1
|
Liu Q, Li M, Sun M, Xin R, Wang Y, Chen Q, Gao X, Lin Z. Depletion of Gsdma1/2/3 alleviates PMA-induced epidermal hyperplasia by inhibiting the EGFR-Stat3/Akt pathway. J Mol Cell Biol 2024; 16:mjad080. [PMID: 38115633 PMCID: PMC11253210 DOI: 10.1093/jmcb/mjad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
Homeostasis of the skin barrier is essential for maintaining normal skin function. Gasdermin A (GSDMA) is highly expressed in the skin and associated with many skin diseases, such as melanoma and psoriasis. In mice, GSDMA is encoded by three gene homologues, namely Gsdma1, Gsdma2, and Gsdma3. Although Gsdma3 gain-of-function mutations cause hair loss and skin inflammation, Gsdma3-deficient mice do not show any visible phenotypes in skin and hair structures. To explore the physiological function of GSDMA, we generated conventional Gsdma1/2/3 knockout (KO) mice. These mice showed significantly alleviated epidermal hyperplasia and inflammation induced by phorbol 12-myristate 13-acetate (PMA). Furthermore, the alleviation of epidermal hyperplasia depended on the expression of Gsdma1/2/3 specifically in keratinocytes. Mechanistically, Gsdma1/2/3 depletion downregulated epidermal growth factor receptor (EGFR) ligands, leading to the decreased EGFR-Stat3/Akt signalling. These results demonstrate that depletion of Gsdma1/2/3 alleviates PMA-induced epidermal hyperplasia partially by inhibiting the EGFR-Stat3/Akt pathway.
Collapse
Affiliation(s)
- Qiyao Liu
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Manyun Li
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Minli Sun
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Ruyue Xin
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Yushu Wang
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Qin Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Xiang Gao
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Zhaoyu Lin
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| |
Collapse
|
2
|
Contreras L, García-Gaipo L, Casar B, Gandarillas A. DNA damage signalling histone H2AX is required for tumour growth. Cell Death Discov 2024; 10:99. [PMID: 38402225 PMCID: PMC10894207 DOI: 10.1038/s41420-024-01869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Cancer most frequently develops in self-renewal tissues that are the target of genetic alterations due to mutagens or intrinsic DNA replication errors. Histone γH2AX has a critical role in the cellular DNA repair pathway cascade and contributes to genomic stability. However, the role of γH2AX in the ontology of cancer is unclear. We have investigated this issue in the epidermis, a self-renewal epithelium continuously exposed to genetic hazard and replication stress. Silencing H2AX caused cell cycle hyperactivation, impaired DNA repair and epidermal hyperplasia in the skin. However, mutagen-induced carcinogenesis was strikingly reduced in the absence of H2AX. KO tumours appeared significantly later than controls and were fewer, smaller and more benign. The stem cell marker Δp63 drastically diminished in the KO epidermis. We conclude that H2AX is required for tissue-making during both homoeostasis and tumourigenesis, possibly by contributing to the control and repair of stem cells. Therefore, although H2AX is thought to act as a tumour suppressor and our results show that it contributes to homeostasis, they also indicate that it is required for the development of cancer.
Collapse
Affiliation(s)
- Lizbeth Contreras
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Lorena García-Gaipo
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria (UC), 39011, Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- Institut National de la Santé et de la Recherche Médicale, (INSERM), Délégation Occitanie, 34394, Montpellier, France.
| |
Collapse
|
3
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
4
|
Zhang X, Guo Y, Xiao T, Li J, Guo A, Lei L, Jin C, Long Q, Su J, Yin M, Liu H, Chen C, Zhou Z, Zhu S, Tao J, Hu S, Chen X, Peng C. CD147 mediates epidermal malignant transformation through the RSK2/AP-1 pathway. J Exp Clin Cancer Res 2022; 41:246. [PMID: 35964097 PMCID: PMC9375950 DOI: 10.1186/s13046-022-02427-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Malignant transformation of the epidermis is an essential process in the pathogenesis of cutaneous squamous-cell carcinoma (cSCC). Although evidence has demonstrated that CD147 plays key roles in various tumors, the role of CD147 in epidermal malignant transformation in vivo remains unclear.
Methods
Epidermal CD147-overexpression or knockout (EpiCD147-OE or EpiCD147-KO) transgenic mouse models were generated for in vivo study. RNA-sequencing and q-PCR were performed to identify the differentially expressed genes. Immunohistochemistry and flow cytometry were performed to investigate the role of CD147 in regulating myeloid-derived suppressor cells (MDSCs). Immunoprecipitation, EMSA and ChIP assays were performed to investigate the mechanism of CD147 in cell transformation.
Results
We found that specific overexpression of CD147 in the epidermis (EpiCD147-OE) induces spontaneous tumor formation; moreover, a set of chemokines and cytokines including CXCL1, which play essential function in MDSC recruitment, were significantly upregulated in EpiCD147-OE transgenic mice. As expected, overexpression of CD147 in the epidermis remarkably facilitated tumorigenesis by increasing the rate of tumor initiation and the number and size of tumors in the DMBA/TPA mouse model. Interestingly, the expression of CXCL1 and the infiltration of MDSCs were dramatically increased in EpiCD147-OE transgenic mice. Our findings also showed that knockdown of CD147 attenuated EGF-induced malignant transformation as well as CXCL1 expression in HaCaT cells. Consistently, CD147 was found overexpressed in cutaneous squamous cell carcinoma (cSCC), and positively related with the expression of CD33, a myeloid-associated marker. We further identified RSK2, a serine/threonine kinase, as an interacting partner of CD147 at the binding site of CD147D207-230. The interaction of CD147 and RSK2 activated RSK2, thus enhancing AP-1 transcriptional activation. Furthermore, EMSAs and ChIP assays showed that AP-1 could associate with the CXCL1 promoter. Importantly, RSK2 inhibitor suppressed the tumor growth in DMBA/TPA mouse model by inhibiting the recruitment of MDSCs.
Conclusion
Our findings demonstrate that CD147 exerts a key function in epidermal malignant transformation in vivo by activating keratinocytes and recruiting MDSCs via the RSK2/AP-1 pathway.
Collapse
|
5
|
Pokorna Z, Vyslouzil J, Vojtesek B, Coates PJ. Identifying pathways regulating the oncogenic p53 family member ΔNp63 provides therapeutic avenues for squamous cell carcinoma. Cell Mol Biol Lett 2022; 27:18. [PMID: 35196980 PMCID: PMC8903560 DOI: 10.1186/s11658-022-00323-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Background ΔNp63 overexpression is a common event in squamous cell carcinoma (SCC) that contributes to tumorigenesis, making ΔNp63 a potential target for therapy. Methods We created inducible TP63-shRNA cells to study the effects of p63-depletion in SCC cell lines and non-malignant HaCaT keratinocytes. DNA damaging agents, growth factors, signaling pathway inhibitors, histone deacetylase inhibitors, and metabolism-modifying drugs were also investigated for their ability to influence ΔNp63 protein and mRNA levels. Results HaCaT keratinocytes, FaDu and SCC-25 cells express high levels of ΔNp63. HaCaT and FaDu inducible TP63-shRNA cells showed reduced proliferation after p63 depletion, with greater effects on FaDu than HaCaT cells, compatible with oncogene addiction in SCC. Genotoxic insults and histone deacetylase inhibitors variably reduced ΔNp63 levels in keratinocytes and SCC cells. Growth factors that regulate proliferation/survival of squamous cells (IGF-1, EGF, amphiregulin, KGF, and HGF) and PI3K, mTOR, MAPK/ERK or EGFR inhibitors showed lesser and inconsistent effects, with dual inhibition of PI3K and mTOR or EGFR inhibition selectively reducing ΔNp63 levels in HaCaT cells. In contrast, the antihyperlipidemic drug lovastatin selectively increased ΔNp63 in HaCaT cells. Conclusions These data confirm that ΔNp63-positive SCC cells require p63 for continued growth and provide proof of concept that p63 reduction is a therapeutic option for these tumors. Investigations of ΔNp63 regulation identified agent-specific and cell-specific pathways. In particular, dual inhibition of the PI3K and mTOR pathways reduced ΔNp63 more effectively than single pathway inhibition, and broad-spectrum histone deacetylase inhibitors showed a time-dependent biphasic response, with high level downregulation at the transcriptional level within 24 h. In addition to furthering our understanding of ΔNp63 regulation in squamous cells, these data identify novel drug combinations that may be useful for p63-based therapy of SCC. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00323-x.
Collapse
Affiliation(s)
- Zuzana Pokorna
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jan Vyslouzil
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Philip J Coates
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
6
|
Overview of Candida albicans and Human Papillomavirus (HPV) Infection Agents and their Biomolecular Mechanisms in Promoting Oral Cancer in Pediatric Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7312611. [PMID: 34765678 PMCID: PMC8577934 DOI: 10.1155/2021/7312611] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022]
Abstract
Oral carcinoma represents one of the most common malignancies worldwide. Oral squamous cell carcinomas (OSCCs) account over 90% of all oral malignant tumors and are characterized by high mortality in the advanced stages. Early diagnosis is often a challenge for its ambiguous appearance in early stages. Mucosal infection by the human papillomavirus (HPV) is responsible for a growing number of malignancies, particularly cervical cancer and oropharyngeal carcinomas. In addition, Candida albicans (C. albicans), which is the principal fungi involved in the oral cancer development, may induce carcinogenesis through several mechanisms, mainly promoting inflammation. Medical knowledge and research on adolescent/pediatric patients' management and prevention are in continuous evolution. Besides, microbiota can play an important role in maintaining oral health and therefore all human health. The aim of this review is to evaluate epidemiological and pathophysiological characteristics of the several biochemical pathways involved during HPV and C. albicans infections in pediatric dentistry.
Collapse
|
7
|
Mercurio L, Albanesi C, Madonna S. Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Front Med (Lausanne) 2021; 8:665647. [PMID: 33996865 PMCID: PMC8119789 DOI: 10.3389/fmed.2021.665647] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
PhosphoInositide-3 Kinase (PI3K) represents a family of different classes of kinases which control multiple biological processes in mammalian cells, such as cell growth, proliferation, and survival. Class IA PI3Ks, the main regulators of proliferative signals, consists of a catalytic subunit (α, β, δ) that binds p85 regulatory subunit and mediates activation of AKT and mammalian Target Of Rapamycin (mTOR) pathways and regulation of downstream effectors. Dysregulation of PI3K/AKT/mTOR pathway in skin contributes to several pathological conditions characterized by uncontrolled proliferation, including skin cancers, psoriasis, and atopic dermatitis (AD). Among cutaneous cancers, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) display PI3K/AKT/mTOR signaling hyperactivation, implicated in hyperproliferation, and tumorigenesis, as well as in resistance to apoptosis. Upregulation of mTOR signaling proteins has also been reported in psoriasis, in association with enhanced proliferation, defective keratinocyte differentiation, senescence-like growth arrest, and resistance to apoptosis, accounting for major parts of the overall disease phenotypes. On the contrary, PI3K/AKT/mTOR role in AD is less characterized, even though recent evidence demonstrates the relevant function for mTOR pathway in the regulation of epidermal barrier formation and stratification. In this review, we provide the most recent updates on the role and function of PI3K/AKT/mTOR molecular axis in the pathogenesis of different hyperproliferative skin disorders, and highlights on the current status of preclinical and clinical studies on PI3K-targeted therapies.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
8
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
9
|
Ischenko I, D'Amico S, Rao M, Li J, Hayman MJ, Powers S, Petrenko O, Reich NC. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat Commun 2021; 12:1482. [PMID: 33674596 PMCID: PMC7935870 DOI: 10.1038/s41467-021-21736-w] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the suppression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment.
Collapse
Affiliation(s)
- Irene Ischenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Stephen D'Amico
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Manisha Rao
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Michael J Hayman
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Oleksi Petrenko
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.
| | - Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
10
|
Sanz-Gómez N, de Pedro I, Ortigosa B, Santamaría D, Malumbres M, de Cárcer G, Gandarillas A. Squamous differentiation requires G2/mitosis slippage to avoid apoptosis. Cell Death Differ 2020; 27:2451-2467. [PMID: 32080348 PMCID: PMC7370216 DOI: 10.1038/s41418-020-0515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
The cellular mechanisms controlling cell fate in self-renewal tissues remain unclear. Cell cycle failure often leads to an apoptosis anti-oncogenic response. We have inactivated Cdk1 or Polo-like-1 kinases, essential targets of the mitotic checkpoints, in the epithelia of skin and oral mucosa. Here, we show that inactivation of the mitotic kinases leading to polyploidy in vivo, produces a fully differentiated epithelium. Cells within the basal layer aberrantly differentiate and contain large or various nuclei. Freshly isolated KO cells were also differentiated and polyploid. However, sustained metaphase arrest downstream of the spindle anaphase checkpoint (SAC) due to abrogation of CDC20 (essential cofactor of anaphase-promoting complex), impaired squamous differentiation and resulted in apoptosis. Therefore, upon prolonged arrest keratinocytes need to slip beyond G2 or mitosis in order to initiate differentiation. The results altogether demonstrate that mitotic checkpoints drive squamous cell fate towards differentiation or apoptosis in response to genetic damage.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Beatriz Ortigosa
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
| | - David Santamaría
- CNIO, Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- INSERM U1218, ACTION Laboratory, IECB, University of Bordeaux, Pessac, France
| | - Marcos Malumbres
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Guillermo de Cárcer
- Cell Cycle & Cancer Biomarkers Group, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBm) CSIC-UAM, 28029, Madrid, Spain
- CNIO, Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.
- INSERM, Languedoc-Roussillon, 34394, Montpellier, France.
| |
Collapse
|
11
|
Kim IH, Choi JW, Nam TJ. PYP1-4 peptide from Pyropia yezoensis protects against acetaminophen-induced hepatotoxicity in HepG2 cells. Exp Ther Med 2019; 19:849-860. [PMID: 32010245 PMCID: PMC6966212 DOI: 10.3892/etm.2019.8304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic. It is safe at normal treatment doses; however, APAP overdose is a major cause of acute liver and kidney failure. A variety of methods to reduce the damage caused by APAP overdose have previously been evaluated. The protein-rich seaweed Pyropia yezoensis has antioxidant, antitumor and anti-inflammatory activities, and protects against cytotoxicity. However, little is known regarding the protective effects of P. yezoensis peptide against APAP-induced hepatotoxicity. The present study investigated the ability of P. yezoensis peptide (PYP1-4) to ameliorate the damage caused by APAP-induced hepatotoxicity using HepG2 as the model cell line in addition to the signaling pathways involved. Briefly, cell viability, nitric oxide, reactive oxygen species and apoptosis assays were performed in conjunction with western blot analysis and reverse transcription-quantitative PCR. First, the present study revealed the minimum toxic concentration of APAP (15 mM) and the resting concentration of PYP1-4 (0–500 ng/ml). Administration of PYP1-4 to APAP-induced cells decreased the nitric oxide and reactive oxygen species levels, and restored the levels of antioxidant-associated proteins (catalase, heme oxygenase 1, superoxide dismutase 2 and quinone oxidoreductase 1). PYP1-4 increased the translocation of nuclear factor, erythroid 2 like 2 to the nucleus and the activities of glycogen synthase kinase-3β, Akt and AMP-activated protein kinase. In addition, APAP induced apoptosis; however, PYP1-4 inhibited apoptosis by modulating the levels of pro-apoptotic markers (Bad), anti-apoptotic markers (Bcl-2 and BH3 interacting domain death agonist), caspases and poly (ADP-ribose) polymerase 1. Subsequently, the insulin-like growth factor 1 receptor signaling pathway was investigated to determine whether PYP1-4 treatment restored the levels of cell growth-associated factors during APAP-induced hepatotoxicity. PYP1-4 treatment impacted the levels of components of the insulin receptor substrate 1/PI3K/Akt and Ras/Raf/ERK signaling pathways, and promoted cell survival. Therefore, the P. yezoensis peptide PYP1-4 may be useful for preventing APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- In-Hye Kim
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Jeong-Wook Choi
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea.,Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Muñoz-Cordero MG, López F, García-Inclán C, López-Hernández A, Potes-Ares S, Fernández-Vañes L, Llorente JL, Hermsen M. Predictive Value of EGFR-PI3K-pAKT-mTOR-pS6 Pathway in Sinonasal Squamous Cell Carcinomas. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2019. [DOI: 10.1016/j.otoeng.2017.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Muñoz-Cordero MG, López F, García-Inclán C, López-Hernández A, Potes-Ares S, Fernández-Vañes L, Llorente JL, Hermsen M. Predictive value of EGFR-PI3K-pAKT-mTOR-pS6 pathway in sinonasal squamous cell carcinomas. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2018; 70:16-24. [PMID: 29573781 DOI: 10.1016/j.otorri.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES We have previously indicated that EGFR has a role in carcinogenesis in a subgroup of sinonasal squamous cell carcinomas (SNSCC). In addition, EGFR activates 2 of the most important intracellular signalling pathways: PI3K/pAKT/mTOR/pS6 and MAP pathway kinases. The objective of this study was to evaluate the involvement of the EGFR/PI3K/pAKT/mTOR/pS6 pathway and its relationship with clinical-pathological parameters and follow-up of sinonasal squamous cell carcinoma. MATERIAL AND METHODS The immunohistochemical expression of different components of the PI3K/AKT/mTOR/pS6 pathway and its relationship with various clinical-pathological parameters was studied in a series of 54 patients with SNSCC. RESULTS Loss of PTEN expression was observed in 33/54 cases (61%) and pAKT, mTOR and pS6 pre-expression was observed in 19/54 cases (35%), 8/54 cases (15%), and 47/54 cases (87%), respectively. Loss of PTEN expression was related to intracranial invasion and development of regional metastases (p=0.005). Overexpression of pS6 was associated with a decrease in survival (p=0.008), presence of local recurrences (p=0.055), and worsening of overall prognosis (p=0.007). No significant relationships were observed between pAKT and mTOR expression and the clinicopathological parameters studied. CONCLUSIONS Alterations in the expression of EGFR/PI3K/pAKT/mTOR/pS6 pathway components are common in a subgroup of SNSCC. This study reveals that the absence of pS6 overexpression is associated with better clinical outcomes. Therefore, pS6 expression could be considered as an unfavourable prognostic marker.
Collapse
Affiliation(s)
- María Gabriela Muñoz-Cordero
- Departamento de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, CIBERONC, ISCIII, Oviedo (Asturias), España
| | - Fernando López
- Departamento de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, CIBERONC, ISCIII, Oviedo (Asturias), España.
| | - Cristina García-Inclán
- Departamento de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, CIBERONC, ISCIII, Oviedo (Asturias), España
| | - Alejandro López-Hernández
- Departamento de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, CIBERONC, ISCIII, Oviedo (Asturias), España
| | - Sira Potes-Ares
- Departamento de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, CIBERONC, ISCIII, Oviedo (Asturias), España
| | - Laura Fernández-Vañes
- Departamento de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, CIBERONC, ISCIII, Oviedo (Asturias), España
| | - José Luis Llorente
- Departamento de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, CIBERONC, ISCIII, Oviedo (Asturias), España
| | - Mario Hermsen
- Departamento de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, CIBERONC, ISCIII, Oviedo (Asturias), España
| |
Collapse
|
14
|
Costa C, Santos M, Martínez-Fernández M, Lorz C, Lázaro S, Paramio JM. Deregulation of the pRb-E2F4 axis alters epidermal homeostasis and favors tumor development. Oncotarget 2018; 7:75712-75728. [PMID: 27708231 PMCID: PMC5342772 DOI: 10.18632/oncotarget.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
E2F/RB activity is altered in most human tumors. The retinoblastoma family of proteins plays a key role in regulating the progression of the cell cycle from the G1 to S phases. This is achieved through negative regulation of E2F transcription factors, important positive regulators of cell cycle entry. E2F family members are divided into two groups: activators (E2F1-E2F3a) and repressors (E2F3b-E2F8). E2F4 accounts for a large part of the E2F activity and is a main E2F repressor member in vivo. Perturbations in the balance from quiescence towards proliferation contribute to increased mitotic gene expression levels frequently observed in cancer. We have previously reported that combined Rb1-Rbl1 or Rb1-E2f1 ablation in epidermis produces important alterations in epidermal proliferation and differentiation, leading to tumor development. However, the possible roles of E2F4 in this context are still to be determined. Here, we show the absence of any discernible phenotype in the skin of mice lacking of E2f4. In contrast, the inducible loss of Rb1 in the epidermis of E2F4-null mice produced multiple skin abnormalities including altered differentiation and proliferation, spontaneous wounds, carcinoma in situ development and stem cell perturbations. All these phenotypic alterations are associated with extensive gene expression changes, the induction of c-myc and the Akt activation. Moreover the whole transcriptome analyses in comparison with previous models generated also revealed extensive changes in multiple repressive complexes and in transcription factor activity. These results point to E2F4 as a master regulator in multiple steps of epidermal homeostasis in Rb1 absence.
Collapse
Affiliation(s)
- Clotilde Costa
- Unidad de Oncología Molecular, CIEMAT (ed70A), 28040 Madrid, Spain.,Present address: Unidad Mixta Roche-Chus, Hospital Universitario, 15706 Santiago de Compostela, Spain
| | - Mirentxu Santos
- Unidad de Oncología Molecular, CIEMAT (ed70A), 28040 Madrid, Spain.,Unidad de Oncología Molecular y Celular, Instituto de Investigaciones Biomed, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Mónica Martínez-Fernández
- Unidad de Oncología Molecular, CIEMAT (ed70A), 28040 Madrid, Spain.,Unidad de Oncología Molecular y Celular, Instituto de Investigaciones Biomed, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Corina Lorz
- Unidad de Oncología Molecular, CIEMAT (ed70A), 28040 Madrid, Spain.,Unidad de Oncología Molecular y Celular, Instituto de Investigaciones Biomed, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Sara Lázaro
- Unidad de Oncología Molecular, CIEMAT (ed70A), 28040 Madrid, Spain
| | - Jesús M Paramio
- Unidad de Oncología Molecular, CIEMAT (ed70A), 28040 Madrid, Spain.,Unidad de Oncología Molecular y Celular, Instituto de Investigaciones Biomed, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
15
|
Chen P, Xu S, Qu J. Lycopene Protects Keratinocytes Against UVB Radiation-Induced Carcinogenesis via Negative Regulation of FOXO3a Through the mTORC2/AKT Signaling Pathway. J Cell Biochem 2018; 119:366-377. [PMID: 28585698 DOI: 10.1002/jcb.26189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/05/2017] [Indexed: 04/04/2025]
Abstract
Lycopene, one of the most potent anti-oxidants, has been reported to exhibit potent anti-proliferative properties in a wide range of cancer cells through modulation of the cell cycle and apoptosis. Forkhead box O3 (FOXO3a) plays a pivotal role in modulating the expression of genes involved in cell death. Herein, we investigated the role of FOXO3a signaling in the anti-cancer effects of lycopene. Results showed that lycopene pretreatment attenuated UVB-induced cell hyper-proliferation and promoted apoptosis, accompanied by decreased cyclin-dependent kinase 2 (CDK2) and CDK4 complex in both human keratinocytes and SKH-1 hairless mice. FOXO3a is phosphorylated in response to UVB irradiation and sequestered in the cytoplasm, while lycopene pretreatment rescued this sensitization. Gene ablation of FOXO3a attenuated lycopene-induced decrease in cell hyper-proliferation, CDK2, and CDK4 complex, indicating a critical role of FOXO3a in the lycopene-induced anti-proliferative effect of keratinocytes during UVB irradiation. Transfection with FOXO3a siRNA inhibited the lycopene-induced increase in cell apoptosis, BAX and cleaved PARP expression. Moreover, loss of AKT induced further accelerated lycopene-induced FOXO3a dephosphorylation, while loss of mechanistic target of rapamycin complex 2 (mTORC2) by transfection with RICTOR siRNA induced levels of AKT phosphorylation comparable to those obtained with lycopene. In contrast, overexpression of AKT or mTORC2 decreased the effects of lycopene on the expression of FOXO3a as well as AKT phosphorylation, suggesting that lycopene depends on the negative modulation of mTORC2/AKT signaling. Taken together, our findings demonstrate that the mTORC2/AKT/FOXO3a axis plays a critical role in the anti-proliferative and pro-apoptotic effects of lycopene in UVB-induced photocarcinogenesis. J. Cell. Biochem. 119: 366-377, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pharmacy, Affiliated Hospital of Shandong Medical College, Linyi, 276000, Shandong Province, China
| | - Shina Xu
- Department of Pharmacy, Affiliated Hospital of Shandong Medical College, Linyi, 276000, Shandong Province, China
| | - Jinlong Qu
- Department of Dermatology, Linyi Central Hospital, Yishui County, Linyi, 276400, Shandong Province, China
| |
Collapse
|
16
|
Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget 2017; 8:22203-22217. [PMID: 28108737 PMCID: PMC5400658 DOI: 10.18632/oncotarget.14729] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/09/2017] [Indexed: 02/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway is the most commonly mutated pathway in head and neck squamous cell carcinoma (HNSCC). There are several drugs targeting members of the PI3K signaling pathway in development for HNSCC. In this article, we review the genetic alterations reported in the pathway pertinent to HNSCC, various agents in development targeting various mediators of the pathway, results from clinical trials, and remaining challenges in the development of PI3K pathway inhibitors.
Collapse
|
17
|
Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol 2016; 82:943-56. [PMID: 27232857 PMCID: PMC5137819 DOI: 10.1111/bcp.13021] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K)-AKT pathway is one of the most commonly dysregulated pathways in all of cancer, with somatic mutations, copy number alterations, aberrant epigenetic regulation and increased expression in a number of cancers. The carefully maintained homeostatic balance of cell division and growth on one hand, and programmed cell death on the other, is universally disturbed in tumorigenesis, and downstream effectors of the PI3K-AKT pathway play an important role in this disturbance. With a wide array of downstream effectors involved in cell survival and proliferation, the well-characterized direct interactions of AKT make it a highly attractive yet elusive target for cancer therapy. Here, we review the salient features of this pathway, evidence of its role in promoting tumorigenesis and recent progress in the development of therapeutic agents that target AKT.
Collapse
Affiliation(s)
- Prabhjot S Mundi
- Division of Medical Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jasgit Sachdev
- Translational Genomics Research Institute, Virginia G. Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA
| | - Carolyn McCourt
- Division of Gynecologic Oncology, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Kevin Kalinsky
- Division of Medical Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Chang JW, Jung SN, Kim JH, Shim GA, Park HS, Liu L, Kim JM, Park J, Koo BS. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation. Sci Rep 2016; 6:28503. [PMID: 27328758 PMCID: PMC4916413 DOI: 10.1038/srep28503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/02/2016] [Indexed: 01/10/2023] Open
Abstract
The exact regulatory mechanisms of carboxyl-terminal modulator protein (CTMP) and its downstream pathways in cancer have been controversial and are not completely understood. Here, we report a new mechanism of regulation of Akt serine/threonine kinase, one of the most important dysregulated signals in head and neck squamous cell carcinoma (HNSCC) by the CTMP pathway and its clinical implications. We find that HNSCC tumor tissues and cell lines had relatively high levels of CTMP expression. Clinical data indicate that CTMP expression was significantly associated with positive lymph node metastasis (OR = 3.8, P = 0.033) and correlated with poor prognosis in patients with HNSCC. CTMP was also positively correlated with Akt/GSK-3β phosphorylation, Snail up-regulation and E-cadherin down-regulation, which lead to increased proliferation and epithelial-to-mesenchymal transition, suggesting that CTMP expression results in enhanced tumorigenic and metastatic properties of HNSCC cells. Moreover, CTMP suppression restores sensitivity to cisplatin chemotherapy. Intriguingly, all the molecular responses to CTMP regulation are identical regardless of p53 status in HNSCC cells. We conclude that CTMP promotes Akt phosphorylation and functions as an oncogenic driver and prognostic marker in HNSCC irrespective of p53.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Ju-Hee Kim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Geun-Ae Shim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Hee Sung Park
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Man Kim
- Research Institute for Medical Sciences and Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes. PLoS One 2016; 11:e0148454. [PMID: 26849680 PMCID: PMC4743844 DOI: 10.1371/journal.pone.0148454] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/17/2016] [Indexed: 12/26/2022] Open
Abstract
Exosomes are 30–100 nm-sized membranous vesicles, secreted from a variety of cell types into their surrounding extracellular space. Various exosome components including lipids, proteins, and nucleic acids are transferred to recipient cells and affect their function and activity. Numerous studies have showed that tumor cell-derived exosomes play important roles in tumor growth and progression. However, the effect of exosomes released from oral squamous cell carcinoma (OSCC) into the tumor microenvironment remains unclear. In the present study, we isolated exosomes from OSCC cells and investigated the influence of OSCC cell-derived exosomes on the tumor cell behavior associated with tumor development. We demonstrated that OSCC cell-derived exosomes were taken up by OSCC cells themselves and significantly promoted proliferation, migration, and invasion through the activation of the PI3K/Akt, MAPK/ERK, and JNK-1/2 pathways in vitro. These effects of OSCC cell-derived exosomes were obviously attenuated by treatment with PI3K, ERK-1/2, and JNK-1/2 pharmacological inhibitors. Furthermore, the growth rate of tumor xenografts implanted into nude mice was promoted by treatment with OSCC cell-derived exosomes. The uptake of exosomes by OSCC cells and subsequent tumor progression was abrogated in the presence of heparin. Taken together, these data suggest that OSCC cell-derived exosomes might be a novel therapeutic target and the use of heparin to inhibit the uptake of OSCC-derived exosomes by OSCC cells may be useful for treatment.
Collapse
|
20
|
Segrelles C, García-Escudero R, Garín MI, Aranda JF, Hernández P, Ariza JM, Santos M, Paramio JM, Lorz C. Akt signaling leads to stem cell activation and promotes tumor development in epidermis. Stem Cells 2015; 32:1917-28. [PMID: 24504902 DOI: 10.1002/stem.1669] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/18/2014] [Indexed: 01/25/2023]
Abstract
Hair follicle stem cells (HF-SCs) alternate between periods of quiescence and proliferation, to finally differentiate into all the cell types that constitute the hair follicle. Also, they have been recently identified as cells of origin in skin cancer. HF-SCs localize in a precise region of the hair follicle, the bulge, and molecular markers for this population have been established. Thus, HF-SCs are good model to study the potential role of oncogenic activations on SC physiology. Expression of a permanently active form of Akt (myrAkt) in basal cells leads to Akt hyperactivation specifically in the CD34(+)Itga6(H) population. This activation causes bulge stem cells to exit from quiescence increasing their response to proliferative stimuli and affecting some functions such as cell migration. HF-SC identity upon Akt activation is preserved; in this sense, increased proliferation does not result in stem cell exhaustion with age suggesting that Akt activation does not affect self-renewal an important aspect for normal tissue maintenance and cancer development. Genome-wide transcriptome analysis of HF-SC isolated from myrAkt and wild-type epidermis underscores changes in metabolic pathways characteristic of cancer cells. These differences manifest during a two-step carcinogenesis protocol in which Akt activation in HF-SCs results in increased tumor development and malignant transformation.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit and, Department of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Carnero A, Paramio JM. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models. Front Oncol 2014; 4:252. [PMID: 25295225 PMCID: PMC4172058 DOI: 10.3389/fonc.2014.00252] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022] Open
Abstract
When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified.
Collapse
Affiliation(s)
- Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla , Seville , Spain
| | - Jesus M Paramio
- Molecular Oncology Unit, Division of Biomedicine, CIEMAT , Madrid , Spain ; Oncogenomics Unit, Biomedical Research Institute, "12 de Octubre" University Hospital , Madrid , Spain
| |
Collapse
|
22
|
Kang MH, Kim IH, Nam TJ. Phloroglucinol induces apoptosis through the regulation of insulin-like growth factor 1 receptor signaling pathways in human colon cancer HT-29 cells. Int J Oncol 2014; 45:1036-42. [PMID: 24970012 PMCID: PMC4121399 DOI: 10.3892/ijo.2014.2521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Phloroglucinol is a polyphenol compound with free radical scavenging, anti-inflammatory and antitumor activity. In this study, we investigated the anticancer effects of phloroglucinol on insulin-like growth factor-1 receptor (IGF-1R) signaling in HT-29 human colon cancer cells. Apoptosis was evaluated using 4′,6-diamidino-2-phenylindole (DAPI) staining, which clearly demonstrated cell shrinkage and condensed nuclei. Treatment with a pan-caspase inhibitor reduced the expression of phosphatidylinositol-3-kinase (PI3K)/Akt, which could induce apoptosis through IGF-1R signaling pathways. Treatment with phloroglucinol significantly inhibited the expression of Ras, Raf, mitogen-activated protein kinase (MEK), extracellular-signal regulated kinase (ERK) phosphorylation, PI3K and Akt. Phloroglucinol also decreased mammalian target of rapamycin (mTOR) and expression of its downstream effectors p70S6 kinase and translation initiation factors elF4B and RPS6. These results demonstrate that IGF-1R activates PI3K/Akt/mTOR and Ras/ERK-MAPK downstream signaling pathways, which has important implications for understanding the roles of cell growth pathways in colon cancer cell tumorigenesis.
Collapse
Affiliation(s)
- Mi-Hye Kang
- Departments of Food and Life Science, Pukyong National University, Nam-gu, Busan 608-737, Republic of Korea
| | - In-Hye Kim
- Departments of Food and Life Science, Pukyong National University, Nam-gu, Busan 608-737, Republic of Korea
| | - Taek-Jeong Nam
- Departments of Food and Life Science, Pukyong National University, Nam-gu, Busan 608-737, Republic of Korea
| |
Collapse
|
23
|
Unique roles of estrogen-dependent Pten control in epithelial cell homeostasis of mouse vagina. Oncogene 2014; 34:1035-43. [DOI: 10.1038/onc.2014.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/24/2013] [Accepted: 01/19/2014] [Indexed: 01/01/2023]
|
24
|
Qu Y, Zhang L, Ma A, Zhang F, Li J, Xu D, Yang Z, Qin W, Liu Y. c-MYC overexpression overrides TAK1 dependency in efficient tumorigenicity of AKT-transformed cells. Cancer Lett 2013; 336:290-8. [PMID: 23523871 DOI: 10.1016/j.canlet.2013.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/08/2023]
Abstract
Transforming growth factor activated kinase 1 (TAK1) provides prosurvival signals in various types of cells, and emerging evidence indicates that targeting TAK1 is a promising means to eliminate certain types of cancer cells. Here, we show that TAK1 is required for efficient tumorigenicity of AKT-transformed cells. TAK1 inhibition accelerates cell apoptosis of AKT-transformed cells in anchorage-independent cell growth accompanying by the downregulation of Mcl-1 and Bcl-2 expression. On the contrary, the tumorigenicity of c-Myc-transformed cells is not significantly affected by TAK1 inhibition. Moreover, AKT-transformed cells with c-Myc overexpression tolerate TAK1 inhibition in anchorage-independent growth and tumorigenicity in vivo. Together, our results provide evidence that TAK1-dependency in the tumorigenicity of AKT-transformed cells can be alleviated by c-Myc overexpression. These findings suggest that dual-targeting TAK1 and c-Myc might be a rational therapeutic strategy for treatment of certain types of cancer.
Collapse
Affiliation(s)
- Yulan Qu
- Medical School of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Leonard MK, Hill NT, Bubulya PA, Kadakia MP. The PTEN-Akt pathway impacts the integrity and composition of mitotic centrosomes. Cell Cycle 2013; 12:1406-15. [PMID: 23574721 PMCID: PMC3674068 DOI: 10.4161/cc.24516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022] Open
Abstract
Loss of the tumor suppressor PTEN is observed in many human cancers that display increased chromosome instability and aneuploidy. The subcellular fractions of PTEN are associated with different functions that regulate cell growth, invasion and chromosome stability. In this study, we show a novel role for PTEN in regulating mitotic centrosomes. PTEN localization at mitotic centrosomes peaks between prophase and metaphase, paralleling the centrosomal localization of PLK-1 and γ-tubulin and coinciding with the time frame of centrosome maturation. In primary keratinocytes, knockdown of PTEN increased whole-cell levels of γ-tubulin and PLK-1 in an Akt-dependent manner and had little effect on recruitment of either protein to mitotic centrosomes. Conversely, knockdown of PTEN reduced centrosomal levels of pericentrin in an Akt-independent manner. Inhibition of Akt activation with MK2206 reduced the whole-cell and centrosome levels of PLK-1 and γ-tubulin and also prevented the recruitment of PTEN to mitotic centrosomes. This reduction in centrosome-associated proteins upon inhibition of Akt activity may contribute to the increase in defects in centrosome number and separation observed in metaphase cells. Concomitant PTEN knockdown and Akt inhibition reduced the frequency of metaphase cells with centrosome defects when compared with MK2206 treatment alone, indicating that both PTEN and pAkt are required to properly regulate centrosome composition during mitosis. The findings presented in this study demonstrate a novel role for PTEN and Akt in controlling centrosome composition and integrity during mitosis and provide insight into how PTEN functions as a multifaceted tumor suppressor.
Collapse
Affiliation(s)
- Mary K. Leonard
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| | - Natasha T. Hill
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| | - Paula A. Bubulya
- Department of Biological Sciences; Wright State University; Dayton, OH USA
| | - Madhavi P. Kadakia
- Department of Biochemistry and Molecular Biology; Boonshoft School of Medicine; Wright State University; Dayton, OH USA
| |
Collapse
|
26
|
Rohatgi N, Aly H, Marshall CA, McDonald WG, Kletzien RF, Colca JR, McDaniel ML. Novel insulin sensitizer modulates nutrient sensing pathways and maintains β-cell phenotype in human islets. PLoS One 2013; 8:e62012. [PMID: 23650507 PMCID: PMC3641131 DOI: 10.1371/journal.pone.0062012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/17/2013] [Indexed: 02/04/2023] Open
Abstract
Major bottlenecks in the expansion of human β-cell mass are limited proliferation, loss of β-cell phenotype, and increased apoptosis. In our previous studies, activation of Wnt and mTOR signaling significantly enhanced human β-cell proliferation. However, isolated human islets displayed insulin signaling pathway resistance, due in part to chronic activation of mTOR/S6K1 signaling that results in negative feedback of the insulin signaling pathway and a loss of Akt phosphorylation and insulin content. We evaluated the effects of a new generation insulin sensitizer, MSDC-0160, on restoring insulin/IGF-1 sensitivity and insulin content in human β-cells. This novel TZD has low affinity for binding and activation of PPARγ and has insulin-sensitizing effects in mouse models of diabetes and ability to lower glucose in Phase 2 clinical trials. MSDC-0160 treatment of human islets increased AMPK activity and reduced mTOR activity. This was associated with the restoration of IGF-1-induced phosphorylation of Akt, GSK-3, and increased protein expression of Pdx1. Furthermore, MSDC-0160 in combination with IGF-1 and 8 mM glucose increased β-cell specific gene expression of insulin, pdx1, nkx6.1, and nkx2.2, and maintained insulin content without altering glucose-stimulated insulin secretion. Human islets were unable to simultaneously promote DNA synthesis and maintain the β-cell phenotype. Lithium-induced GSK-3 inhibition that promotes DNA synthesis blocked the ability of MSDC-0160 to maintain the β-cell phenotype. Conversely, MSDC-0160 prevented an increase in DNA synthesis by blocking β-catenin nuclear translocation. Due to the counteracting pathways involved in these processes, we employed a sequential ex vivo strategy to first induce human islet DNA synthesis, followed by MSDC-0160 to promote the β-cell phenotype and insulin content. This new generation PPARγ sparing insulin sensitizer may provide an initial tool for relieving inherent human islet insulin signaling pathway resistance that is necessary to preserve the β-cell phenotype during β-cell expansion for the treatment of diabetes.
Collapse
Affiliation(s)
- Nidhi Rohatgi
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Haytham Aly
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Connie A. Marshall
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - William G. McDonald
- Metabolic Solutions Development Company, Kalamazoo, Michigan, United States of America
| | - Rolf F. Kletzien
- Metabolic Solutions Development Company, Kalamazoo, Michigan, United States of America
| | - Jerry R. Colca
- Metabolic Solutions Development Company, Kalamazoo, Michigan, United States of America
| | - Michael L. McDaniel
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhong ZQ, Song MM, He Y, Cheng S, Yuan HS. Knockdown of Ezrin by RNA interference reverses malignant behavior of human pancreatic cancer cells in vitro. Asian Pac J Cancer Prev 2013; 13:3781-9. [PMID: 23098471 DOI: 10.7314/apjcp.2012.13.8.3781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most aggressive tumors with a dismal prognosis. The membrane cytoskeletal crosslinker Ezrin participates in several functions including cell proliferation, adhesion, motility and survival. There is increasing evidence that Ezrin is overexpressed in vast majority of malignant tumors and regulates tumor progression. However, its roles in pancreatic cancer remain elusive. METHODS Three pairs of specific Ezrin siRNAs were designed and synthetized and screened to determine the most efficient one for construction of a hairpin RNA plasmid targeting Ezrin. After transfection into the Panc-1 pancreatic cancer cell line, real-time quantitative PCR and Western blotting were performed to examine the expression of mRNA and protein. The MTT method was applied to examine the proliferation and the drug sensibility to Gemcitabine. Flow cytometry was used to assess the cycle and apoptosis, while capacity for invasion was determined with transwell chambers. Furthermore, we detected phosphorylated-Erk1/2 protein and phosphorylated-Akt protein by Western blotting. RESULTS Real-time quantitative PCR and Western blotting revealed that Ezrin expression was notably down-regulated at both mRNA and protein levels by RNA interference (P< 0.01). Proliferation was inhibited and drug resistance to gemcitabine was improved (P< 0.05). Flow cytometry showed that the proportion of cells in the G1/G0 phase increased (P< 0.01), and in G2/M and S phases decreased (P< 0.05), with no apparent differences in apoptosis (P> 0.05). The capacity for invasion was markedly reduced (P< 0.01). In addition, down-regulating Ezrin expression had no effect on phosphorylated-Akt protein (P>0.05), but could decrease the level of phosphorylated-Erk1/2 protein (P< 0.05). CONCLUSIONS RNA interference of Ezrin could inhibit its expression in the pancreatic cancer cells line Panc-1, leading to a potent suppression of malignant behavior in vitro. Assessment of potential as a target for pancreatic cancer treatment is clearly warranted.
Collapse
Affiliation(s)
- Zhi-Qiang Zhong
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
28
|
Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 2012; 92:114-21. [PMID: 23128109 DOI: 10.1177/0022034512467352] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An understanding of the process by which tumor cells destroy the basement membrane of the surface epithelium, invade, and metastasize is essential to the development of novel treatment of head and neck squamous cell carcinoma (HNSCC). In recent years, there has been increased interest in the role of epithelial-mesenchymal transition (EMT) in invasion. EMT is a process that describes the development of motile, mesenchymal-like cells from non-motile parent epithelial cells. There are 3 known types of EMT that mediate development, wound healing, and carcinogenesis. This review summarizes studies of known EMT biomarkers in the context of HNSCC progression. The biomarkers discussed come from a wide range of proteins, including cell-surface proteins (E-cadherin, N-cadherin, and Integrins), cytoskeletal proteins (α-Smooth Muscle Actin, Vimentin, and β-catenin), extracellular matrix proteins (Collagens, Fibronectin, and Laminin), and transcription factors (SNAIL1, SNAIL2, TWIST, and LEF-1). Overall, the findings of these studies suggest that EMT mediates HNSCC progression. The mechanistic role of the EMT markers that have been associated with HNSCC should be more clearly defined if new anti-HNSCC therapies to block EMT progression are to be developed.
Collapse
Affiliation(s)
- C S Scanlon
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
29
|
Liu W, Gong Y, Li H, Jiang G, Zhan S, Liu H, Wu Y. Arsenic trioxide-induced growth arrest of breast cancer MCF-7 cells involving FOXO3a and IκB kinase β expression and localization. Cancer Biother Radiopharm 2012; 27:504-12. [PMID: 22988968 DOI: 10.1089/cbr.2012.1162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Currently, arsenic has been clinically investigated as a therapeutic agent for a variety of solid malignancies, including breast cancer. However, the exact underlying molecular mechanisms through which arsenic trioxide (As(2)O(3)) induces cell growth arrest and apoptosis in solid tumors have not been clearly understood. The aim of our study was to gain an insight into the effect of As(2)O(3) on the human breast cancer MCF-7 cell line and investigate cell growth inhibition, apoptosis, and the molecular mechanism after As(2)O(3) treatment in MCF-7 cells. Expression of FOXO3a, nuclear-FOXO3a, caspase-3, and IκB kinase β (IKKβ) mRNA levels in MCF-7 cells was determined by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression was examined by the Western blot analysis and immunocytochemical staining. The distribution of apoptotic cells was assessed by flow cytometry, and the morphology of the apoptotic cells was investigated by Hoechest33258 staining. Our results showed that As(2)O(3) significantly induced the apoptosis of MCF-7 cells tested in this study in a dose-dependent manner. As(2)O(3) induced the decrease of IKKβ expression and the increase of total as well as nuclear FOXO3a expression, which triggered the phosphorylation of cytoplasmic FOXO3a at the Thr32 residue decrease. RT-PCR, Western blot analysis, and immunocytochemistry revealed that the expression of IKKβ in MCF-7 cells was upregulated when As(2)O(3) was combined with tumor necrosis factor-α (TNF-α), whereas the expression of FOXO3a was downregulated in comparison with the As(2)O(3)-alone group. These findings indicated a specific molecular mechanism by which MCF-7 cell lines were susceptible to the As(2)O(3) therapy through FOXO3a expression and localization. This FOXO3a accumulation may be well correlated with the As(2)O(3)-induced reduction of active IKKβ, which may provide new insights into As(2)O(3)-related signaling activities.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Pathology, Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Bornachea O, Santos M, Martínez-Cruz AB, García-Escudero R, Dueñas M, Costa C, Segrelles C, Lorz C, Buitrago A, Saiz-Ladera C, Agirre X, Grande T, Paradela B, Maraver A, Ariza JM, Prosper F, Serrano M, Sánchez-Céspedes M, Paramio JM. EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours. Sci Rep 2012; 2:434. [PMID: 22666537 PMCID: PMC3364492 DOI: 10.1038/srep00434] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022] Open
Abstract
Missense mutations in TP53 gene promote metastasis in human tumours. However, little is known about the complete loss of function of p53 in tumour metastasis. Here we show that squamous cell carcinomas generated by the specific ablation of Trp53 gene in mouse epidermis are highly metastatic. Biochemical and genome-wide mRNA and miRNA analyses demonstrated that metastases are associated with the early induction of epithelial-mesenchymal transition (EMT) and deregulated miRNA expression in primary tumours. Increased expression of miR-21 was observed in undifferentiated, prometastatic mouse tumours and in human tumours characterized by p53 mutations and distant metastasis. The augmented expression of miR-21, mediated by active mTOR and Stat3 signalling, conferred increased invasive properties to mouse keratinocytes in vitro and in vivo, whereas blockade of miR-21 in a metastatic spindle cell line inhibits metastasis development. Collectively these data identify novel molecular mechanisms leading to metastasis in vivo originated by p53 loss in epithelia.
Collapse
Affiliation(s)
- Olga Bornachea
- Molecular Oncology Unit, CIEMAT, Ave. Complutense 40, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Papagerakis P, Pannone G, Shabana AH, Depondt J, Santoro A, Ghirtis K, Berdal A, Papagerakis S. Aberrant beta-catenin and LEF1 expression may predict the clinical outcome for patients with oropharyngeal cancer. Int J Immunopathol Pharmacol 2012; 25:135-46. [PMID: 22507326 DOI: 10.1177/039463201202500116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Beta-catenin, normally expressed on the epithelial cell surface, plays a crucial role in cadherin-mediated cell adhesion. Recent evidence suggests that beta-catenin is also involved in other functions such as intracellular signaling via the Wnt pathway by creating a nuclear complex with members of the Lymphoid-Enhancer-Factor/T-Cell-Factor (LEF/TCF) family of transcription factors, and gene regulation that it is implicated in the development of several tumors. Little information is available on beta-catenin expression and its main partner in the Wnt signaling pathway, LEF1, in oropharyngeal squamous cell carcinomas (OP-SCCs). The aim of this study is to investigate the expression of beta-catenin and LEF1 expression in human primary OP-SCCs and to evaluate their clinical and prognostic significance. OP-SCCs and normal peritumoral areas were analyzed by immunohistochemistry, Western-blot and RT-PCR. Beta-catenin was overexpressed in tumors in comparison to normal peritumoral areas and displayed predominantly intracellular (cytosolic/nuclear) localization in 62% of the tumors. Immunoreactivity was correlated with clinicopathological parameters and long-term follow-up, and a significant association was found between protein expression and development of local recurrences (P =0.03). The OP-SCCs with poor clinical outcome, which displayed intracellular beta-catenin expression, were also strongly positive for LEF1, with their co-expression statistically significant (P = 0.040). All (100%) advanced (stages 3+4) SCCs, 66.7% of the SCCs with positive lymph nodes and 80% of the SSCs that developed local recurrences were LEF1 positive. Cox regression analysis confirmed a poorer overall survival in cases with high expression of beta-catenin and LEF1. Our results suggest that assessing intracellular beta-catenin and LEF1 expression might help in patient risk stratification and outcome prediction, and serve as novel therapeutic targets in advanced OP-SCC.
Collapse
Affiliation(s)
- P Papagerakis
- Department of Orthodontics and Pediatric Dentistry, University of Michigan Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Down-regulation of PKCζ in renal cell carcinoma and its clinicopathological implications. J Biomed Sci 2012; 19:39. [PMID: 22475628 PMCID: PMC3376037 DOI: 10.1186/1423-0127-19-39] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/05/2012] [Indexed: 02/04/2023] Open
Abstract
Background Metastatic renal cell carcinoma (RCC) is highly resistant to systemic chemotherapy. Unfortunately, nearly all patients die of the metastatic and chemoresistant RCC. Recent studies have shown the atypical PKCζ is an important regulator of tumorigenesis. However, the correlation between PKCζ expression and the clinical outcome in RCC patients is unclear. We examined the level of PKCζ expression in human RCC. Methods PKCζ mRNA and protein expressions were examined by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) respectively in RCC tissues of 144 patients. Cellular cytotoxicity and proliferation were assessed by MTT. Results PKCζ expression was significantly higher in normal than in cancerous tissues (P < 0.0001) by real-time PCR and IHC. Similarly, PKCζ expression was down-regulated in four renal cancer cell lines compared to immortalized benign renal tubular cells. Interestingly, an increase of PKCζ expression was associated with the elevated tumor grade (P = 0.04), but no such association was found in TNM stage (P = 0.13). Tumors with higher PKCζ expression were associated with tumor size (P = 0.048). Expression of higher PKCζ found a poor survival in patients with high tumor grade. Down-regulation of PKCζ showed the significant chemoresistance in RCC cell lines. Inactivation of PKCζ expression enhanced cellular resistance to cisplatin and paclitaxel, and proliferation in HK-2 cells by specific PKCζ siRNA and inhibitor. Conclusions PKCζ expression was associated with tumorigenesis and chemoresistance in RCC.
Collapse
|
33
|
Einspahr JG, Calvert V, Alberts DS, Curiel-Lewandrowski C, Warneke J, Krouse R, Stratton SP, Liotta L, Longo C, Pellacani G, Pellicani G, Prasad A, Sagerman P, Bermudez Y, Deng J, Bowden GT, Petricoin EF. Functional protein pathway activation mapping of the progression of normal skin to squamous cell carcinoma. Cancer Prev Res (Phila) 2012; 5:403-13. [PMID: 22389437 PMCID: PMC3297971 DOI: 10.1158/1940-6207.capr-11-0427] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse phase protein microarray analysis was used to identify cell signaling derangements in squamous cell carcinoma (SCC) compared with actinic keratosis (AK) and upper inner arm (UIA). We analyzed two independent tissue sets with isolation and enrichment of epithelial cells by laser capture microdissection. Set 1 served as a pilot and a means to identify protein pathway activation alterations that could be further validated in a second independent set. Set 1 was comprised of 4 AK, 13 SCC, and 20 UIA. Set 2 included 15 AK, 9 SCCs, and 20 UIAs. Activation of 51 signaling proteins, known to be involved in tumorigenesis, were assessed for set 1 and showed that the MEK-ERK [mitogen-activated protein (MAP)/extracellular signal-regulated (ERK; MEK)] pathway was activated in SCC compared with AK and UIA, and that epidermal growth factor receptor (EGFR) and mTOR pathways were aberrantly activated in SCC. Unsupervised two-way hierarchical clustering revealed that AK and UIA shared a common signaling network activation architecture while SCC was dramatically different. Statistical analysis found that prosurvival signaling through phosphorylation of ASK and 4EBP1 as well as increased Bax and Bak expression was higher in AK compared with UIA. We expanded pathway network activation mapping in set 2 to 101 key signaling proteins, which corroborated activation of MEK-ERK, EGFR, and mTOR pathways through discovery of a number of upstream and downstream signaling molecules within these pathways to conclude that SCC is indeed a pathway activation-driven disease. Pathway activation mapping of SCC compared with AK revealed several interconnected networks that could be targeted with drug therapy for potential chemoprevention and therapeutic applications.
Collapse
Affiliation(s)
- Janine G Einspahr
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Checkley LA, Rho O, Moore T, Hursting S, DiGiovanni J. Rapamycin is a potent inhibitor of skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Prev Res (Phila) 2011; 4:1011-20. [PMID: 21733825 DOI: 10.1158/1940-6207.capr-10-0375] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant activation of phosphoinositide-3-kinase (PI3K)/Akt signaling has been implicated in the development and progression of multiple human cancers. During the process of skin tumor promotion induced by treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), activation of epidermal Akt occurs as well as several downstream effectors of Akt, including the activation of mTORC1. Rapamycin, an established mTORC1 inhibitor, was used to further explore the role of mTORC1 signaling in epithelial carcinogenesis, specifically during the tumor promotion stage. Rapamycin blocked TPA-induced activation of mTORC1 as well as several downstream targets. In addition, TPA-induced epidermal hyperproliferation and hyperplasia were inhibited in a dose-dependent manner with topical rapamycin treatments. Immunohistochemical analyses of the skin from mice in this multiple treatment experiment revealed that rapamycin also significantly decreased the number of infiltrating macrophages, T cells, neutrophils, and mast cells seen in the dermis following TPA treatment. Using a two-stage skin carcinogenesis protocol with 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and TPA as the promoter, rapamycin (5-200 nmol per mouse given topically 30 minutes prior to TPA) exerted a powerful antipromoting effect, reducing both tumor incidence and tumor multiplicity. Moreover, topical application of rapamycin to existing papillomas induced regression and/or inhibited further growth. Overall, the data indicate that rapamycin is a potent inhibitor of skin tumor promotion and suggest that signaling through mTORC1 contributes significantly to the process of skin tumor promotion. The data also suggest that blocking this pathway either alone or in combination with other agents targeting additional pathways may be an effective strategy for prevention of epithelial carcinogenesis.
Collapse
Affiliation(s)
- L Allyson Checkley
- Division of Pharmacology and Toxicology, The University of Texas at Austin, TX 78723, USA
| | | | | | | | | |
Collapse
|
35
|
An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris. J Invest Dermatol 2011; 132:346-55. [PMID: 21956125 PMCID: PMC3258361 DOI: 10.1038/jid.2011.299] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Evidence has accumulated that changes in intracellular signaling downstream of desmoglein 3 (Dsg3) may play a significant role in epithelial blistering in the autoimmune disease pemphigus vulgaris (PV). Currently, most studies on PV involve passive transfer of pathogenic antibodies into neonatal mice which have not finalized epidermal morphogenesis, and do not permit analysis of mature hair follicles (HFs) and stem cell niches. To investigate Dsg3 antibody-induced signaling in the adult epidermis at defined stages of the HF cycle, we here developed a model with passive transfer of the monospecific pathogenic Dsg3 antibody AK23 into adult 8-week-old C57Bl/6J mice. Validated using histopathological and molecular methods, we found that this model faithfully recapitulates major features described in PV patients and PV models. Two hours after AK23 transfer we observed widening of intercellular spaces between desmosomes and EGFR activation, followed by increased Myc expression and epidermal hyperproliferation, desmosomal Dsg3 depletion and predominant blistering in HFs and oral mucosa. These data confirm that the adult passive transfer mouse model is ideally suited for detailed studies of Dsg3 antibody-mediated signaling in adult skin, providing the basis for investigations on novel keratinocyte-specific therapeutic strategies.
Collapse
|
36
|
Phillips JM, Clark C, Herman-Ferdinandez L, Moore-Medlin T, Rong X, Gill JR, Clifford JL, Abreo F, Nathan CAO. Curcumin inhibits skin squamous cell carcinoma tumor growth in vivo. Otolaryngol Head Neck Surg 2011; 145:58-63. [PMID: 21493306 DOI: 10.1177/0194599811400711] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Squamous cell carcinoma (SCCa) has increased from 4% to 10% over 4 decades, stimulating interest in developing novel agents that slow sun-damaged skin progression. This is the first study evaluating the naturally occurring bioactive food compound curcumin on skin cancer xenografts. Low bioavailability of curcumin has slowed its transition to clinical trials. It is hypothesized that curcumin has growth-inhibitory effects through the TOR pathway and chemopreventive potential in skin SCCa where local application could bypass bioavailability problems. STUDY DESIGN A randomized experimental animal and laboratory study. SETTING Louisiana State University Health Sciences Center, Shreveport, Louisiana. SUBJECTS AND METHODS SCID mice were pretreated with 0, 5, or 15 mg of curcumin (n = 8 per group), 3 days prior to injecting 10⁶ SRB12-p9 skin SCCa cells in each flank, and were gavaged daily thereafter. Tumor volumes were measured and tumors were harvested on day 24 when mice were sacrificed. Immunohistochemical analysis of pS6 expression (n = 3 per group) and tumor volumes in the 3 groups were compared using 1-way analysis of variance and pairwise comparisons were determined with the Tukey t test if overall comparisons were significant. RESULTS Tumor volume increased 2.3 times faster in control mice compared with the group receiving 15 mg of curcumin (P = .0003). A significant difference in average tumor volumes was seen (P = .0012), especially with treatment of 15 mg of curcumin compared with control P = .0003). Curcumin inhibited S6 phosphorylation (P = .0027), suggest-ing inhibition of the MTOR pathway. CONCLUSION Curcumin appears to inhibit skin SCCa growth and blocks tumor progression by inhibiting pS6 even when gavage is used to deliver curcumin, indicating even more significant effects in future experiments with local application.
Collapse
Affiliation(s)
- Jeffrey M Phillips
- Department of Otolaryngology–Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lin P, Sun X, Feng T, Zou H, Jiang Y, Liu Z, Zhao D, Yu X. ADAM17 regulates prostate cancer cell proliferation through mediating cell cycle progression by EGFR/PI3K/AKT pathway. Mol Cell Biochem 2011; 359:235-43. [PMID: 21837402 DOI: 10.1007/s11010-011-1018-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/27/2011] [Indexed: 12/22/2022]
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a transmembrane protein that can cleave membrane anchored proteins to release soluble factors and regulate important biological phenomena in cancers. In the present study, we evaluated the effects of ADAM17 on the proliferation and on the cell cycle distribution of human prostate cancer cells. Experiments were also performed to gain insights into the possible mechanism of action of ADAM17. We used over-expression and RNAi strategy to investigate the function of ADAM17 in human prostate cancer cells. Changes in rate of proliferation and cell cycle profile were measured by growth curve, Cell Counting Kit-8 (CCK-8) assay, bromodeoxyuridine (BrdU) incorporation assay and cell cycle analysis. In addition, changes in expression of associated genes and proteins were studied by semiquantitative RT-PCR, western blotting and ELISA analysis. Ectopic over-expression of ADAM17 resulted in increased cell proliferation. We also showed that ADAM17 promoted G1 to S phase transition concomitantly with upregulation of cyclin E, CDK2 and downregulation of p21 and p27 proteins. ADAM17 over-expression cells showed that more TGF-α released to the supernatant and activated the EGFR/PI3K/AKT pathway. Conversely, silencing ADAM17 led to the opposite effect. Both siRNAs knockdown of ADAM17 and blocking the EGFR/PI3K/AKT pathway using specific inhibitor caused downregulation of cyclin E, CDK2, and upregulation of p21 and p27 in prostate cancer cells. Collectively, this study demonstrates that over-expression of ADAM17 might target cyclin E, CDK2, p21, and p27 to promote prostate cancer cell proliferation through activation of the EGFR/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ping Lin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Harbin Medical University, Harbin, 150081, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Henken FE, Banerjee NS, Snijders PJF, Meijer CJLM, De-Castro Arce J, Rösl F, Broker TR, Chow LT, Steenbergen RDM. PIK3CA-mediated PI3-kinase signalling is essential for HPV-induced transformation in vitro. Mol Cancer 2011; 10:71. [PMID: 21663621 PMCID: PMC3130697 DOI: 10.1186/1476-4598-10-71] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 06/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-risk human papillomavirus (hrHPV) infections are causally related to cervical cancer development. The additional (epi)genetic alterations driving malignant transformation of hrHPV-infected cells however, are not yet fully elucidated. In this study we experimentally assessed the role of the PI3-kinase pathway and its regulator PIK3CA, which is frequently altered in cervical cancer, in HPV-induced transformation. METHODS Cervical carcinomas and ectocervical controls were assessed for PIK3CA mRNA and protein expression by quantitative RT-PCR and immunohistochemical staining, respectively. A longitudinal in vitro model system of hrHPV-transfected keratinocytes, representing the immortal and anchorage independent phenotype, was assayed for PI3-kinase activation and function using chemical pathway inhibition i.e. LY294002 treatment, and PIK3CA RNA interference. Phenotypes examined included cellular viability, migration, anchorage independent growth and differentiation. mRNA expression of hTERT and HPV16 E6E7 were studied using quantitative RT-PCR and Northern blotting. RESULTS Cervical carcinomas showed significant overexpression of PIK3CA compared to controls. During HPV-induced transformation in vitro, expression of the catalytic subunit PIK3CA as well as activation of downstream effector PKB/AKT progressively increased in parallel. Inhibition of PI3-kinase signalling in HPV16-transfected keratinocytes by chemical interference or siRNA-mediated silencing of PIK3CA resulted in a decreased phosphorylation of PKB/AKT. Moreover, blockage of PI3-kinase resulted in reduced cellular viability, migration, and anchorage independent growth. These properties were accompanied with a downregulation of HPV16E7 and hTERT mRNA expression. In organotypic raft cultures of HPV16- and HPV18-immortalized cells, phosphorylated PKB/AKT was primarily seen in differentiated cells staining positive for cytokeratin 10 (CK10). Upon PI3-kinase signalling inhibition, there was a severe impairment in epithelial tissue development as well as a dramatic reduction in p-PKB/AKT and CK10. CONCLUSION The present data indicate that activation of the PI3-kinase/PKB/AKT pathway through PIK3CA regulates various transformed phenotypes as well as growth and differentiation of HPV-immortalized cells and may therefore play a pivotal role in HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Florianne E Henken
- Department of Pathology, Unit of Molecular Pathology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
ΔNp63α regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death Differ 2011; 18:1924-33. [PMID: 21637289 DOI: 10.1038/cdd.2011.73] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ΔNp63α, implicated as an oncogene, is upregulated by activated Akt, part of a well-known cell survival pathway. Inhibition of Akt activation by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and the presence of putative p63-binding sites in the pten promoter led us to investigate whether ΔNp63α regulates PTEN expression. Knockdown of ΔNp63α led to increases in PTEN levels and loss of activated Akt, while overexpression of ΔNp63α decreased PTEN levels and elevated active Akt. The repression of PTEN by ΔNp63α occurs independently of p53 status, as loss of ΔNp63α increases PTEN expression in cell lines with and without functional p53. In addition, decreased levels of ΔNp63α resulted in an increase in nuclear PTEN. Conversely, in vivo nuclear PTEN was absent in the proliferative basal layer of the epidermis where ΔNp63α expression is highest. Additionally, we show that in keratinocytes a balance between ΔNp63α and PTEN regulates Akt activation and maintains normal proliferation rates. This balance is disrupted in non-melanoma skin cancers through increased ΔNp63α levels, and could enhance proliferation and subsequent neoplastic development. Our studies show that ΔNp63α negatively regulates PTEN, thereby providing a feedback loop between PTEN, Akt and ΔNp63α, which has an integral role in skin cancer development.
Collapse
|
40
|
Contreras-Jurado C, García-Serrano L, Gómez-Ferrería M, Costa C, Paramio JM, Aranda A. The thyroid hormone receptors as modulators of skin proliferation and inflammation. J Biol Chem 2011; 286:24079-88. [PMID: 21566120 DOI: 10.1074/jbc.m111.218487] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have analyzed the role of the thyroid hormone receptors (TRs) in epidermal homeostasis. Reduced keratinocyte proliferation is found in interfollicular epidermis of mice lacking the thyroid hormone binding isoforms TRα1 and TRβ (KO mice). Similar results were obtained in hypothyroid animals, showing the important role of the liganded TRs in epidermal proliferation. In addition, KO and hypothyroid animals display decreased hyperplasia in response to 12-O-tetradecanolyphorbol-13-acetate. Both receptor isoforms play overlapping functional roles in the skin because mice lacking individually TRα1 or TRβ also present a proliferative defect but not as marked as that found in double KO mice. Defective proliferation in KO mice is associated with reduction of cyclin D1 expression and up-regulation of the cyclin-dependent kinase inhibitors p19 and p27. Paradoxically, ERK and AKT activity and expression of downstream targets, such as AP-1 components, are increased in KO mice. Increased p65/NF-κB and STAT3 phosphorylation and, as a consequence, augmented expression of chemokines and proinflammatory cytokines is also found in these animals. These results show that thyroid hormones and their receptors are important mediators of skin proliferation and demonstrate that TRs act as endogenous inhibitors of skin inflammation, most likely due to interference with AP-1, NF-κB, and STAT3 activation.
Collapse
Affiliation(s)
- Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas de Madrid, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Segrelles C, Holguín A, Hernández P, Ariza JM, Paramio JM, Lorz C. Establishment of a murine epidermal cell line suitable for in vitro and in vivo skin modelling. BMC DERMATOLOGY 2011; 11:9. [PMID: 21510892 PMCID: PMC3113952 DOI: 10.1186/1471-5945-11-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/21/2011] [Indexed: 11/29/2022]
Abstract
Background Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies. However, development of three-dimensional models of skin using keratinocytes from normal and/or genetically modified mice has been hindered by the difficulty to subculture murine epidermal keratinocytes. Methods We have generated a murine epidermal cell line by serially passaging keratinocytes isolated from the back skin of adult mice. We have termed this cell line COCA. Cell culture is done in fully defined media and does not require feeder cells or any other coating methods. Results COCA retained its capacity to differentiate and stratify in response to increased calcium concentration in the cell culture medium for more than 75 passages. These cells, including late passage, can form epidermis-like structures in three-dimensional in vitro models with a well-preserved pattern of proliferation and differentiation. Furthermore, these cells form epidermis in grafting assays in vivo, and do not develop tumorigenic ability. Conclusions We propose that COCA constitutes a good experimental system for in vitro and in vivo skin modelling. Also, cell lines from genetically modified mice of interest in skin biology could be established using the method we have developed. COCA keratinocytes would be a suitable control, within a similar background, when studying the biological implications of these alterations.
Collapse
Affiliation(s)
- Carmen Segrelles
- Molecular Oncology Unit, Epithelial Biomedicine Division, Basic Research Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc Natl Acad Sci U S A 2011; 108:7425-30. [PMID: 21502519 DOI: 10.1073/pnas.1012670108] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The precise identity of cancer cells of origin and the molecular events of tumor initiation in epidermal squamous cell carcinoma (SCC) are unknown. Here we show that malignancy potential is related to the developmental capacity of the initiating cancer cell in a genetically defined, intact, and inducible in vivo model. Specifically, these data demonstrate that SCCs can originate from inside the hair follicle stem cell (SC) niche or from immediate progenitors, whereas more developmentally restricted progeny, the transit amplifying (TA) cells, are unable to generate even benign tumors in the same genetic context. Using a temporal model of tumorigenesis in situ, we highlight the phenotypes of cancer progression from the hair follicle SC niche, including hyperplasia, epithelial to mesenchymal transition, and SCC formation. Furthermore, we provide insights into the inability of hair follicle TA cells to respond to tumorigenic stimuli.
Collapse
|
43
|
Rho O, Kim DJ, Kiguchi K, DiGiovanni J. Growth factor signaling pathways as targets for prevention of epithelial carcinogenesis. Mol Carcinog 2011; 50:264-79. [PMID: 20648549 PMCID: PMC3005141 DOI: 10.1002/mc.20665] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 10/24/2022]
Abstract
Growth factor receptor (GFR) signaling controls epithelial cell growth by responding to various endogenous or exogenous stimuli and subsequently activating downstream signaling pathways including Stat3, PI3K/Akt/mTOR, MAPK, and c-Src. Environmental chemical toxicants and UVB irradiation cause enhanced and prolonged activation of GFR signaling and downstream pathways that contributes to epithelial cancer development including skin cancer. Recent studies, especially those with tissue-specific transgenic mouse models, have demonstrated that GFRs and their downstream signaling pathways contribute to all three stages of epithelial carcinogenesis by regulating a wide variety of biological functions including proliferation, apoptosis, angiogenesis, cell adhesion, and migration. Inhibiting these signaling pathways early in the carcinogenic process results in reduced cell proliferation and survival, leading to decreased tumor formation. Collectively, these studies suggest that GFR signaling and subsequent downstream signaling pathways are potential targets for the prevention of epithelial cancers including skin cancer.
Collapse
Affiliation(s)
| | | | - Karou Kiguchi
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin
| | - John DiGiovanni
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin
| |
Collapse
|
44
|
Freudlsperger C, Burnett JR, Friedman JA, Kannabiran VR, Chen Z, Van Waes C. EGFR-PI3K-AKT-mTOR signaling in head and neck squamous cell carcinomas: attractive targets for molecular-oriented therapy. Expert Opin Ther Targets 2011; 15:63-74. [PMID: 21110697 PMCID: PMC3399735 DOI: 10.1517/14728222.2011.541440] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE OF THE FIELD Recent advances in the understanding of the oncogenesis of head and neck squamous cell carcinomas (HNSCC) have revealed multiple dysregulated signaling pathways. One frequently altered axis is the EGFR-PI3K-Akt-mTOR pathway. This pathway plays a central role in numerous cellular processes including metabolism, cell growth, apoptosis, survival and differentiation, which ultimately contributes to HNSCC progression. AREAS COVERED IN THIS REVIEW Books, journals, databases and websites have been searched to provide a current review on the subject. WHAT THE READER WILL GAIN This article reviews the current understanding of EGFR-PI3K-Akt-mTOR signaling in HNSCC, including the impact of both genetic and epigenetic alterations. This review further highlights the potential of targeting this signaling cascade as a promising therapeutic approach in the treatment of HNSCC. TAKE HOME MESSAGE Genetic alterations of several nodes within this pathway, including both genetic and epigenetic changes, leading to either oncogene activation or inactivation of tumor suppressors have frequently been implicated in HNSCC. Consequently, drugs that target the central nodes of this pathway have become attractive for molecular oriented cancer therapies. Numerous preclinical and clinical studies are being performed in HNSCC; however, more studies are still needed to better understand the biology of this pathway.
Collapse
Affiliation(s)
- Christian Freudlsperger
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Jeffrey R. Burnett
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jay A. Friedman
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Vishnu R. Kannabiran
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Abstract
IMPORTANCE OF THE FIELD Head and neck squamous cell carcinoma (HNSCC) is the eighth leading cause of cancer death worldwide. Despite advances in surgery and chemoradiation therapy, there has been little improvement in survival rates over the past 4 decades. Additionally, surgery and chemoradiotherapy have serious side effects. The development of agents with greater efficacy and tolerability is needed. AREAS COVERED IN THIS REVIEW EGFR is the only proven molecular target for HNSCC therapy. Cetuximab, the sole FDA-approved molecular targeted HNSCC therapy, and other potential targeted therapies are being evaluated in preclinical, clinical and post-marketing studies. Here, we review the emerging targets for biological agents in HNSCC and the rationale for their selection. WHAT THE READER WILL GAIN Key information in the development of new drug targets and the emergence of new biomarkers are discussed. Readers will gain insight regarding the limitations of current therapies, the impact of recently approved targeted therapies and the influence that predictive biomarkers will have on drug development. TAKE HOME MESSAGE The head and neck cancer drug market is rapidly evolving. Coordination between drug and biomarker development efforts may soon yield targeted therapies that can achieve the promise of personalized cancer medicine.
Collapse
Affiliation(s)
- Christopher Fung
- University of Pittsburgh and University of Pittsburgh Cancer Institute, Department of Otolaryngology, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Physician-Scientist Training Program, Pittsburgh, Pennsylvania, USA
- Howard Hughes Medical Institute, Medical Fellows Program, Chevy Chase, Maryland, USA
| | - Jennifer R Grandis
- University of Pittsburgh and University of Pittsburgh Cancer Institute, Department of Otolaryngology, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh and University of Pittsburgh Cancer Institute, Department of Pharmacology, Pittsburgh, Pennsylvania, USA
- Eye and Ear Institute, 200 Lothrop St., Suite 500, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
46
|
Wang Z, Zhang Y, Gu JJ, Davitt C, Reeves R, Magnuson NS. Pim-2 phosphorylation of p21(Cip1/WAF1) enhances its stability and inhibits cell proliferation in HCT116 cells. Int J Biochem Cell Biol 2010; 42:1030-8. [PMID: 20307683 PMCID: PMC2862799 DOI: 10.1016/j.biocel.2010.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/18/2010] [Accepted: 03/12/2010] [Indexed: 12/19/2022]
Abstract
Pim-2 kinase is one of the three highly conserved Pim family members which are known to be involved in cell survival and cell proliferation. Here we demonstrate that like Pim-1, Pim-2 also phosphorylates the cell cycle inhibitor p21(Cip1/WAF1) (p21) on Thr145 in vitro and in vivo. Overexpression of Pim-2 in HCT116 cells leads to the increased stability of p21 and results in enhanced levels of both exogenous and endogenous p21 proteins. Knockdown of Pim-2 expression via siRNA results in reduced level of endogenous p21, indicating that like Pim-1, Pim-2 is another legitimate p21 kinase. However, Pim-2 has no influence on the nuclear localization of p21 in HCT116 cells. In addition, Pim-2 is able to arrest the cell cycle at G1/S phase and inhibit cell proliferation through phosphorylation of p21 in HCT116 cells. These data suggest that Pim-2 phosphorylation of p21 enhances p21's stability and inhibits cell proliferation in HCT116 cells.
Collapse
Affiliation(s)
- Zeping Wang
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, U.S.A
| | - Yandong Zhang
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, U.S.A
| | - Juan Jenny Gu
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, U.S.A
| | - Christine Davitt
- Franceschi Microscopy Imaging Center, Washington State University, Pullman, WA 99164-4234, U.S.A
| | - Raymond Reeves
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, U.S.A
| | - Nancy S. Magnuson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234, U.S.A
| |
Collapse
|
47
|
Chen CY, Chiou SH, Huang CY, Jan CI, Lin SC, Hu WY, Chou SH, Liu CJ, Lo JF. Tid1 functions as a tumour suppressor in head and neck squamous cell carcinoma. J Pathol 2010; 219:347-55. [PMID: 19681071 DOI: 10.1002/path.2604] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human tumourous imaginal disc (Tid1), a human homologue of the Drosophila tumour suppressor protein Tid56, is involved in multiple intracellular signalling pathways such as apoptosis, cell proliferation, and cell survival. Here, we investigated the anti-tumourigenic activity of Tid1 in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. Firstly, the clinical association between Tid1 expression and progression of HNSCC was explored. It was found that expression of Tid1 was negatively associated with tumour status, recurrence, and survival prognosis using immunohistochemical analysis of primary HNSCC patient tumour tissue. Secondly, ectopic expression of Tid1 in HNSCC cells was shown to significantly inhibit cell proliferation, migration, invasion, anchorage-independent growth, and xenotransplantation tumourigenicity. Thirdly, we showed that overexpression of Tid1 attenuated EGFR activity and blocked the activation of AKT in HNSCC cells, which are known to be involved in the regulation of survival in HNSCC cells. On the other hand, ectopic expression of constitutively active AKT greatly reduced apoptosis induced by Tid1 overexpression. Together, these findings suggest that Tid1 functions as a tumour suppressor in HNSCC tumourigenesis.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smad3-dependent and -independent pathways are involved in peritoneal membrane injury. Kidney Int 2010; 77:319-28. [DOI: 10.1038/ki.2009.436] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Han W, He YY. Requirement for metalloproteinase-dependent ERK and AKT activation in UVB-induced G1-S cell cycle progression of human keratinocytes. Photochem Photobiol 2009; 85:997-1003. [PMID: 19222789 PMCID: PMC2720095 DOI: 10.1111/j.1751-1097.2008.00531.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UVB (280-315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal-regulated kinase (ERK) and AKT activation and their activation are both required for UVB-induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB-induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB-induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.
Collapse
Affiliation(s)
- Weinong Han
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
50
|
Moral M, Segrelles C, Lara MF, Martinez-Cruz AB, Lorz C, Santos M, Garcia-Escudero R, Lu J, Kiguchi K, Buitrago A, Costa C, Saiz C, Rodriguez-Peralto JL, Martinez-Tello FJ, Rodriguez-Pinilla M, Sanchez-Cespedes M, Garin M, Grande T, Bravo A, DiGiovanni J, Paramio JM. Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma. Cancer Res 2009; 69:1099-108. [PMID: 19176372 PMCID: PMC2914485 DOI: 10.1158/0008-5472.can-08-3240] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common human neoplasia with poor prognosis and survival that frequently displays Akt overactivation. Here we show that mice displaying constitutive Akt activity (myrAkt) in combination with Trp53 loss in stratified epithelia develop oral cavity tumors that phenocopy human HNSCC. The myrAkt mice develop oral lesions, making it a possible model of human oral dysplasia. The malignant conversion of these lesions, which is hampered due to the induction of premature senescence, is achieved by the subsequent ablation of Trp53 gene in the same cells in vivo. Importantly, mouse oral tumors can be followed by in vivo imaging, show metastatic spreading to regional lymph nodes, and display activation of nuclear factor-kappaB and signal transducer and activator of transcription-3 pathways and decreased transforming growth factor-beta type II receptor expression, thus resembling human counterparts. In addition, malignant conversion is associated with increased number of putative tumor stem cells. These data identify activation of Akt and p53 loss as a major mechanism of oral tumorigenesis in vivo and suggest that blocking these signaling pathways could have therapeutic implications for the management of HNSCC.
Collapse
Affiliation(s)
- Marta Moral
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | | | - Ana Belen Martinez-Cruz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Corina Lorz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Mirentxu Santos
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Ramon Garcia-Escudero
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Jerry Lu
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kaoru Kiguchi
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Agueda Buitrago
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Clotilde Costa
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Cristina Saiz
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Jose L Rodriguez-Peralto
- Pathology Department, Hospital Universitario 12 de Octubre, Crta. Andalucía, 5,4 28041 Madrid. Spain
| | | | - Maria Rodriguez-Pinilla
- Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
| | | | - Marina Garin
- Division of Hematopoiesis and Gene Therapy, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Teresa Grande
- Unit of Medical Applications, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| | - Ana Bravo
- Department of Veterinary Clinical Sciences, Veterinary Pathology Unit, Veterinary Faculty, University of Santiago de Compostela, E-27002 Lugo, Spain
| | - John DiGiovanni
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jesus M. Paramio
- Molecular Oncology Unit. Division of Biomedicine, CIEMAT. Ave. Complutense 22, E-28040 Madrid, Spain
| |
Collapse
|