.cytogfr.2012.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 12/18/2022]
|
22
|
Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. GADD45 proteins: central players in tumorigenesis. Curr Mol Med 2012; 12:634-51. [PMID: 22515981 PMCID: PMC3797964 DOI: 10.2174/156652412800619978] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/23/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
The Growth Arrest and DNA Damage-inducible 45 (GADD45) proteins have been implicated in regulation of many cellular functions including DNA repair, cell cycle control, senescence and genotoxic stress. However, the pro-apoptotic activities have also positioned GADD45 as an essential player in oncogenesis. Emerging functional evidence implies that GADD45 proteins serve as tumor suppressors in response to diverse stimuli, connecting multiple cell signaling modules. Defects in the GADD45 pathway can be related to the initiation and progression of malignancies. Moreover, induction of GADD45 expression is an essential step for mediating anti-cancer activity of multiple chemotherapeutic drugs and the absence of GADD45 might abrogate their effects in cancer cells. In this review, we present a comprehensive discussion of the functions of GADD45 proteins, linking their regulation to effectors of cell cycle arrest, DNA repair and apoptosis. The ramifications regarding their roles as essential and central players in tumor growth suppression are also examined. We also extensively review recent literature to clarify how different chemotherapeutic drugs induce GADD45 gene expression and how its up-regulation and interaction with different molecular partners may benefit cancer chemotherapy and facilitate novel drug discovery.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- International Centre for Genetic Engineering and Biotechnology, and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
| | - Jaíra Ferreira de Vasconcellos
- Centro Infantil Boldrini, Molecular Biology Laboratory, Campinas, Brazil
- State University of Campinas, Faculty of Medical Sciences, Department of Medical Genetics, Campinas, Brazil
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Towia A Libermann
- BIDMC Genomics and Proteomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology, and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
- BIDMC Genomics and Proteomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Wang CJ, Xiao CW, You TG, Zheng YX, Gao W, Zhou ZQ, Chen J, Xue XB, Fan J, Zhang H. Interferon-α enhances antitumor activities of oncolytic adenovirus-mediated IL-24 expression in hepatocellular carcinoma. Mol Cancer 2012; 11:31. [PMID: 22569271 PMCID: PMC3697897 DOI: 10.1186/1476-4598-11-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/08/2012] [Indexed: 12/22/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has a dismal 5-year-survival rate of 10%, so
novel strategies are warranted. IL-24 mediates anti-tumor activity reducing
STAT3 expression, which suggests that interferon (IFN) alpha may augment
tumor cell lysis and reduce angiogenesis. We investigated the antitumor
activity of treatment with IFN-α, with the oncolytic adenovirus
SG600-IL-24, or the combination of both in HCC in vitro and in
vivo. Results RT-PCR, ELISA assay and Western-blot confirmed that the exogenous IL-24 gene
was highly expressed in HCC cells infected with SG600-IL-24. Treatment with
combined IFN-α and SG600-IL-24 suppressed growth and promoted apoptosis
of the HepG2, MHCC97L, and HCCLM3 cell lines compared with the normal cell
line L02. The combined therapy increased STAT1 and SOCS1 and apoptosis, but
decreased the expression of the metastatic and angiogenic proteins MMP-2,
XIAP, OPN, and VEGF, which are regulated by STAT3 in HCC cells in
vitro. To assess the effects in vivo, the HCC cell line
HCCLM3 was transplanted subcutaneously into the right flanks of nude mice.
Mice in the IFN-α group, the SG600-IL-24 group, or the combined therapy
group had significantly suppressed growth of the HCC xenografted tumors
compared to the PBS control group of mice. Among the mice treated with the
combination of IFN-α and SG600-IL-24, three of those eight mice had
long-term survival and no evidence of a tumor. These mice also had decreased
expression of the metastatic and angiogenic proteins MMP-2, XIAP, OPN, and
VEGF. Conclusions The present study demonstrated for the first time the potential antitumor
activity of IFN-α combined with the oncolytic adenovirus SG600-IL-24 in
HCC both in vitro and in vivo, and suggests its further
development as a potential candidate for HCC cancer gene therapy.
Collapse
Affiliation(s)
- Cong-Jun Wang
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sahoo A, Im SH. Molecular Mechanisms Governing IL-24 Gene Expression. Immune Netw 2012; 12:1-7. [PMID: 22536164 PMCID: PMC3329598 DOI: 10.4110/in.2012.12.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/05/2012] [Accepted: 01/10/2012] [Indexed: 12/23/2022] Open
Abstract
Interleukin-24 (IL-24) belongs to the IL-10 family of cytokines and is well known for its tumor suppressor activity. This cytokine is released by both immune and nonimmune cells and acts on non-hematopoietic tissues such as skin, lung and reproductive tissues. Apart from its ubiquitous tumor suppressor function, IL-24 is also known to be involved in the immunopathology of autoimmune diseases like psoriasis and rheumatoid arthritis. Although the cellular sources and functions of IL-24 are being increasingly investigated, the molecular mechanisms of IL-24 gene expression at the levels of signal transduction, epigenetics and transcription factor binding are still unclear. Understanding the specific molecular events that regulate the production of IL-24 will help to answer the remaining questions that are important for the design of new strategies of immune intervention involving IL-24. Herein, we briefly review the signaling pathways and transcription factors that facilitate, induce, or repress production of this cytokine along with the cellular sources and functions of IL-24.
Collapse
Affiliation(s)
- Anupama Sahoo
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | | |
Collapse
|
25
|
Zerbini LF, Tamura RE, Correa RG, Czibere A, Cordeiro J, Bhasin M, Simabuco FM, Wang Y, Gu X, Li L, Sarkar D, Zhou JR, Fisher PB, Libermann TA. Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-κB inhibitors in ovarian cancer therapy. PLoS One 2011; 6:e24285. [PMID: 21931671 PMCID: PMC3171406 DOI: 10.1371/journal.pone.0024285] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/05/2011] [Indexed: 01/04/2023] Open
Abstract
Several epidemiological studies have correlated the use of non-steroidal anti-inflammatory drugs (NSAID) with reduced risk of ovarian cancer, the most lethal gynecological cancer, diagnosed usually in late stages of the disease. We have previously established that the pro-apoptotic cytokine melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24) is a crucial mediator of NSAID-induced apoptosis in prostate, breast, renal and stomach cancer cells. In this report we evaluated various structurally different NSAIDs for their efficacies to induce apoptosis and mda-7/IL-24 expression in ovarian cancer cells. While several NSAIDs induced apoptosis, Sulindac Sulfide and Diclofenac most potently induced apoptosis and reduced tumor growth. A combination of these agents results in a synergistic effect. Furthermore, mda-7/IL-24 induction by NSAIDs is essential for programmed cell death, since inhibition of mda-7/IL-24 by small interfering RNA abrogates apoptosis. mda-7/IL-24 activation leads to upregulation of growth arrest and DNA damage inducible (GADD) 45 α and γ and JNK activation. The NF-κB family of transcription factors has been implicated in ovarian cancer development. We previously established NF-κB/IκB signaling as an essential step for cell survival in cancer cells and hypothesized that targeting NF-κB could potentiate NSAID-mediated apoptosis induction in ovarian cancer cells. Indeed, combining NSAID treatment with NF-κB inhibitors led to enhanced apoptosis induction. Our results indicate that inhibition of NF-κB in combination with activation of mda-7/IL-24 expression may lead to a new combinatorial therapy for ovarian cancer.
Collapse
Affiliation(s)
- Luiz F Zerbini
- Medical Biochemistry Division, Faculty of Health Sciences, International Center for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Splice variants of mda-7/IL-24 differentially affect survival and induce apoptosis in U2OS cells. Cytokine 2011; 56:272-81. [PMID: 21843952 DOI: 10.1016/j.cyto.2011.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/17/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
Interleukin-24 (mda-7/IL-24) is a cytokine in the IL-10 family that has received a great deal of attention for its properties as a tumor suppressor and as a potential treatment for cancer. In this study, we have identified and characterized five alternatively spliced isoforms of this gene. Several, but not all of these isoforms induce apoptosis in the osteosarcoma cell line U2OS, while none affect the survival of the non-cancerous NOK cell line. One of these isoforms, lacking three exons and encoding the N-terminal end of the mda-7/IL-24 protein sequence, caused levels of apoptosis that were higher than those caused by the full-length mda-7/IL-24 variant. Additionally, we found that the ratio of isoform expression can be modified by the splice factor SRp55. This regulation suggests that alternative splicing of mda-7/IL-24 is under tight control in the cell, and can be modified under various cellular conditions, such as DNA damage. In addition to providing new insights into the function of an important tumor suppressor gene, these findings may also point toward new avenues for cancer treatment.
Collapse
|
27
|
Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP, Das SK, Kim K, Lee SG, Park MA, Yacoub A, Rahmani M, Emdad L, Dmitriev IP, Wang XY, Sarkar D, Grant S, Dent P, Curiel DT, Fisher PB. mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 2011; 21:381-91. [PMID: 20926331 DOI: 10.1016/j.cytogfr.2010.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect antitumor activity through inhibition of angiogenesis, stimulation of an antitumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
Collapse
Affiliation(s)
- Rupesh Dash
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Park MA, Hamed HA, Mitchell C, Cruickshanks N, Dash R, Allegood J, Dmitriev IP, Tye G, Ogretmen B, Spiegel S, Yacoub A, Grant S, Curiel DT, Fisher PB, Dent P. A serotype 5/3 adenovirus expressing MDA-7/IL-24 infects renal carcinoma cells and promotes toxicity of agents that increase ROS and ceramide levels. Mol Pharmacol 2011; 79:368-80. [PMID: 21119025 PMCID: PMC3061366 DOI: 10.1124/mol.110.069484] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/30/2010] [Indexed: 01/08/2023] Open
Abstract
Agents that generate reactive oxygen species (ROS) are recognized to enhance MDA-7/IL-24 lethality. The present studies focused on clarifying how such agents enhanced MDA-7/IL-24 toxicity in renal cell carcinoma cells (RCCs). Infection of RCCs with a tropism-modified serotype 5/3 adenovirus expressing MDA-7/IL-24 (Ad.5/3-mda-7) caused plasma membrane clustering of CD95 and CD95 association with pro-caspase 8, effects that were enhanced by combined exposure to 17-N-allylamino-17-demethoxygeldanamycin (17AAG), As(2)O(3), or fenretinide and that correlated with enhanced cell killing. Knockdown of CD95 or expression of cellular FADD (Fas-associated protein with death domain)-like interleukin-1β-converting enzyme inhibitory protein, short form (c-FLIP-s) blocked enhanced killing. Inhibition of ROS generation, elevated cytosolic Ca(2+), or de novo ceramide synthesis blocked Ad.5/3-mda-7 ± agent-induced CD95 activation and the enhancement of apoptosis. Ad.5/3-mda-7 increased ceramide levels in a PERK-dependent fashion that were responsible for elevated cytosolic Ca(2+) levels that promoted ROS generation; 17AAG did not further enhance cytokine-induced ceramide generation. In vivo, infection of RCC tumors with Ad.5/3-mda-7 suppressed the growth of infected tumors that was enhanced by exposure to 17AAG. Our data indicate that in RCCs, Ad.5/3-mda-7-induced ceramide generation plays a central role in tumor cell killing and inhibition of multiple signaling pathways may have utility in promoting MDA-7/IL-24 lethality in renal cancer.
Collapse
Affiliation(s)
- Margaret A Park
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xue XB, Xiao CW, Zhang H, Lu AG, Gao W, Zhou ZQ, Guo XL, Zhong MA, Yang Y, Wang CJ. Oncolytic adenovirus SG600-IL24 selectively kills hepatocellular carcinoma cell lines. World J Gastroenterol 2010; 16:4677-84. [PMID: 20872968 PMCID: PMC2951518 DOI: 10.3748/wjg.v16.i37.4677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of oncolytic adenovirus SG600-IL24 and replication-incompetent adenovirus Ad.IL-24 on hepatocellular carcinoma (HCC) cell lines and normal liver cell line.
METHODS: HCC cell lines (HepG2, Hep3B and MHCC97L) and normal liver cell line (L02) with a different p53 status were infected with SG600-IL24 and Ad.IL-24, respectively. Melanoma differentiation-associated (MDA)-7/interleukin (IL)-24 mRNA and protein expressions in infected cells were detected by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and Western blotting, respectively. Apoptosis of HCC cells and normal liver cells was detected by cytometric assay with Hoechst33258 staining. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to investigate proliferation of HCC cells and normal liver cells, and cell cycle was assayed by flow cytometry.
RESULTS: RT-PCR, ELISA and Western blotting showed that the exogenous MDA-7/IL-24 gene was highly expressed in cells infected with SG600-IL24. MTT indicated that SG600-IL24 could suppress the growth of HepG2, Hep3B, MHCC97L, with an inhibition rate of 75% ± 2.5%, 85% ± 2.0%, 72% ± 1.8%, respectively (P < 0.01), promote the apoptosis of HepG2, Hep3B, MHCC97L, with an apoptosis rate of 56.59% ± 4.0%, 78.36% ± 3.5%, 43.39% ± 2.5%, respectively (P < 0.01), and block the HCC cell lines in the G2/M phase with a blocking rate of 35.4% ± 4.2%, 47.3% ± 6.2%, 42% ± 5.0%, respectively (P < 0.01) but not the normal liver cell line in a p53-independent manner.
CONCLUSION: SG600-IL24 can selectively suppress the proliferation and apoptosis of HCC cell lines in vitro but not normal liver cell line L02 in a p53-independent manner. Compared with Ad.IL-24, SG600-IL24 can significantly enhance the antitumor activity in HCC cell lines.
Collapse
|
30
|
Yeh KY, Chang JWC, Li YY, Wang CH, Wang HM. Tumor growth inhibition of metastatic nasopharyngeal carcinoma cell lines by low dose of arsenic trioxide via alteration of cell cycle progression and induction of apoptosis. Head Neck 2010; 33:734-42. [PMID: 20737493 DOI: 10.1002/hed.21535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2010] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Although arsenic trioxide (ATO) has displayed anticancer activity against primary nasopharyngeal carcinoma (NPC), its efficacy in metastatic NPC deserved further investigation because the biological/therapeutic difference in cancer cells probably exists between primary and distant sites. METHODS Two human metastatic NPC cell lines (NPC-BM1 and NPC-BM2) were investigated. We measured cellular proliferation, cell cycle, and apoptotic extent of BM1 and BM2 cells treated with ATO in vitro. Furthermore, we evaluated the tumor growth after ATO treatment in vivo. RESULTS Low-dose ATO treatment is sufficient to induce an antiproliferative effect, alter the cell cycle, and increase apoptosis in BM1 and BM2 cells. BM1 tumor growth in a xenograft model with low-dose and short-schedule (1 mg/kg/day, intraperitoneal injection for 5 consecutive days) of ATO treatment significantly slowed in vivo. CONCLUSION ATO at low dose seems to be an encouraging schedule for palliative treatment of metastatic NPC.
Collapse
Affiliation(s)
- Kun-Yun Yeh
- Division of Hemato-oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung & Chang Gung University, College of Medicine, Taiwan, Providence of China.
| | | | | | | | | |
Collapse
|
31
|
Razavi R, Harrison LE. Thermal Sensitization Using Induced Oxidative Stress Decreases Tumor Growth in an In Vivo Model of Hyperthermic Intraperitoneal Perfusion. Ann Surg Oncol 2009; 17:304-11. [DOI: 10.1245/s10434-009-0674-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/26/2009] [Indexed: 12/12/2022]
|
32
|
Wang F, Kumagai-Braesch M, Herrington MK, Larsson J, Permert J. Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system. Metabolism 2009; 58:1131-6. [PMID: 19493551 DOI: 10.1016/j.metabol.2009.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
In this study, we investigated whether increased dietary fat influences established pancreatic cancer cells. MiaPaCa2 human pancreatic cancer cells were grown orthotopically in athymic mice fed normal diet (ND) or high-fat diet (HF). In the resulting tumors, medium-chain acyl-coenzyme A dehydrogenase (MCAD, a regulator of fatty acid beta-oxidation) and Cu/Zn-superoxide dismutase (an antioxidant enzyme) were determined using Western blotting. The MCAD messenger RNA (mRNA) was determined by real-time polymerase chain reaction. Intracellular lipid droplets, proliferating cells (Ki67 positive), and apoptotic cells were stained in tumor sections. The HF tumors were heavier than the ND tumors (1.60 +/- 0.08 vs 1.13 +/- 0.10 g, P < .01, 6 tumors per group). The MCAD and Cu/Zn-superoxide dismutase proteins and the MCAD mRNA were increased in HF tumors compared with those seen in ND tumors. The HF tumors contained extensive central necrosis, which was surrounded with apoptotic and proliferating cells. The HF tumors also showed numerous lipid droplets. In the ND tumors, necrosis was uncommon, apoptotic cells were sporadic, and lipid droplets were few. In follow-up experiments, MiaPaCa2 cells were incubated in vitro in the presence or absence of fatty acids (oleic and linoleic acids). The fatty acid exposure increased lipid droplets, cell proliferation, and MCAD mRNA expression in MiaPaCa2 cells. In conclusion, increased dietary fat stimulates lipid metabolism and cell turnover in MiaPaCa2 human pancreatic cancer cells.
Collapse
Affiliation(s)
- Feng Wang
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge 14186, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Wang C, Xue X, Yi J, Wu Z, Chen K, Zheng J, Ji W, Yu Y. Replication-incompetent adenovirus vector-mediated MDA-7/IL-24 selectively induces growth suppression and apoptosis of hepatoma cell Line SMMC-7721. ACTA ACUST UNITED AC 2008; 28:80-3. [PMID: 18278464 DOI: 10.1007/s11596-008-0120-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Indexed: 10/19/2022]
Abstract
In order to investigate the effect of replication-incompetent adenovirus vector expressing MDA-7/IL-24 on tumor growth and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721 and normal liver cell line L02, the recombinant replication-incompetent Ad.mda-7 virus vector was constructed and infected into the HCC cell line SMMC-7721 and normal liver cell line L02. RT-PCR was performed to examine the expression of MDA-7 mRNA. The concentrations of MDA-7/IL-4 in culture supernatants were determined by using ELISA. MTT and Hoechst staining assay were applied to observe the inhibitory and killing effects of MDA-7 on the HCC cells. By using flow cytometry, the apoptosis, cell cycle and proliferation of SMMC-7721 and L02 cells were measured. The results showed recombinant replication-incompetent virus expressing MDA-7/IL-24 was constructed successfully, and RT-PCR revealed that it could mediate the high expression of the exogenous gene MDA-7/IL-24 in SMMC-7721 and L02 cells. The expression of MDA-7/IL-24 proteins in the culture supernatant was detectable by ELISA. Ad.mda-7 infection induced apoptosis and growth suppression in SMMC-7721 cells and an increased percentage of HCC cells in the G2/M phase of the cell cycle, but not in L02 cells. It was concluded that mda-7/IL-24 gene, mediated with replication-incompetent adenovirus vector, could selectively induce growth suppression and apoptosis in HCC cell line SMMC-7721 but without any toxic side-effect on normal liver line L02.
Collapse
Affiliation(s)
- Congjun Wang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Moon DO, Kim MO, Kang SH, Choi YH, Kim GY. Sulforaphane suppresses TNF-alpha-mediated activation of NF-kappaB and induces apoptosis through activation of reactive oxygen species-dependent caspase-3. Cancer Lett 2008; 274:132-42. [PMID: 18952368 DOI: 10.1016/j.canlet.2008.09.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 06/20/2008] [Accepted: 09/09/2008] [Indexed: 01/09/2023]
Abstract
Sulforaphane (SFN) is a biologically active compound extracted from cruciferous vegetables, and possessing potent anti-cancer and anti-inflammatory activities. Here, we show that tumor necrosis factor-alpha (TNF-alpha), in combination with a sub-toxic dose of SFN, significantly triggered apoptosis in TNF-alpha-resistant leukemia cells (THP-1, HL60, U937, and K562), which was associated with caspase activity and poly (ADP-ribose)-polymerase cleavage. We also report that SFN non-specifically inhibited TNF-alpha-induced NF-kappaB activation through the inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, and p65 nuclear translocation. This inhibition correlated with the suppression of NF-kappaB-dependent genes involved in anti-apoptosis (IAP-1, IAP-2, XIAP, Bcl-2, and Bcl-xL), cell proliferation (c-Myc, COX-2, and cyclin D1), and metastasis (VEGF and MMP-9). These effects suggest that SFN inhibits TNF-alpha-induced NF-kappaB activation through the suppression of IkappaBalpha degradation, leading to reduced expression of NF-kappaB-regulated gene products. Combined treatment with SFN and TNF-alpha was also accompanied by the generation of reactive oxygen species (ROS). Pre-treatment with N-acetyl-l-cysteine significantly attenuated the combined treatment-induced ROS generation and caspase-3-dependent apoptosis, implying the involvement of ROS in this type of cell death. In conclusion, the results of the present study indicate that SFN suppresses TNF-alpha-induced NF-kappaB activity and induces apoptosis through activation of ROS-dependent caspase-3.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Marine Life Science, Cheju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Lebedeva IV, Su ZZ, Vozhilla N, Chatman L, Sarkar D, Dent P, Athar M, Fisher PB. Chemoprevention by perillyl alcohol coupled with viral gene therapy reduces pancreatic cancer pathogenesis. Mol Cancer Ther 2008; 7:2042-50. [PMID: 18645014 DOI: 10.1158/1535-7163.mct-08-0245] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is one of the deadliest of cancers. Even with aggressive therapy, the 5-year survival rate is <5%, mandating development of more effective treatments. Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) shows potent antitumor activity against most cancers displaying safety with significant clinical efficacy. However, pancreatic cancer cells display inherent resistance to mda-7/IL-24 that is the result of a "protein translational block" of mda-7/IL-24 mRNA in these tumor cells. We now show that a dietary supplement perillyl alcohol (POH) has significant chemopreventive effects for pancreatic cancer and, when coupled with adenovirus-mediated mda-7/IL-24 gene therapy (Ad.mda-7), effectively eliminates s.c. and i.p. xenografts of human pancreatic cancer cells in nude mice, promoting enhanced survival. The combination of POH and Ad.mda-7 efficiently abrogates the mda-7/IL-24 protein translational block, resulting in MDA-7/IL-24 protein production and growth suppression. Of direct translational relevance, clinically achievable concentrations of POH with Ad.mda-7, both of which have been found safe and without toxic effects in human trials, were used. This novel and innovative approach combining a dietary agent and a virally delivered therapeutic cytokine provides a means of both preventing and treating human pancreatic cancer with significant clinical translational potential.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Eager R, Harle L, Nemunaitis J. Ad-MDA-7; INGN 241: a review of preclinical and clinical experience. Expert Opin Biol Ther 2008; 8:1633-43. [DOI: 10.1517/14712598.8.10.1633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Lebedeva IV, Su ZZ, Vozhilla N, Chatman L, Sarkar D, Dent P, Athar M, Fisher PB. Mechanism of in vitro pancreatic cancer cell growth inhibition by melanoma differentiation-associated gene-7/interleukin-24 and perillyl alcohol. Cancer Res 2008; 68:7439-47. [PMID: 18768668 DOI: 10.1158/0008-5472.can-08-0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The death rate for pancreatic cancer approximates the number of new cases each year, and when diagnosed, current therapeutic regimens provide little benefit in extending patient survival. These dire statistics necessitate the development of enhanced single or combinatorial therapies to decrease the pathogenesis of this invariably fatal disease. Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a potent cancer gene therapeutic because of its broad-spectrum cancer-specific apoptosis-inducing properties as well as its multipronged indirect antitumor activities. However, pancreatic cancer cells show inherent resistance to mda-7/IL-24 that is caused by a block of translation of mda-7/IL-24 mRNA in these tumor cells. We now reveal that a dietary agent perillyl alcohol (POH) in combination with Ad.mda-7 efficiently reverses the mda-7/IL-24 "protein translational block" by inducing reactive oxygen species, thereby resulting in mda-7/IL-24 protein production, growth suppression, and apoptosis. Pharmacologic inhibitor and small interfering RNA studies identify xanthine oxidase as a major source of superoxide radical production causing these toxic effects. Because both POH and Ad.mda-7 are being evaluated in clinical trials, combining a dietary agent and a virally delivered therapeutic cytokine provides an innovative approach for potentially treating human pancreatic cancer.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gupta P, Walter MR, Su ZZ, Lebedeva IV, Emdad L, Randolph A, Valerie K, Sarkar D, Fisher PB. BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res 2007; 66:8182-91. [PMID: 16912197 DOI: 10.1158/0008-5472.can-06-0577] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that induces cancer-selective growth suppression and apoptosis in a wide spectrum of human cancers in cell culture and animal models. Additionally, recent clinical trials confirm safety and document significant clinical activity of mda-7/IL-24 in patients with diverse solid cancers and melanomas. Despite intensive study the molecular basis of tumor-cell selectivity of mda-7/IL-24 is not well characterized. Using deletion analysis, a specific mutant of MDA-7/IL-24, M4, consisting of amino acids 104 to 206, is described that retains the cancer-specific growth-suppressive and apoptosis-inducing properties of the full-length protein. Employing rationally designed mutational analysis, we show that MDA-7/IL-24 and M4 physically interact with BiP/GRP78 through their C and F helices, localize in the endoplasmic reticulum, and activate p38 MAPK and GADD gene expression, culminating in cancer-selective apoptosis. These studies provide novel mechanistic insights into the discriminating antitumor activity of MDA-7/IL-24 by elucidating BiP/GRP78 as a defined intracellular target of action and present an unparalleled opportunity to develop improved therapeutic versions of this cancer-specific apoptosis-inducing cytokine.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang CC, Chen F, Kim E, Harrison LE. Thermal sensitization through ROS modulation: a strategy to improve the efficacy of hyperthermic intraperitoneal chemotherapy. Surgery 2007; 142:384-92. [PMID: 17723891 DOI: 10.1016/j.surg.2007.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 03/14/2007] [Accepted: 03/21/2007] [Indexed: 11/15/2022]
Abstract
BACKGROUND The purpose of this study was to investigate whether modulation of cellular reactive oxygen species (ROS) provides a synergistic effect with hyperthermia to induce tumor cell death in a colon cancer cell line. MATERIALS AND METHODS HT-29 colon cancer cells were exposed to heat (43 degrees C) in the presence of the ROS-generating drug, 2-2'-azobis-(2-amidinopropane) dihydrochloride (AAPH) for 1 h. Viable cell mass and apoptosis was measured by MTT and annexin V staining, respectively. Oxidative stress was evaluated by DCFH fluorescence. Protein levels were determined by Western blot analysis. RESULTS A synergistic effect on cell viability with AAPH was noted under hyperthermic conditions as compared with hyperthermia alone (P < .05). The number of nonviable cells after hyperthermia and AAPH exposure was also significantly increased compared with AAPH at 37 degrees C (42% vs 20%, P < .05). ROS levels were increased modestly with AAPH at 37 degrees C, whereas they increased significantly in a dose-dependent manner with AAPH at 43 degrees C. Transient increases of phosphorylated-p38 and ERK and decreases in phosphorylated-AKT were observed in the cells exposed to AAPH at 43 degrees C. Pretreatment of inhibitors of p38 yielded additional decreases in cell mass when used in combination with AAPH and hyperthermia (P < .05). Increased expression of HSP 27 observed at 43 degrees C was abrogated with AAPH exposure. CONCLUSIONS Oxidative stress increased the cytotoxic effects of hyperthermia in colon cancer cells. Thermal sensitization through modulation of cellular ROS may represent a novel approach to increase the efficacy of hyperthermia as an anticancer modality.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Division of Surgical Oncology, UMDNJ--New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
40
|
Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P, Curiel DT, Fisher PB. Melanoma differentiation associated gene-7 (mda-7)/IL-24: a 'magic bullet' for cancer therapy? Expert Opin Biol Ther 2007; 7:577-86. [PMID: 17477796 DOI: 10.1517/14712598.7.5.577] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An ideal cancer gene therapy would selectively kill cancer cells without harming normal cells and induce multipronged 'bystander' antitumor effects, facilitating eradication of both primary and metastatic tumors. Melanoma differentiation associated gene-7 (mda-7)/interleukin-24 (IL-24) exhibits all of these attributes and more. It induces cancer-selective apoptosis, inhibits angiogenesis, stimulates an antitumor immune response, sensitizes cancer cells to radiation and other modalities of conventional therapies, and exhibits profound 'bystander' activity eliminating both primary and distant tumors in animal models. Moreover, a replication-incompetent adenovirus expressing mda-7/IL-24, Ad.mda-7 (INGN-241), has now undergone evaluation in a Phase I clinical trial for multiple solid tumors, including melanomas, and has demonstrated safety and significant objective clinical activity. Considering these exciting observations, mda-7/IL-24 is being hailed as a 'magic bullet' for cancer gene therapy. This review elaborates on the pleiotropic properties of mda-7/IL-24 and unravels novel aspects of the molecule mandating future studies and expanded clinical applications.
Collapse
Affiliation(s)
- Devanand Sarkar
- Columbia University Medical Center, Department of Urology, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang J, Su Y, Richmond A. Antioxidants tiron and N-acetyl-L-cysteine differentially mediate apoptosis in melanoma cells via a reactive oxygen species-independent NF-kappaB pathway. Free Radic Biol Med 2007; 42:1369-80. [PMID: 17395010 PMCID: PMC1905840 DOI: 10.1016/j.freeradbiomed.2007.01.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 01/08/2007] [Accepted: 01/22/2007] [Indexed: 11/18/2022]
Abstract
Tiron and N-acetyl-L-cysteine (NAC) have been recognized as potential antioxidants capable of inhibiting apoptosis induced by reactive oxygen species (ROS). Although the ROS-scavenging function of tiron and NAC is clear, the mechanism for their regulation of apoptosis is still elusive. Here we demonstrate that tiron increases nuclear factor-kappaB (NF-kappaB)/DNA binding and as a result enhances NF-kappaB transcriptional activity. In contrast, NAC inhibits NF-kappaB activation by reducing inhibitor of kappaB kinase (IKK) activity. Moreover, the expression of an NF-kappaB target gene, the chemokine CXCL1, is promoted by tiron and suppressed by NAC. Finally, tiron confers an antiapoptotic function, while NAC imparts a proapoptotic function in melanoma cells. These functions correlate with the alteration of mitochondrial membrane potential but not ROS production or induction of activating protein-1 (AP-1). This study underscores the potential benefits of regulating NF-kappaB activity in melanoma cells as a therapeutic approach.
Collapse
Affiliation(s)
- Jinming Yang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Yingjun Su
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Ann Richmond
- Veterans Affairs Medical Center, Nashville, Tennessee 37232
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
42
|
Lebedeva IV, Washington I, Sarkar D, Clark JA, Fine RL, Dent P, Curiel DT, Turro NJ, Fisher PB. Strategy for reversing resistance to a single anticancer agent in human prostate and pancreatic carcinomas. Proc Natl Acad Sci U S A 2007; 104:3484-9. [PMID: 17360670 PMCID: PMC1805584 DOI: 10.1073/pnas.0700042104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Effective therapies for most solid cancers, especially those that have progressed to metastasis, remain elusive because of inherent and acquired resistance of tumor cells to conventional treatments. Additionally, the effective therapeutic window for many protocols can be very narrow, frequently resulting in toxicity. The present study explores an anticancer strategy that effectively eliminates resistant cancer cells without exerting deleterious effects on normal cells. This approach employs melanoma differentiation-induced gene-7/interleukin-24 (mda-7/IL-24), a cancer-specific, apoptosis-inducing cytokine, in combination with nontoxic doses of a chemical compound from the endoperoxide class that decomposes in water generating singlet oxygen. This combinatorial regimen specifically induced in vitro apoptosis in prostate carcinoma cells, with innate resistance to chemotherapy or engineered resistance to mda-7/IL-24, as well as pancreatic carcinoma cells inherently resistant to any treatment modality, including mda-7/IL-24. Apoptosis induction correlated with increased cellular reactive oxygen species production and was prevented by general antioxidants, such as N-acetyl-l-cysteine or Tiron. Induction of apoptosis in combination-treated cancer cells correlated with a reduction in the antiapoptotic protein BCL-x(L). In contrast, both normal prostate and pancreatic epithelial cells were unaffected by the single or combination treatment. These provocative findings suggest that this combinatorial strategy might provide a platform for developing effective treatments for therapy-resistant cancers.
Collapse
Affiliation(s)
| | - Ilyas Washington
- Department of Chemistry, Columbia University, New York, NY 10027
| | | | | | | | - Paul Dent
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298; and
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, and Obstetrics & Gynecology, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nicholas J. Turro
- Department of Chemistry, Columbia University, New York, NY 10027
- To whom correspondence may be addressed. E-mail:
| | - Paul B. Fisher
- Departments of *Urology
- **Pathology, and
- Neurosurgery, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
43
|
Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, Emdad L, Bachelor MA, Grant S, Curiel DT, Dent P, Fisher PB. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 2006; 111:596-628. [PMID: 16464504 PMCID: PMC1781515 DOI: 10.1016/j.pharmthera.2005.11.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 02/07/2023]
Abstract
"Differentiation therapy" provides a unique and potentially effective, less toxic treatment paradigm for cancer. Moreover, combining "differentiation therapy" with molecular approaches presents an unparalleled opportunity to identify and clone genes mediating cancer growth control, differentiation, senescence, and programmed cell death (apoptosis). Subtraction hybridization applied to human melanoma cells induced to terminally differentiate by treatment with fibroblast interferon (IFN-beta) plus mezerein (MEZ) permitted cloning of melanoma differentiation associated (mda) genes. Founded on its novel properties, one particular mda gene, mda-7, now classified as a member of the interleukin (IL)-10 gene family (IL-24) because of conserved structure, chromosomal location, and cytokine-like properties has become the focus of attention of multiple laboratories. When administered by transfection or adenovirus-transduction into a spectrum of tumor cell types, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) induces apoptosis, whereas no toxicity is apparent in normal cells. mda-7/IL-24 displays potent "bystander antitumor" activity and also has the capacity to enhance radiation lethality, to induce immune-regulatory activities, and to inhibit tumor angiogenesis. Based on these remarkable attributes and effective antitumor therapy in animal models, this cytokine has taken the important step of entering the clinic. In a Phase I clinical trial, intratumoral injections of adenovirus-administered mda-7/IL-24 (Ad.mda-7) was safe, elicited tumor-regulatory and immune-activating processes, and provided clinically significant activity. This review highlights our current understanding of the diverse activities and properties of this novel cytokine, with potential to become a prominent gene therapy for cancer.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M. Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol 2006; 70:897-908. [PMID: 16754784 DOI: 10.1124/mol.106.023937] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the current study, we examined the effects of the nonpsychoactive cannabinoid, cannabidiol, on the induction of apoptosis in leukemia cells. Exposure of leukemia cells to cannabidiol led to cannabinoid receptor 2 (CB2)-mediated reduction in cell viability and induction in apoptosis. Furthermore, cannabidiol treatment led to a significant decrease in tumor burden and an increase in apoptotic tumors in vivo. From a mechanistic standpoint, cannabidiol exposure resulted in activation of caspase-8, caspase-9, and caspase-3, cleavage of poly(ADP-ribose) polymerase, and a decrease in full-length Bid, suggesting possible cross-talk between the intrinsic and extrinsic apoptotic pathways. The role of the mitochondria was further suggested as exposure to cannabidiol led to loss of mitochondrial membrane potential and release of cytochrome c. It is noteworthy that cannabidiol exposure led to an increase in reactive oxygen species (ROS) production as well as an increase in the expression of the NAD(P)H oxidases Nox4 and p22(phox). Furthermore, cannabidiol-induced apoptosis and reactive oxygen species (ROS) levels could be blocked by treatment with the ROS scavengers or the NAD(P)H oxidase inhibitors. Finally, cannabidiol exposure led to a decrease in the levels of p-p38 mitogen-activated protein kinase, which could be blocked by treatment with a CB2-selective antagonist or ROS scavenger. Together, the results from this study reveal that cannabidiol, acting through CB2 and regulation of Nox4 and p22(phox) expression, may be a novel and highly selective treatment for leukemia.
Collapse
Affiliation(s)
- Robert J McKallip
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garner's Ferry Road, Columbia, SC 29209, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Lebedeva IV, Su ZZ, Emdad L, Kolomeyer A, Sarkar D, Kitada S, Waxman S, Reed JC, Fisher PB. Targeting inhibition of K-ras enhances Ad.mda-7-induced growth suppression and apoptosis in mutant K-ras colorectal cancer cells. Oncogene 2006; 26:733-44. [PMID: 16924242 DOI: 10.1038/sj.onc.1209813] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a cancer-specific, growth-suppressing and apoptosis-inducing gene with broad-spectrum antitumor activity. However, when administered by means of a replication-incompetent adenovirus, Ad.mda-7, several colorectal carcinoma cell lines are resistant to its antiproliferative and antisurvival effects. We have presently endeavored to determine if K-ras mutations, present in approximately 40-50% of colorectal cancers and which may mediate resistance to chemotherapy and radiotherapy, represent a predisposing genetic factor mitigating reduced sensitivity to Ad.mda-7. To suppress ras expression, three structurally different replication-incompetent adenoviral vectors were engineered that express (1) an intracellular, neutralizing single-chain antibody (scAb) to p21 ras (Ad.K-ras scAb), (2) an antisense (AS) K-ras gene (Ad.K-ras AS) or (3) both mda-7/IL-24 and a K-ras AS gene in a single bipartite virus (Ad.m7.KAS). Simultaneous inhibition of K-ras and expression of mda-7/IL-24 enhanced killing of colorectal carcinoma cells with mutated K-ras, but not with wild-type K-ras. The extent of killing depended on the degree of K-ras downregulation, with Ad.K-ras AS being generally more efficient than Ad.K-ras scAb in combination with Ad.mda-7. These findings support an effective dual-combinatorial approach for the therapy of colorectal cancers that employs a unique cancer-specific suppressor gene (mda-7/IL-24) with targeted inhibition of oncogene (ras) expression.
Collapse
Affiliation(s)
- I V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
EMDAD LUNI, SARKAR DEVANAND, LEBEDEVA IRINAV, SU ZAOZHONG, GUPTA PANKAJ, MAHASRESHTI PARAMESHWARJ, DENT PAUL, CURIEL DAVIDT, FISHER PAULB. Ionizing radiation enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human ovarian cancer. J Cell Physiol 2006; 208:298-306. [PMID: 16646087 PMCID: PMC2203216 DOI: 10.1002/jcp.20663] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ovarian cancer is the fifth most common cause of cancer-related death in women. Current interventional approaches, including debulking surgery, chemotherapy, and/or radiation have proven minimally effective in preventing the recurrence and/or mortality associated with this malignancy. Subtraction hybridization applied to terminally differentiating human melanoma cells identified melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), whose unique properties include the ability to selectively induce growth suppression, apoptosis, and radiosensitization in diverse cancer cells, without causing any harmful effects in normal cells. Previously, it has been shown that adenovirus-mediated mda-7/IL-24 therapy (Ad.mda-7) induces apoptosis in ovarian cancer cells, however, the apoptosis induction was relatively low. We now document that apoptosis can be enhanced by treating ovarian cancer cells with ionizing radiation (IR) in combination with Ad.mda-7. Additionally, we demonstrate that mda-7/IL-24 gene delivery, under the control of a minimal promoter region of progression elevated gene-3 (PEG-3), which functions selectively in diverse cancer cells with minimal activity in normal cells, displays a selective radiosensitization effect in ovarian cancer cells. The present studies support the use of IR in combination with mda-7/IL-24 as a means of augmenting the therapeutic benefit of this gene in ovarian cancer, particularly in the context of tumors displaying resistance to radiation therapy.
Collapse
Affiliation(s)
- LUNI EMDAD
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
| | - DEVANAND SARKAR
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
| | - IRINA V. LEBEDEVA
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
| | - ZAO-ZHONG SU
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
| | - PANKAJ GUPTA
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
| | - PARAMESHWAR J. MAHASRESHTI
- Department of Medicine, Pathology, Surgery, Division of Human Gene Therapy and The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - PAUL DENT
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia
| | - DAVID T. CURIEL
- Department of Medicine, Pathology, Surgery, Division of Human Gene Therapy and The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - PAUL B. FISHER
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York
- *Correspondence to: Paul B. Fisher, Department of Pathology and Urology, Columbia University Medical Center, College of Physicians and Surgeons, BB-1501, 630 West 168th Street, New York, NY 10032. E-mail:
| |
Collapse
|
47
|
Lebedeva IV, Sarkar D, Su ZZ, Gopalkrishnan RV, Athar M, Randolph A, Valerie K, Dent P, Fisher PB. Molecular target-based therapy of pancreatic cancer. Cancer Res 2006; 66:2403-13. [PMID: 16489047 DOI: 10.1158/0008-5472.can-05-3510] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is genetically complex, and without effective therapy. Mutations in the Kirsten-ras (K-ras) oncogene occur early and frequently (approximately 90%) during pancreatic cancer development and progression. In this context, K-ras represents a potential molecular target for the therapy of this highly aggressive cancer. We now show that a bipartite adenovirus expressing a novel cancer-specific apoptosis-inducing cytokine gene, mda-7/interleukin-24 (IL-24), and a K-ras AS gene, but not either gene alone, promotes growth suppression, induction of apoptosis, and suppression of tumor development mediated by K-ras mutant pancreatic cancer cells. Equally, the combination of an adenovirus expressing mda-7/IL-24 and pharmacologic and genetic agents simultaneously blocking K-ras or downstream extracellular regulated kinase 1/2 signaling also promotes similar inhibitory effects on the growth and survival of K-ras mutant pancreatic carcinoma cells. This activity correlates with the reversal of a translational block in mda-7/IL-24 mRNA in pancreatic cancer cells that limits message association with polysomes, thereby impeding translation into protein. Our study provides support for a "dual molecular targeted therapy" involving oncogene inhibition and selective cancer apoptosis-inducing gene expression with potential for effectively treating an invariably fatal cancer.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lin L, Su Z, Lebedeva IV, Gupta P, Boukerche H, Rai T, Barber GN, Dent P, Sarkar D, Fisher PB. Activation of Ras/Raf protects cells from melanoma differentiation-associated gene-5-induced apoptosis. Cell Death Differ 2006; 13:1982-93. [PMID: 16575407 DOI: 10.1038/sj.cdd.4401899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Melanoma differentiation-associated gene-5 (mda-5) was the first molecule identified in nature whose encoded protein embodied the unique structural combination of an N-terminal caspase recruitment domain and a C-terminal DExD/H RNA helicase domain. As suggested by its structure, cumulative evidences documented that ectopic expression of mda-5 leads to growth inhibition and/or apoptosis in various cell lines. However, the signaling pathways involved in mda-5-mediated killing have not been elucidated. In this study, we utilized either genetically modified cloned rat embryo fibroblast cells overexpressing different functionally and structurally distinct oncogenes or human pancreatic and colorectal carcinoma cells containing mutant active ras to resolve the role of the Ras/Raf signaling pathway in mda-5-mediated growth inhibition/apoptosis induction. Rodent and human tumor cells containing constitutively activated Raf/Raf/MEK/ERK pathways were resistant to mda-5-induced killing and this protection was antagonized by intervening in this signal transduction cascade either by directly inhibiting ras activity using an antisense strategy or by targeting ras-downstream factors, such as MEK1/2, with the pharmacological inhibitor PD98059. The present findings provide a further example of potential cross-talk between growth-inhibitory and growth-promoting pathways in which the ultimate balance of these factors defines cellular homeostasis, leading to survival or induction of programmed cell death.
Collapse
Affiliation(s)
- L Lin
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang CJ, Xue XB, Yi JL, Chen K, Zheng JW, Wang J, Zeng JP, Xu RH. Melanoma differentiation-associated gene-7, MDA-7/IL-24, selectively induces growth suppression, apoptosis in human hepatocellular carcinoma cell line HepG2 by replication-incompetent adenovirus vector. World J Gastroenterol 2006; 12:1774-9. [PMID: 16586551 PMCID: PMC4124357 DOI: 10.3748/wjg.v12.i11.1774] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of replication-incompetent adenovirus vector expressing MDA-7/IL-24 on tumor growth and apoptosis in human hepatocellular carcinoma (HCC) cell line HepG2 and normal liver cell line L02.
METHODS: We constructed the recombinant replication-incompetent Ad.mda-7 virus vector and infected it into the human HCC cell line HepG2 and normal liver cell line L02. RT-PCR was performed to detect the mRNA expressing in cells. by ELISA was used to detect MDA-7/IL-24 protein expression in the culture supernatant. The effect of apoptosis induced by Ad.mda-7 was confirmed by Hoechst staining and flow cytometry assay with Annexin-V and PI staining. MTT assay was used to determine growth inhibition of HepG2 cells, and cell-cycle and hypodiploidy analyses were performed by flow cytometry.
RESULTS: Recombinant replication-defective virus expressing MDA-7/IL-24 was constructed successfully. RT-PCR showed that the Ad.mda-7 could mediate the expression of the exogenous gene MDA-7/IL-24 into HepG2 and L02. The concentration of MDA-7/IL-24 protein in supernatant was 130 pg/mL and 110 pg/mL in Ad.mda-7-infected L02 and HepG2 cells, respectively. Ad.mda-7 infection obviously induced apoptosis (from 2.60±0.72% to 33.6±13.2%, P = 0.00012) and growth suppression in HepG2 (inhibition ratio IR = 68%) and an increase in the percentage of specific cancer cell types at the G2/M phase of the cell cycle (from 6.44% to 32.29%, P < 0.01), but not in L02 cells.
CONCLUSION: These results confirm selectively induction of apoptosis and growth suppression by the mda-7/IL-24 gene with replication-incompetent adenovirus vector in human hepatocellular carcinoma cell line HepG2.
Collapse
MESH Headings
- Adenoviridae/genetics
- Apoptosis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/genetics
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genetic Therapy
- Genetic Vectors
- Hepatocytes
- Humans
- Interleukins/genetics
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Microscopy, Fluorescence
- RNA, Messenger
- RNA, Neoplasm/genetics
- RNA, Viral/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Virus Replication
Collapse
Affiliation(s)
- Cong-Jun Wang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The "holy grail" of cancer therapy is to identify and exploit genetic elements and signal transduction pathways capable of selectively destroying tumor cells without eliciting harmful effects in normal cells or tissues. To achieve this objective, subtraction hybridization was combined with a "differentiation therapy" model of cancer in which human melanoma cells were induced to revert to a more "normal" state, growth arrest irreversibly, and terminally differentiate by treatment with fibroblast IFN and mezerein. This strategy permitted the cloning of a variety of genes involved in regulating important physiologic processes, including cell cycle, response to cytokines and viruses, tumorigenesis and metastasis, cancer growth control, apoptosis, and senescence. A specific gene, melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), displaying cancer-specific apoptosis-inducing properties isolated using this scheme has now come into the limelight as a new gene therapy for divergent cancers. Although the mechanism of cancer cell selectivity of mda-7/IL-24 remains to be delineated, numerous attributes enable this gene as an effective therapy for cancer, including an ability to discriminate between normal and cancer cells, induce apoptosis in diverse tumor cells, promote "bystander" antitumor effects, inhibit tumor growth and angiogenesis in animal models, synergize with radiation, and modulate immune responses. These unique features combined with successful transition into the clinic instill confidence that mda-7/IL-24, as a single or more likely as part of a combinatorial approach, may provide profound therapeutic benefit for cancer patients.
Collapse
Affiliation(s)
- Paul B Fisher
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|