1
|
Datta S, Rahman MA, Koka S, Boini KM. Mitigation of nicotine-induced podocyte injury through inhibition of thioredoxin interacting protein. Biomed Pharmacother 2025; 187:118110. [PMID: 40311224 DOI: 10.1016/j.biopha.2025.118110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Nicotine has been reported to initiate NLRP3 inflammasome formation and activation in different pathological conditions. The current study assessed whether thioredoxin-interacting protein (TXNIP) mediates nicotine-induced NLRP3 inflammasome activation and consequent podocyte injury. Co-immunoprecipitation analysis demonstrated that nicotine-induced TXNIP/NLRP3 interaction in podocytes relative to control groups. However, pre-treatment with TXNIP inhibitors, verapamil (Vera) or SRI-37330 (SRI) attenuates nicotine-induced TXNIP/NLRP3 interaction. Confocal microscopic analysis showed that nicotine treatment significantly increased the colocalization of Nlrp3 with Asc, Nlrp3 with caspase-1 and Nlrp3 with TXNIP in podocytes compared to control cells. Pretreatment with TXNIP inhibitor Vera or SRI abolished nicotine-induced Nlrp3/Asc, Nlrp3/caspase-1 or Nlrp3/TXNIP colocalization. Correspondingly, nicotine treatment significantly increased the caspase-1 activity and IL-1β production compared to control cells. However, prior treatment with TXNIP inhibiting Vera or SRI significantly attenuated the nicotine-induced caspase-1 activity and IL-1β production. Further immunofluorescence analysis showed that nicotine treatment significantly decreased podocin and nephrin expression compared to control cells. However, pretreatment with TXNIP inhibiting Vera or SRI attenuated the nicotine-induced podocin and nephrin reduction. In addition, confocal, flow cytometry and biochemical analysis showed that nicotine treatment significantly increased desmin expression, apoptosis and cell permeability compared to control cells. However, prior treatment with TXNIP inhibiting Vera or SRI significantly attenuated the nicotine-induced desmin expression, apoptosis and cell permeability. Taken together, our results demonstrate that TXNIP/NLRP3 interaction constitutes a potentially key signalling mechanism driving nicotine-induced NLRP3 inflammasome formation, activation and subsequent podocyte damage.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX, United States
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.
| |
Collapse
|
2
|
Park KH, Kim HC, Won YS, Yoon WK, Choi I, Han SB, Kang JS. Vitamin D 3 Upregulated Protein 1 Deficiency Promotes Azoxymethane/Dextran Sulfate Sodium-Induced Colorectal Carcinogenesis in Mice. Cancers (Basel) 2024; 16:2934. [PMID: 39272794 PMCID: PMC11394134 DOI: 10.3390/cancers16172934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
VDUP1 acts as a tumor suppressor gene in various cancers. VDUP1 is expressed at low levels in sporadic and ulcerative-colitis-associated colorectal cancer. However, the effects of VDUP1 deficiency on CAC remain unclear. In this study, we found that VDUP1 deficiency promoted CAC development in mice. Wild-type (WT) and VDUP1 KO mice were used to investigate the role of VDUP1 in the development of azoxymethane (AOM)- and dextran sulfate sodium (DSS)-induced CAC. VDUP1 levels significantly decreased in the colonic tumor and adjacent nontumoral tissues of WT mice after AOM/DSS treatment. Moreover, AOM/DSS-treated VDUP1 KO mice exhibited a worse survival rate, disease activity index, and tumor burden than WT mice. VDUP1 deficiency significantly induced cell proliferation and anti-apoptosis in tumor tissues of VDUP1 KO mice compared to WT littermates. Additionally, mRNA levels of interleukin-6 and tumor necrosis factor-alpha and active forms of signal transducer and activator of transcription 3 and nuclear factor-kappa B p65 were significantly increased in the tumor tissues of VDUP1 KO mice. Overall, this study demonstrated that the loss of VDUP1 promoted AOM/DSS-induced colon tumorigenesis in mice, highlighting the potential of VDUP1-targeting strategies for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseoung-gu, Daejeon-si 34141, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaemgmyung-1-ro, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
3
|
Knoll R, Helbig ET, Dahm K, Bolaji O, Hamm F, Dietrich O, van Uelft M, Müller S, Bonaguro L, Schulte-Schrepping J, Petrov L, Krämer B, Kraut M, Stubbemann P, Thibeault C, Brumhard S, Theis H, Hack G, De Domenico E, Nattermann J, Becker M, Beyer MD, Hillus D, Georg P, Loers C, Tiedemann J, Tober-Lau P, Lippert L, Millet Pascual-Leone B, Tacke F, Rohde G, Suttorp N, Witzenrath M, Saliba AE, Ulas T, Polansky JK, Sawitzki B, Sander LE, Schultze JL, Aschenbrenner AC, Kurth F. The life-saving benefit of dexamethasone in severe COVID-19 is linked to a reversal of monocyte dysregulation. Cell 2024; 187:4318-4335.e20. [PMID: 38964327 DOI: 10.1016/j.cell.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/27/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.
Collapse
Affiliation(s)
- Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Elisa T Helbig
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kilian Dahm
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Olufemi Bolaji
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederik Hamm
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Dietrich
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Martina van Uelft
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Sophie Müller
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Lev Petrov
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Michael Kraut
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Paula Stubbemann
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heidi Theis
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Gudrun Hack
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Elena De Domenico
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc D Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - David Hillus
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Georg
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Constantin Loers
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janina Tiedemann
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Lippert
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Belén Millet Pascual-Leone
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Medical Clinic I, Goethe-Universität Frankfurt am Main, Frankfurt, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; CAPNETZ STIFTUNG, 30625 Hannover, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; CAPNETZ STIFTUNG, 30625 Hannover, Germany; German Center for Lung Research (DZL), Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; CAPNETZ STIFTUNG, 30625 Hannover, Germany; German Center for Lung Research (DZL), Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany; Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Julia K Polansky
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Germany
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, and West German Genome Center, Bonn, Germany
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
| | - Florian Kurth
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Germany
| |
Collapse
|
4
|
Wu CJ, Livak F, Ashwell JD. The histone methyltransferase KMT2D maintains cellular glucocorticoid responsiveness by shielding the glucocorticoid receptor from degradation. J Biol Chem 2024; 300:107581. [PMID: 39025450 PMCID: PMC11350265 DOI: 10.1016/j.jbc.2024.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T-cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for the stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity Flow Cytometry Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
García-Hernández B, Morán J. Txnip expression promotes JNK-mediated neuronal death in response to reactive oxygen species. Front Mol Neurosci 2023; 16:1210962. [PMID: 37547922 PMCID: PMC10397383 DOI: 10.3389/fnmol.2023.1210962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
TXNIP is a protein sensitive to oxidant conditions whose expression is related to the progression of death in cancer, diabetes, ischemia, and neurodegenerative diseases, among others. Because of this, many studies propose TXNIP as a therapeutic target in several diseases. Exposure of cerebellar granule neurons to staurosporine or low potassium leads to apoptotic death. Both conditions generate an early production of reactive oxygen species (ROS) that induces the activation of the ASK1 pathway and the apoptotic machinery. In these models, it has been shown an increase in TXNIP protein mediated by ROS. Here, we evaluated the molecular mechanisms involved in the regulation of the Txnip expression during neuronal death, as well as the role of the protein in the progression of cell death induced by these two apoptotic conditions. In cultured cerebellar granule neurons, we observed that low potassium and staurosporine induced an early increase in ROS that correlated with an increase in Txnip mRNA. When we evaluated the promoter of the gene, we found that the JASPAR-reported FOXO1/3 transcription factor motifs are close to the transcription start site (TSS). We then verified through the Chromatin immunoprecipitation technique (ChIP) that FOXO3 interacts with the Txnip promoter after 1 h of low potassium treatment. We also detected FOXO3 nuclear translocation by low potassium and staurosporine treatments. Finally, by using shRNA in the neuroblastoma MSN cell line, we found that Txnip downregulation decreased neuronal death induced by staurosporine stimulus. Together, these results suggest that ROS promotes the expression of Txnip through the activation of the FOXO3 transcription factor mediated by Akt inhibition. We also demonstrated that TXNIP is necessary for neuronal death progression.
Collapse
Affiliation(s)
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Pan SM, Zhou YF, Zuo N, Jiao RQ, Kong LD, Pan Y. Fluoxetine increases astrocytic glucose uptake and glycolysis in corticosterone-induced depression through restricting GR-TXNIP-GLUT1 Pathway. Front Pharmacol 2022; 13:872375. [PMID: 36105196 PMCID: PMC9465171 DOI: 10.3389/fphar.2022.872375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Antidepressant fluoxetine can affect cerebral glucose metabolism in clinic, but the underlying molecular mechanism remains poorly understood. Here, we examined the effect of fluoxetine on brain regional glucose metabolism in a rat model of depression induced by repeated corticosterone injection, and explored the molecular mechanism. Fluoxetine was found to recover the decrease of 18F-fluorodeoxyglucose (18F-FDG) signal in prefrontal cortex (PFC), and increased 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG, a fluorescent glucose analog) uptake in an astrocyte-specific manner in ex vivo cultured PFC slices from corticosterone-induced depressive rats, which were consistent with its improvement of animal depressive behaviors. Furthermore, fluoxetine restricted nuclear translocation of glucocorticoid receptor (GR) to suppress the transcription of thioredoxin interacting protein (TXNIP). Subsequently, it promoted glucose transporter 1 (GLUT1)-mediated glucose uptake and glycolysis of PFC astrocytes through suppressing TXNIP expression under corticosterone-induced depressive state. More importantly, fluoxetine could improve glucose metabolism of corticosterone-stimulated astrocytes via TXNIP-GLUT1 pathway. These results demonstrated that fluoxetine increased astrocytic glucose uptake and glycolysis in corticosterone-induced depression via restricting GR-TXNIP-GLUT1 pathway. The modulation of astrocytic glucose metabolism by fluoxetine was suggested as a novel mechanism of its antidepressant action.
Collapse
Affiliation(s)
- Shu-Man Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yi-Fan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Na Zuo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Ling-Dong Kong, ; Ying Pan,
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Ling-Dong Kong, ; Ying Pan,
| |
Collapse
|
7
|
Sun Q, Wang BB, Wei W, Huang GC, Liu LL, Chen WW, Wang J, Zhao XY, Lu L, Fang R, Zhu CY, Chu XY. ITCH facilitates proteasomal degradation of TXNIP in hypoxia- induced lung cancer cells. Thorac Cancer 2022; 13:2235-2247. [PMID: 35811256 PMCID: PMC9346185 DOI: 10.1111/1759-7714.14552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Lung cancer (LC) is one of the most common cancers and a leading cause of cancer‐related deaths worldwide. In many pathological conditions, particularly in the tumor microenvironment, cells and tissues frequently exist in a hypoxic state. Here, we evaluated Itchy E3 ubiquitin protein ligase (ITCH) expression in LC cells following hypoxia treatment. Methods LC cell lines were treated with hypoxic condition. Cell migration, invasion, inflammation, reactive oxygen species (ROS) production, and apoptosis of LC cells were determined by wound healing assay, Transwell invasive assay, ELISA, DCFH‐DA staining, and flow cytometry, respectively. qPCR and WB were used to determine the expression of ITCH and TXNIP. Co‐IP was performed to assess the interaction between ITCH and TXNIP. Results ITCH expression was downregulated in LC cells under hypoxic conditions. Next, LC cells were subjected to hypoxic conditions and changes in cell viability and metastasis were determined. Hypoxic conditions resulted in increased migration and invasion abilities of LC cells. Intracellular reactive oxygen species (ROS) production, inflammation, and apoptosis were also promoted by hypoxia. We found that ITCH overexpression led to the proteasomal degradation of thioredoxin‐interacting protein (TXNIP), whereas the expression of the ITCH C830A mutant did not affect TXNIP levels in LC cells. The gain‐of‐function experiment demonstrated that migration, invasion, ROS generation, inflammation, and apoptosis of hypoxia‐conditioned LC cells were ameliorated by ITCH overexpression, whereas the ITCH C830A mutant did not cause any changes in these phenotypes. Furthermore, the contribution of TXNIP knockdown and ITCH overexpression to the hypoxia‐induced features in LC cells with ITCH C830A was found to be similar. Conclusion Our results suggest a novel mechanism underlying the changes in ITCH‐mediated malignant phenotypes of hypoxia‐conditioned LC cells via TXNIP.
Collapse
Affiliation(s)
- Qian Sun
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Bi-Bo Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, China
| | - Gui-Chun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei-Lei Liu
- Department of Pathology, Jinling Hospital, Nanjing, China
| | - Wei-Wei Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Jing Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Xiao-Yue Zhao
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Lu Lu
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Rong Fang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Chun-Yan Zhu
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| |
Collapse
|
8
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Hsiao PF, Huang YT, Lu PH, Chiu LY, Weng TH, Hung CF, Wu NL. Thioredoxin-interacting protein regulates keratinocyte differentiation: Implication of its role in psoriasis. FASEB J 2022; 36:e22313. [PMID: 35471587 DOI: 10.1096/fj.202101772r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022]
Abstract
Thioredoxin-interacting protein (TXNIP), also known as Vitamin-D upregulated protein-1 (VDUP-1), interacts with thioredoxin to regulate redox responses and participates in diverse disorders including metabolic, cardiovascular, inflammatory and malignant diseases. Psoriasis is characterized by chronic skin inflammation and an aberrant pattern of keratinocyte differentiation. Clinically, psoriasis is associated with various cardiometabolic comorbidities but studies on TXNIP's biological role in skin disorders are limited. In this study, we investigated TXNIP expression in psoriasis and its regulation in normal human epidermal keratinocytes (NHEKs), and then explored how TXNIP regulated skin keratinocyte differentiation to determine its role in psoriasis pathogenesis. Our immunohistochemical study demonstrated extensive TXNIP expression in the upper and lower epidermis of psoriasis compared to predominant TXNIP expression in the basal layer of normal skin. 1, 25-dihydroxyvitamin D3 suppressed but TGF-α and EGF enhanced TXNIP expression in NHEKs. An inducer of keratinocyte differentiation, phorbol 12-myristate 13-acetate (PMA), also diminished TXNIP expression, which was reversed by PKC-δ knockdown. TXNIP knockdown reduced PMA-induced involucrin and transglutaminse-1 expression, and increased p63 expression in NHEKs but did not significantly affect cell proliferation. H2 O2 -induced ROS production and EGFR phosphorylation decreased in NHEKs with TXNIP knockdown. Furthermore, PMA-induced PKC-δ phosphorylation, TGF-α, and EGF-triggered EGFR phosphorylation were attenuated by TXNIP knockdown. Our results unraveled the regulation and function of TXNIP expression in skin keratinocytes and the cross-regulation between TXNIP and EGFR signaling. These findings imply a role of TXNIP in psoriasis and provide insight into the possible impact of TXNIP regulators on the skin or psoriasis.
Collapse
Affiliation(s)
- Pa-Fan Hsiao
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yi-Ting Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Po-Hsuan Lu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ling-Ya Chiu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Han Weng
- Department of Medical Education, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
10
|
Merz M, Merz AMA, Wang J, Wei L, Hu Q, Hutson N, Rondeau C, Celotto K, Belal A, Alberico R, Block AW, Mohammadpour H, Wallace PK, Tario J, Luce J, Glenn ST, Singh P, Herr MM, Hahn T, Samur M, Munshi N, Liu S, McCarthy PL, Hillengass J. Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma. Nat Commun 2022; 13:807. [PMID: 35145077 PMCID: PMC8831582 DOI: 10.1038/s41467-022-28266-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/14/2022] [Indexed: 12/22/2022] Open
Abstract
Osteolytic lesions (OL) characterize symptomatic multiple myeloma. The mechanisms of how malignant plasma cells (PC) cause OL in one region while others show no signs of bone destruction despite subtotal infiltration remain unknown. We report on a single-cell RNA sequencing (scRNA-seq) study of PC obtained prospectively from random bone marrow aspirates (BM) and paired imaging-guided biopsies of OL. We analyze 148,630 PC from 24 different locations in 10 patients and observe vast inter- and intra-patient heterogeneity based on scRNA-seq analyses. Beyond the limited evidence for spatial heterogeneity from whole-exome sequencing, we find an additional layer of complexity by integrated analysis of anchored scRNA-seq datasets from the BM and OL. PC from OL are characterized by differentially expressed genes compared to PC from BM, including upregulation of genes associated with myeloma bone disease like DKK1, HGF and TIMP-1 as well as recurrent downregulation of JUN/FOS, DUSP1 and HBB. Assessment of PC from longitudinally collected samples reveals transcriptional changes after induction therapy. Our study contributes to the understanding of destructive myeloma bone disease.
Collapse
Affiliation(s)
- Maximilian Merz
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.
- Department of Hematology, Cell therapy and Hemostaseology, University Hospital Leipzig, Leipzig, Germany.
| | - Almuth Maria Anni Merz
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Nicholas Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Cherie Rondeau
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA
| | - Kimberly Celotto
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA
| | - Ahmed Belal
- Department of Diagnostic Radiology, Roswell Park, Buffalo, USA
| | - Ronald Alberico
- Department of Diagnostic Radiology, Roswell Park, Buffalo, USA
| | - AnneMarie W Block
- Clinical Cytogenetics Laboratory, Department of Pathology and Laboratory Medicine, Roswell Park, Buffalo, USA
| | | | - Paul K Wallace
- Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park, Buffalo, USA
| | - Joseph Tario
- Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park, Buffalo, USA
| | - Jesse Luce
- Genomics Shared Resources, Roswell Park, Buffalo, USA
| | - Sean T Glenn
- Genomics Shared Resources, Roswell Park, Buffalo, USA
| | | | - Megan M Herr
- Transplant and Cellular Therapy Program, Department of Medicine, Roswell Park, Buffalo, USA
| | - Theresa Hahn
- Transplant and Cellular Therapy Program, Department of Medicine, Roswell Park, Buffalo, USA
| | - Mehmet Samur
- Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nikhil Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Philip L McCarthy
- Transplant and Cellular Therapy Program, Department of Medicine, Roswell Park, Buffalo, USA
| | - Jens Hillengass
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.
| |
Collapse
|
11
|
Lai W, Mo Y, Wang D, Zhong Y, Lu L, Wang J, Cui L, Liu Y, Yang Y. Tanshinol Alleviates Microcirculation Disturbance and Impaired Bone Formation by Attenuating TXNIP Signaling in GIO Rats. Front Pharmacol 2021; 12:722175. [PMID: 34335280 PMCID: PMC8316650 DOI: 10.3389/fphar.2021.722175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022] Open
Abstract
Impaired bone formation is the main characteristics of glucocorticoid (GC)-induced osteoporosis (GIO), which can be ameliorated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. However, the underlying mechanism is still not entirely clear. In the present study, we determined the parameters related to microstructure and function of bone tissue, bone microcirculation, and TXNIP signaling to investigate the beneficial effects of tanshinol on skeleton and its molecular mechanism in GIO rats. Male Sprague-Dawley rats aged 4 months were administrated orally with distilled water (Con), tanshinol (Tan, 25 mg kg-1 d-1), prednisone (GC, 5 mg kg-1 d-1) and GC plus tanshinol (GC + Tan) for 14 weeks. The results demonstrated that tanshinol played a significant preventive role in bone loss, impaired microstructure, dysfunction of bone metabolism and poor bone quality, based on analysis of correlative parameters acquired from the measurement by using Micro-CT, histomorphometry, ELISA and biomechanical assay. Tanshinol also showed a significant protective effect in bone microcirculation according to the evidence of microvascular perfusion imaging of cancellous bone in GIO rats, as well as the migration ability of human endothelial cells (EA.hy926, EA cells). Moreover, tanshinol also attenuated GC-elicited the activation of TXNIP signaling pathway, and simultaneously reversed the down-regulation of Wnt and VEGF pathway as manifested by using Western-blot method in GIO rats, EA cells, and human osteoblast-like MG63 cells (MG cells). Collectively, our data highlighted that tanshinol ameliorated poor bone health mediated by activation of TXNIP signaling via inhibiting microcirculation disturbance and the following impaired bone formation in GIO rats.
Collapse
Affiliation(s)
- Wenxiu Lai
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Department of Phamacy, Yuebei People’s Hospital, Shaoguan, China
| | - Yulin Mo
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Ying Zhong
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Lujiao Lu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Jiajia Wang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Ma Y. Thioredoxin-interacting protein (Txnip): more than its name. Am J Physiol Heart Circ Physiol 2021; 321:H257-H258. [PMID: 34170195 DOI: 10.1152/ajpheart.00330.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
13
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
14
|
Yoshihara E. TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis. Antioxidants (Basel) 2020; 9:E765. [PMID: 32824669 PMCID: PMC7464905 DOI: 10.3390/antiox9080765] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of thioredoxin binding protein-2 (TBP-2), which is currently known as thioredoxin interacting protein (TXNIP), as an important binding partner for thioredoxin (TRX) revealed that an evolutionarily conserved reduction-oxidation (redox) signal complex plays an important role for pathophysiology. Due to the reducing activity of TRX, the TRX/TXNIP signal complex has been shown to be an important regulator for redox-related signal transduction in many types of cells in various species. In addition to its role in redox-dependent regulation, TXNIP has cellular functions that are performed in a redox-independent manner, which largely rely on their scaffolding function as an ancestral α-Arrestin family. Both the redox-dependent and -independent TXNIP functions serve as regulatory pathways in glucose metabolism. This review highlights the key advances in understanding TXNIP function as a master regulator for whole-body glucose homeostasis. The potential for therapeutic advantages of targeting TXNIP in diabetes and the future direction of the study are also discussed.
Collapse
Affiliation(s)
- Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Dong L, Reljic B, Cheung JG, Ng ES, Lindqvist LM, Elefanty AG, Vaux DL, Tran H. In the absence of apoptosis, myeloid cells arrest when deprived of growth factor, but remain viable by consuming extracellular glucose. Cell Death Differ 2019; 26:2074-2085. [PMID: 30770875 DOI: 10.1038/s41418-019-0275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
Withdrawal of the growth factor interleukin-3 (IL-3) from IL-3-dependent myeloid cells causes them to undergo Bax/Bak1-dependent apoptosis, whereas factor-deprived Bax-/-Bak1-/- cells remain viable, but arrest and shrink. It was reported that withdrawal of IL-3 from Bax-/-Bak1-/- cells caused decreased expression of the glucose transporter Glut1, leading to reduced glucose uptake, so that arrested cells required Atg5-dependent autophagy for long-term survival. In other cell types, a decrease in Glut1 is mediated by the thioredoxin-interacting protein (Txnip), which is induced in IL-3-dependent myeloid cells when growth factor is removed. We mutated Atg5 and Txnip by CRISPR/Cas9 and found that Atg5-dependent autophagy was not necessary for the long-term viability of cycling or arrested Bax-/-Bak1-/- cells, and that Txnip was not required for the decrease in Glut1 expression in response to IL-3 withdrawal. Surprisingly, Atg5-deficient Bax/Bak1 double mutant cells survived for several weeks in medium supplemented with 10% fetal bovine serum (FBS), without high concentrations of added glucose or glutamine. When serum was withdrawn, the provision of an equivalent amount of glucose present in 10% FBS (~0.5 mM) was sufficient to support cell survival for more than a week, in the presence or absence of IL-3. Thus, Bax-/-Bak1-/- myeloid cells deprived of growth factor consume extracellular glucose to maintain long-term viability, without a requirement for Atg5-dependent autophagy.
Collapse
Affiliation(s)
- Li Dong
- The Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Reljic
- The Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jen G Cheung
- The Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth S Ng
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Lisa M Lindqvist
- The Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - David L Vaux
- The Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hoanh Tran
- The Walter and Eliza Hall Institute of Medical Research and the Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Spaeth-Cook D, Burch M, Belton R, Demoret B, Grosenbacher N, David J, Stets C, Cohen D, Shakya R, Hays JL, Chen JL. Loss of TXNIP enhances peritoneal metastasis and can be abrogated by dual TORC1/2 inhibition. Oncotarget 2018; 9:35676-35686. [PMID: 30479697 PMCID: PMC6235015 DOI: 10.18632/oncotarget.26281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/06/2018] [Indexed: 01/06/2023] Open
Abstract
Peritoneal metastasis (PM) is a debilitating consequence of multiple cancers. As cancer cells lose tonic signaling related to attachment dependence, critical morphologic shifts result in alteration of the transcriptome. Identifying key genes associated with this transformation may lead to targeted therapies for this devastating complication. TC71, CHLA9, PANC1, YOU and HEYA8 cell lines were grown as tumor spheroids in polyHEMA coated plates. Temporal profiling of transcriptomic alterations over 72 hrs was used to develop a comprehensive PM model. We identified transcriptomic outliers using Gaussian mixtures model clustering to identify drivers of spheroid formation. Outliers were validated in The Cancer Genome Atlas (TCGA) and an ovarian tissue microarray (TMA) and by modulation in ovarian cancer models in vitro and in peritoneal xenograft models. Outlier analysis of PM genes identified the gene TXNIP and the TORC signaling as central to PM. Ovarian cancer spheroids isolated from patient ascites had significantly higher TXNIP than their attached counterparts (p = 0.047). TXNIP levels predicted progression-free (log-rank p = 0.026) survival in stage 1/2 ovarian cancer and overall survival (log rank p = 0.047) in stage 3/4 ovarian cancer. In vitro, TXNIP silencing was associated with increased mTOR signaling and enhanced spheroid development which could be overcome by TAK228, a TORC1/2 inhibitor. Similarly, in vivo peritoneal xenograft models of carcinomatosis were prevented by TAK228. PM is driven by TXNIP-associated TORC1/2 signaling. This work provides the first evidence that TORC1/2 inhibition may prevent PM.
Collapse
Affiliation(s)
- Douglas Spaeth-Cook
- Department of Biomedical Informatics, Division of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Mark Burch
- Department of Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Robin Belton
- Department of Biomedical Informatics, Division of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Bryce Demoret
- Department of Biomedical Informatics, Division of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Nicholas Grosenbacher
- Department of Biomedical Informatics, Division of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Jason David
- Department of Biostatistics, The Ohio State University, Columbus, OH 43210, USA
| | - Colin Stets
- Department of Biomedical Informatics, Division of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - David Cohen
- Department of Pathology, Anatomic Pathology Division, The Ohio State University, Columbus, OH 43210, USA
| | - Reena Shakya
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - John L Hays
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH 43210, USA.,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University, Columbus, 43210 OH, USA
| | - James L Chen
- Department of Biomedical Informatics, Division of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA.,Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Baida G, Bhalla P, Yemelyanov A, Stechschulte LA, Shou W, Readhead B, Dudley JT, Sánchez ER, Budunova I. Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy. Oncotarget 2018; 9:34772-34783. [PMID: 30410676 PMCID: PMC6205168 DOI: 10.18632/oncotarget.26194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/15/2018] [Indexed: 01/20/2023] Open
Abstract
FKBP51 (FK506-binding protein 51) is a known co-chaperone and regulator of the glucocorticoid receptor (GR), which usually attenuates its activity. FKBP51 is one of the major GR target genes in skin, but its role in clinical effects of glucocorticoids is not known. Here, we used FKBP51 knockout (KO) mice to determine FKBP51's role in the major adverse effect of topical glucocorticoids, skin atrophy. Unexpectedly, we found that all skin compartments (epidermis, dermis, dermal adipose and CD34+ stem cells) in FKBP51 KO animals were much more resistant to glucocorticoid-induced hypoplasia. Furthermore, despite the absence of inhibitory FKBP51, the basal level of expression and glucocorticoid activation of GR target genes were not increased in FKBP51 KO skin or CRISPR/Cas9-edited FKBP51 KO HaCaT human keratinocytes. FKBP51 is known to negatively regulate Akt and mTOR. We found a significant increase in AktSer473 and mTORSer2448 phosphorylation and downstream pro-growth signaling in FKBP51-deficient keratinocytes in vivo and in vitro. As Akt/mTOR-GR crosstalk is usually negative in skin, our results suggest that Akt/mTOR activation could be responsible for the lack of increased GR function and resistance of FKBP51 KO mice to the steroid-induced skin atrophy.
Collapse
Affiliation(s)
- Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Pankaj Bhalla
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Alexander Yemelyanov
- Department of Medicine, Pulmonary Division, Northwestern University, Chicago, IL, USA
| | - Lance A Stechschulte
- Department of Physiology & Pharmacology, The Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH, USA
| | - Weinian Shou
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ben Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| | - Edwin R Sánchez
- Department of Physiology & Pharmacology, The Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH, USA
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Xu W, Wang L, Li J, Cai Y, Xue Y. TXNIP mediated the oxidative stress response in glomerular mesangial cells partially through AMPK pathway. Biomed Pharmacother 2018; 107:785-792. [PMID: 30142540 DOI: 10.1016/j.biopha.2018.08.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Thioredoxin-interacting protein (TXNIP) plays an important role in the development of diabetic nephropathy. In the present study, we investigated role of TXNIP on oxidative stress in glomerular mesangial cells (GMCs) cultured in high glucose or normal glucose, and explored the potential mechanism related to TXNIP as well. METHODS Oxidative stress in GMCs under high or normal glucose was detected. TXNIP knockdown by specific siRNA or over expression by pcDNA3.0-TXNIP vector was performed to evaluate the role of TXNIP on injury of GMCs caused by oxidative stress. Activator of AMPK AICAR and AMPK inhibitor Compound C were treated the GMCs. Reactive oxygen species (ROS) and mitochondrial membrane potential were detected by flow cytometry. Activities of superoxide dismutase (SOD) and superoxide dismutase (CAT) were measured by ELISA. Activity of thioredoxin (Trx) was determined using Trx activity assay kit. mRNA expression of AMPK, TXNIP, Trx1 and Trx2 were tested by qRT-PCR. Expressions of P-AMPK, TXNIP and fibronectin proteins were detected by Western blotting. RESULTS High glucose induced the increase of ROS level, activation of TXNIP, but restricted mitochondrial membrane potential and activities of p-AMPK, SOD and CAT, and Trx. TXNIP siRNA and AICAR inhibited high glucose-induced oxidative stress response in GMCs and fibronectin expression, but promoted cell viability. In contrast, pcDNA3.0-TXNIP and Compound C increased oxidative stress response in normal glucose cultured GMCs, but decreased cell viability. The combined effect of TXNIP siRNA and AICAR on the inhibition of oxidative stress was obviously stronger than that of single use of TXNIP siRNA. CONCLUSION TXNIP facilitates the oxidative stress response in GMCs partially through AMPK pathway, which may provide potential therapeutic target for diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Wenwei Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China.
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Jimin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yingying Cai
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| |
Collapse
|
19
|
Bharti V, Tan H, Chow D, Wang Y, Nagakannan P, Eftekharpour E, Wang JF. Glucocorticoid Upregulates Thioredoxin-interacting Protein in Cultured Neuronal Cells. Neuroscience 2018; 384:375-383. [PMID: 29894818 DOI: 10.1016/j.neuroscience.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 01/17/2023]
Abstract
Previous studies have shown that chronic stress and chronic stress hormone treatment induce oxidative damage in rodents. Thioredoxin (Trx) is a small redox protein that plays an important role in regulation of oxidative protein cysteine modification. A Trx reduced state is maintained by thioredoxin reductase (TrxR), and the thioredoxin-interacting protein (Txnip) is an endogenous inhibitor of Trx. The purpose of this study was to investigate the effects of chronic treatment with stress hormone corticosterone on Trx, TrxR and Txnip in cultured neuronal cells. Using immunoblotting analysis we found that although chronic corticosterone treatment had no effect on Trx and TrxR protein levels, this treatment significantly increased Txnip protein levels. Using immunocytochemistry we also found that chronic corticosterone treatment increased Txnip in both nucleus and cytosol, while glucocorticoid receptor inhibitor RU486 can block corticosterone-increased Txnip protein levels. Using biotin switch, dimedone conjugation and CRISPR/Cas9 methods we found that chronic corticosterone treatment increased protein nitrosylation and sulfenylation, while knocking out Txnip blocked corticosterone-induced protein nitrosylation and sulfenylation. Since Trx can reduce cysteine oxidative protein modification such as nitrosylation and sulfenylation, our findings suggest that chronic corticosterone treatment may upregulate Txnip by targeting glucocorticoid receptor, subsequently inhibiting Trx activity and enhancing oxidative protein cysteine modification, which contributes to corticosterone-caused oxidative damage.
Collapse
Affiliation(s)
- Veni Bharti
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Hua Tan
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Desiree Chow
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Yiran Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Jun-Feng Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Department of Psychiatry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
20
|
Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Mol Neurobiol 2018; 55:7900-7920. [PMID: 29488135 DOI: 10.1007/s12035-018-0917-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Neurological diseases, including acute attacks (e.g., ischemic stroke) and chronic neurodegenerative diseases (e.g., Alzheimer's disease), have always been one of the leading cause of morbidity and mortality worldwide. These debilitating diseases represent an enormous disease burden, not only in terms of health suffering but also in economic costs. Although the clinical presentations differ for these diseases, a growing body of evidence suggests that oxidative stress and inflammatory responses in brain tissue significantly contribute to their pathology. However, therapies attempting to prevent oxidative damage or inhibiting inflammation have shown little success. Identification and targeting endogenous "upstream" mediators that normalize such processes will lead to improve therapeutic strategy of these diseases. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the thioredoxin (TRX) system, a major cellular thiol-reducing and antioxidant system. TXNIP regulating redox/glucose-induced stress and inflammation, now is known to get upregulated in stroke and other brain diseases, and represents a promising therapeutic target. In particular, there is growing evidence that glucose strongly induces TXNIP in multiple cell types, suggesting possible physiological roles of TXNIP in glucose metabolism. Recently, a significant body of literature has supported an essential role of TXNIP in the activation of the NOD-like receptor protein (NLRP3)-inflammasome, a well-established multi-molecular protein complex and a pivotal mediator of sterile inflammation. Accordingly, TXNIP has been postulated to reside centrally in detecting cellular damage and mediating inflammatory responses to tissue injury. The majority of recent studies have shown that pharmacological inhibition or genetic deletion of TXNIP is neuroprotective and able to reduce detrimental aspects of pathology following cerebrovascular and neurodegenerative diseases. Conspicuously, the mainstream of the emerging evidences is highlighting TXNIP link to damaging signals in endothelial cells. Thereby, here, we keep the trend to present the accumulative data on CNS diseases dealing with vascular integrity. This review aims to summarize evidence supporting the significant contribution of regulatory mechanisms of TXNIP with the development of brain diseases, explore pharmacological strategies of targeting TXNIP, and outline obstacles to be considered for efficient clinical translation.
Collapse
|
21
|
Wei M, Jiao D, Han D, Wu J, Wei F, Zheng G, Guo Z, Xi W, Yang F, Xie P, Zhang L, Yang AG, Wang H, Qin W, Wen W. Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP. Oncotarget 2018; 8:5323-5338. [PMID: 28029659 PMCID: PMC5354911 DOI: 10.18632/oncotarget.14142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
RNF2, also known as RING1b or RING2, is identified as the catalytic subunit of polycomb repressive complex 1 (PRC1), which mediates the mono-ubiquitination of histone H2A. RNF2 has been proved to have oncogenic function in many kinds of cancers, but the function of RNF2 in prostate cancer (PCa) has not been evaluated. Here we show that PCa tissues showed higher RNF2 expression than the benign prostatic hyperplasia (BPH) tissues. Knockdown of RNF2 in PCa cells resulted in cell cycle arrest, increased apoptosis and inhibited cell proliferation, and the growth of RNF2 knockdown PCa xenografts were obviously inhibited in nude mice. Gene microarray analysis was performed and tumor suppressor gene TXNIP was found to be significantly increased in RNF2 knockdown cells. Simultaneously knockdown of RNF2 and TXNIP can partially rescue the arrested cell cycle, increased apoptosis and inhibited cell proliferation in RNF2 single knockdown cells. Furthermore, ChIP assay result showed that RNF2 enriched at the TXNIP promoter, and the enrichment of RNF2 and ubiquitination of H2A in TXNIP promoter was obviously inhibited in RNF2 knockdown cells. In conclusion, our results demonstrate that RNF2 functions as an oncogene in PCa and RNF2 may regulate the progression of PCa through the inhibition of TXNIP.
Collapse
Affiliation(s)
- Ming Wei
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Feilong Wei
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Pin Xie
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Lingling Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Weihong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| |
Collapse
|
22
|
Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun 2018; 9:95. [PMID: 29311554 PMCID: PMC5758830 DOI: 10.1038/s41467-017-02352-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/22/2017] [Indexed: 11/17/2022] Open
Abstract
Macroautophagy (autophagy) is a crucial cellular stress response for degrading defective macromolecules and organelles, as well as providing bioenergetic intermediates during hypoxia and nutrient deprivation. Here we report a thiol-dependent process that may account for impaired autophagy during aging. This is through direct oxidation of key autophagy-related (Atg) proteins Atg3 and Atg7. When inactive Atg3 and Atg7 are protected from oxidation due to stable covalent interaction with their substrate LC3. This interaction becomes transient upon activation of Atg3 and Atg7 due to transfer of LC3 to phosphatidylethanolamine (lipidation), a process crucial for functional autophagy. However, loss in covalent-bound LC3 also sensitizes the catalytic thiols of Atg3 and Atg7 to inhibitory oxidation that prevents LC3 lipidation, observed in vitro and in mouse aorta. Here findings provide a thiol-dependent process for negatively regulating autophagy that may contribute to the process of aging, as well as therapeutic targets to regulate autophagosome maturation. A dysfunction of autophagy can be detected in aged tissues, but how this is regulated is unclear. Here, the authors show in vitro and in aged mice aorta, that inhibition of LC3 lipidation under conditions of oxidative stress causes oxidation of Atg3 and Atg7, preventing autophagosome maturation.
Collapse
|
23
|
Yodoi J, Matsuo Y, Tian H, Masutani H, Inamoto T. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care. Nutrients 2017; 9:nu9101081. [PMID: 28961169 PMCID: PMC5691698 DOI: 10.3390/nu9101081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Human thioredoxin (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-, which is induced by biological stress due to oxidative damage, metabolic dysfunction, chemicals, infection/inflammation, irradiation, or hypoxia/ischemia-reperfusion. Our research has demonstrated that exogenous TRX is effective in a wide variety of inflammatory diseases, including viral pneumonia, acute lung injury, gastric injury, and dermatitis, as well as in the prevention and amelioration of food allergies. Preclinical and clinical studies using recombinant TRX (rhTRX) are now underway. We have also identified substances that induce the expression of TRX in the body, in vegetables and other plant ingredients. Skincare products are being developed that take advantage of the anti-inflammatory and anti-allergic action of TRX. Furthermore, we are currently engaged in the highly efficient production of pure rhTRX in several plants, such as lettuce, grain and rice.
Collapse
Affiliation(s)
- Junji Yodoi
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Hai Tian
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Department of Anatomy, Basic Medicine Science, Medical College, Shaoxing University, No 900 Cengnan Avenue, Shaoxing 312000, China.
| | - Hiroshi Masutani
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| | - Takashi Inamoto
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| |
Collapse
|
24
|
Scaroni C, Zilio M, Foti M, Boscaro M. Glucose Metabolism Abnormalities in Cushing Syndrome: From Molecular Basis to Clinical Management. Endocr Rev 2017; 38:189-219. [PMID: 28368467 DOI: 10.1210/er.2016-1105] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
An impaired glucose metabolism, which often leads to the onset of diabetes mellitus (DM), is a common complication of chronic exposure to exogenous and endogenous glucocorticoid (GC) excess and plays an important part in contributing to morbidity and mortality in patients with Cushing syndrome (CS). This article reviews the pathogenesis, epidemiology, diagnosis, and management of changes in glucose metabolism associated with hypercortisolism, addressing both the pathophysiological aspects and the clinical and therapeutic implications. Chronic hypercortisolism may have pleiotropic effects on all major peripheral tissues governing glucose homeostasis. Adding further complexity, both genomic and nongenomic mechanisms are directly induced by GCs in a context-specific and cell-/organ-dependent manner. In this paper, the discussion focuses on established and potential pathologic molecular mechanisms that are induced by chronically excessive circulating levels of GCs and affect glucose homeostasis in various tissues. The management of patients with CS and DM includes treating their hyperglycemia and correcting their GC excess. The effects on glycemic control of various medical therapies for CS are reviewed in this paper. The association between DM and subclinical CS and the role of screening for CS in diabetic patients are also discussed.
Collapse
Affiliation(s)
- Carla Scaroni
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Marialuisa Zilio
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Michelangelo Foti
- Department of Cell Physiology & Metabolism, Centre Médical Universitaire, 1 Rue Michel Servet, 1211 Genèva, Switzerland
| | - Marco Boscaro
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| |
Collapse
|
25
|
McBride TD, Andrew U, Ly N, Soto JG. RNA sequence analyses of r-Moj-DM treated cells: TXNIP is required to induce apoptosis of SK-Mel-28. Toxicon 2016; 121:1-9. [PMID: 27567705 DOI: 10.1016/j.toxicon.2016.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Abstract
RNA sequencing of untreated and r-Moj-DM treated SK-Mel-28 cells was performed after 6 h, to begin unraveling the apoptotic pathway induced by r-Moj-DM. Bioinformatic analyses of RNA sequencing data yielded 40 genes that were differentially expressed. Nine genes were upregulated and 31 were downregulated. qRT-PCR was used to validate differential expression of 13 genes with known survival or apoptotic-inducing activities. Expression of BNiP3, IGFBP3, PTPSF, Prune 2, TGF-ß, and TXNIP were compared from cells treated with r-Moj-DN (a strong apoptotic inducer) or r-Moj-DA (a non-apoptotic inducer) for 1 h, 2 h, 4 h, and 6 h after treatment. Our results demonstrate that significant differences in expression are only detected after 4 h of treatment. In addition, expression of TXNIP (an apoptotic inducer) remains elevated at 4 h and 6 h only in r-Moj-DN treated cells. Based on the consistency of elevated TXNIP expression, we further studied TXNIP as a novel target of disintegrin activation. Confocal microscopy of anti-TXNIP stained SK-Mel-28 cells suggests nuclear localization of TXNIP after r-Moj-DM treatment. A stable TXNIP knockdown SK-Mel-28 cell line was produced to test TXNIP' role in the apoptotic induction by r-Moj-DM. High cell viability (74.3% ±9.1) was obtained after r-Moj-DM treatment of TXNIP knocked down SK-Mel-28 cells, compared to 34% ±0.187 for untransduced cells. These results suggest that TXNIP is required early in the apoptotic-inducing pathway resulting from r-Moj-DM binding to the αv integrin subunit.
Collapse
Affiliation(s)
- Terri D McBride
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - U Andrew
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Nicko Ly
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA
| | - Julio G Soto
- Biological Sciences Department, San José State University, One Washington Square, San José, CA 95192-0100, USA.
| |
Collapse
|
26
|
Identification of Redox and Glucose-Dependent Txnip Protein Interactions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5829063. [PMID: 27437069 PMCID: PMC4942636 DOI: 10.1155/2016/5829063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/26/2016] [Indexed: 01/23/2023]
Abstract
Thioredoxin-interacting protein (Txnip) acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S). Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.
Collapse
|
27
|
Harada N, Katsuki T, Takahashi Y, Masuda T, Yoshinaga M, Adachi T, Izawa T, Kuwamura M, Nakano Y, Yamaji R, Inui H. Androgen receptor silences thioredoxin-interacting protein and competitively inhibits glucocorticoid receptor-mediated apoptosis in pancreatic β-Cells. J Cell Biochem 2016; 116:998-1006. [PMID: 25639671 DOI: 10.1002/jcb.25054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023]
Abstract
Androgen receptor (AR) is known to bind to the same cis-element that glucocorticoid receptor (GR) binds to. However, the effects of androgen signaling on glucocorticoid signaling have not yet been elucidated. Here, we investigated the effects of testosterone on dexamethasone (DEX, a synthetic glucocorticoid)-induced apoptosis of pancreatic β-cells, which might be involved in the pathogenesis of type 2 diabetes mellitus in males. We used INS-1 #6 cells, which were isolated from the INS-1 pancreatic β-cell line and which express high levels of AR. Testosterone and dihydrotestosterone inhibited apoptosis induced by DEX in INS-1 #6 cells. AR knockdown and the AR antagonist hydroxyflutamide each diminished the anti-apoptotic effects of testosterone. AR was localized in the nucleus of both INS-1 #6 cells and pancreatic β-cells of male rats. Induction of thioredoxin-interacting protein (TXNIP) is known to cause pro-apoptotic effects in β-cells. Testosterone suppressed the DEX-induced increase of TXNIP at the transcriptional level. A Chromatin immunoprecipitation assays showed that both AR and GR competitively bound to the TXNIP promoter in ligand-dependent manners. Recombinant DNA-binding domain of AR bound to the same cis-element of the TXNIP promoter that GR binds to. Our results show that AR and GR competitively bind to the same cis-element of TXNIP promoter as a silencer and enhancer, respectively. These results indicate that androgen signaling functionally competes with glucocorticoid signaling in pancreatic β-cell apoptosis.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 5998531, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dong D, Fu N, Yang P. MiR-17 Downregulation by High Glucose Stabilizes Thioredoxin-Interacting Protein and Removes Thioredoxin Inhibition on ASK1 Leading to Apoptosis. Toxicol Sci 2015; 150:84-96. [PMID: 26660634 DOI: 10.1093/toxsci/kfv313] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17 expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1 complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx inhibition on ASK1 through Txnip.
Collapse
Affiliation(s)
- Daoyin Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Noah Fu
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
29
|
Siddiqi FS, Majumder S, Thai K, Abdalla M, Hu P, Advani SL, White KE, Bowskill BB, Guarna G, Dos Santos CC, Connelly KA, Advani A. The Histone Methyltransferase Enzyme Enhancer of Zeste Homolog 2 Protects against Podocyte Oxidative Stress and Renal Injury in Diabetes. J Am Soc Nephrol 2015; 27:2021-34. [PMID: 26534922 DOI: 10.1681/asn.2014090898] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/22/2015] [Indexed: 01/08/2023] Open
Abstract
Epigenetic regulation of oxidative stress is emerging as a critical mediator of diabetic nephropathy. In diabetes, oxidative damage occurs when there is an imbalance between reactive oxygen species generation and enzymatic antioxidant repair. Here, we investigated the function of the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) in attenuating oxidative injury in podocytes, focusing on its regulation of the endogenous antioxidant inhibitor thioredoxin interacting protein (TxnIP). Pharmacologic or genetic depletion of EZH2 augmented TxnIP expression and oxidative stress in podocytes cultured under high-glucose conditions. Conversely, EZH2 upregulation through inhibition of its regulatory microRNA, microRNA-101, downregulated TxnIP and attenuated oxidative stress. In diabetic rats, depletion of EZH2 decreased histone 3 lysine 27 trimethylation (H3K27me3), increased glomerular TxnIP expression, induced podocyte injury, and augmented oxidative stress and proteinuria. Chromatin immunoprecipitation sequencing revealed H3K27me3 enrichment at the promoter of the transcription factor Pax6, which was upregulated on EZH2 depletion and bound to the TxnIP promoter, controlling expression of its gene product. In high glucose-exposed podocytes and the kidneys of diabetic rats, the lower EZH2 expression detected coincided with upregulation of Pax6 and TxnIP. Finally, in a gene expression array, TxnIP was among seven of 30,854 genes upregulated by high glucose, EZH2 depletion, and the combination thereof. Thus, EZH2 represses the transcription factor Pax6, which controls expression of the antioxidant inhibitor TxnIP, and in diabetes, downregulation of EZH2 promotes oxidative stress. These findings expand the extent to which epigenetic processes affect the diabetic kidney to include antioxidant repair.
Collapse
Affiliation(s)
- Ferhan S Siddiqi
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Moustafa Abdalla
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics and George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kathryn E White
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bridgit B Bowskill
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Giuliana Guarna
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Claudia C Dos Santos
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada;
| |
Collapse
|
30
|
Regulation of Glucose Homeostasis by Glucocorticoids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215992 DOI: 10.1007/978-1-4939-2895-8_5] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are steroid hormones that regulate multiple aspects of glucose homeostasis. Glucocorticoids promote gluconeogenesis in liver, whereas in skeletal muscle and white adipose tissue they decrease glucose uptake and utilization by antagonizing insulin response. Therefore, excess glucocorticoid exposure causes hyperglycemia and insulin resistance. Glucocorticoids also regulate glycogen metabolism. In liver, glucocorticoids increase glycogen storage, whereas in skeletal muscle they play a permissive role for catecholamine-induced glycogenolysis and/or inhibit insulin-stimulated glycogen synthesis. Moreover, glucocorticoids modulate the function of pancreatic α and β cells to regulate the secretion of glucagon and insulin, two hormones that play a pivotal role in the regulation of blood glucose levels. Overall, the major glucocorticoid effect on glucose homeostasis is to preserve plasma glucose for brain during stress, as transiently raising blood glucose is important to promote maximal brain function. In this chapter we will discuss the current understanding of the mechanisms underlying different aspects of glucocorticoid-regulated mammalian glucose homeostasis.
Collapse
|
31
|
Wang F, Wu Y, Gu H, Reece EA, Fang S, Gabbay-Benziv R, Aberdeen G, Yang P. Ask1 gene deletion blocks maternal diabetes-induced endoplasmic reticulum stress in the developing embryo by disrupting the unfolded protein response signalosome. Diabetes 2015; 64:973-88. [PMID: 25249581 PMCID: PMC4338585 DOI: 10.2337/db14-0409] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) is activated by various stresses. The link between ASK1 activation and endoplasmic reticulum (ER) stress, two causal events in diabetic embryopathy, has not been determined. We sought to investigate whether ASK1 is involved in the unfolded protein response (UPR) that leads to ER stress. Deleting Ask1 abrogated diabetes-induced UPR by suppressing phosphorylation of inositol-requiring enzyme 1α (IRE1α), and double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK) blocked the mitochondrial translocation of proapoptotic Bcl-2 members and ER stress. ASK1 participated in the IRE1α signalosome, and removing ASK1 abrogated the proapoptotic kinase activity of IRE1α. Ask1 deletion suppressed diabetes-induced IRE1α endoriboneclease activities, which led to X-box binding protein 1 mRNA cleavage, an ER stress marker, decreased expression of microRNAs, and increased expression of a miR-17 target, thioredoxin-interacting protein (Txnip), a thioredoxin binding protein, which enhanced ASK1 activation by disrupting the thioredoxin-ASK1 complexes. ASK1 is essential for the assembly and function of the IRE1α signalosome, which forms a positive feedback loop with ASK1 through Txnip. ASK1 knockdown in C17.2 neural stem cells diminished high glucose- or tunicamycin-induced IRE1α activation, which further supports our hypothesis that ASK1 plays a causal role in diabetes-induced ER stress and apoptosis.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Yanqing Wu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Hui Gu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Shengyun Fang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD Department of Physiology, University of Maryland School of Medicine, Baltimore, MD
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Graham Aberdeen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
Jones CL, Bhatla T, Blum R, Wang J, Paugh SW, Wen X, Bourgeois W, Bitterman DS, Raetz EA, Morrison DJ, Teachey DT, Evans WE, Garabedian MJ, Carroll WL. Loss of TBL1XR1 disrupts glucocorticoid receptor recruitment to chromatin and results in glucocorticoid resistance in a B-lymphoblastic leukemia model. J Biol Chem 2014; 289:20502-15. [PMID: 24895125 PMCID: PMC4110265 DOI: 10.1074/jbc.m114.569889] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/23/2014] [Indexed: 01/10/2023] Open
Abstract
Although great advances have been made in the treatment of pediatric acute lymphoblastic leukemia, up to one of five patients will relapse, and their prognosis thereafter is dismal. We have previously identified recurrent deletions in TBL1XR1, which encodes for an F-box like protein responsible for regulating the nuclear hormone repressor complex stability. Here we model TBL1XR1 deletions in B-precursor ALL cell lines and show that TBL1XR1 knockdown results in reduced glucocorticoid receptor recruitment to glucocorticoid responsive genes and ultimately decreased glucocorticoid signaling caused by increased levels of nuclear hormone repressor 1 and HDAC3. Reduction in glucocorticoid signaling in TBL1XR1-depleted lines resulted in resistance to glucocorticoid agonists, but not to other chemotherapeutic agents. Importantly, we show that treatment with the HDAC inhibitor SAHA restores sensitivity to prednisolone in TBL1XR1-depleted cells. Altogether, our data indicate that loss of TBL1XR1 is a novel driver of glucocorticoid resistance in ALL and that epigenetic therapy may have future application in restoring drug sensitivity at relapse.
Collapse
Affiliation(s)
| | - Teena Bhatla
- the Division of Pediatric Hematology and Oncology
| | - Roy Blum
- From the Laura and Isaac Perlmutter Cancer Center
| | - Jinhua Wang
- From the Laura and Isaac Perlmutter Cancer Center
- the Center for Health Informatics and Bioinformatics, and
| | - Steven W. Paugh
- the Hematological Malignancies Program and
- the Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Xin Wen
- From the Laura and Isaac Perlmutter Cancer Center
- the Center for Health Informatics and Bioinformatics, and
| | | | | | - Elizabeth A. Raetz
- the Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, Utah 84102, and
| | | | - David T. Teachey
- the Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - William E. Evans
- the Hematological Malignancies Program and
- the Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Michael J. Garabedian
- the Department of Microbiology, New York University Langone Medical Center, New York, New York 10016
| | - William L. Carroll
- From the Laura and Isaac Perlmutter Cancer Center
- the Division of Pediatric Hematology and Oncology
| |
Collapse
|
33
|
Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 2014; 4:514. [PMID: 24409188 PMCID: PMC3885921 DOI: 10.3389/fimmu.2013.00514] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022] Open
Abstract
During the past few decades, it has been widely recognized that Reduction-Oxidation (redox) responses occurring at the intra- and extra-cellular levels are one of most important biological phenomena and dysregulated redox responses are involved in the initiation and progression of multiple diseases. Thioredoxin1 (Trx1) and Thioredoxin2 (Trx2), mainly located in the cytoplasm and mitochondria, respectively, are ubiquitously expressed in variety of cells and control cellular reactive oxygen species by reducing the disulfides into thiol groups. Thioredoxin interacting protein (Txnip/thioredoxin binding protein-2/vitamin D3 upregulated protein) directly binds to Trx1 and Trx2 (Trx) and inhibit the reducing activity of Trx through their disulfide exchange. Recent studies have revealed that Trx1 and Txnip are involved in some critical redox-dependent signal pathways including NLRP-3 inflammasome activation in a redox-dependent manner. Therefore, Trx/Txnip, a redox-sensitive signaling complex is a regulator of cellular redox status and has emerged as a key component in the link between redox regulation and the pathogenesis of diseases. Here, we review the novel functional concept of the redox-related protein complex, named “Redoxisome,” consisting of Trx/Txnip, as a critical regulator for intra- and extra-cellular redox signaling, involved in the pathogenesis of various diseases such as cancer, autoimmune disease, and diabetes.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | - So Masaki
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | | | - Zhe Chen
- Institute for Virus Research, Kyoto University , Kyoto , Japan
| | - Hai Tian
- Advanced Chemical Technology Center in Kyoto (ACT Kyoto), JBPA Research Institute , Kyoto , Japan ; Redox Bio Science Inc. , Kyoto , Japan
| | - Junji Yodoi
- Institute for Virus Research, Kyoto University , Kyoto , Japan ; Advanced Chemical Technology Center in Kyoto (ACT Kyoto), JBPA Research Institute , Kyoto , Japan ; Redox Bio Science Inc. , Kyoto , Japan
| |
Collapse
|
34
|
Le H, Vishwanathan N, Kantardjieff A, Doo I, Srienc M, Zheng X, Somia N, Hu WS. Dynamic gene expression for metabolic engineering of mammalian cells in culture. Metab Eng 2013; 20:212-20. [DOI: 10.1016/j.ymben.2013.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/26/2013] [Accepted: 09/11/2013] [Indexed: 01/12/2023]
|
35
|
Ariës IM, Hansen BR, Koch T, van den Dungen R, Evans WE, Pieters R, den Boer ML. The synergism of MCL1 and glycolysis on pediatric acute lymphoblastic leukemia cell survival and prednisolone resistance. Haematologica 2013; 98:1905-11. [PMID: 24142999 DOI: 10.3324/haematol.2013.093823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In vitro and in vivo resistance to prednisolone are predictive for an adverse prognosis in pediatric precursor B-acute lymphoblastic leukemia. Causes of resistance are still poorly understood. In this study, we observed that prednisolone exposure of prednisolone-sensitive patients' leukemic cells decreased anti-apoptotic MCL1 protein levels by 2.9-fold, while MCL1 protein expression in prednisolone-resistant leukemic patients' cells was unaffected (P<0.01). Locked nucleic acid oligonucleotides directed against MCL1 reduced MCL1 protein levels by 82±16% (P<0.05) in leukemic cells, decreased proliferation by 9-fold and sensitized to prednisolone up to 80.8-fold, compared to a non-silencing-control locked nucleic acid (P<0.05). Remarkably, we discovered that MCL1-silencing up-regulated the glucose consumption of leukemic cells by 2.5-fold (P<0.05), suggesting a potential rescue mechanism mediated by glycolysis. Targeting glycolysis by 2-deoxyglucose synergistically inhibited leukemic survival by 23.2-fold in MCL1-silenced cells (P<0.05). Moreover, 2-deoxyglucose and MCL1 locked nucleic acid concomitantly sensitized leukemic cells to prednisolone compared to MCL1 locked nucleic acid or 2-deoxyglucose alone (P<0.05). In conclusion, these results indicate the need to target both MCL1 and glycolysis simultaneously to inhibit leukemic survival and sensitize acute leukemia patients towards prednisolone.
Collapse
|
36
|
Mahmood DFD, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 2013; 19:1266-303. [PMID: 23244617 DOI: 10.1089/ars.2012.4757] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.
Collapse
|
37
|
Sulforaphane enhances the ability of human retinal pigment epithelial cell against oxidative stress, and its effect on gene expression profile evaluated by microarray analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:413024. [PMID: 24187606 PMCID: PMC3800669 DOI: 10.1155/2013/413024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/22/2013] [Indexed: 01/30/2023]
Abstract
To gain further insights into the molecular basis of Sulforaphane (SF) mediated retinal pigment epithelial (RPE) 19 cell against oxidative stress, we investigated the effects of SF on the regulation of gene expression on a global scale and tested whether SF can endow RPE cells with the ability to resist apoptosis. The data revealed that after exposure to H2O2, RPE 19 cell viability was increased in the cells pretreated with SF compared to the cell not treated with SF. Microarray analysis revealed significant changes in the expression of 69 genes in RPE 19 cells after 6 hours of SF treatment. Based on the functional relevance, eight of the SF-responsive genes, that belong to antioxidant redox system, and inflammatory responsive factors were validated. The up-regulating translation of thioredoxin-1 (Trx1) and the nuclear translocation of Nuclear factor-like2 (Nrf2) were demonstrated by immunoblot analysis in SF treated RPE cells. Our data indicate that SF increases the ability of RPE 19 cell against oxidative stress through up-regulating antioxidative enzymes and down-regulating inflammatory mediators and chemokines. The results suggest that the antioxidant, SF, may be a valuable supplement for preventing and retarding the development of Age Related Macular Degeneration.
Collapse
|
38
|
O'Shea JM, Ayer DE. Coordination of nutrient availability and utilization by MAX- and MLX-centered transcription networks. Cold Spring Harb Perspect Med 2013; 3:a014258. [PMID: 24003245 DOI: 10.1101/cshperspect.a014258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell growth and division require the biosynthesis of macromolecule components and cofactors (e.g., nucleotides, lipids, amino acids, and nicotinamide adenine dinucleotide phosphate [NADPH]). Normally, macromolecular biosynthesis is under tight regulatory control, yet these anabolic pathways are often dysregulated in cancer. The resulting metabolic reprogramming of cancer cells is thought to support their high rates of growth and division. The mechanisms that underlie the metabolic changes in cancer are at least partially understood, providing a rationale for their targeting with known or novel therapeutics. This review is focused on how cells sense and respond transcriptionally to essential nutrients, including glucose and glutamine, and how MAX- and MLX-centered transcription networks contribute to metabolic homeostasis in normal and neoplastic cells.
Collapse
Affiliation(s)
- John M O'Shea
- Huntsman Cancer Institute, Department of Oncological Science, University of Utah, Salt Lake City, Utah 84112-5550
| | | |
Collapse
|
39
|
Evang JA, Bollerslev J, Casar-Borota O, Lekva T, Ramm-Pettersen J, Berg JP. Different levels of various glucocorticoid-regulated genes in corticotroph adenomas. Endocrine 2013; 44:220-7. [PMID: 23315031 DOI: 10.1007/s12020-012-9871-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
Abstract
Recently, correlations between corticotroph tumor dedifferentiation and both E-cadherin immunostaining and reduced mRNA expression of the E-cadherin gene (CDH1) have been demonstrated. The purpose of this study was to explore whether tumor dedifferentiation correlated with glucocorticoid resistance and whether the resistance was associated with both positively and negatively regulated genes. Tumor material from 20 patients with verified Cushing's disease or Nelson's syndrome operated on at Rikshospitalet, Oslo. Reverse transcription polymerase chain reaction analysis of genes such as E-cadherin (CDH1), proopiomelanocortin (POMC), glucocorticoid-induced leucine zipper (GILZ), and thioredoxin-interacting protein (TXNIP) was performed. The correlations between the expression of the GILZ, TXNIP, and POMC genes in different stages of corticotroph adenomas, the E-cadherin mRNA expression and staining pattern, and the preoperative 24-h cortisol excretion were examined. The GILZ and TXNIP expression levels were positively correlated to the CDH1 expression and were highest in microadenomas and in tumors with a high membranous E-cadherin reactivity. In contrast, the POMC expression was not significantly different between the groups. This divergence between the genes that were positively and negatively regulated by glucocorticoids could not be supported by other gene expression analyses. No correlations to urinary cortisol were found. The expression of the glucocorticoid-responsive genes POMC, GILZ, and TXNIP in corticotroph adenomas showed a remarkable variation. The pattern and variability of glucocorticoid resistance in corticotroph adenomas seem to correlate with a loss of the epithelial phenotype associated with corticotroph tumor dedifferentiation.
Collapse
Affiliation(s)
- Johan Arild Evang
- Section of Specialized Endocrinology, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
40
|
Zhou J, Chng WJ. Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer. Mitochondrion 2013; 13:163-169. [PMID: 22750447 DOI: 10.1016/j.mito.2012.06.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/08/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
Thioredoxin binding protein (TXNIP) has multiple functions and plays an important role in redox homeostasis. TXNIP increases the production of reactive oxygen species (ROS), and oxidative stress, resulting in cellular apoptosis. It has been identified as a tumor suppressor gene (TSG) in various solid tumors and hematological malignancies. In the present review, we will first provide an overview of TXNIP protein and function, followed by a summary of the major studies that have demonstrated the frequent repression of TXNIP in cancers. Functional characterization of TXNIP knockout mouse model is summarized. We will then discuss the use of small molecular inhibitors to reactivate TXNIP expression as a novel anticancer strategy.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | | |
Collapse
|
41
|
Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 2013; 18:1165-207. [PMID: 22607099 PMCID: PMC3579385 DOI: 10.1089/ars.2011.4322] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes.
Collapse
Affiliation(s)
- Samuel Lee
- The Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
42
|
Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, Shen CH, Wen J, Asara J, McGraw TE, Kahn BB, Cantley LC. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell 2013; 49:1167-75. [PMID: 23453806 PMCID: PMC3615143 DOI: 10.1016/j.molcel.2013.01.035] [Citation(s) in RCA: 493] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/06/2012] [Accepted: 01/25/2013] [Indexed: 12/25/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is an α-arrestin family protein that is induced in response to glucose elevation. It has been shown to provide a negative feedback loop to regulate glucose uptake into cells, though the biochemical mechanism of action has been obscure. Here, we report that TXNIP suppresses glucose uptake directly, by binding to the glucose transporter GLUT1 and inducing GLUT1 internalization through clathrin-coated pits, as well as indirectly, by reducing the level of GLUT1 messenger RNA (mRNA). In addition, we show that energy stress results in the phosphorylation of TXNIP by AMP-dependent protein kinase (AMPK), leading to its rapid degradation. This suppression of TXNIP results in an acute increase in GLUT1 function and an increase in GLUT1 mRNA (hence the total protein levels) for long-term adaptation. The glucose influx through GLUT1 restores ATP-to-ADP ratios in the short run and ultimately induces TXNIP protein production to suppress glucose uptake once energy homeostasis is reestablished.
Collapse
Affiliation(s)
- Ning Wu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Bin Zheng
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032
| | - Adam Shaywitz
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Yossi Dagon
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Christine Tower
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Gary Bellinger
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Che-Hung Shen
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032
| | - Jennifer Wen
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065
| | - John Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065
| | - Barbara B. Kahn
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Lewis C. Cantley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115
| |
Collapse
|
43
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
44
|
Abstract
Chronic hyperglycemia (HG)-associated reactive oxygen/nitrogen species (ROS/RNS) stress and low grade inflammation are considered to play critical roles in the development of diabetic retinopathy (DR). Excess glucose metabolic flux through the aldose reductase/polyol pathway, advanced glycation end product (AGE) formation, elevated hexosamine biosynthesis pathway (HBP), diacyl glycerol/PKC activation, and mitochondrial ROS generation are all implicated in DR. In addition, endoplasmic reticulum stress/unfolded protein response (er-UPR) and deregulation of mitochondrial quality control by autophagy/mitophagy are observed causing cellular bioenergetic deficiency and injury. Recently, a pro-oxidant and pro-apoptotic thioredoxin interacting protein (TXNIP) was shown to be highly upregulated in DR and by HG in retinal cells in culture. TXNIP binds to thioredoxin (Trx) inhibiting its oxidant scavenging and thiolreducing capacity. Hence, prolonged overexpression of TXNIP causes ROS/RNS stress, mitochondrial dysfunction, inflammation and premature cell death in DR. Initially, DR was considered as microvascular complications of endothelial dysfunction and pericyte loss characterized by capillary basement membrane thickening, pericyte ghost, blood retinal barrier leakage, acellular capillary and neovascularization. However, it is currently acknowledged that neuro-glia are also affected by HG in diabetes and that neuronal injury, glial activation, innate immunity/sterile inflammation, and ganglion apoptosis occur early in DR. In addition, retinal pigment epithelium (RPE) becomes dysfunctional in DR. Since TXNIP is induced by HG in most cells, its effects are not restricted to a particular cell type in DR. However, depending on the metabolic activity and anti-oxidant capacity, some cells may be affected earlier by TXNIP than others. Identification of TXNIP sensitive cells and elucidating the underlying mechanism(s) will be critical for preventing pre-mature cell death and progression of DR.
Collapse
Affiliation(s)
- Lalit P Singh
- Departments of Anatomy and Cell Biology and Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
45
|
He X, Ma Q. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol Pharmacol 2012; 82:887-97. [PMID: 22869588 PMCID: PMC4678870 DOI: 10.1124/mol.112.081133] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor activated by a range of oxidants and electrophiles. The transcriptional response to endogenous oxidative cues by Nrf2 plays an important role in mammalian redox physiology and oxidative pathology. Hyperglycemia induces oxidative stress in the heart where it leads to apoptosis and ultimately cardiomyopathy. Here we investigated the mechanism by which Nrf2 suppresses oxidative stress in diabetic mouse heart. Knockout (KO) of Nrf2 induced oxidative stress and apoptosis in KO heart; diabetes further increased oxidative damage. A pathway-focused gene array revealed that Nrf2 controls the expression of 24 genes in the heart, including the gene encoding thioredoxin-interacting protein (TXNIP). Nrf2 suppressed the basal expression of Txnip in the heart and blocked induction of Txnip by high glucose by binding to an antioxidant response element (ARE) (-1286 to -1276) of the Txnip promoter. Binding of Nrf2 to ARE also suppressed the binding of MondoA to the carbohydrate response element with or without high glucose. TXNIP promoted reactive oxygen species production and apoptosis by inhibiting thioredoxin. On the other hand, Nrf2 boosted thioredoxin activity by inhibiting Txnip. The findings revealed, for the first time, that Nrf2 is a key gatekeeper of Txnip transcription, suppressing both its basal expression and MondoA-driven induction to control the thioredoxin redox signaling in diabetes.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | |
Collapse
|
46
|
Baptista MJ, Muntañola A, Calpe E, Abrisqueta P, Salamero O, Fernández E, Codony C, Giné E, Kalko SG, Crespo M, Bosch F. Differential gene expression profile associated to apoptosis induced by dexamethasone in CLL cells according to IGHV/ZAP-70 status. Clin Cancer Res 2012; 18:5924-33. [PMID: 22966019 DOI: 10.1158/1078-0432.ccr-11-2771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glucocorticoids are part of the therapeutic armamentarium of chronic lymphocytic leukemia (CLL) where it has been suggested that cells with unmutated IGHV genes exhibit higher sensitivity. The mechanisms by which glucocorticoids are active in CLL are not well elucidated. We aimed to ascertain the activity of dexamethasone in CLL cells according to prognosis and to identify the molecular mechanisms that are influencing the response to this drug. EXPERIMENTAL DESIGN Sensitivity to dexamethasone was analyzed ex vivo in 50 CLL and compared according to IGHV mutational status and/or ZAP-70 expression. The response was further compared by gene expression profiling (GEP) of selected cases. Expression of genes of interest was validated by quantitative reverse transcriptase PCR. RESULTS Response to dexamethasone was higher in cases with unmutated IGHV/high ZAP-70 expression, and the levels of induction of the pro-apoptotic Bim protein correlated with the degree of cell death. GEP analysis showed few genes differentially expressed after dexamethasone treatment between mutated and unmutated cases. However, functional annotation analysis showed that unmutated cases had significant enrichment in terms related to apoptosis. Specific analysis of genes of interest conducted in a large series disclosed that in unmutated IGHV cells, FKBP5 expression was higher at baseline and after dexamethasone exposure and that GILZ was more induced by dexamethasone treatment in these cases. CONCLUSIONS Unmutated IGHV/high ZAP-70 CLL cells exhibit better response to dexamethasone treatment, which is accompanied by a differential expression of genes involved in the glucocorticoid receptor pathway and by an increased induction of genes related to apoptosis.
Collapse
Affiliation(s)
- Maria Joao Baptista
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lekva T, Ueland T, Bøyum H, Evang JA, Godang K, Bollerslev J. TXNIP is highly regulated in bone biopsies from patients with endogenous Cushing's syndrome and related to bone turnover. Eur J Endocrinol 2012; 166:1039-48. [PMID: 22450549 DOI: 10.1530/eje-11-1082] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Patients with endogenous Cushing's Syndrome (CS), as long-time treated patients with exogenous glucocorticoids (GCs), have severe systemic manifestations including secondary osteoporosis and low-energy fractures. The aim of the present study was to investigate the functional role of TXNIP in bone with focus on osteoblast (OB) differentiation and OB-mediated osteoclast activity and function in vitro. DESIGN AND METHODS Nine bone biopsies from CS before and after surgical treatment were screened for expressional candidate genes. Microarray analyses revealed that the gene encoding TXNIP ranked among the most upregulated genes. Subsequent in vitro and in vivo studies were performed. RESULTS We found that TXNIP gene in bone is downregulated in CS following surgical treatment. Furthermore, our in vivo data indicate novel associations between thioredoxin and TXNIP. Our in vitro studies showed that silencing TXNIP in OBs was followed by increased differentiation and expression and secretion of osteocalcin as well as enhanced activity of alkaline phosphatase. Moreover, treating osteoclasts with silenced TXNIP OB media showed an increased osteoclast activity. CONCLUSIONS TXNIP expression in bone is highly regulated during the treatment of active CS, and by GC in bone cells in vitro. Our data indicate that TXNIP may mediate some of the detrimental effects of GC on OB function as well as modulate OB-mediated osteoclastogenesis by regulating the OPG/RANKL ratio.
Collapse
Affiliation(s)
- Tove Lekva
- Section of Specialized Endocrinology, Department of Endocrinology, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
48
|
Reich E, Tamary A, Sionov RV, Melloul D. Involvement of thioredoxin-interacting protein (TXNIP) in glucocorticoid-mediated beta cell death. Diabetologia 2012; 55:1048-57. [PMID: 22246375 DOI: 10.1007/s00125-011-2422-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022]
Abstract
AIM/HYPOTHESIS Glucocorticoid hormones (GCs) are widely used to treat a variety of inflammatory and immune diseases. However, their long-term administration is associated with adverse metabolic effects, including glucose intolerance and diabetes. Our objective was to elucidate the mechanisms by which GCs affect beta cell survival with a specific emphasis on the role of the thioredoxin-interacting protein (TXNIP) in beta cell apoptosis. METHODS Human and mouse islets, together with MIN6 beta cells, were exposed to dexamethasone (Dex) and apoptosis was assessed by measuring the percentage of sub-G1 cells, the appearance of cleaved caspase-3 or by using a TUNEL assay. Dex-upregulated expression of Txnip mRNA was analysed by real-time PCR, and GC-modulated production and modification of proteins were determined by western blotting. RESULTS We provide evidence that TXNIP, a negative regulator of the antioxidant thioredoxin (TRX), is strongly induced in beta cells by GCs and that its induction is dependent on p38 mitogen-activated protein kinase (MAPK) activation. TXNIP downregulation by RNA interference, overexpression of the radical scavenger TRX1 or elevation of intracellular cAMP levels attenuated the Dex-mediated apoptosis. Dex-induced Txnip expression and beta cell apoptosis are mediated by the glucocorticoid receptor (GR), as the GR antagonist RU486 fully abolishes these effects. CONCLUSIONS/INTERPRETATION Altogether, our data suggest TXNIP as a novel mediator of GC-induced apoptosis in beta cells and further contribute to our understanding of beta cell death pathways.
Collapse
Affiliation(s)
- E Reich
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
49
|
Spindel ON, World C, Berk BC. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal 2012; 16:587-96. [PMID: 21929372 PMCID: PMC3270053 DOI: 10.1089/ars.2011.4137] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The thioredoxin-interacting protein (TXNIP, also termed VDUP1 for vitamin D upregulated protein or TBP2 for thioredoxin-binding protein) was originally discovered by virtue of its strong regulation by vitamin D. Recently, TXNIP has been found to regulate the cellular reduction-oxidation (redox) state by binding to and inhibiting thioredoxin (TRX) in a redox-dependent fashion. RECENT ADVANCES Studies of the Hcb-19 mouse, TXNIP nonsense mutated mouse, demonstrate redox-mediated roles in lipid and glucose metabolism, cardiac function, inflammation, and carcinogenesis. Exciting recent data indicate important roles for TXNIP in redox independent signaling. Specifically, sequence analysis revealed that TXNIP is a member of the classical visual/β-arrestin superfamily, and is one of the six members of the arrestin domain-containing (ARRDC, or α-arrestin) family. CRITICAL ISSUES Although the function of α-arrestins is not well known, recent studies suggest roles in endocytosis and protein ubiquitination through PPxY motifs in their C-terminal tails. Importantly, the ability of TXNIP to inhibit glucose uptake was found to be independent of TRX binding. Further investigation showed that several metabolic functions of TXNIP were due to the arrestin domains, thus further supporting the importance of redox independent functions of TXNIP. FUTURE DIRECTIONS Since TXNIP transcription and protein stability are highly regulated by multiple tissue-specific stimuli, it appears that TXNIP should be a good therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Oded N. Spindel
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Cameron World
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Bradford C. Berk
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
50
|
Rainer J, Lelong J, Bindreither D, Mantinger C, Ploner C, Geley S, Kofler R. Research resource: transcriptional response to glucocorticoids in childhood acute lymphoblastic leukemia. Mol Endocrinol 2011; 26:178-93. [PMID: 22074950 DOI: 10.1210/me.2011-1213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids (GC) induce apoptosis in lymphoblasts and are thus essential in the treatment of acute lymphoblastic leukemia (ALL). Their effects result from gene regulations via the GC receptor (NR3C1/GR), but it is unknown how these changes evolve, what the primary GR targets are, and to what extent responses differ between ALL subtypes and nonlymphoid malignancies. We delineated the transcriptional response to GC on the exon level in a time-resolved manner in a precursor B- and a T childhood ALL model employing Exon microarrays and combined this with genome-wide NR3C1-binding site detection using chromatin immunoprecipitation-on-chip technology. This integrative approach showed that the response was strongly influenced by kinetics and extent of GR autoinduction in both models. Although remarkable differences between the ALL systems were apparent, we defined a set of common response genes enriched in apoptosis-related processes. Globally, GR binding was higher for GC-induced vs. -repressed genes, suggesting that GR mediates gene repression by interaction with distant enhancers or by cross talk with other transcription factors. Exon level analysis defined several new GC-regulated transcript variants of genes, including ATP4B, GPR98, TBCD, and ZBTB16. Our study provides unprecedented insight into the transcriptional response to GC in ALL cells, essential to understand this biologically and clinically important phenomenon. We found evidence of cell type-specific as well as common responses, possibly related to apoptosis induction, and detected induction of novel transcript variants by GC in the investigated systems. Finally, we implemented a bioinformatic framework that might be useful for high-density microarray analyses to identify alternative transcript variant expression.
Collapse
Affiliation(s)
- Johannes Rainer
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|