1
|
Mesev EV, Guare EG, Ploss A, Toettcher JE. Synthetic Heterodimers of Type III Interferon Receptors Require TYK2 for STAT Activation. J Interferon Cytokine Res 2023; 43:414-426. [PMID: 37725008 PMCID: PMC10517332 DOI: 10.1089/jir.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 09/21/2023] Open
Abstract
Type III interferons (IFN-λ) are central to host defense against viral infection of epithelial barrier surfaces. IFN-λ binding to its receptor induces a JAK-STAT cascade through kinases Janus-associated kinase 1 (JAK1) and tyrosine kinase 2 (TYK2), which are associated on either subunit of the heterodimeric type III IFN receptor. Recent studies have shown that TYK2 is not necessary for IFN-λ to signal, in contrast to IFN-α, which uses the same JAK-STAT pathway activated by the type I IFN receptor. The mechanism for this differential TYK2 requirement is unknown. Our study uses synthetic IFN receptors in TYK2-deficient U2OS epithelial cells to define the processes in type I and III IFN signaling that require TYK2. We find that TYK2 deficiency reduces signaling equally from heterodimers of either type I or III IFN receptor intracellular domains. In contrast, JAK1-associated homodimers of IFNAR2 or IFNLR1 are both fully signaling competent even in the absence of TYK2. These results suggest that heterodimerization of the type III IFN receptor is insufficient to confer TYK2-independent signaling. Thus, we propose that noncanonical receptor complexes may participate in endogenous type III IFN signaling to confer TYK2-independent signaling downstream of IFN-λ stimulation.
Collapse
Affiliation(s)
- Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Emma G. Guare
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Protein Kinase CK2 and Epstein-Barr Virus. Biomedicines 2023; 11:biomedicines11020358. [PMID: 36830895 PMCID: PMC9953236 DOI: 10.3390/biomedicines11020358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.
Collapse
|
3
|
The combination of ruxolitinib and Bcl-2/Mcl-1 inhibitors has a synergistic effect on leukemic cells carrying a SPAG9::JAK2 fusion. Cancer Gene Ther 2022; 29:1930-1938. [PMID: 35879405 DOI: 10.1038/s41417-022-00511-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023]
Abstract
JAK2 rearrangements can occur in Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL). Here, we performed functional analysis of the SPAG9::JAK2 fusion, which was identified in a pediatric patient with Ph-like ALL, to establish molecular targeted therapy. Ba/F3 cells expressing SPAG9::JAK2 generated by retroviral transduction (Ba/F3-SPAG9-JAK2), proliferated in the absence of IL-3, and exhibited constitutive phosphorylation of the tyrosine residues in the JAK2 kinase domain of the fusion protein and STAT3/STAT5. Mutation of tyrosine residues in the JAK2 kinase domain (SPAG9::JAK2 mut) abolished IL-3 independence, but had no influence on STAT3/STAT5 phosphorylation levels. Gene expression analysis revealed that Stat1 was significantly upregulated in Ba/F3-SPAG9-JAK2 cells. STAT1 was also phosphorylated in Ba/F3-SPAG9-JAK2 but not SPAG9-JAK2 mut cells, suggesting that STAT1 is key for SPAG9::JAK2-mediated cell proliferation. Consistently, STAT1 induced expression of the anti-apoptotic proteins, BCL-2 and MCL-1, as did SPAG9::JAK2, but not SPAG9::JAK2 mut. Ruxolitinib abrogated Ba/F3-SPAG9-JAK2-mediated proliferation in vitro, but was insufficient in vivo. Venetoclax (a BCL-2 inhibitor) or AZD5991 (an MCL-1 inhibitor) enhanced the effects of ruxolitinib on Ba/F3-SPAG9-JAK2 in vitro. These findings suggest that activation of the JAK2-STAT1-BCL-2/MCL-1 axis contributes to SPAG9::JAK2-related aberrant growth promotion. BCL-2 or MCL-1 inhibition is a potential therapeutic option for B-ALL with SPAG9::JAK2 fusion.
Collapse
|
4
|
Padmanabhan S, Gaire B, Zou Y, Uddin MM, Vancurova I. IFNγ-induced PD-L1 expression in ovarian cancer cells is regulated by JAK1, STAT1 and IRF1 signaling. Cell Signal 2022; 97:110400. [PMID: 35820543 PMCID: PMC9357219 DOI: 10.1016/j.cellsig.2022.110400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Expression of the immune checkpoint programmed death ligand-1 (PD-L1) is increased in ovarian cancer (OC) and correlates with poor prognosis. Interferon-γ (IFNγ) induces PD-L1 expression in OC cells, resulting in their increased proliferation and tumor growth, but the mechanisms that regulate the PD-L1 expression in OC remain unclear. Here, we show that the IFNγ-induced PD-L1 expression in OC cells is associated with increased levels of STAT1, Tyr-701 pSTAT1 and Ser-727 pSTAT1. Suppression of JAK1 and STAT1 significantly decreases the IFNγ-induced PD-L1 expression in OC cells, and STAT1 overexpression increases the IFNγ-induced PD-L1 expression. In addition, IFNγ induces expression of the transcription factor interferon regulatory factor 1 (IRF1) and IRF1 suppression attenuates the IFNγ-induced gene and protein levels of PD-L1. Chromatin immunoprecipitation results show that IFNγ induces PD-L1 promoter acetylation and recruitment of STAT1, Ser-727 pSTAT1 and IRF1 in OC cells. Together, these findings demonstrate that the IFNγ-induced PD-L1 expression in OC cells is regulated by JAK1, STAT1, and IRF1 signaling, and suggest that targeting the JAK1/ STAT1/IRF1 pathway may provide a leverage to regulate the PD-L1 levels in ovarian cancer.
Collapse
Affiliation(s)
- Sveta Padmanabhan
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Bijaya Gaire
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Mohammad M Uddin
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, New York 11439, USA.
| |
Collapse
|
5
|
Erdogan F, Qadree AK, Radu TB, Orlova A, de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M, Moriggl R, Gunning PT. Structural and mutational analysis of member-specific STAT functions. Biochim Biophys Acta Gen Subj 2022; 1866:130058. [PMID: 34774983 DOI: 10.1016/j.bbagen.2021.130058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The STAT family of transcription factors control gene expression in response to signals from various stimulus. They display functions in diseases ranging from autoimmunity and chronic inflammatory disease to cancer and infectious disease. SCOPE OF REVIEW This work uses an approach informed by structural data to explore how domain-specific structural variations, post-translational modifications, and the cancer genome mutational landscape dictate STAT member-specific activities. MAJOR CONCLUSIONS We illustrated the structure-function relationship of STAT proteins and highlighted their effect on member-specific activity. We correlated disease-linked STAT mutations to the structure and cancer genome mutational landscape and proposed rational drug targeting approaches of oncogenic STAT pathway addiction. GENERAL SIGNIFICANCE Hyper-activated STATs and their variants are associated with multiple diseases and are considered high value oncology targets. A full understanding of the molecular basis of member-specific STAT-mediated signaling and the strategies to selectively target them requires examination of the difference in their structures and sequences.
Collapse
Affiliation(s)
- Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Abdul K Qadree
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Satu M Mustjoki
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
| |
Collapse
|
6
|
Su YC, Chen YC, Tseng YL, Shieh GS, Wu P, Shiau AL, Wu CL. The Pro-Survival Oct4/Stat1/Mcl-1 Axis Is Associated with Poor Prognosis in Lung Adenocarcinoma Patients. Cells 2021; 10:cells10102642. [PMID: 34685622 PMCID: PMC8534205 DOI: 10.3390/cells10102642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
The embryonic stem cell marker Oct4 is expressed in several human cancers and is positively correlated with a poor outcome in cancer patients. However, its physiological role in cancer progression remains poorly understood. Tumor cells block apoptosis to escape cell death so that they can proliferate indefinitely, leading to ineffective therapy for cancer patients. In this study, we investigated whether Oct4 regulates the apoptosis pathway and contributes to poor prognosis in patients with lung adenocarcinoma. Our results revealed that Oct4 expression is correlated with Stat1 expression in lung adenocarcinoma patients and Oct4 is directly bound to the Stat1 promoter to transactivate Stat1 in lung adenocarcinoma cells. Expression of the Stat1 downstream gene Mcl-1 increased in Oct4-overexpressing cancer cells, while Stat1 knockdown in Oct4-overexpressing cancer cells sensitized them to cisplatin-induced apoptosis. Furthermore, Oct4 promoted Stat1 expression and tumor growth, whereas silencing of Stat1 reduced Oct4-induced tumor growth in human lung tumor xenograft models. Taken together, we demonstrate that Oct4 is a pro-survival factor by inducing Stat1 expression and that the Oct4/Stat1/Mcl-1 axis may be a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yu-Chu Su
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yi-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 70043, Taiwan;
| | - Pensee Wu
- Keele Cardiovascular Research Group, School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
- Academic Unit of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, Staffordshire ST4 6QG, UK
| | - Ai-Li Shiau
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (A.-L.S.); (C.-L.W.); Tel.: +886-6-2353535 (ext. 5629) (A.-L.S.); Tel.: +886-5-2765041 (ext. 8321) (C.L.W.)
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
- Correspondence: (A.-L.S.); (C.-L.W.); Tel.: +886-6-2353535 (ext. 5629) (A.-L.S.); Tel.: +886-5-2765041 (ext. 8321) (C.L.W.)
| |
Collapse
|
7
|
Gupte R, Nandu T, Kraus WL. Nuclear ADP-ribosylation drives IFNγ-dependent STAT1α enhancer formation in macrophages. Nat Commun 2021; 12:3931. [PMID: 34168143 PMCID: PMC8225886 DOI: 10.1038/s41467-021-24225-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/04/2021] [Indexed: 02/01/2023] Open
Abstract
STAT1α is a key transcription factor driving pro-inflammatory responses in macrophages. We found that the interferon gamma (IFNγ)-regulated transcriptional program in macrophages is controlled by ADP-ribosylation (ADPRylation) of STAT1α, a post-translational modification resulting in the site-specific covalent attachment of ADP-ribose moieties. PARP-1, the major nuclear poly(ADP-ribose) polymerase (PARP), supports IFNγ-stimulated enhancer formation by regulating the genome-wide binding and IFNγ-dependent transcriptional activation of STAT1α. It does so by ADPRylating STAT1α on specific residues in its DNA-binding domain (DBD) and transcription activation (TA) domain. ADPRylation of the DBD controls STAT1α binding to its cognate DNA elements, whereas ADPRylation of the TA domain regulates enhancer activation by modulating STAT1α phosphorylation and p300 acetyltransferase activity. Loss of ADPRylation at either site leads to diminished IFNγ-dependent transcription and downstream pro-inflammatory responses. We conclude that PARP-1-mediated ADPRylation of STAT1α drives distinct enhancer activation mechanisms and is a critical regulator of inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Cai Y, Xu B, Zhou F, Wu J, Li S, Zheng Q, Li Y, Li X, Gao F, Dong S, Liu R. Si-Ni-San ameliorates chronic colitis by modulating type I interferons-mediated inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153495. [PMID: 33611210 DOI: 10.1016/j.phymed.2021.153495] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic relapsing inflammatory disease that markedly elevates the risk of colon cancers and results in disability. The disrupted immune homeostasis has been recognized as a predominant player in the pathogenesis of UC. However, the overall remission rate of current therapies based on immunoregulation is still unsatisfactory. Si-Ni-San (SNS) has been found effective in relieving UC through thousands of years of clinical practice, yet the specific mechanisms of the protective effect of SNS were not fully elucidated. PURPOSE We aim to investigate the therapeutic effects of SNS against the development of chronic colitis and the underlying mechanisms. METHODS We established a DSS-induced chronic experimental colitis mouse model to evaluate the effect of SNS. RNA-sequencing, bioinformatic analysis, and in vitro studies were performed to investigate the underlying mechanisms. RESULTS Our data demonstrated that SNS significantly ameliorated chronic experimental colitis via inhibiting the expression of genes associated with inflammatory responses. Interestingly, SNS significantly suppressed DSS-induced type I interferon (IFN) responses instead of directly downregulating the production of pro-inflammatory cytokines, such as Il-6. In vitro study further found that SNS selectively inhibited STING and RIG-I pathway-induced type I IFN responses by modulating TBK1- and IRF3-dependent signaling transduction. SNS also suppressed the expression of IFN-stimulated genes by directly inhibiting STAT1 and STAT2 activation. CONCLUSION Our study not only provides novel insights into the pathogenic role of type I IFN responses in colitis but also suggested that SNS or bioactive compounds derived from SNS may serve as novel therapeutic strategies for the treatment of UC via interfering type I IFN-mediated inflammation.
Collapse
Affiliation(s)
- Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Li X, Wang Z, Zhang S, Yao Q, Chen W, Liu F. Ruxolitinib induces apoptosis of human colorectal cancer cells by downregulating the JAK1/2-STAT1-Mcl-1 axis. Oncol Lett 2021; 21:352. [PMID: 33747209 PMCID: PMC7967999 DOI: 10.3892/ol.2021.12613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023] Open
Abstract
Under pathological conditions, the Janus kinase (JAK)/STAT signaling pathway can regulate the proliferation, differentiation and migration of tumor cells, including colorectal cancer (CRC). CRC is the third major types of cancer among males and the second among females worldwide. In China, CRC is the fifth common cancer among both males and females. Western blotting, flow cytometry, RNA interference, immunoprecipitation, xenografts models, and immunohistochemical staining were carried out to evaluate the possible mechanisms of acton of ruxolitinib. The present data suggested that ruxolitinib can suppress CRC cell proliferation by inducing apoptosis. Firstly, JAK1/2-STAT1 was identified as the target of ruxolitinib. Then, ruxolitinib downregulated myeloid cell leukemia-1 (Mcl-1) mRNA level and decreased its protein level, which enabled Bak to trigger CRC apoptosis. Furthermore, ruxolitinib exerted potent activity against CRC xenograft growth in vivo. High expression of phosphorylated STAT1 (S727) was also confirmed in 44 pairs of human colon carcinoma and adjacent normal tissues. Taken together, the results showed that ruxolitinib decreased JAK1/2-STAT1-Mcl-1 protein level and effectively suppressed CRC cell proliferation in vitro and in vivo. Therefore, ruxolitinib could be a promising anticancer agent for CRC treatment.
Collapse
Affiliation(s)
- Xia Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Zhe Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Shengjie Zhang
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Qinghua Yao
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Wei Chen
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China.,Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Feiyan Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
10
|
Liu F, Liu J, Zhang J, Shi J, Gui L, Xu G. Expression of STAT1 is positively correlated with PD-L1 in human ovarian cancer. Cancer Biol Ther 2020; 21:963-971. [PMID: 33043814 PMCID: PMC7583508 DOI: 10.1080/15384047.2020.1824479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) is related to the immune microenvironment of tumorigenesis. The programmed cell death 1 (PD-1) and its ligand (PD-L1) have been reported to be important in immunotherapy by mediating tumor immune evasion. Blocking the PD-1/PD-L1 pathway can restore the endogenous anti-tumor immune response. This study aimed to examine the expression of STAT1, PD-1, and PD-L1 and the correlation between selected markers in human epithelial ovarian cancer (EOC). The results showed that malignant tumors contained more STAT1, PD-1, and PD-L1 positive cells. The expression of STAT1 and PD-L1 was associated with age, whereas PD-1 and PD-L1 associated with histopathological type, in patients with ovarian tumors. Moreover, the expression of STAT1 was found to be associated with disease stages and the grade of serous carcinoma. STAT1 expression was higher in OC cells than normal ovarian surface epithelial cells and was positively correlated with PD-L1 expression. The knockdown of STAT1 decreased PD-L1 expression, whereas overexpression of STAT1 increased PD-L1 expression. Furthermore, the expression of STAT1, PD-1, and PD-L1 was lower in paclitaxel-resistant cells than sensitive cells. Finally, STAT1 affected the overall survival and progression-free survival of patients with EOC. These findings suggest that STAT1, PD-1, and PD-L1 are the tissue markers of EOC and imply the possibility that the high level of STAT1, PD-1, and PD-L1 may favor the checkpoint immunotherapy in patients with EOC, but may have a limit in paclitaxel-resistant patients because of the low expression of STAT1, PD-1, and PD-L1 in paclitaxel-resistant cells.
Collapse
Affiliation(s)
- Fangran Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jiao Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jimin Shi
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
| | - Lu Gui
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Liu S, Imani S, Deng Y, Pathak JL, Wen Q, Chen Y, Wu J. Targeting IFN/STAT1 Pathway as a Promising Strategy to Overcome Radioresistance. Onco Targets Ther 2020; 13:6037-6050. [PMID: 32606809 PMCID: PMC7321691 DOI: 10.2147/ott.s256708] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
The interferon (IFN)-mediated activation of the Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling is crucial for cell sensitivity to ionizing radiation. Several preclinical studies have reported that the IFN/STAT1 pathway mediates radioresistance in the tumor microenvironment by shielding the immune responses and activating survival signaling pathways. This review focuses on the oncogenic function of the IFN/STAT1 pathway, emphasizing the major signaling pathway in radiation sensitization. Furthermore, it highlights the possibility of mediatory roles of the IFN/STAT1 pathway as a prognostic therapeutic target in the modulation of resistance to radiotherapy and chemotherapy. MicroRNA involved in the regulation of the IFN/STAT1 pathway is also discussed. A better understanding of radiation-induced IFN/STAT1 signaling will open new opportunities for the development of novel therapeutic strategies, as well as define new approaches to enhance radio-immunotherapy efficacy in the treatment of various types of cancers.
Collapse
Affiliation(s)
- Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, People's Republic of China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
12
|
Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits EL, Lardon F, van Dam PA. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020; 60:41-56. [DOI: 10.1016/j.semcancer.2019.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
|
13
|
Wang Y, Zhu W, Chen X, Wei G, Jiang G, Zhang G. Selenium-binding protein 1 transcriptionally activates p21 expression via p53-independent mechanism and its frequent reduction associates with poor prognosis in bladder cancer. J Transl Med 2020; 18:17. [PMID: 31918717 PMCID: PMC6953137 DOI: 10.1186/s12967-020-02211-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 01/03/2020] [Indexed: 01/31/2023] Open
Abstract
Background Recent studies have shown that selenium-binding protein 1 (SELENBP1) is significantly down-regulated in a variety of solid tumors. Nevertheless, the clinical relevance of SELENBP1 in human bladder cancer has not been described in any detail, and the molecular mechanism underlying its inhibitory role in cancer cell growth is largely unknown. Methods SELENBP1 expression levels in tumor tissues and adjacent normal tissues were evaluated using immunoblotting assay. The association of SELENBP1 expression, clinicopathological features, and clinical outcome was determined using publicly available dataset from The Cancer Genome Atlas bladder cancer (TCGA-BLCA) cohort. DNA methylation in SELENBP1 gene was assessed using online MEXPRESS tool. We generated stable SELENBP1-overexpression and their corresponding control cell lines to determine its potential effect on cell cycle and transcriptional activity of p21 by using flow cytometry and luciferase reporter assay, respectively. The dominant-negative mutant constructs, TAM67 and STAT1 Y701F, were employed to define the roles of c-Jun and STAT1 in the regulation of p21 protein. Results Here, we report that the reduction of SELENBP1 is a frequent event and significantly correlates with tumor progression as well as unfavorable prognosis in human bladder cancer. By utilizing TCGA-BLCA cohort, DNA hypermethylation, especially in gene body, is shown to be likely to account for the reduction of SELENBP1 expression. However, an apparent paradox is observed in its 3′-UTR region, in which DNA methylation is positively related to SELENBP1 expression. More importantly, we verify the growth inhibitory role for SELENBP1 in human bladder cancer, and further report a novel function for SELENBP1 in transcriptionally modulating p21 expression through a p53-independent mechanism. Instead, ectopic expression of SELENBP1 pronouncedly attenuates the phosphorylation of c-Jun and STAT1, both of which are indispensable for SELENBP1-mediated transcriptional induction of p21, thereby resulting in the G0/G1 phase cell cycle arrest in bladder cancer cell. Conclusions Taken together, our findings provide clinical and molecular insights into improved understanding of the tumor suppressive role for SELENBP1 in human bladder cancer, suggesting that SELENBP1 could potentially be utilized as a prognostic biomarker as well as a therapeutic target in future cancer therapy.
Collapse
Affiliation(s)
- Yulei Wang
- Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China. .,School of Medicine, South China University of Technology, Guangzhou, 510641, China.
| | - Wenzhen Zhu
- Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xiaoqing Chen
- Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Guangnan Wei
- School of Medicine, South China University of Technology, Guangzhou, 510641, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guochun Zhang
- Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China. .,School of Medicine, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
14
|
Zeng X, Baba T, Hamanishi J, Matsumura N, Kharma B, Mise Y, Abiko K, Yamaguchi K, Horikawa N, Hunstman DG, Mulati K, Kitamura S, Taki M, Murakami R, Hosoe Y, Mandai M. Phosphorylation of STAT1 serine 727 enhances platinum resistance in uterine serous carcinoma. Int J Cancer 2019; 145:1635-1647. [PMID: 31228268 DOI: 10.1002/ijc.32501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 11/07/2022]
Abstract
Uterine serous carcinoma (USC) is a highly aggressive histological subtype of endometrial cancers harboring highly metastatic and chemoresistant features. Our previous study showed that STAT1 is highly expressed in USC and acts as a key molecule that is positively correlated with tumor progression, but it remains unclear whether STAT1 is relevant to the malicious chemorefractory nature of USC. In the present study, we investigated the regulatory role of STAT1 toward platinum-cytotoxicity in USC. STAT1 suppression sensitized USC cells to increase cisplatin-mediated apoptosis (p < 0.001). Furthermore, phosphorylation of STAT1 was prominently observed on serine-727 (pSTAT1-Ser727), but not on tyrosine-701, in the nucleus of USC cells treated with cisplatin. Mechanistically, the inhibition of pSTAT1-Ser727 by dominant-negative plasmid elevated cisplatin-mediated apoptosis by increasing intracellular accumulation of cisplatin through upregulation of CTR1 expression. TBB has an inhibitory effect on casein kinase 2 (CK2), which phosphorylate STAT1 at serine residues. Sequential treatment with TBB and cisplatin on USC cells greatly reduced nuclear pSTAT1-Ser727, enhanced intracellular accumulation of cisplatin, and subsequently increased apoptosis. Tumor load was significantly reduced by combination therapy of TBB and cisplatin in in vivo xenograft models (p < 0.001). Our results collectively suggest that pSTAT1-Ser727 may play a key role in platinum resistance as well as tumor progression in USC. Thus, targeting the STAT1 pathway via CK2 inhibitor can be a novel method for attenuating the chemorefractory nature of USC.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Budiman Kharma
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuka Mise
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Horikawa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - David G Hunstman
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Kumuluzi Mulati
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Cancer-induced inflammation and inflammation-induced cancer in colon: a role for S1P lyase. Oncogene 2019; 38:4788-4803. [PMID: 30816345 DOI: 10.1038/s41388-019-0758-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/14/2022]
Abstract
A role of sphingolipids for inflammatory bowel disease and cancer is evident. However, the relative and separate contribution of sphingolipid deterioration in inflammation versus carcinogenesis for the pathophysiology of colitis-associated colon cancer (CAC) was unknown and therefore examined in this study. We performed isogenic bone marrow transplantation of inducible sphingosine-1-phosphate (S1P) lyase knockout mice to specifically modulate sphingolipids and associated genes and proteins in a compartment-specific way in a DSS/AOM mediated CAC model. 3D organoid cultures were used in vitro. S1P lyase (SGPL1) knockout in either immune cells or tissue, caused local sphingolipid accumulation leading to a dichotomic development of CAC: Immune cell SGPL1 knockout (I-SGPL-/-) augmented massive immune cell infiltration initiating colitis with lesions and calprotectin increase. Pathological crypt remodeling plus extracellular S1P-signaling caused delayed tumor formation characterized by S1P receptor 1, STAT3 mRNA increase, as well as programmed cell death ligand 1 expression, accompanied by a putatively counter regulatory STAT1S727 phosphorylation. In contrast, tissue SGPL1 knockout (T-SGPL-/-) provoked immediate occurrence of epithelial-driven tumors with upregulated sphingosine kinase 1, S1P receptor 2 and epidermal growth factor receptor. Here, progressing carcinogenesis was accompanied by an IL-12 to IL-23 shift with a consecutive development of a Th2/GATA3-driven, tumor-favoring microenvironment. Moreover, the knockout models showed distinct lymphopenia and neutrophilia, different from the full SGPL1 knockout. This study shows that depending on the initiating cellular S1P source, the pathophysiology of inflammation-induced cancer versus cancer-induced inflammation develops through separate, discernible molecular steps.
Collapse
|
16
|
Yang CH, Wang Y, Sims M, Cai C, He P, Yue J, Cheng J, Boop FA, Pfeffer SR, Pfeffer LM. MiRNA203 suppresses the expression of protumorigenic STAT1 in glioblastoma to inhibit tumorigenesis. Oncotarget 2018; 7:84017-84029. [PMID: 27705947 PMCID: PMC5341291 DOI: 10.18632/oncotarget.12401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play critical roles in regulating cancer cell proliferation, migration, survival and sensitivity to chemotherapy. The potential application of using miRNAs for cancer prognosis holds great promise but miRNAs with predictive value remain to be identified and underlying mechanisms of how they promote or suppress tumorigenesis are not completely understood. Here, we show a strong correlation between miR203 expression and brain cancer patient survival. Low miR203 expression is found in subsets of brain cancer patients, especially glioblastoma. Ectopic miR203 expression in glioblastoma cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon or temozolomide in vitro, and inhibited tumorigenesis in vivo. We further show that STAT1 is a direct functional target of miR203, and miR203 level is negatively correlated with STAT1 expression in brain cancer patients. Knockdown of STAT1 expression mimicked the effect of overexpression of miR203 in glioblastoma cell lines, and inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by IFN or temozolomide in vitro, and inhibited glioblastoma tumorigenesis in vivo. High STAT1 expression significantly correlated with poor survival in brain cancer patients. Mechanistically, we found that enforced miR203 expression in glioblastoma suppressed STAT1 expression directly, as well as that of a number of STAT1 regulated genes. Taken together, our data suggest that miR203 acts as a tumor suppressor in glioblastoma by suppressing the pro-tumorigenic action of STAT1. MiR203 may serve as a predictive biomarker and potential therapeutic target in subsets of cancer patients with low miR203 expression.
Collapse
Affiliation(s)
- Chuan He Yang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chun Cai
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ping He
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jinjun Cheng
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frederick A Boop
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Susan R Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Chua MMJ, Lee M, Dominguez I. Cancer-type dependent expression of CK2 transcripts. PLoS One 2017; 12:e0188854. [PMID: 29206231 PMCID: PMC5714396 DOI: 10.1371/journal.pone.0188854] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/14/2017] [Indexed: 01/31/2023] Open
Abstract
A multitude of proteins are aberrantly expressed in cancer cells, including the oncogenic serine-threonine kinase CK2. In a previous report, we found increases in CK2 transcript expression that could explain the increased CK2 protein levels found in tumors from lung and bronchus, prostate, breast, colon and rectum, ovarian and pancreatic cancers. We also found that, contrary to the current notions about CK2, some CK2 transcripts were downregulated in several cancers. Here, we investigate all other cancers using Oncomine to determine whether they also display significant CK2 transcript dysregulation. As anticipated from our previous analysis, we found cancers with all CK2 transcripts upregulated (e.g. cervical), and cancers where there was a combination of upregulation and/or downregulation of the CK2 transcripts (e.g. sarcoma). Unexpectedly, we found some cancers with significant downregulation of all CK2 transcripts (e.g. testicular cancer). We also found that, in some cases, CK2 transcript levels were already dysregulated in benign lesions (e.g. Barrett’s esophagus). We also found that CK2 transcript upregulation correlated with lower patient survival in most cases where data was significant. However, there were two cancer types, glioblastoma and renal cell carcinoma, where CK2 transcript upregulation correlated with higher survival. Overall, these data show that the expression levels of CK2 genes is highly variable in cancers and can lead to different patient outcomes.
Collapse
Affiliation(s)
- Melissa M. J. Chua
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
| | - Migi Lee
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mediator Kinase Phosphorylation of STAT1 S727 Promotes Growth of Neoplasms With JAK-STAT Activation. EBioMedicine 2017; 26:112-125. [PMID: 29239838 PMCID: PMC5832629 DOI: 10.1016/j.ebiom.2017.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Constitutive JAK-STAT signaling drives the proliferation of most myeloproliferative neoplasms (MPN) and a subset of acute myeloid leukemia (AML), but persistence emerges with chronic exposure to JAK inhibitors. MPN and post-MPN AML are dependent on tyrosine phosphorylation of STATs, but the role of serine STAT1 phosphorylation remains unclear. We previously demonstrated that Mediator kinase inhibitor cortistatin A (CA) reduced proliferation of JAK2-mutant AML in vitro and in vivo and also suppressed CDK8-dependent phosphorylation of STAT1 at serine 727. Here we report that phosphorylation of STAT1 S727 promotes the proliferation of AML cells with JAK-STAT pathway activation. Inhibition of serine phosphorylation by CA promotes growth arrest and differentiation, inhibits colony formation in MPN patient samples and reduces allele burden in MPN mouse models. These results reveal that STAT1 pS727 regulates growth and differentiation in JAK-STAT activated neoplasms and suggest that Mediator kinase inhibition represents a therapeutic strategy to regulate JAK-STAT signaling. CDK8/19 inhibitor cortistatin A synergizes with FDA-approved JAK1/2 ruxolitinib and inhibits ruxolitinib-persistent cells. CDK8/19 phosphorylation of STAT1 S727 promotes growth and suppresses differentiation. Cortistatin A upregulates expression of STAT1 pS727- and SE-associated genes.
Previously, it was known that cancer cells with activated JAK-STAT signaling are driven by oncogenic actions of JAK2 and tyrosine-phosphorylated STAT3 and STAT5. The FDA-approved JAK inhibitor ruxolitinib targets these dependencies, but significant challenges remain in the clinic, especially for leukemia patients. We show here that JAK2-mutant leukemia cells that become resistant to ruxolitinib are sensitive to CDK8/19 inhibitor CA and that CA synergizes with ruxolitinib, indicating that CDK8/19 inhibitors may be an effective therapeutic strategy for these cancers. Further, our studies provide insights into the mechanistic role of STAT1 serine phosphorylation by CDK8/19 in JAK2-activated leukemia.
Collapse
|
19
|
Li ZS, Deng CZ, Ye YL, Yao K, Guo SJ, Chen JP, Li YH, Qin ZK, Liu ZW, Wang B, Zhao Q, Chen P, Mi QW, Chen XF, Han H, Zhou FJ. More precise prediction in Chinese patients with penile squamous cell carcinoma: protein kinase CK2α catalytic subunit (CK2α) as a poor prognosticator. Oncotarget 2017; 8:51542-51550. [PMID: 28881666 PMCID: PMC5584267 DOI: 10.18632/oncotarget.17935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/21/2017] [Indexed: 01/03/2023] Open
Abstract
Purpose In this study, we assess the CK2α expression in human penile squamous cell carcinoma (SCC) and its clinical significance. Methods A total of 157 human penile SCC tissue samples were immunohistochemically analyzed. In addition, 12 human penile SCC and adjacent normal tissues were examined for CK2α protein and mRNA expression by Western blotting and real-time quantitative PCR, respectively. Survival was analyzed using the Kaplan-Meier test and the log-rank test. Multivariate Cox proportional hazard regression analysis was performed to determine the impacts of CK2α expression and the clinicopathological features on patient disease-specific survival (DSS). Likelihood ratios (LRs), Akaike information criterion (AIC) values, and concordance indexes (C-indexes) were investigated to evaluate the accuracies of the factors. Bootstrap-corrected C-indexes were used for internal validation (with sampling 1000 times). Results A significant difference in the distribution of CK2α was observed between the normal and penile carcinoma tissues (P<0.001). CK2α expression was associated with the pathological T and N stages in the penile cancer tissues (P<0.001). High CK2α expression was with significantly poorer DSS compared with low expression one (P<0.001). Western blotting and real-time quantitative PCR also confirmed that CK2α expression was increased in the penile cancer tissues. In multivariate Cox regression analysis, CK2α overexpression still was one of independent prognostic factors for penile SCC (P=0.005). The predictive accuracy of CK2α was verified by analysis of the C-indexes. Conclusion High protein kinase CK2α expression is associated with several prognostic factors and is thus a significant indicator of poor prognosis for penile cancer.
Collapse
Affiliation(s)
- Zai-Shang Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Chuang-Zhong Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Yun-Lin Ye
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Kai Yao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Sheng-Jie Guo
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Jie-Ping Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Yong-Hong Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Zi-Ke Qin
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Zhuo-Wei Liu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Bin Wang
- Department of Urology, Cancer Center of Guangzhou Medical University, Guangzhou, P. R. China
| | - Qi Zhao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,School of Life Science, Sun Yat-sen University, Guangzhou, P. R. China
| | - Peng Chen
- Department of Urology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumchi, P. R. China
| | - Qi-Wu Mi
- Department of Urology, Dong Guan People's Hospital, Guang Dong, P. R. China
| | - Xiao-Feng Chen
- Department of Urology, The First People's Hospital of Chenzhou, Chenzhou, P. R. China
| | - Hui Han
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Fang-Jian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
20
|
Amarante MK, de Oliveira CEC, Ariza CB, Sakaguchi AY, Ishibashi CM, Watanabe MAE. The predictive value of transforming growth factor-β in Wilms tumor immunopathogenesis. Int Rev Immunol 2017; 36:233-239. [PMID: 28481647 DOI: 10.1080/08830185.2017.1291639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Wilms tumor is the most common kidney malignancy in children, especially in children aged less than 6 years. Although therapeutic approach has reached successful rates, there is still room for improvement. Considering the tumor microenvironment, cytokines represent important elements of interaction and communication between tumor cells, stroma, and immune cells. In this regard, the transforming growth factor beta (TGF-β) family members play significant functions in physiological and pathological conditions, particularly in cancer. By regulating cell growth, death, and immortalization, TGF-β signaling pathways exert tumor suppressor effects in normal and early tumor cells. Thus, it is not surprising that a high number of human tumors arise due to alterations in genes coding for various TGF-β signaling components. Understanding the ambiguous role of TGF-β in human cancer is of paramount importance for the development of new therapeutic strategies to specifically block the metastatic signaling pathway of TGF-β without affecting its tumor suppressive effect. In this context, this review attempt to summarize the involvement of TGF-β in Wilms tumor.
Collapse
Affiliation(s)
- Marla Karine Amarante
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Carlos Eduardo Coral de Oliveira
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Carolina Batista Ariza
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Alberto Yoichi Sakaguchi
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Cintya Mayumi Ishibashi
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| | - Maria Angelica Ehara Watanabe
- a Laboratory of Study and Application of DNA Polymorphisms, Department of Pathological Sciences , Biological Sciences Center, State University of Londrina , Londrina-Paraná , Brazil
| |
Collapse
|
21
|
Queisser N, Schupp N, Schwarz E, Hartmann C, Mackenzie GG, Oteiza PI. Aldosterone activates the oncogenic signals ERK1/2 and STAT3 via redox‐regulated mechanisms. Mol Carcinog 2017; 56:1868-1883. [DOI: 10.1002/mc.22643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 02/10/2017] [Accepted: 03/03/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Nina Queisser
- Institute of Toxicology, Medical FacultyUniversity of DüsseldorfDüsseldorfGermany
- Department of NutritionUniversity of CaliforniaDavisCalifornia
| | - Nicole Schupp
- Institute of Toxicology, Medical FacultyUniversity of DüsseldorfDüsseldorfGermany
| | - Eva Schwarz
- Institute of Toxicology, Medical FacultyUniversity of DüsseldorfDüsseldorfGermany
| | - Christina Hartmann
- Institute of Toxicology, Medical FacultyUniversity of DüsseldorfDüsseldorfGermany
| | | | - Patricia I. Oteiza
- Department of NutritionUniversity of CaliforniaDavisCalifornia
- Department of Environmental ToxicologyUniversity of CaliforniaDavisCalifornia
| |
Collapse
|
22
|
Porcine Reproductive and Respiratory Syndrome Virus Antagonizes JAK/STAT3 Signaling via nsp5, Which Induces STAT3 Degradation. J Virol 2017; 91:JVI.02087-16. [PMID: 27881658 DOI: 10.1128/jvi.02087-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a pleiotropic signaling mediator of many cytokines, including interleukin-6 (IL-6) and IL-10. STAT3 is known to play critical roles in cell growth, proliferation, differentiation, immunity and inflammatory responses. The objective of this study was to determine the effect of porcine reproductive and respiratory syndrome virus (PRRSV) infection on the STAT3 signaling since PRRSV induces a weak protective immune response in host animals. We report here that PRRSV infection of MARC-145 cells and primary porcine pulmonary alveolar macrophages led to significant reduction of STAT3 protein level. Several strains of both PRRSV type 1 and type 2 led to a similar reduction of STAT3 protein level but had a minimal effect on its transcripts. The PRRSV-mediated STAT3 reduction was in a dose-dependent manner as the STAT3 level decreased, along with incremental amounts of PRRSV inocula. Further study showed that nonstructural protein 5 (nsp5) of PRRSV induced the STAT3 degradation by increasing its polyubiquitination level and shortening its half-life from 24 h to ∼3.5 h. The C-terminal domain of nsp5 was shown to be required for the STAT3 degradation. Moreover, the STAT3 signaling in the cells transfected with nsp5 plasmid was significantly inhibited. These results indicate that PRRSV antagonizes the STAT3 signaling by accelerating STAT3 degradation via the ubiquitin-proteasomal pathway. This study provides insight into the PRRSV interference with the JAK/STAT3 signaling, leading to perturbation of the host innate and adaptive immune responses. IMPORTANCE The typical features of immune responses in PRRSV-infected pigs are delayed onset and low levels of virus neutralizing antibodies, as well as weak cell-mediated immunity. Lymphocyte development and differentiation rely on cytokines, many of which signal through the JAK/STAT signaling pathway to exert their biological effects. Here, we discovered that PRRSV antagonizes the JAK/STAT3 signaling by inducing degradation of STAT3, a master transcription activator involved in multiple cellular processes and the host immune responses. The nsp5 protein of PRRSV is responsible for the accelerated STAT3 degradation. The PRRSV-mediated antagonizing STAT3 could lead to suppression of a broad spectrum of cytokines and growth factors to allow virus replication and spread in host animals. This may be one of the reasons for the PRRSV interference with the innate immunity and its poor elicitation of protective immunity. This finding provides insight into PRRSV pathogenesis and its interference with the host immune responses.
Collapse
|
23
|
Darvin P, Joung YH, Kang DY, Sp N, Byun HJ, Hwang TS, Sasidharakurup H, Lee CH, Cho KH, Park KD, Lee HK, Yang YM. Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells. J Cell Mol Med 2016; 21:720-734. [PMID: 27862996 PMCID: PMC5345631 DOI: 10.1111/jcmm.13015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
Tannic acid (TA), a naturally occurring polyphenol, is a potent anti-oxidant with anti-proliferative effects on multiple cancers. However, its ability to modulate gene-specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non-canonical STAT pathways to impose the gene-specific induction of G1-arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1-arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non-canonical STAT pathways, each with a specific role in TA-induced anti-cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA-binding activity of STAT1 and in turn enhanced expression of p21Waf1/Cip1 . However, TA binds to EGF-R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL-2 DNA-binding activity. As a result, the expression and mitochondrial localization of BCl-2 are declined. This altered expression and localization of mitochondrial anti-pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF-R/Jak2/STAT1/3 and P38/STAT1/p21Waf1/Cip1 pathways and induce G1-arrest and intrinsic apoptosis in breast carcinomas.
Collapse
Affiliation(s)
- Pramod Darvin
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hyo Joo Byun
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Tae Sook Hwang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hema Sasidharakurup
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham (Amrita University), Kollam, India
| | - Chi Ho Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Kwang Hyun Cho
- National Institute of Animal Science, RDA, Cheonan, South Korea
| | - Kyung Do Park
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, South Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
24
|
Bhatia S, Baig NA, Timofeeva O, Pasquale EB, Hirsch K, MacDonald TJ, Dritschilo A, Lee YC, Henkemeyer M, Rood B, Jung M, Wang XJ, Kool M, Rodriguez O, Albanese C, Karam SD. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization. Oncotarget 2016; 6:8929-46. [PMID: 25879388 PMCID: PMC4496193 DOI: 10.18632/oncotarget.3369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/11/2015] [Indexed: 02/03/2023] Open
Abstract
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nimrah A Baig
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Olga Timofeeva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Kellen Hirsch
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anatoly Dritschilo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Georgetown University Hospital, Washington, DC, USA
| | - Yi Chien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mark Henkemeyer
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brian Rood
- Children's National Medical Center, Washington DC, USA
| | - Mira Jung
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Pathology, Georgetown University School of Medicine, Washington, DC, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
25
|
MAPK/ERK signaling pathway-induced hyper-O-GlcNAcylation enhances cancer malignancy. Mol Cell Biochem 2015; 410:101-10. [PMID: 26318312 DOI: 10.1007/s11010-015-2542-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Abstract
Dysregulated MAPK/ERK signaling is implicated in one-third of human tumors and represents an attractive target for the development of anticancer drugs. Similarly, elevated protein O-GlcNAcylation and O-GlcNAc transferase (OGT) are detected in various cancers and serve as attractive novel cancer-specific therapeutic targets. However, the potential connection between them remains unexplored. Here, a positive correlation was found between the activated MAPK/ERK signaling and hyper-O-GlcNAcylation in various cancer types and inhibition of the MAPK/ERK signaling by 10 µM U0126 significantly decreased the expression of OGT and O-GlcNAcylation in H1299, BPH-1 and DU145 cells; then, the pathway analysis of the potential regulators of OGT obtained from the UCSC Genome Browser was done, and ten downstream targets of ERK pathway were uncovered; the following results showed that ELK1, one of the ten targets of ERK pathway, mediated ERK signaling-induced OGT upregulation; finally, the MTT assay and the soft agar assay showed that the inhibition of MAPK/ERK signaling reduced the promotion effect of hyper-O-GlcNAcylation on cancer cell proliferation and anchorage-independent growth. Taken together, our data originally provided evidence for the regulatory mechanism of hyper-O-GlcNAcylation in tumors, which will be helpful for the development of anticancer drugs targeting to hyper-O-GlcNAcylation. This study also provided a new mechanism by which MAPK/ERK signaling-enhanced cancer malignancy. Altogether, the recently discovered oncogenic factor O-GlcNAc was linked to the classical MAPK/ERK signaling which is essential for the maintenance of malignant phenotype of cancers.
Collapse
|
26
|
Rzymski T, Mikula M, Wiklik K, Brzózka K. CDK8 kinase--An emerging target in targeted cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1617-29. [PMID: 26006748 DOI: 10.1016/j.bbapap.2015.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinase (CDK) inhibitors have been developed as potential anticancer therapeutics and several nonselective compounds are currently in advanced clinical trials. This review is focused on the key biological roles of CDK8 kinase, which provide a proof-of-principle for continued efforts toward effective cancer treatment, targeting activity of this CDK family member. Among currently identified kinase inhibitors, several displayed significant selectivity for CDK8 and notably the effectiveness in targeting cancer specific gene expression programs. Structural features of CDK8 and available ligands were discussed from a perspective of the rational drug design process. Current state of the art confirms that further development of CDK8 inhibitors will translate into targeted therapies in oncology. This article is part of a Special Issue entitled:Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
| | - Michał Mikula
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | |
Collapse
|
27
|
Trinh B, Ko SY, Haria D, Barengo N, Naora H. The homeoprotein DLX4 controls inducible nitric oxide synthase-mediated angiogenesis in ovarian cancer. Mol Cancer 2015; 14:97. [PMID: 25924901 PMCID: PMC4427985 DOI: 10.1186/s12943-015-0368-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
Background Homeobox genes encode transcription factors that control patterning of virtually all organ systems including the vasculature. Tumor angiogenesis is stimulated by several homeobox genes that are overexpressed in tumor cells, but the mechanisms of these genes are poorly understood. In this study, we investigated the mechanisms by which DLX4, a homeobox gene that is associated with increased tumor microvessel density, stimulates ovarian tumor angiogenesis. Methods Expression of DLX4 and nitric oxide synthases was analyzed in publicly available transcriptional profiles of ovarian cancer clinical specimens. Levels of inducible nitric oxide synthase (iNOS) were evaluated by quantitative RT-PCR, flow cytometry and nitric oxide assays using ovarian cancer cell lines in which DLX4 was overexpressed or knocked down. Signal Transducer and Activator of Transcription 1 (STAT1) expression and activity were evaluated by luciferase reporter assays, immunofluorescence staining, Western blot and immunoprecipitation. Endothelial cell growth and tumor angiogenesis were evaluated in in vitro assays and xenograft models. Results We identified that DLX4 induces expression of iNOS, an enzyme that stimulates angiogenesis by generating nitric oxide. Analysis of datasets of two independent patient cohorts revealed that high DLX4 expression in ovarian cancer is strongly associated with elevated expression of iNOS but not of other nitric oxide synthases. Studies using STAT1-expressing and STAT1-deficient cells revealed that DLX4 interacts with STAT1 and induces iNOS expression in part by stimulating STAT1 activity. Expression of DLX4 in ovarian cancer cells stimulated endothelial cell growth in vitro and increased microvessel density in xenograft models, and these stimulatory effects of DLX4 were abrogated when its induction of iNOS was inhibited. Conclusion These findings indicate that DLX4 promotes ovarian tumor angiogenesis in part by stimulating iNOS expression. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0368-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bon Trinh
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Song Yi Ko
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Dhwani Haria
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Nicolas Barengo
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Tian F, Yourek G, Shi X, Yang Y. The development of Wilms tumor: from WT1 and microRNA to animal models. Biochim Biophys Acta Rev Cancer 2014; 1846:180-7. [PMID: 25018051 DOI: 10.1016/j.bbcan.2014.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/01/2023]
Abstract
Wilms tumor recapitulates the development of the kidney and represents a unique opportunity to understand the relationship between normal and tumor development. This has been illustrated by the findings that mutations of Wnt/β-catenin pathway-related WT1, β-catenin, and WTX together account for about one-third of Wilms tumor cases. While intense efforts are being made to explore the genetic basis of the other two-thirds of tumor cases, it is worth noting that, epigenetic changes, particularly the loss of imprinting of the DNA region encoding the major fetal growth factor IGF2, which results in its biallelic over-expression, are closely associated with the development of many Wilms tumors. Recent investigations also revealed that mutations of Drosha and Dicer, the RNases required for miRNA generation, and Dis3L2, the 3'-5' exonuclease that normally degrades miRNAs and mRNAs, could cause predisposition to Wilms tumors, demonstrating that miRNA can play a pivotal role in Wilms tumor development. Interestingly, Lin28, a direct target of miRNA let-7 and potent regulator of stem cell self-renewal and differentiation, is significantly elevated in some Wilms tumors, and enforced expression of Lin28 during kidney development could induce Wilms tumor. With the success in establishing mice nephroblastoma models through over-expressing IGF2 and deleting WT1, and advances in understanding the ENU-induced rat model, we are now able to explore the molecular and cellular mechanisms induced by these genetic, epigenetic, and miRNA alterations in animal models to understand the development of Wilms tumor. These animal models may also serve as valuable systems to assess new treatment targets and strategies for Wilms tumor.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathophysiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, PR China
| | | | - Xiaolei Shi
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Yili Yang
- Center for Translational Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
29
|
Chiou HYC, Liu SY, Lin CH, Lee EH. Hes-1 SUMOylation by protein inhibitor of activated STAT1 enhances the suppressing effect of Hes-1 on GADD45α expression to increase cell survival. J Biomed Sci 2014; 21:53. [PMID: 24894488 PMCID: PMC4071220 DOI: 10.1186/1423-0127-21-53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/22/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hairy and Enhancer of split 1 (Hes-1) is a transcriptional repressor that plays an important role in neuronal differentiation and development, but post-translational modifications of Hes-1 are much less known. In the present study, we aimed to investigate whether Hes-1 could be SUMO-modified and identify the candidate SUMO acceptors on Hes-1. We also wished to examine the role of the SUMO E3 ligase protein inhibitor of activated STAT1 (PIAS1) in SUMOylation of Hes-1 and the molecular mechanism of Hes-1 SUMOylation. Further, we aimed to identify the molecular target of Hes-1 and examine how Hes-1 SUMOylation affects its molecular target to affect cell survival. Results In this study, by using HEK293T cells, we have found that Hes-1 could be SUMO-modified and Hes-1 SUMOylation was greatly enhanced by the SUMO E3 ligase PIAS1 at Lys8, Lys27 and Lys39. Furthermore, Hes-1 SUMOylation stabilized the Hes-1 protein and increased the transcriptional suppressing activity of Hes-1 on growth arrest and DNA damage-inducible protein alpha (GADD45α) expression. Overexpression of GADD45α increased, whereas knockdown of GADD45αα expression decreased cell apoptosis. In addition, H2O2 treatment increased the association between PIAS1 and Hes-1 and enhanced the SUMOylation of Hes-1 for endogenous protection. Overexpression of Hes-1 decreased H2O2-induced cell death, but this effect was blocked by transfection of the Hes-1 triple sumo-mutant (Hes-1 3KR). Overexpression of PIAS1 further facilitated the anti-apoptotic effect of Hes-1. Moreover, Hes-1 SUMOylation was independent of Hes-1 phosphorylation and vice versa. Conclusions The present results revealed, for the first time, that Hes-1 could be SUMO-modified by PIAS1 and GADD45α is a novel target of Hes-1. Further, Hes-1 SUMOylation mediates cell survival through enhanced suppression of GADD45α expression. These results revealed a novel role of Hes-1 in addition to its involvement in Notch signaling. They also implicate that SUMOylation could be an important posttranslational modification that regulates cell survival.
Collapse
Affiliation(s)
| | | | | | - Eminy Hy Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
30
|
Bozeman R, Abel EL, Macias E, Cheng T, Beltran L, DiGiovanni J. A novel mechanism of skin tumor promotion involving interferon-gamma (IFNγ)/signal transducer and activator of transcription-1 (Stat1) signaling. Mol Carcinog 2014; 54:642-53. [PMID: 24464587 DOI: 10.1002/mc.22132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/03/2013] [Accepted: 12/20/2013] [Indexed: 01/14/2023]
Abstract
The current study was designed to explore the role of signal transducer and activator of transcription 1 (Stat1) during tumor promotion using the mouse skin multistage carcinogenesis model. Topical treatment with both 12-O-tetradecanoylphorbol-13-acetate (TPA) and 3-methyl-1,8-dihydroxy-9-anthrone (chrysarobin or CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Y701) and serine (S727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. CHRY treatment also led to upregulation of interferon regulatory factor 1 (IRF-1) mRNA and protein, which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNγ) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNγ signaling. Stat1 deficient (Stat1(-/-) ) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1(-/-) mice and wild-type littermates with TPA as the promoter. Maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNγ signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1, IRF-1 and uStat1.
Collapse
Affiliation(s)
- Ronald Bozeman
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Erika L Abel
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Everardo Macias
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Tianyi Cheng
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Linda Beltran
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas.,Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
31
|
Manni S, Brancalion A, Mandato E, Tubi LQ, Colpo A, Pizzi M, Cappellesso R, Zaffino F, Di Maggio SA, Cabrelle A, Marino F, Zambello R, Trentin L, Adami F, Gurrieri C, Semenzato G, Piazza F. Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells. PLoS One 2013; 8:e75280. [PMID: 24086494 PMCID: PMC3785505 DOI: 10.1371/journal.pone.0075280] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/14/2013] [Indexed: 02/07/2023] Open
Abstract
CK2 is a pivotal pro-survival protein kinase in multiple myeloma that may likely impinge on bortezomib-regulated cellular pathways. In the present study, we investigated CK2 expression in multiple myeloma and mantle cell lymphoma, two bortezomib-responsive B cell tumors, as well as its involvement in bortezomib-induced cytotoxicity and signaling cascades potentially mediating bortezomib resistance. In both tumors, CK2 expression correlated with that of its activated targets NF-κB and STAT3 transcription factors. Bortezomib-induced proliferation arrest and apoptosis were significantly amplified by the simultaneous inhibition of CK2 with two inhibitors (CX-4945 and K27) in multiple myeloma and mantle cell lymphoma cell lines, in a model of multiple myeloma bone marrow microenvironment and in cells isolated from patients. CK2 inhibition empowered bortezomib-triggered mitochondrial-dependent cell death. Phosphorylation of NF-κB p65 on Ser529 (a CK2 target site) and rise of the levels of the endoplasmic reticulum stress kinase/endoribonuclease Ire1α were markedly reduced upon CK2 inhibition, as were STAT3 phospho Ser727 levels. On the contrary, CK2 inhibition increased phospho Ser51 eIF2α levels and enhanced the bortezomib-dependent accumulation of poly-ubiquitylated proteins and of the proteotoxic stress-associated chaperone Hsp70. Our data suggest that CK2 over expression in multiple myeloma and mantle cell lymphoma cells might sustain survival signaling cascades and can antagonize bortezomib-induced apoptosis at different levels. CK2 inhibitors could be useful in bortezomib-based combination therapies.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Alessandra Brancalion
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Anna Colpo
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marco Pizzi
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Rocco Cappellesso
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Fortunato Zaffino
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | | | - Anna Cabrelle
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Filippo Marino
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Fausto Adami
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
- * E-mail: (FP); (GS)
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Laboratory, Hematologic Malignancies Unit, Venetian Institute of Molecular Medicine, Padova, Italy
- * E-mail: (FP); (GS)
| |
Collapse
|
32
|
Bailey SG, Cragg MS, Townsend PA. Role of STAT1 in the breast. JAKSTAT 2013; 1:197-9. [PMID: 24058771 PMCID: PMC3670245 DOI: 10.4161/jkst.20967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription-1 (STAT1) plays a role in the transduction of stress and cytokine responses, DNA damage, and activation of B and T cell immune responses. The ability of STAT1 to act as a pro- or anti-apoptotic signaling molecule depends upon the cellular environment and stimulus. Post-translational modifications provide the main method of control over the function of STAT1, however, recent data in the breast has shown that loss of STAT1 from both the tumor and the surrounding mammary epithelium greatly influence the development and response to treatment of breast cancers. Here, we discuss the recent findings of Chan et al. in Breast Cancer Research who described a new role for STAT1 in the development of estrogen receptor (ER)-positive and progesterone receptor (PR)-positive luminal breast cancers.
Collapse
Affiliation(s)
- Sarah G Bailey
- Cancer Sciences Unit; Cancer Research UK Centre; Faculty of Medicine; University of Southampton; Southampton General Hospital; Southampton, UK
| | | | | |
Collapse
|
33
|
Liu W, Zhang L, Wu R. Differential expression of STAT1 and IFN-γ in primary and invasive or metastatic wilms tumors. J Surg Oncol 2013; 108:152-6. [PMID: 23794088 DOI: 10.1002/jso.23364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 05/28/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES IFN/STAT1 signaling has been found to be not only associated with an aggressive tumor phenotype but also activated and functional during metanephric development. This study was undertaken to evaluate STAT1 and IFN-γ expression and its relation to histopathological features of primary and invasive/metastatic Wilms tumors. METHODS Immunohistochemistry was used to determine the expression and cellular distribution of STAT1 and IFN-γ in 18 pairs of primary and corresponding invasive/metastatic Wilms tumors and 40 primary tumors without invasion or metastasis. RESULTS Positive rate of STAT1/IFN-γ expression was 66.7%/61.1% and 72.2%/77.8% in 18 pairs of primary and associated invasive/metastatic Wilms tumor tissues, while 35.0%/27.5% in 40 primary tumors without invasion or metastasis. The expression of STAT1 and IFN-γ was significantly associated with invasion/metastasis (P = 0.025; P = 0.015). There was a positive correlation between STAT1 and IFN-γ expression in all Wilms tumor tissues (χ(2) = 23.408, P = 0.05, r = 0.555). The expression of STAT1 and IFN-γ between primary and matched invasive/metastatic tissues was concordance, respectively (P = 0.710 and P = 0.375). CONCLUSIONS These results suggest that IFN-γ/STAT1 signaling might have clinical potential as a promising predictor to identify individuals with poor prognostic potential and as a possible novel target molecule of therapy for Wilms tumor.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pediatric Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | |
Collapse
|
34
|
Chang CM, Chao CC. Protein kinase CK2 enhances Mcl-1 gene expression through the serum response factor-mediated pathway in the rat hippocampus. J Neurosci Res 2013; 91:808-17. [PMID: 23553788 DOI: 10.1002/jnr.23212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/30/2012] [Accepted: 01/07/2013] [Indexed: 01/07/2023]
Abstract
The protein kinase CK2 (casein kinase 2) is a ubiquitous serine/threonine protein kinase that suppresses apoptosis. CK2 is composed of catalytic and regulatory subunits, and CK2-dependent phosphorylation is a global mechanism in the inhibition of caspase signaling pathways. The serum response factor (SRF) is an important regulator of cell growth and differentiation. Although CK2 has been shown to phosphorylate SRF in vitro, the biological relevance of this interaction remains largely unclear. We observed increased SRF phosphorylation and increased Mcl-1 gene expression in hippocampal CA1 neurons following transfection with a plasmid expressing the wild-type CK2α (CK2αWT) protein, whereas transfection with a plasmid expressing a catalytically inactive mutant of CK2α (CK2α156A) reduced Mcl-1 gene expression. Cotransfection with a plasmid expressing the inactive SRF99A mutant inhibited the CK2αWT-induced upregulation of Mcl-1 gene expression. The expression of either the CK2α156A or the SRF99A mutant also inhibited the glutamate-induced upregulation of Mcl-1 protein expression in PC12 cells. Our results suggest that CK2-mediated signaling represents a cellular mechanism that may aid in the development of alternative therapeutic strategies to attenuate apoptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Chia-Ming Chang
- Institute of Neurosciences, National Chengchi University, Taipei, Taiwan
| | | |
Collapse
|
35
|
Porcine reproductive and respiratory syndrome virus Nsp1β inhibits interferon-activated JAK/STAT signal transduction by inducing karyopherin-α1 degradation. J Virol 2013; 87:5219-28. [PMID: 23449802 DOI: 10.1128/jvi.02643-12] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) inhibits the interferon-mediated antiviral response. Type I interferons (IFNs) induce the expression of IFN-stimulated genes by activating phosphorylation of both signal transducer and activator of transcription 1 (STAT1) and STAT2, which form heterotrimers (interferon-stimulated gene factor 3 [ISGF3]) with interferon regulatory factor 9 (IRF9) and translocate to the nucleus. PRRSV Nsp1β blocks the nuclear translocation of the ISGF3 complex by an unknown mechanism. In this study, we discovered that Nsp1β induced the degradation of karyopherin-α1 (KPNA1, also called importin-α5), which is known to mediate the nuclear import of ISGF3. Overexpression of Nsp1β resulted in a reduction of KPNA1 levels in a dose-dependent manner, and treatment of the cells with the proteasome inhibitor MG132 restored KPNA1 levels. Furthermore, the presence of Nsp1β induced an elevation of KPNA1 ubiquitination and a shortening of its half-life. Our analysis of Nsp1β deletion constructs showed that the N-terminal domain of Nsp1β was involved in the ubiquitin-proteasomal degradation of KPNA1. A nucleotide substitution resulting in an amino acid change from valine to isoleucine at residue 19 of Nsp1β diminished its ability to induce KPNA1 degradation and to inhibit IFN-mediated signaling. Interestingly, infection of MARC-145 cells by PRRSV strains VR-2332 and VR-2385 also resulted in KPNA1 reduction, whereas infection by an avirulent strain, Ingelvac PRRS modified live virus (MLV), did not. MLV Nsp1β had no effect on KPNA1; however, a mutant with an amino acid change at residue 19 from isoleucine to valine induced KPNA1 degradation. These results indicate that Nsp1β blocks ISGF3 nuclear translocation by inducing KPNA1 degradation and that valine-19 in Nsp1β correlates with the inhibition.
Collapse
|
36
|
Phosphorylation of signal transducer and activator of transcription 1 reduces bortezomib-mediated apoptosis in cancer cells. Cell Death Dis 2013; 4:e512. [PMID: 23449448 PMCID: PMC3734825 DOI: 10.1038/cddis.2013.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potent and selective proteasome inhibitor bortezomib has shown remarkable antitumor activity and is now entering clinical trials for several cancers. However, the molecular mechanisms by which bortezomib induces cytotoxicity in ovarian cancer cells still remain unclear. In this study, we show that bortezomib induced apoptosis, which was demonstrated by the downregulation of antiapoptotic molecules (Bcl-2, Bcl-XL, p-Bad, and p-AKT) and the upregulation of proapoptotic proteins (p21, p27, and cleaved-Bid) in ovarian cancer cell lines. Moreover, bortezomib stimulates Janus kinase (JAK) phosphorylation and activates heat-shock transcription factor-1 (HSF-1) and heat-shock protein 70 (HSP70), ultimately leading to signal transducer and activator of transcription 1 (STAT1) phosphorylation. Phosphorylated STAT1 partially counteracted apoptosis induced by bortezomib in cancer cells. These findings suggest that the antitumor activity of bortezomib in ovarian cancer can be improved by inhibiting bortezomib-induced STAT1 phosphorylation. This effect can be achieved by STAT1 knockdown, HSP70 knockdown, JAK inhibition, or the addition of cisplatin, one of the most commonly used anticancer drugs. These results provide the first evidence that STAT1 phosphorylation can play a role in bortezomib resistance by exerting antiapoptotic effects. They also suggest the possibility to abolish or reduce bortezomib chemoresistance in ovarian cancer by the addition of cisplatin or JAK inhibitors.
Collapse
|
37
|
Drygin D. CK2 as a Logical Target in Cancer Therapy: Potential for Combining CK2 Inhibitors with Various Classes of Cancer Therapeutic Agents. PROTEIN KINASE CK2 2013:383-439. [DOI: 10.1002/9781118482490.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci U S A 2013; 110:1267-72. [PMID: 23288901 DOI: 10.1073/pnas.1211805110] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of STAT3 in cancers leads to gene expression promoting cell proliferation and resistance to apoptosis, as well as tumor angiogenesis, invasion, and migration. In the characterization of effects of ST3-H2A2, a selective inhibitor of the STAT3 N-terminal domain (ND), we observed that the compound induced apoptotic death in cancer cells associated with robust activation of proapoptotic genes. Using ChIP and tiling human promoter arrays, we found that activation of gene expression in response to ST3-H2A2 is accompanied by altered STAT3 chromatin binding. Using inhibitors of STAT3 phosphorylation and a dominant-negative STAT3 mutant, we found that the unphosphorylated form of STAT3 binds to regulatory regions of proapoptotic genes and prevents their expression in tumor cells but not normal cells. siRNA knockdown confirmed the effects of ST3-HA2A on gene expression and chromatin binding to be STAT3 dependent. The STAT3-binding region of the C/EBP-homologous protein (CHOP) promoter was found to be localized in DNaseI hypersensitive site of chromatin in cancer cells but not in nontransformed cells, suggesting that STAT3 binding and suppressive action can be chromatin structure dependent. These data demonstrate a suppressive role for the STAT3 ND in the regulation of proapoptotic gene expression in cancer cells, providing further support for targeting STAT3 ND for cancer therapy.
Collapse
|
39
|
Murphy AJ, Pierce J, de Caestecker C, Taylor C, Anderson JR, Perantoni AO, de Caestecker MP, Lovvorn HN. SIX2 and CITED1, markers of nephronic progenitor self-renewal, remain active in primitive elements of Wilms' tumor. J Pediatr Surg 2012; 47:1239-49. [PMID: 22703800 PMCID: PMC3377935 DOI: 10.1016/j.jpedsurg.2012.03.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 12/15/2022]
Abstract
PURPOSE SIX2 and CITED1 are transcriptional regulators that specify self-renewing nephronic progenitor cells of the embryonic kidney. We hypothesized that SIX2, which promotes and maintains this stem cell population, and CITED1 remain active in Wilms' tumor (WT). METHODS To evaluate expression domains and the pathogenic significance of SIX2 and CITED1 across WT, the Children's Oncology Group provided 40 WT specimens of stages I to IV (n = 10 per stage), which were enriched for unfavorable histology (n = 20) and treatment failure (relapse or death, n = 20). SIX2 and CITED1 protein expression was evaluated qualitatively (immunohistochemistry) and quantitatively (Western blot, or WB). Gene transcription was estimated using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS SIX2 was visualized by immunohistochemistry in 36 (94.7%) of 38 specimens. Protein and messenger RNA expression of SIX2 were quantitatively similar across all stages of disease (P = .48 WB; P = 0.38 qPCR), in favorable or unfavorable histology (P = 0.51 WB; P = 0.58 qPCR), and in treatment failure or success (P = 0.86 WB; P = 0.49 qPCR). Although CITED1 expression paralleled SIX2 qualitatively, no quantitative correlation between SIX2 and CITED1 expression was observed (Spearman correlation coefficient, 0.28; P = 0.08). As in the fetal kidney, overlapping, but also distinct, WT cellular expression domains were observed between SIX2 and CITED1. CONCLUSION SIX2 and CITED1 remain active across all disease characteristics of WT. Activity of these genes in WT potentially identifies a population of self-renewing cancer cells that exhibit an embryonic, stemlike phenotype. Taken together, these transcriptional regulators may be fundamental to WT cellular self-renewal and may represent targets for novel therapies that promote terminal differentiation.
Collapse
Affiliation(s)
- Andrew J. Murphy
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, TN
| | - Janene Pierce
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, TN
| | - Christian de Caestecker
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, TN
| | - Chase Taylor
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, TN
| | - James R. Anderson
- Department of Biostatistics, Children’s Oncology Group and University of Nebraska Medical Center, Omaha, NE
| | - Alan O. Perantoni
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Mark P. de Caestecker
- Departments of Medicine, Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Harold N. Lovvorn
- Department of Pediatric Surgery, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, TN
| |
Collapse
|
40
|
Khodarev NN, Roizman B, Weichselbaum RR. Molecular Pathways: Interferon/Stat1 Pathway: Role in the Tumor Resistance to Genotoxic Stress and Aggressive Growth. Clin Cancer Res 2012; 18:3015-21. [DOI: 10.1158/1078-0432.ccr-11-3225] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Yanase N, Hayashida M, Kanetaka-Naka Y, Hoshika A, Mizuguchi J. PKC-δ mediates interferon-α-induced apoptosis through c-Jun NH₂-terminal kinase activation. BMC Cell Biol 2012; 13:7. [PMID: 22435755 PMCID: PMC3353249 DOI: 10.1186/1471-2121-13-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 03/21/2012] [Indexed: 12/16/2022] Open
Abstract
Background Interferon-α (IFN-α) exerts an anti-tumor effect at least through induction of apoptosis in a variety of types including B lymphoma cells. We recently found that IFN-α induced a sustained activation of c-Jun NH2-terminal kinase1 (JNK1), which is implicated in activation of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) promoter. In the present study, we explored upstream component(s) of the prolonged IFN-α-initiated activation of JNK1. Results IFN-α caused activation of PKC-δ in Daudi B lymphoma cells and myeloma U266 cells, as detected by Western blotting using a monoclonal antibody specific for the phosphorylated form of PKC-δ. The dominant-negative form of mutant PKC-δ (dnPKC-δ) reduced the IFN-α-induced JNK1 activation, TRAIL promoter activity, loss of mitochondrial membrane potential (ΔΨm), and increase in propidium iodide (PI) positive cells. The IFN-α-induced activation of JNK1 and the TRAIL promoter was also attenuated by the PKC-δ inhibitor rottlerin. Moreover, a constitutively active form of mutant PKC-δ enhanced the IFN-α-induced TRAIL promoter activity and loss of ΔΨm in Daudi B lymphoma cells. In addition, IFN-α-induced Ser727 phosphorylation of Stat1 was also abrogated by dnPKC-δ. Conclusions IFN-α induced JNK1 activation via PKC-δ, leading to upregulation of TRAIL. The interaction of the consequent enhanced TRAIL expression with TRAIL-receptor results in a loss of ΔΨm and increase in PI positive cells. The IFN-α-induced apoptotic events may also be affected by the Ser727-Stat1 induced by PKC-δ-mediated signaling component(s).
Collapse
Affiliation(s)
- Noriko Yanase
- Department of Immunology and Intractable Immune System Disease Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | |
Collapse
|
42
|
Timofeeva OA, Chasovskikh S, Lonskaya I, Tarasova NI, Khavrutskii L, Tarasov SG, Zhang X, Korostyshevskiy VR, Cheema A, Zhang L, Dakshanamurthy S, Brown ML, Dritschilo A. Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. J Biol Chem 2012; 287:14192-200. [PMID: 22378781 PMCID: PMC3340179 DOI: 10.1074/jbc.m111.323899] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Phosphorylation of signal transducer and activator of transcription 3 (STAT3) on a single tyrosine residue in response to growth factors, cytokines, interferons, and oncogenes activates its dimerization, translocation to the nucleus, binding to the interferon γ (gamma)-activated sequence (GAS) DNA-binding site and activation of transcription of target genes. STAT3 is constitutively phosphorylated in various cancers and drives gene expression from GAS-containing promoters to promote tumorigenesis. Recently, roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in maintenance of heterochromatin stability. However, the mechanisms underlying U-STAT3 binding to DNA has not been fully investigated. Here, we explore STAT3-DNA interactions by atomic force microscopy (AFM) imaging. We observed that U-STAT3 molecules bind to the GAS DNA-binding site as dimers and monomers. In addition, we observed that U-STAT3 binds to AT-rich DNA sequence sites and recognizes specific DNA structures, such as 4-way junctions and DNA nodes, within negatively supercoiled plasmid DNA. These structures are important for chromatin organization and our data suggest a role for U-STAT3 as a chromatin/genome organizer. Unexpectedly, we found that a C-terminal truncated 67.5-kDa STAT3 isoform recognizes single-stranded spacers within cruciform structures that also have a role in chromatin organization and gene expression. This isoform appears to be abundant in the nuclei of cancer cells and, therefore, may have a role in regulation of gene expression. Taken together, our data highlight novel mechanisms by which U-STAT3 binds to DNA and supports U-STAT3 function as a transcriptional activator and a chromatin/genomic organizer.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim SH, Park YY, Kim SW, Lee JS, Wang D, DuBois RN. ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res 2011; 71:7010-20. [PMID: 21937683 DOI: 10.1158/0008-5472.can-11-1262] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostaglandin E(2) (PGE(2)), the most abundant COX-2-derived prostaglandin found in colorectal cancer, promotes tumor cell proliferation and survival via multiple signaling pathways. However, the role of PGE(2) in tumor hypoxia is not well understood. Here, we show a synergistic effect of PGE(2) and hypoxia on enhancing angiopoietin-like protein 4 (ANGPTL4) expression and that elevation of ANGPTL4 promotes colorectal cancer growth. PGE(2) induces ANGPTL4 expression at both the mRNA and protein levels under hypoxic conditions. Moreover, hypoxia induces one of the PGE(2) receptors, namely EP1. Activation of EP1 enhances ANGPTL4 expression, whereas blockage of EP1 by an antagonist inhibits PGE(2) induction of ANGPTL4 under hypoxic conditions. Importantly, overexpression of ANGPTL4 promotes cell proliferation and tumor growth in vitro and in vivo. In addition, treatment with ANGPTL4 recombinant protein increases colorectal carcinoma cell proliferation through effects on STAT1 signaling. The MAP kinase and Src pathways mediate ANGPTL4-induced STAT1 expression and activation. These results are relevant to human disease because we found that the expression of ANGPTL4 and STAT1 are elevated in 50% of human colorectal cancers tested and there is a positive correlation between COX-2 and ANGPTL4 as well STAT1 expression in colorectal carcinomas. Collectively, these findings suggest that PGE(2) plays an important role in promoting cancer cell proliferation via ANGPTL4 under hypoxic conditions.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
44
|
Santos CI, Costa-Pereira AP. Signal transducers and activators of transcription-from cytokine signalling to cancer biology. Biochim Biophys Acta Rev Cancer 2011; 1816:38-49. [PMID: 21447371 DOI: 10.1016/j.bbcan.2011.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Signal transducers and activators of transcription (STATs) are, as the name indicates, both signal transducers and transcription factors. STATs are activated by cytokines and some growth factors and thus control important biological processes. These include cell growth, cell differentiation, apoptosis and immune responses. Dysregulation of STATs, either due to constitutive activation or function impairment, can have, therefore, deleterious biological consequences. This review places particular emphasis on their structural organization, biological activities and regulatory mechanisms most commonly utilized by cells to control STAT-mediated signalling. STATs also play important roles in cancer and immune deficiencies and are thus being exploited as therapeutic targets.
Collapse
Affiliation(s)
- Cristina Isabel Santos
- Imperial College London, Faculty of Medecine, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
45
|
Wang YH, Huang ML. Organogenesis and tumorigenesis: insight from the JAK/STAT pathway in the Drosophila eye. Dev Dyn 2011; 239:2522-33. [PMID: 20737505 PMCID: PMC2972639 DOI: 10.1002/dvdy.22394] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (STAT) pathway is one of the main signaling pathways in eukaryotic cells. This pathway is used during diverse growth and developmental processes in multiple tissues to control cell proliferation, differentiation, survival, and apoptosis. In addition to its role during development, the JAK/STAT pathway has also been implicated in tumorigenesis. Drosophila melanogaster is a powerful genetic tool, and its eyes have been used extensively as a platform to study signaling pathways. Many reports have demonstrated that the JAK/STAT pathway plays pleiotropic roles in Drosophila eye development. Its functions and activation are decided by its interplay with other signal pathways and the epigenetic status. In this review, we focus on the functions and regulation of the JAK/STAT pathway during eye development and provide some insights into the study of this pathway in tumorigenesis. Developmental Dynamics 239:2522–2533, 2010. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Department of Life Science and Institute of Molecular Biology, National Chung-Cheng University, Chia-Yi, Taiwan
| | | |
Collapse
|
46
|
Protein kinase CK2α subunit over-expression correlates with metastatic risk in breast carcinomas: quantitative immunohistochemistry in tissue microarrays. Eur J Cancer 2010; 47:792-801. [PMID: 21194925 DOI: 10.1016/j.ejca.2010.11.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/19/2010] [Accepted: 11/26/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND CK2α is a signalling molecule that participates in major events in solid tumour progression. The aim of this study was to evaluate the prognostic significance of the immunohistochemical expression of CK2α in breast carcinomas. METHODS Quantitative measurements of immunohistochemical expression of 33 biomarkers using high-throughput densitometry, assessed on digitised microscopic tissue micro-array images were correlated with clinical outcome in 1000 breast carcinomas using univariate and multivariate analyses. RESULTS In univariate analysis, CK2α was a significant prognostic indicator (p<0.001). Moreover, a multivariable model allowed the selection of the best combination of the 33 biomarkers to predict patients' outcome through logistic regression. A nine-marker signature highly predictive of metastatic risk, associating SHARP-2, STAT1, eIF4E, pmapKAPk-2, pAKT, caveolin, VEGF, FGF-1 and CK2α permitted to classify well 82.32% of patients (specificity 81.59%, sensitivity 92.55%, area under ROC curve 0.939). Importantly, in a node negative subset of patients an even more (86%) clinically relevant association of eleven markers was found predictive of poor outcome. CONCLUSION A strong quantitative CK2α immunohistochemical expression in breast carcinomas is individually a significant indicator of poor prognosis. Moreover, an immunohistochemical signature of 11 markers including CK2α accurately (86%) well classifies node negative patients in good and poor outcome subsets. Our results suggest that CK2α evaluation together with key downstream CK2 targets might be a useful tool to identify patients at high risk of distant metastases and that CK2 can be considered as a relevant target for potential specific therapy.
Collapse
|
47
|
Wang H, Yang Y, Sharma N, Tarasova NI, Timofeeva OA, Winkler-Pickett RT, Tanigawa S, Perantoni AO. STAT1 activation regulates proliferation and differentiation of renal progenitors. Cell Signal 2010; 22:1717-26. [PMID: 20624457 PMCID: PMC2923257 DOI: 10.1016/j.cellsig.2010.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/18/2010] [Accepted: 06/26/2010] [Indexed: 11/30/2022]
Abstract
We have shown previously that activation of STAT1 contributes to the pathogenesis of Wilms tumor. This neoplasm caricatures metanephric development and is believed to originate from embryonic renal mesenchymal progenitors that lose their ability to undergo mesenchymal-epithelial transition (MET). Therefore, we hypothesized that STAT1 is also activated and functional during metanephric development. Here we have demonstrated that both STAT1 and STAT3 are activated during normal development of the embryonic kidney. Furthermore, activation of STAT1 stimulated the proliferation of metanephric mesenchymal cells, but it prevented MET and tubulogenesis induced by leukemia inhibitory factor, which preferentially activates STAT3. Consistent with its negative regulation of metanephric mesenchymal differentiation, inhibition of STAT1 activation with protein kinase CK2 inhibitor TBB or RNAi-mediated knockdown of STAT1 promoted differentiation of metanephric progenitors and abolished the effect of cytokine-induced STAT1 activation in these cells. Additionally, a cell-permeable peptide that inhibits STAT1-mediated transactivation by targeting the STAT1 N-domain also blocked cytokine-induced STAT1-dependent proliferation in metanephric progenitors and promoted LIF-induced MET and tubulogenesis. Finally, the STAT1 peptide inhibitor caused the down regulation of survival/anti-apoptotic factors, Mcl-1 and Hsp-27, and induced apoptosis in renal tumor cells with constitutively active STAT1, indicating that STAT1 is required for these cells to survive. These findings show that both metanephric progenitors and renal tumor cells utilize a STAT1-dependent mechanism for growth or survival.
Collapse
Affiliation(s)
- Honghe Wang
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yili Yang
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Nirmala Sharma
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Nadya I. Tarasova
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Olga A. Timofeeva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Robin T. Winkler-Pickett
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shunsuke Tanigawa
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Alan O. Perantoni
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
48
|
Reich HN, Tritchler D, Cattran DC, Herzenberg AM, Eichinger F, Boucherot A, Henger A, Berthier CC, Nair V, Cohen CD, Scholey JW, Kretzler M. A molecular signature of proteinuria in glomerulonephritis. PLoS One 2010; 5:e13451. [PMID: 20976140 PMCID: PMC2956647 DOI: 10.1371/journal.pone.0013451] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/17/2010] [Indexed: 01/13/2023] Open
Abstract
Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 “albumin-regulated genes” differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from those of control subjects (n = 6) based solely upon the expression of these 231 “albumin-regulated genes.” The expression of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls (n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients with glomerulonephritis.
Collapse
Affiliation(s)
- Heather N Reich
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Poat B, Hazari S, Chandra PK, Gunduz F, Alvarez X, Balart LA, Garry RF, Dash S. Intracellular expression of IRF9 Stat fusion protein overcomes the defective Jak-Stat signaling and inhibits HCV RNA replication. Virol J 2010; 7:265. [PMID: 20939906 PMCID: PMC2964675 DOI: 10.1186/1743-422x-7-265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 10/12/2010] [Indexed: 01/05/2023] Open
Abstract
Interferon alpha (IFN-α) binds to a cell surface receptor that activates the Jak-Stat signaling pathway. A critical component of this pathway is the translocation of interferon stimulated gene factor 3 (a complex of three proteins Stat1, Stat2 and IRF9) to the nucleus to activate antiviral genes. A stable sub-genomic replicon cell line resistant to IFN-α was developed in which the nuclear translocation of Stat1 and Stat2 proteins was prevented due to the lack of phosphorylation; whereas the nuclear translocation of IRF9 protein was not affected. In this study, we sought to overcome defective Jak-Stat signaling and to induce an antiviral state in the IFN-α resistant replicon cell line by developing a chimera IRF9 protein fused with the trans activating domain (TAD) of either a Stat1 (IRF9-S1C) or Stat2 (IRF9-S2C) protein. We show here that intracellular expression of fusion proteins using the plasmid constructs of either IRF9-S1C or IRF9-S2C, in the IFN-α resistant cells, resulted in an increase in Interferon Stimulated Response Element (ISRE) luciferase promoter activity and significantly induced HLA-1 surface expression. Moreover, we show that transient transfection of IRF9-S1C or IRF9-S2C plasmid constructs into IFN-α resistant replicon cells containing sub-genomic HCV1b and HCV2a viruses resulted in an inhibition of viral replication and viral protein expression independent of IFN-α treatment. The results of this study indicate that the recombinant fusion proteins of IRF9-S1C, IRF9-S2C alone, or in combination, have potent antiviral properties against the HCV in an IFN-α resistant cell line with a defective Jak-Stat signaling.
Collapse
Affiliation(s)
- Bret Poat
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA-70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Porcine reproductive and respiratory syndrome virus inhibits type I interferon signaling by blocking STAT1/STAT2 nuclear translocation. J Virol 2010; 84:11045-55. [PMID: 20739522 DOI: 10.1128/jvi.00655-10] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type I interferons (IFNs) IFN-α/β play an important role in innate immunity against viral infections by inducing antiviral responses. Porcine reproductive and respiratory syndrome virus (PRRSV) inhibits the synthesis of type I IFNs. However, whether PRRSV can inhibit IFN signaling is less well understood. In the present study, we found that PRRSV interferes with the IFN signaling pathway. The transcript levels of IFN-stimulated genes ISG15 and ISG56 and protein level of signal transducer and activator of transcription 2 (STAT2) in PRRSV VR2385-infected MARC-145 cells were significantly lower than those in mock-infected cells after IFN-α treatment. IFN-induced phosphorylation of both STAT1 and STAT2 and their heterodimer formation in the PRRSV-infected cells were not affected. However, the majority of the STAT1/STAT2/IRF9 (IFN regulatory factor 9) heterotrimers remained in the cytoplasm of PRRSV-infected cells, which indicates that the nuclear translocation of the heterotrimers was blocked. Overexpression of NSP1β of PRRSV VR2385 inhibited expression of ISG15 and ISG56 and blocked nuclear translocation of STAT1, which suggests that NSP1β might be the viral protein responsible for the inhibition of IFN signaling. PRRSV infection in primary porcine pulmonary alveolar macrophages (PAMs) also inhibited IFN-α-stimulated expression of the ISGs and the STAT2 protein. In contrast, a licensed low-virulence vaccine strain, Ingelvac PRRS modified live virus (MLV), activated expression of IFN-inducible genes, including those of chemokines and antiviral proteins, in PAMs without the addition of external IFN and had no detectable effect on IFN signaling. These findings suggest that PRRSV interferes with the activation and signaling pathway of type I IFNs by blocking ISG factor 3 (ISGF3) nuclear translocation.
Collapse
|