1
|
Kann MC, Schneider EM, Almazan AJ, Lane IC, Bouffard AA, Supper VM, Takei HN, Tepper A, Leick MB, Larson RC, Ebert BL, Maus MV, Jan M. Chemical genetic control of cytokine signaling in CAR-T cells using lenalidomide-controlled membrane-bound degradable IL-7. Leukemia 2024; 38:590-600. [PMID: 38123696 PMCID: PMC11774338 DOI: 10.1038/s41375-023-02113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.
Collapse
Affiliation(s)
- Michael C Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio J Almazan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel C Lane
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Valentina M Supper
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hana N Takei
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Tepper
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Blood and Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin L Ebert
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Recent Advances in Treatment Options for Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14082021. [PMID: 35454927 PMCID: PMC9032060 DOI: 10.3390/cancers14082021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is the most common blood cancer in pediatric patients. Despite the enormous progress in ALL treatment, which is reflected by a high 5-year overall survival rate that reaches up to 96% in the most recent studies, there are still patients that cannot be saved. Treatment of ALL is based on conventional methods, including chemotherapy and radiotherapy. These methods carry with them the risk of very high toxicities. Severe complications related to conventional therapies decrease their effectiveness and can sometimes lead to death. Therefore, currently, numerous studies are being carried out on novel forms of treatment. In this work, classical methods of treatment have been summarized. Furthermore, novel treatment methods and the possibility of combining them with chemotherapy have been incorporated into the present work. Targeted treatment, CAR-T-cell therapy, and immunotherapy for ALL have been described. Treatment options for the relapse/chemoresistance ALL have been presented. Abstract Acute lymphoblastic leukemia is the most common blood cancer in pediatric patients. There has been enormous progress in ALL treatment in recent years, which is reflected by the increase in the 5-year OS from 57% in the 1970s to up to 96% in the most recent studies. ALL treatment is based primarily on conventional methods, which include chemotherapy and radiotherapy. Their main weakness is severe toxicity, which prompts dose reduction, decreases the effectiveness of the treatment, and, in some cases, can lead to death. Currently, numerous modifications in treatment regimens are applied in order to limit toxicities emerging from conventional approaches and improve outcomes. Hematological treatment of pediatric patients is reaching for more novel treatment options, such as targeted treatment, CAR-T-cells therapy, and immunotherapy. These methods are currently used in conjunction with chemotherapy. Nevertheless, the swift progress in their development and increasing efficacity can lead to applying those novel therapies as standalone therapeutic options for pediatric ALL.
Collapse
|
3
|
Kośmider K, Karska K, Kozakiewicz A, Lejman M, Zawitkowska J. Overcoming Steroid Resistance in Pediatric Acute Lymphoblastic Leukemia-The State-of-the-Art Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23073795. [PMID: 35409154 PMCID: PMC8999045 DOI: 10.3390/ijms23073795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy among children. Despite the enormous progress in ALL therapy, resulting in achieving a 5-year survival rate of up to 90%, the ambitious goal of reaching a 100% survival rate is still being pursued. A typical ALL treatment includes three phases: remission induction and consolidation and maintenance, preceded by a prednisone prephase. Poor prednisone response (PPR) is defined as the presence of ≥1.0 × 109 blasts/L in the peripheral blood on day eight of therapy and results in significantly frequent relapses and worse outcomes. Hence, identifying risk factors of steroid resistance and finding methods of overcoming that resistance may significantly improve patients' outcomes. A mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK-ERK) pathway seems to be a particularly attractive target, as its activation leads to steroid resistance via a phosphorylating Bcl-2-interacting mediator of cell death (BIM), which is crucial in the steroid-induced cell death. Several mutations causing activation of MAPK-ERK were discovered, notably the interleukin-7 receptor (IL-7R) pathway mutations in T-cell ALL and rat sarcoma virus (Ras) pathway mutations in precursor B-cell ALL. MAPK-ERK pathway inhibitors were demonstrated to enhance the results of dexamethasone therapy in preclinical ALL studies. This report summarizes steroids' mechanism of action, resistance to treatment, and prospects of steroids therapy in pediatric ALL.
Collapse
Affiliation(s)
- Kamil Kośmider
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Katarzyna Karska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Agata Kozakiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
4
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
5
|
Shahjahani M, Abroun A, Saki N, Bagher Mohammadi SM, Rezaeeyan H. STAT5: From Pathogenesis Mechanism to Therapeutic Approach in Acute Leukemia. Lab Med 2021; 51:345-351. [PMID: 31860086 DOI: 10.1093/labmed/lmz074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Based on the results of multiple studies, multiple signaling pathways is a major cause of resistence to chemotherapy in leukemia cells. Signal transducer and activator of transcription 5 (STAT5) is among these factors; it plays an essential role in proliferation of leukemic cells. METHODS We obtained the materials used in our study via PubMed search from 1996 through 2019. The key search terms included "STAT5," "acute leukemia," "leukemogenesis," and "mutation." RESULTS On activation, STAT5 not only inhibits apoptosis of leukemic cells via activating the B-cell lymphoma 2 (BCL-2) gene but also inhibits resistance to chemotherapy by enhancing human telomerase reverse transcriptase (hTERT) expression and maintaining telomere length in cells. It has also been shown that a number of mutations in the STAT5 gene and in related genes alter the expression of STAT5. CONCLUSION The identification of STAT5 and the factors activated in its up- or downstream expression, affecting its function, contribute to better treatments such as targeted therapy rather than chemotherapy, improving the quality of life patients.
Collapse
Affiliation(s)
- Mohammad Shahjahani
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirreza Abroun
- Royan Stem Cell Technology Company, Royan Institute Tehran, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Bonaccorso P, Bugarin C, Buracchi C, Fazio G, Biondi A, Lo Nigro L, Gaipa G. Single‐cell profiling of pediatric T‐cell acute lymphoblastic leukemia: Impact of
PTEN
exon 7 mutation on
PI3K
/
Akt
and
JAK–STAT
signaling pathways. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:491-503. [DOI: 10.1002/cyto.b.21882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Paola Bonaccorso
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
- Center of Pediatric Hematology Oncology Azienda Policlinico‐OVE, University of Catania Catania Italy
| | - Cristina Bugarin
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Chiara Buracchi
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Grazia Fazio
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| | - Andrea Biondi
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
- Pediatric Clinic University of Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo Monza Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology Azienda Policlinico‐OVE, University of Catania Catania Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center University of Milano‐Bicocca, San Gerardo Hospital Monza Italy
| |
Collapse
|
7
|
IL-7R is essential for leukemia-initiating cell activity of T-cell acute lymphoblastic leukemia. Blood 2020; 134:2171-2182. [PMID: 31530562 DOI: 10.1182/blood.2019000982] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy resulting from the dysregulation of signaling pathways that control intrathymic T-cell development. Relapse rates are still significant, and prognosis is particularly bleak for relapsed patients. Therefore, development of novel therapies specifically targeting pathways controlling leukemia-initiating cell (LIC) activity is mandatory for fighting refractory T-ALL. The interleukin-7 receptor (IL-7R) is a crucial T-cell developmental pathway that is commonly expressed in T-ALL and has been implicated in leukemia progression; however, the significance of IL-7R/IL-7 signaling in T-ALL pathogenesis and its contribution to disease relapse remain unknown. To directly explore whether IL-7R targeting may be therapeutically efficient against T-ALL relapse, we focused on a known Notch1-induced T-ALL model, because a majority of T-ALL patients harbor activating mutations in NOTCH1, which is a transcriptional regulator of IL-7R expression. Using loss-of-function approaches, we show that Il7r-deficient, but not wild-type, mouse hematopoietic progenitors transduced with constitutively active Notch1 failed to generate leukemia upon transplantation into immunodeficient mice, thus providing formal evidence that IL-7R function is essential for Notch1-induced T-cell leukemogenesis. Moreover, we demonstrate that IL-7R expression is an early functional biomarker of T-ALL cells with LIC potential and report that impaired IL-7R signaling hampers engraftment and progression of patient-derived T-ALL xenografts. Notably, we show that IL-7R-dependent LIC activity and leukemia progression can be extended to human B-cell acute lymphoblastic leukemia (B-ALL). These results have important therapeutic implications, highlighting the relevance that targeting normal IL-7R signaling may have in future therapeutic interventions, particularly for preventing T-ALL (and B-ALL) relapse.
Collapse
|
8
|
Ramírez L, Sanguineti N, Scaglia P, Keselman A, Ballerini MG, Karabatas L, Landi E, Castro J, Domené S, Pennisi P, Jasper H, Rey RA, Vázquez M, Domené H, Bergadá I, Gutiérrez M. A novel heterozygous STAT5B variant in a patient with short stature and partial growth hormone insensitivity (GHI). Growth Horm IGF Res 2020; 50:61-70. [PMID: 31902742 DOI: 10.1016/j.ghir.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND The most frequent monogenic causes of growth hormone insensitivity (GHI) include defects in genes encoding the GH receptor itself (GHR), the signal transducer and activator of transcription (STAT5B), the insulin like-growth factor type I (IGF1) and the acid-labile subunit (IGFALS). GHI is characterized by a continuum of mild to severe post-natal growth failure. OBJECTIVE To characterize the molecular defect in a patient with short stature and partial GHI. PATIENT AND METHODS The boy was born at term adequate for gestational age from non-consanguineous normal-stature parents. At 2.2 years, he presented proportionate short stature (height -2.77 SDS), wide forehead and normal mental development. Whole-exome analysis and functional characterization (site-directed mutagenesis, dual luciferase reporter assay, immunofluorescence and western immunoblot) were performed. RESULTS Biochemical and endocrinological evaluation revealed partial GH insensitivity with normal stimulated GH peak (7.8 ng/mL), undetectable IGF1 and low IGFBP3 levels. Two heterozygous variants in the GH-signaling pathway were found: a novel heterozygous STAT5B variant (c.1896G>T, p.K632N) and a hypomorphic IGFALS variant (c.1642C>T, p.R548W). Functional in vitro characterization demonstrated that p.K632N-STAT5b is an inactivating variant that impairs STAT5b activity through abolished phosphorylation. Remarkably, the patient's immunological evaluation displayed only a mild hypogammaglobulinemia, while a major characteristic of STAT5b deficient patients is severe immunodeficiency. CONCLUSIONS We reported a novel pathogenic inactivating STAT5b variant, which may be associated with partial GH insensitivity and can present without severe immunological complications in heterozygous state. Our results contribute to expand the spectrum of phenotypes associated to GHI.
Collapse
Affiliation(s)
- Laura Ramírez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Nora Sanguineti
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Gabriela Ballerini
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Liliana Karabatas
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Estefanía Landi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Julia Castro
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Patricia Pennisi
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Héctor Jasper
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | - Horacio Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE), CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
10
|
Paganelli F, Lonetti A, Anselmi L, Martelli AM, Evangelisti C, Chiarini F. New advances in targeting aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2019; 74:100649. [PMID: 31523031 DOI: 10.1016/j.jbior.2019.100649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disorder characterized by malignant transformation of immature progenitors primed towards T-cell development. Over the past 15 years, advances in the molecular characterization of T-ALL have uncovered oncogenic key drivers and crucial signaling pathways of this disease, opening new chances for the development of novel therapeutic strategies. Currently, T-ALL patients are still treated with aggressive therapies, consisting of high dose multiagent chemotherapy. To minimize and overcome the unfavorable effects of these regimens, it is critical to identify innovative targets and test selective inhibitors of such targets. Major efforts are being made to develop small molecules against deregulated signaling pathways, which sustain T-ALL cell growth, survival, metabolism, and drug-resistance. This review will focus on recent improvements in the understanding of the signaling pathways involved in the pathogenesis of T-ALL and on the challenging opportunities for T-ALL targeted therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Laura Anselmi
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, Luigi Luca Cavalli-Sforza-CNR National Research Council of Italy, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
11
|
STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv 2019; 2:2199-2213. [PMID: 30185437 DOI: 10.1182/bloodadvances.2018021063] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) constitutes an aggressive subset of ALL, the most frequent childhood malignancy. Whereas interleukin-7 (IL-7) is essential for normal T-cell development, it can also accelerate T-ALL development in vivo and leukemia cell survival and proliferation by activating phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling. Here, we investigated whether STAT5 could also mediate IL-7 T-ALL-promoting effects. We show that IL-7 induces STAT pathway activation in T-ALL cells and that STAT5 inactivation prevents IL-7-mediated T-ALL cell viability, growth, and proliferation. At the molecular level, STAT5 is required for IL-7-induced downregulation of p27kip1 and upregulation of the transferrin receptor, CD71. Surprisingly, STAT5 inhibition does not significantly affect IL-7-mediated Bcl-2 upregulation, suggesting that, contrary to normal T-cells, STAT5 promotes leukemia cell survival through a Bcl-2-independent mechanism. STAT5 chromatin immunoprecipitation sequencing and RNA sequencing reveal a diverse IL-7-driven STAT5-dependent transcriptional program in T-ALL cells, which includes BCL6 inactivation by alternative transcription and upregulation of the oncogenic serine/threonine kinase PIM1 Pharmacological inhibition of PIM1 abrogates IL-7-mediated proliferation on T-ALL cells, indicating that strategies involving the use of PIM kinase small-molecule inhibitors may have therapeutic potential against a majority of leukemias that rely on IL-7 receptor (IL-7R) signaling. Overall, our results demonstrate that STAT5, in part by upregulating PIM1 activity, plays a major role in mediating the leukemia-promoting effects of IL-7/IL-7R.
Collapse
|
12
|
Akkapeddi P, Fragoso R, Hixon JA, Ramalho AS, Oliveira ML, Carvalho T, Gloger A, Matasci M, Corzana F, Durum SK, Neri D, Bernardes GJL, Barata JT. A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia. Leukemia 2019; 33:2155-2168. [PMID: 30850736 PMCID: PMC6733707 DOI: 10.1038/s41375-019-0434-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer for which treatment options often result in incomplete therapeutic efficacy and long-term side-effects. Interleukin 7 (IL-7) and its receptor IL-7Rα promote T-ALL development and mutational activation of IL-7Rα associates with very high risk in relapsed disease. Using combinatorial phage-display libraries and antibody reformatting, we generated a fully human IgG1 monoclonal antibody (named B12) against both wild-type and mutant human IL-7Rα, predicted to form a stable complex with IL-7Rα at a different site from IL-7. B12 impairs IL-7/IL-7R-mediated signaling, sensitizes T-ALL cells to treatment with dexamethasone and can induce cell death per se. The antibody also promotes antibody-dependent natural killer-mediated leukemia cytotoxicity in vitro and delays T-cell leukemia development in vivo, reducing tumor burden and promoting mouse survival. B12 is rapidly internalized and traffics to the lysosome, rendering it an attractive vehicle for targeted intracellular delivery of cytotoxic cargo. Consequently, we engineered a B12–MMAE antibody–drug conjugate and provide proof-of-concept evidence that it has increased leukemia cell killing abilities as compared with the naked antibody. Our studies serve as a stepping stone for the development of novel targeted therapies in T-ALL and other diseases where IL-7Rα has a pathological role.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Julie A Hixon
- Cytokines and Immunity Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ana Sofia Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Andreas Gloger
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | | | | | - Scott K Durum
- Cytokines and Immunity Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal. .,Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
13
|
Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 2019; 71:88-96. [PMID: 30249539 PMCID: PMC6386770 DOI: 10.1016/j.jbior.2018.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
14
|
The Potential Role of a Soluble γ-Chain Cytokine Receptor as a Regulator of IL-7-Induced Lymphoproliferative Disorders. Int J Mol Sci 2018; 19:ijms19113375. [PMID: 30373315 PMCID: PMC6274946 DOI: 10.3390/ijms19113375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
IL-7 is an essential, nonredundant growth factor for T and B cell generation and maintenance. While IL-7 deficiency results in lymphopenia, overexpression of IL-7 can cause neoplasia in experimental models. IL-7’s involvement in neoplasia has been appreciated through studies of IL-7 transgenic (Tg) mice models and human lymphoma patients. Since we recently found that a soluble form of the common γ-chain (γc) cytokine receptor (sγc) antagonistically regulates IL-7 signaling, IL-7 and sγc double-Tg mice were generated to investigate the effects of sγc overexpression in IL-7-mediated lymphoproliferative disorders (LPDs). The overexpression of sγc prevents IL-7Tg-induced abnormal increase of LN cell numbers and the development of splenomegaly, resulting in striking amelioration of mortality and disease development. These results suggest that modification of γc cytokine responsiveness by sγc molecules might control various γc cytokine-associated hematologic malignancy, and also provide an alternative view to approach antitumor therapy.
Collapse
|
15
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
16
|
Bongiovanni D, Saccomani V, Piovan E. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2017; 18:ijms18091904. [PMID: 28872614 PMCID: PMC5618553 DOI: 10.3390/ijms18091904] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy.
Collapse
Affiliation(s)
- Deborah Bongiovanni
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Valentina Saccomani
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova 35128, Italy.
| |
Collapse
|
17
|
Interleukin-7 in the transition of bone marrow progenitors to the thymus. Immunol Cell Biol 2017; 95:916-924. [PMID: 28811625 DOI: 10.1038/icb.2017.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/03/2023]
Abstract
Interleukin-7 (IL-7) is essential for the development of T cells in humans and mice where deficiencies in IL-7 signaling result in severe immunodeficiency. T cells require IL-7 at multiple points during development; however, it is unclear when IL-7 is first necessary. We observed that mice with impaired IL-7 signaling had a large reduction in the number of early thymic progenitors (ETPs) while mice that overexpress IL-7 had greatly increased numbers of ETPs. These results indicated that the development of ETPs is sensitive to IL-7. Bone marrow progenitors of ETP are present in normal numbers in mice with impaired IL-7 signaling (IL-7Rα449F) and were efficiently recruited to the thymus. Furthermore, ETPs and their progenitors from IL-7Rα449F mice did not undergo increased apoptosis and proliferate normally compared to WT cells. Mixed bone marrow chimeras demonstrated that IL-7 signaling has a cell-intrinsic role in ETP development but was not required for development of bone marrow progenitors. We have shown a novel role for IL-7 signaling in the development of ETPs that is distinct from classic mechanisms of IL-7 regulating survival and proliferation.
Collapse
|
18
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
19
|
Melão A, Spit M, Cardoso BA, Barata JT. Optimal interleukin-7 receptor-mediated signaling, cell cycle progression and viability of T-cell acute lymphoblastic leukemia cells rely on casein kinase 2 activity. Haematologica 2016; 101:1368-1379. [PMID: 27470599 DOI: 10.3324/haematol.2015.141143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Interleukin-7 and interleukin-7 receptor are essential for normal T-cell development and homeostasis, whereas excessive interleukin-7/interleukin-7 receptor-mediated signaling promotes leukemogenesis. The protein kinase, casein kinase 2, is overexpressed and hyperactivated in cancer, including T-cell acute lymphoblastic leukemia. Herein, we show that while interleukin-7 had a minor but significant positive effect on casein kinase 2 activity in leukemia T-cells, casein kinase 2 activity was mandatory for optimal interleukin-7/interleukin-7 receptor-mediated signaling. Casein kinase 2 pharmacological inhibition impaired signal transducer and activator of transcription 5 and phosphoinositide 3-kinase/v-Akt murine thymoma viral oncogene homolog 1 pathway activation triggered by interleukin-7 or by mutational activation of interleukin-7 receptor. By contrast, forced expression of casein kinase 2 augmented interleukin-7 signaling in human embryonic kidney 293T cells reconstituted with the interleukin-7 receptor machinery. Casein kinase 2 inactivation prevented interleukin-7-induced B-cell lymphoma 2 upregulation, maintenance of mitochondrial homeostasis and viability of T-cell acute lymphoblastic leukemia cell lines and primary leukemia cells collected from patients at diagnosis. Casein kinase 2 inhibition further abrogated interleukin-7-mediated cell growth and upregulation of the transferrin receptor, and blocked cyclin A and E upregulation and cell cycle progression. Notably, casein kinase 2 was also required for the viability of mutant interleukin-7 receptor expressing leukemia T-cells. Overall, our study identifies casein kinase 2 as a major player in the effects of interleukin-7 and interleukin-7 receptor in T-cell acute lymphoblastic leukemia. This further highlights the potential relevance of targeting casein kinase 2 in this malignancy.
Collapse
Affiliation(s)
- Alice Melão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maureen Spit
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia 2016; 30:1832-43. [PMID: 27174491 PMCID: PMC5240021 DOI: 10.1038/leu.2016.83] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
We identified mutations in the IL7Ra gene or in genes encoding the downstream signaling molecules JAK1, JAK3, STAT5B, N-RAS, K-RAS, NF1, AKT and PTEN in 49% of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Strikingly, these mutations (except RAS/NF1) were mutually exclusive, suggesting that they each cause the aberrant activation of a common downstream target. Expressing these mutant signaling molecules—but not their wild-type counterparts—rendered Ba/F3 cells independent of IL3 by activating the RAS-MEK-ERK and PI3K-AKT pathways. Interestingly, cells expressing either IL7Ra or JAK mutants are sensitive to JAK inhibitors, but respond less robustly to inhibitors of the downstream RAS-MEK-ERK and PI3K-AKT-mTOR pathways, indicating that inhibiting only one downstream pathway is not sufficient. Here, we show that inhibiting both the MEK and PI3K-AKT pathways synergistically prevents the proliferation of BaF3 cells expressing mutant IL7Ra, JAK and RAS. Furthermore, combined inhibition of MEK and PI3K/AKT was cytotoxic to samples obtained from 6 out of 11 primary T-ALL patients, including 1 patient who had no mutations in the IL7R signaling pathway. Taken together, these results suggest that the potent cytotoxic effects of inhibiting both MEK and PI3K/AKT should be investigated further as a therapeutic option using leukemia xenograft models.
Collapse
|
21
|
Wang Z, Bunting KD. STAT5 activation in B-cell acute lymphoblastic leukemia: damned if you do, damned if you don't. ACTA ACUST UNITED AC 2016; 3. [PMID: 26973852 PMCID: PMC4786082 DOI: 10.14800/ccm.1186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A significant role of the microenvironment in leukemogenesis is beginning to emerge. The leukemia cell microenvironment consists of not only the stromal and endothelial cell components but also the normal hematopoietic cells. Signal transducer and activator of transcription 5 (STAT5) is a latent transcription factor that is normally transiently activated by phosphorylation in response to microenvironmental signals. In hematopoietic cells, persistently activated STAT5 via aberrant receptor signaling, Janus kinases (JAKs), or intracellular tyrosine kinases is a bona fide driver of leukemogenesis. However, active IL-7/STAT5 signaling also protects the early B-cell genome by suppressing error-prone recombination and vulnerability to transformation. Along these lines, we have reported that lymphocyte development from transplanted STAT5-deficient fetal liver cells was blocked at the pre-pro-B-cell stage but when combined with transgenic Myc and Bcl-2 promoted faster initiation of B-ALL. Furthermore, inflammatory responses may also be involved in leukemia initiation in both pediatric and adult patients which are associated with decreased phosphorylation of STAT5. Likewise, additional targeted agents continue to be developed for precision medicine that prominently suppress signaling pathways. A common theme of all of these perturbations is potential risk for dysregulating hematopoiesis through general transcriptional modulation. Here we discuss the potential for STAT5 inhibition as a double edged sword in certain hematologic disorders, such as early B-cell lymphoblastic leukemias. Considering the rapid pace of understanding of the pre-leukemic decrease in poly-clonality that precedes leukemia, the functional changes associated with microenvironmental influences are thus of potential clinical significance.
Collapse
Affiliation(s)
- Zhengqi Wang
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin D Bunting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Goh TS, Hong C. New insights of common gamma chain in hematological malignancies. Cytokine 2015; 89:179-184. [PMID: 26748725 DOI: 10.1016/j.cyto.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023]
Abstract
The common gamma chain (γc) receptor family of cytokines including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 has the common feature of sharing γc signaling subunit of their receptors. The γc cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages and control proliferation of malignant cell by influencing tumor environment. It has been also described that different types of lymphoid leukemia and lymphoma exhibit expression of divergent γc cytokines and their receptors, as they may promote malignant transformation of lymphoid cells or on the contrary lead to tumor regression by inducing cell-cycle arrest. Therefore, cytokine-based or cytokine-directed blockade in cancer immunotherapy has currently revolutionized the development of cancer treatment. In this review, we will discuss about the role of γc cytokines and their signaling pathways in hematological malignancies and also propose a novel alternative approach that regulates γc cytokine responsiveness by γc in hematological malignancies.
Collapse
Affiliation(s)
- Tae Sik Goh
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Orthopaedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
23
|
Stray-Pedersen A, Jouanguy E, Crequer A, Bertuch AA, Brown BS, Jhangiani SN, Muzny DM, Gambin T, Sorte H, Sasa G, Metry D, Campbell J, Sockrider MM, Dishop MK, Scollard DM, Gibbs RA, Mace EM, Orange JS, Lupski JR, Casanova JL, Noroski LM. Compound heterozygous CORO1A mutations in siblings with a mucocutaneous-immunodeficiency syndrome of epidermodysplasia verruciformis-HPV, molluscum contagiosum and granulomatous tuberculoid leprosy. J Clin Immunol 2014; 34:871-90. [PMID: 25073507 PMCID: PMC4386834 DOI: 10.1007/s10875-014-0074-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 06/30/2014] [Indexed: 02/08/2023]
Abstract
PURPOSE Coronin-1A deficiency is a recently recognized autosomal recessive primary immunodeficiency caused by mutations in CORO1A (OMIM 605000) that results in T-cell lymphopenia and is classified as T(-)B(+)NK(+)severe combined immunodeficiency (SCID). Only two other CORO1A-kindred are known to date, thus the defining characteristics are not well delineated. We identified a unique CORO1A-kindred. METHODS We captured a 10-year analysis of the immune-clinical phenotypes in two affected siblings from disease debut of age 7 years. Target-specific genetic studies were pursued but unrevealing. Telomere lengths were also assessed. Whole exome sequencing (WES) uncovered the molecular diagnosis and Western blot validated findings. RESULTS We found the compound heterozygous CORO1A variants: c.248_249delCT (p.P83RfsX10) and a novel mutation c.1077delC (p.Q360RfsX44) (NM_007074.3) in two affected non-consanguineous siblings that manifested as absent CD4CD45RA(+) (naïve) T and memory B cells, low NK cells and abnormally increased double-negative (DN) ϒδ T-cells. Distinguishing characteristics were late clinical debut with an unusual mucocutaneous syndrome of epidermodysplasia verruciformis-human papilloma virus (EV-HPV), molluscum contagiosum and oral-cutaneous herpetic ulcers; the older female sibling also had a disfiguring granulomatous tuberculoid leprosy. Both had bilateral bronchiectasis and the female died of EBV+ lymphomas at age 16 years. The younger surviving male, without malignancy, had reproducibly very short telomere lengths, not before appreciated in CORO1A mutations. CONCLUSION We reveal the third CORO1A-mutated kindred, with the immune phenotype of abnormal naïve CD4 and DN T-cells and newfound characteristics of a late/hypomorphic-like SCID of an EV-HPV mucocutaneous syndrome with also B and NK defects and shortened telomeres. Our findings contribute to the elucidation of the CORO1A-SCID-CID spectrum.
Collapse
Affiliation(s)
- Asbjorg Stray-Pedersen
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, University Paris Descartes and Inserm, Imagine Foundation, Paris, FranceEU
| | - Amandine Crequer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, University Paris Descartes and Inserm, Imagine Foundation, Paris, FranceEU
| | - Alison A. Bertuch
- Hematology/Oncology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Betty S. Brown
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Clinical Immunology Laboratory, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N. Jhangiani
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Donna M. Muzny
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Tomasz Gambin
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Hanne Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Ghadir Sasa
- Hematology/Oncology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Denise Metry
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Department of Dermatology, Texas Children's Hospital, Houston, TX, USA
| | - Judith Campbell
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Infectious Diseases, Texas Children's Hospital, Houston, TX, USA
| | - Marianna M. Sockrider
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Pulmonary Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Megan K. Dishop
- Department of Pathology, University of Colorado, Denver, CO, USA, Department of Pathology, Texas Children's Hospital, Houston, TX
| | | | - Richard A. Gibbs
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Emily M. Mace
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Center for Human Immunobiology, Texas Children's Hospital-Baylor College of Medicine, Houston, TX, USA
| | - Jordan S. Orange
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Hematology/Oncology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Clinical Immunology Laboratory, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Center for Human Immunobiology, Texas Children's Hospital-Baylor College of Medicine, Houston, TX, USA
| | - James R. Lupski
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, University Paris Descartes and Inserm, Imagine Foundation, Paris, FranceEU
| | - Lenora M. Noroski
- Allergy & Immunology, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Houston, TX, USA, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, Clinical Immunology Laboratory, Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Schlederer M, Mueller KM, Haybaeck J, Heider S, Huttary N, Rosner M, Hengstschläger M, Moriggl R, Dolznig H, Kenner L. Reliable quantification of protein expression and cellular localization in histological sections. PLoS One 2014; 9:e100822. [PMID: 25013898 PMCID: PMC4094387 DOI: 10.1371/journal.pone.0100822] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/30/2014] [Indexed: 01/05/2023] Open
Abstract
In targeted therapy, patient tumors are analyzed for aberrant activations of core cancer pathways, monitored based on biomarker expression, to ensure efficient treatment. Thus, diagnosis and therapeutic decisions are often based on the status of biomarkers determined by immunohistochemistry in combination with other clinical parameters. Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability. To make treatment decisions more reliable, automated image analysis is an attractive possibility to reproducibly quantify biomarker expression in patient tissue samples. We tested whether image analysis could detect subtle differences in protein expression levels. Gene dosage effects generate well-graded expression patterns for most gene-products, which vary by a factor of two between wildtype and haploinsufficient cells lacking one allele. We used conditional mouse models with deletion of the transcription factors Stat5ab in the liver as well Junb deletion in a T-cell lymphoma model. We quantified the expression of total or activated STAT5AB or JUNB protein in normal (Stat5ab+/+ or JunB+/+), hemizygous (Stat5ab+/Δ or JunB+/Δ) or knockout (Stat5abΔ/Δ or JunBΔ/Δ) settings. Image analysis was able to accurately detect hemizygosity at the protein level. Moreover, nuclear signals were distinguished from cytoplasmic expression and translocation of the transcription factors from the cytoplasm to the nucleus was reliably detected and quantified using image analysis. We demonstrate that image analysis supported pathologists to score nuclear STAT5AB expression levels in immunohistologically stained human hepatocellular patient samples and decreased inter-observer variability.
Collapse
Affiliation(s)
| | | | | | - Susanne Heider
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Nicole Huttary
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Unit for Translational Methods in Cancer Research University of Veterinary Medicine Vienna (Vetmeduni Vienna), Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- * E-mail: (HD); (LK)
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna (Vetmeduni Vienna), Vienna, Austria
- * E-mail: (HD); (LK)
| |
Collapse
|
25
|
Tal N, Shochat C, Geron I, Bercovich D, Izraeli S. Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci 2014; 71:365-78. [PMID: 23625073 PMCID: PMC11113825 DOI: 10.1007/s00018-013-1337-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/10/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
Cancer is often caused by deregulation of normal developmental processes. Here, we review recent research on the aberrant activation of two hematopoietic cytokine receptors in acute lymphoid leukemias. Somatic events in the genes for thymic stromal lymphopoietin and Interleukin 7 receptors as well as in their downstream JAK kinases result in constitutive ligand-independent activation of survival and proliferation in B and T lymphoid precursors. Drugs targeting these receptors or the signaling pathways might provide effective therapies of these leukemias.
Collapse
Affiliation(s)
- Noa Tal
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Shochat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Ifat Geron
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Biological Sciences and Department of Medicine Stem Cell Program, University of California San Diego, La Jolla, California USA
| | - Dani Bercovich
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Shai Izraeli
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2013; 53:211-222. [PMID: 23234870 DOI: 10.1016/j.jbior.2012.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
Interleukin-7 (IL-7), a cytokine produced in the bone marrow, thymus and other organs, is mandatory for normal human T-cell development and peripheral homeostasis. Different studies, including phase I clinical trials, have indicated the potential therapeutic value of recombinant IL-7 in the context of anti-cancer immunotherapy and as a booster of immune reconstitution. However, the two main pathways activated by IL-7, JAK/STAT5 and PI3K/Akt/mTOR, have both been implicated in cancer and there is considerable evidence that IL-7 and its receptor (IL-7R), formed by IL-7Rα (encoded by IL7R) and γc, may partake in T-cell acute lymphoblastic leukemia (T-ALL) development. In this context, the most compelling data comes from recent studies demonstrating that around 10% of T-ALL patients display IL7R gain-of-function mutations leading, in most cases, to disulfide bond-dependent homodimerization of two mutant receptors and consequent constitutive activation of downstream signaling, with ensuing cell transformation in vitro and tumorigenic ability in vivo. Here, we review the data on the involvement of IL-7 and IL-7R in T-ALL, further discussing the peculiarities of IL-7R-mediated signaling in human leukemia T-cells that may be of therapeutic value, namely regarding the potential use of PI3K and mTOR pharmacological inhibitors.
Collapse
Affiliation(s)
- Daniel Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Unversidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
27
|
Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family. Proc Natl Acad Sci U S A 2011; 108:15972-7. [PMID: 21911376 DOI: 10.1073/pnas.1017082108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(ADP-ribose)polymerase (PARP)14--a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs--is an ADP ribosyltransferase that interacts with Stat6, enhances induction of certain genes by IL-4, and is expressed in B lymphocytes. We now show that IL-4 enhancement of glycolysis in B cells requires PARP14 and that this process is central to a role of PARP14 in IL-4-induced survival. Thus, enhancements of AMP-activated protein kinase activity restored both IL-4-induced glycolytic activity in Parp14(-/-) B cells and prosurvival signaling by this cytokine. Suppression of apoptosis is central to B-lymphoid oncogenesis, and elevated macro-PARP expression has been correlated with lymphoma aggressiveness. Strikingly, PARP14 deficiency delayed B lymphomagenesis and reversed the block to B-cell maturation driven by the Myc oncogene. Collectively, these findings reveal links between a mammalian ADP ribosyltransferase, cytokine-regulated metabolic activity, and apoptosis; show that PARP14 influences Myc-induced oncogenesis; and suggest that the PARP14-dependent capacity to increase cellular metabolic rates may be an important determinant of lymphoma pathobiology.
Collapse
|
28
|
Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, Tritapoe J, Hixon JA, Silveira AB, Cardoso BA, Sarmento LM, Correia N, Toribio ML, Kobarg J, Horstmann M, Pieters R, Brandalise SR, Ferrando AA, Meijerink JP, Durum SK, Yunes JA, Barata JT. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43:932-9. [PMID: 21892159 DOI: 10.1038/ng.924] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/05/2011] [Indexed: 12/12/2022]
Abstract
Interleukin 7 (IL-7) and its receptor, formed by IL-7Rα (encoded by IL7R) and γc, are essential for normal T-cell development and homeostasis. Here we show that IL7R is an oncogene mutated in T-cell acute lymphoblastic leukemia (T-ALL). We find that 9% of individuals with T-ALL have somatic gain-of-function IL7R exon 6 mutations. In most cases, these IL7R mutations introduce an unpaired cysteine in the extracellular juxtamembrane-transmembrane region and promote de novo formation of intermolecular disulfide bonds between mutant IL-7Rα subunits, thereby driving constitutive signaling via JAK1 and independently of IL-7, γc or JAK3. IL7R mutations induce a gene expression profile partially resembling that provoked by IL-7 and are enriched in the T-ALL subgroup comprising TLX3 rearranged and HOXA deregulated cases. Notably, IL7R mutations promote cell transformation and tumor formation. Overall, our findings indicate that IL7R mutational activation is involved in human T-cell leukemogenesis, paving the way for therapeutic targeting of IL-7R-mediated signaling in T-ALL.
Collapse
Affiliation(s)
- Priscila P Zenatti
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Silva A, Laranjeira AB, Martins LR, Cardoso BA, Demengeot J, Yunes JA, Seddon B, Barata JT. IL-7 Contributes to the Progression of Human T-cell Acute Lymphoblastic Leukemias. Cancer Res 2011; 71:4780-9. [DOI: 10.1158/0008-5472.can-10-3606] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia 2011; 25:960-7. [PMID: 21455214 DOI: 10.1038/leu.2011.56] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-7 (IL-7) activates phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, thereby mediating viability, proliferation and growth of T-cell acute lymphoblastic leukemia (T-ALL) cells. Reactive oxygen species (ROS) can be upregulated by growth factors and are known to regulate proliferation and viability. Here, we show that IL-7 upregulates ROS in T-ALL cells in a manner that is dependent on PI3K/Akt/mTOR pathway activity and that relies on both NADPH oxidase and mitochondrial respiratory chain. Conversely, IL-7-induced activation of PI3K signaling pathway requires mitochondrial respiration and ROS. We have previously shown that IL-7-mediated activation of PI3K pathway drives the upregulation of the glucose transporter Glut1, promoting glucose uptake in T-ALL cells. Using phloretin to inhibit Glut function, we demonstrate that glucose uptake is mandatory for ROS upregulation in IL-7-treated T-ALL cells, suggesting that IL-7 stimulation leads to increased ROS via PI3K pathway activation and consequent upregulation of Glut1 and glucose uptake. Overall, our data reveal the existence of a critical crosstalk between PI3K/Akt signaling pathway and ROS that is essential for IL-7-mediated T-ALL cell survival, and that may constitute a novel target for therapeutic intervention.
Collapse
|
31
|
Selective ablation of the YxxM motif of IL-7Rα suppresses lymphomagenesis but maintains lymphocyte development. Oncogene 2010; 29:3854-64. [DOI: 10.1038/onc.2010.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Taskinen M, Valo E, Karjalainen-Lindsberg ML, Hautaniemi S, Meri S, Leppä S. Signal Transducers and Activators of Transcription 5a–Dependent Cross-talk between Follicular Lymphoma Cells and Tumor Microenvironment Characterizes a Group of Patients with Improved Outcome after R-CHOP. Clin Cancer Res 2010; 16:2615-23. [DOI: 10.1158/1078-0432.ccr-09-3269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, Maijoor KA, Weijer K, Cornelissen JJ, Blom B, Di Santo JP, Spits H, Legrand N. IL-7 enhances thymic human T cell development in "human immune system" Rag2-/-IL-2Rgammac-/- mice without affecting peripheral T cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2010; 183:7645-55. [PMID: 19923447 DOI: 10.4049/jimmunol.0902019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IL-7 is a central cytokine in the development of hematopoietic cells, although interspecies discrepancies have been reported. By coculturing human postnatal thymus hematopoietic progenitors and OP9-huDL1 stromal cells, we found that murine IL-7 is approximately 100-fold less potent than human IL-7 for supporting human T cell development in vitro. We investigated the role of human IL-7 in newborn BALB/c Rag2(-/-)gamma(c)(-/-) mice transplanted with human hematopoietic stem cells (HSC) as an in vivo model of human hematopoiesis using three approaches to improve IL-7 signaling: administration of human IL-7, ectopic expression of human IL-7 by the transplanted human HSC, or enforced expression of a murine/human chimeric IL-7 receptor binding murine IL-7. We show that premature IL-7 signaling at the HSC stage, before entrance in the thymus, impeded T cell development, whereas increased intrathymic IL-7 signaling significantly enhanced the maintenance of immature thymocytes. Increased thymopoiesis was also observed when we transplanted BCL-2- or BCL-x(L)-transduced human HSC. Homeostasis of peripheral mature T cells in this humanized mouse model was not improved by any of these strategies. Overall, our results provide evidence for an important role of IL-7 in human T cell development in vivo and highlight the notion that IL-7 availability is but one of many signals that condition peripheral T cell homeostasis.
Collapse
Affiliation(s)
- Anja U van Lent
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam, Academic Medical Center of the University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brown VI, Hulitt J, Fish J, Sheen C, Bruno M, Xu Q, Carroll M, Fang J, Teachey D, Grupp SA. Thymic Stromal-Derived Lymphopoietin Induces Proliferation of Pre-B Leukemia and Antagonizes mTOR Inhibitors, Suggesting a Role for Interleukin-7Rα Signaling. Cancer Res 2007; 67:9963-70. [DOI: 10.1158/0008-5472.can-06-4704] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Bessette K, Lang ML, Fava RA, Grundy M, Heinen J, Horne L, Spolski R, Al-Shami A, Morse HC, Leonard WJ, Kelly JA. A Stat5b transgene is capable of inducing CD8+ lymphoblastic lymphoma in the absence of normal TCR/MHC signaling. Blood 2007; 111:344-50. [PMID: 17890450 PMCID: PMC2200817 DOI: 10.1182/blood-2007-04-084707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stat5 proteins are critical signaling molecules activated by many cytokines. Within the immune system, Stat5 plays important roles related to the development of thymocytes and proliferation of T cells. Stat5 has been implicated in malignant transformation, and moreover, the activated tyrosine phosphorylated form of Stat5 is frequently observed in human lymphomas. We previously demonstrated the oncogenic potential of Stat5, with thymic lymphoblastic lymphomas developing in a significant proportion of transgenic (TG) mice overexpressing Stat5a or Stat5b in lymphocytes. In addition, immunization or expression of a T-cell receptor (TCR) transgene augmented the rate of tumor formation. Here, we investigate the mechanism of Stat5-mediated lymphomagenesis by exploring the contributions of major histocompatibility complex (MHC)/TCR and pre-TCR signals. We present data demonstrating that Stat5b TG mice unexpectedly develop CD8(+) lymphoma even in the absence of either pre-TCR signaling or normal thymic selection. Indeed, acceleration of Stat5b transgene-mediated lymphoma occurred on TCRalpha(-/-) and pre-TCRalpha(-/-) backgrounds. In light of these data, we propose a model in which alterations in T-cell development at the double-negative/double-positive (DN/DP) stages cooperate with cytokine-mediated pathways in immature thymocytes to give rise to lymphoblastic T-cell lymphomas in Stat5b TG mice.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/physiology
- Cell Transformation, Neoplastic/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/physiology
- Major Histocompatibility Complex/physiology
- Mice
- Mice, Transgenic
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/physiology
- Transgenes/physiology
Collapse
Affiliation(s)
- Katherine Bessette
- White River Junction Veteran's Association, White River Junction, VT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kittipatarin C, Khaled AR. Interlinking interleukin-7. Cytokine 2007; 39:75-83. [PMID: 17768066 PMCID: PMC2040031 DOI: 10.1016/j.cyto.2007.07.183] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 01/31/2023]
Abstract
The signaling processes that maintain the homeostatic proliferation of peripheral T-cells and result in their self-renewal largely remain to be elucidated. Much focus has been placed on the anti-apoptotic function of the cytokine, interleukin-7 (IL-7), during T-cell development. But a more critical role has been ascribed to IL-7 as a mediator of peripheral T-cell maintenance. The biological effects responsive to IL-7 signaling are transduced through only a few well-known pathways. In this review we will focus on the signals transduced by IL-7 and similar cytokines, examining how proliferative signals originate from cytokine receptors, are amplified and eventually alter gene expression. In this regard we will highlight the crosstalk between pathways that promote survival, drive cell cycle progression and most importantly provide the needed energy to sustain these critical cellular activities. Though this review showcases much of what has been learned about IL-7 proliferative signaling, it also reveals the significant gaps in our knowledge about cytokine signaling in the very relevant context of peripheral T-cell homeostasis.
Collapse
Affiliation(s)
- Christina Kittipatarin
- Biomolecular Science Center, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | | |
Collapse
|
37
|
Joliot V, Cormier F, Medyouf H, Alcalde H, Ghysdael J. Constitutive STAT5 activation specifically cooperates with the loss of p53 function in B-cell lymphomagenesis. Oncogene 2006; 25:4573-84. [PMID: 16532027 DOI: 10.1038/sj.onc.1209480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal transducers and activator of transcription 5 (STAT5) A and B are transcriptional regulators that play a central role in cytokine signaling in the hematopoietic lineage and which are frequently activated in a persistent manner in human leukemia/lymphoma, as assessed by their constitutive tyrosine phosphorylation and DNA-binding activity. To study the intrinsic oncogenic properties of persistent STAT5 activation, we generated transgenic mice in which a constitutively activated point mutant of STAT5A, STAT5A(S711F), was expressed at physiological level in their lymphoid compartment. In this model, persistent STAT5 activation is weakly oncogenic, leading to the late emergence of clonal B-cell lymphoma/leukemia at a low incidence. In contrast, STAT5(S711F) was found to cooperate with the loss of function of the p53 tumor suppressor gene to both accelerate disease onset and to skew the large tumor spectrum that normally characterize p53-deficient mice to strongly favor B-cell lymphoma/leukemia. The emergence of STAT5A(S711F)-induced B-cell tumors is associated with the activation of STAT5 tyrosine phosphorylation and DNA-binding activity, indicating that activation of STAT5 oncogenic properties in transgenic STAT5A (TgSTAT5A) (S711F) mice involves the deregulation of STAT5 phosphorylation dynamics.
Collapse
Affiliation(s)
- V Joliot
- Institut Curie, CNRS UMR146, Centre Universitaire, Orsay, France
| | | | | | | | | |
Collapse
|
38
|
Kar P, Supakar PC. Expression of Stat5A in tobacco chewing-mediated oral squamous cell carcinoma. Cancer Lett 2005; 240:306-11. [PMID: 16303247 DOI: 10.1016/j.canlet.2005.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Revised: 09/28/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
Oral squamous cell carcinoma (oscc) is the fifth most common cancer worldwide and the number of cases is increasing regularly in the developing world. The effective detection of oscc at its early stages becomes necessary for proper treatment due to limited understanding of the critical pathways during oncogenesis. Signal transducer and activators of transcription (Stats) are an important group of transcription factors, which contribute to tumorigenesis due to their intimate connection to growth factor signalling, apoptosis, and angiogenesis. They also play a critical role in immune responses and hence defective Stat signalling could favour tumour development by compromising immune surveillance. The role of Stat5A in mammary gland carcinoma and leukaemia has already been reported. We for the first time report here the constitutive activation of Stat5A as one of the early events in tobacco mediated-oscc in the eastern Indian population, which can be used as a potent prognostic molecular marker.
Collapse
Affiliation(s)
- Priyanka Kar
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | | |
Collapse
|