1
|
Xu L, Xuan H, Shi X. Dysregulation of the p300/CBP histone acetyltransferases in human cancer. Epigenomics 2025; 17:193-208. [PMID: 39929233 PMCID: PMC11812348 DOI: 10.1080/17501911.2024.2447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
p300 (E1A binding protein 300) and CBP (CREB-binding protein) are critical regulators of chromatin dynamics and gene expression, playing essential roles in various cellular processes, including proliferation, differentiation, apoptosis, and immune responses. These homologous histone acetyltransferases (HATs) function as transcriptional co-activators by acetylating histones and non-histone proteins. p300/CBP is essential for development, and dysregulation of p300 and CBP has been implicated in several human diseases, particularly cancer. Somatic mutations that inactivate p300/CBP are frequently observed across various cancer types. Additionally, other mutations leading to translocations or truncations of p300/CBP can result in enhanced catalytic activity, potentially representing novel gain-of-function mutations that promote tumor progression. In this review, we discuss the mechanisms underlying the regulation of p300/CBP HAT activity, its dysregulation in cancer, and the development of p300/CBP inhibitors and their potential in cancer therapies.
Collapse
Affiliation(s)
- Longxia Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
2
|
Zheng T, Wang S, Liu W, Lu Y. Targeting KAT6A/B as a New Therapeutic Strategy for Cancer Therapy. J Med Chem 2025; 68:1002-1020. [PMID: 39761381 DOI: 10.1021/acs.jmedchem.4c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The lysine acetyltransferase 6A (KAT6A, MOZ, MYST3) is a member of the MYST family of protein acetyltransferases, which are essential for different biological processes such as craniofacial, embryonic, stem cell development, and hematopoiesis. KAT6A is an oncogene in human acute myeloid leukemia (AML), and KAT6A overexpression in AML is associated with metastases and poor prognoses. Furthermore, KAT6A mutations play an important role in cancer formation and progression and result in therapeutic resistance in both hematopoietic malignancies and solid tumors. In this review, we discuss the structural and biological functions of KAT6A and summarize the influence of KAT6A in the development of various tumors. In addition, the recent KAT6A/B inhibitors, their anticancer activities, challenges, and perspective of developing KAT6A/B inhibitors as anticancer drug candidates were introduced.
Collapse
Affiliation(s)
- Tianpeng Zheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
ter Laak A, Hillig RC, Ferrara SJ, Korr D, Barak N, Lienau P, Herbert S, Fernández-Montalván AE, Neuhaus R, Gorjánácz M, Puetter V, Badock V, Bone W, Strathdee C, Siegel F, Schatz C, Nowak-Reppel K, Doehr O, Gradl S, Hartung IV, Meyerson M, Bouché L. Discovery and Characterization of BAY-184: A New Potent and Selective Acylsulfonamide-Benzofuran In Vivo-Active KAT6AB Inhibitor. J Med Chem 2024; 67:19282-19303. [PMID: 39450890 PMCID: PMC11571114 DOI: 10.1021/acs.jmedchem.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
KAT6A and KAT6B genes are two closely related lysine acetyltransferases that transfer an acetyl group from acetyl coenzyme A (AcCoA) to lysine residues of target histone substrates, hence playing a key role in chromatin regulation. KAT6A and KAT6B genes are frequently amplified in various cancer types. In breast cancer, the 8p11-p12 amplicon occurs in 12-15% of cases, resulting in elevated copy numbers and expression levels of chromatin modifiers like KAT6A. Here, we report the discovery of a new acylsulfonamide-benzofuran series as a novel structural class for KAT6A/B inhibition. These compounds were identified through high-throughput screening and subsequently optimized using molecular modeling and cocrystal structure determination. The final tool compound, BAY-184 (29), was successfully validated in an in vivo proof-of-concept study.
Collapse
Affiliation(s)
- Antonius ter Laak
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Roman C. Hillig
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Steven J. Ferrara
- Broad
Institute of MIT and Harvard, Center for the Development of Therapeutics, 415 Main St., Cambridge, Massachusetts 02142, United States
| | - Daniel Korr
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Naomi Barak
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Philip Lienau
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Simon Herbert
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | | | - Roland Neuhaus
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Mátyás Gorjánácz
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Vera Puetter
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Volker Badock
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Wilhelm Bone
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Craig Strathdee
- Broad
Institute of MIT and Harvard, Center for the Development of Therapeutics, 415 Main St., Cambridge, Massachusetts 02142, United States
| | - Franziska Siegel
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Christoph Schatz
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Katrin Nowak-Reppel
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Olaf Doehr
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Stefan Gradl
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Ingo V. Hartung
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| | - Matthew Meyerson
- Broad
Institute of MIT and Harvard, Center for the Development of Therapeutics, 415 Main St., Cambridge, Massachusetts 02142, United States
| | - Léa Bouché
- Bayer
AG, Pharmaceuticals, Research and Development, Müllerstrasse 178, Berlin 13353, Germany
| |
Collapse
|
4
|
Olbromski M, Mrozowska M, Smolarz B, Romanowicz H, Rusak A, Piotrowska A. ERα status of invasive ductal breast carcinoma as a result of regulatory interactions between lysine deacetylases KAT6A and KAT6B. Sci Rep 2024; 14:26935. [PMID: 39505971 PMCID: PMC11541733 DOI: 10.1038/s41598-024-78432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Breast cancer (BC) is the leading cause of death among cancer patients worldwide. In 2020, almost 12% of all cancers were diagnosed with BC. Therefore, it is important to search for new potential markers of cancer progression that could be helpful in cancer diagnostics and successful anti-cancer therapies. In this study, we investigated the potential role of the lysine acetyltransferases KAT6A and KAT6B in the outcome of patients with invasive breast carcinoma. The expression profiles of KAT6A/B in 495 cases of IDC and 38 cases of mastopathy (FBD) were examined by immunohistochemistry. KAT6A/B expression was also determined in the breast cancer cell lines MCF-7, BT-474, SK-BR-3, T47D, MDA-MB-231, and MDA-MB-231/BO2, as well as in the human epithelial mammary gland cell line hTERT-HME1 - ME16C, both at the mRNA and protein level. Statistical analysis of the results showed that the nuclear expression of KAT6A/B correlates with the estrogen receptor status: KAT6ANUC vs. ER r = 0.2373 and KAT6BNUC vs. ER r = 0.1496. Statistical analysis clearly showed that KAT6A cytoplasmic and nuclear expression levels were significantly higher in IDC samples than in FBD samples (IRS 5.297 ± 2.884 vs. 2.004 ± 1.072, p < 0.0001; IRS 5.133 ± 4.221 vs. 0.1665 ± 0.4024, p < 0.0001, respectively). Moreover, we noticed strong correlations between ER and PR status and the nuclear expression of KAT6A and KAT6B (nucKAT6A vs. ER, p = 0.0048; nucKAT6A vs. PR p = 0.0416; nucKAT6B vs. ER p = 0.0306; nucKAT6B vs. PR p = 0.0213). Significantly higher KAT6A and KAT6B expression was found in the ER-positive cell lines T-47D and BT-474, whereas significantly lower expression was observed in the triple-negative cell lines MDA-MB-231 and MDA-MB-231/BO2. The outcomes of small interfering RNA (siRNA)-mediated suppression of KAT6A/B genes revealed that within estrogen receptor (ER) positive and negative cell lines, MCF-7 and MDA-MB-231, attenuation of KAT6A led to concurrent attenuation of KAT6A, whereas suppression of KAT6B resulted in simultaneous attenuation of KAT6A. Furthermore, inhibition of KAT6A/B genes resulted in a reduction in estrogen receptor (ER) mRNA and protein expression levels in MCF-7 and MDA-MMB-231 cell lines. Based on our findings, the lysine acetyltransferases KAT6A and KAT6B may be involved in the progression of invasive ductal breast cancer. Further research on other types of cancer may show that KAT6A and KAT6B could serve as diagnostic and prognostic markers for these types of malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, Wroclaw, 50-368, Poland.
| | - Monika Mrozowska
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, Wroclaw, 50-368, Poland
| | - Beata Smolarz
- Department of Pathology, Polish Mother's Memorial Hospital Research Institute, 281/289 Rzgowska St, Lodz, 93-338, Poland
| | - Hanna Romanowicz
- Department of Pathology, Polish Mother's Memorial Hospital Research Institute, 281/289 Rzgowska St, Lodz, 93-338, Poland
| | - Agnieszka Rusak
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, Wroclaw, 50-368, Poland
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, Wroclaw, 50-368, Poland
| |
Collapse
|
5
|
Sheridan M, Maqbool MA, Largeot A, Clayfield L, Xu J, Moncaut N, Sellers R, Whittle J, Paggetti J, Iqbal M, Aucagne R, Delva L, Baker SM, Lie-A-Ling M, Kouskoff V, Lacaud G. The small inhibitor WM-1119 effectively targets KAT6A-rearranged AML, but not KMT2A-rearranged AML, despite shared KAT6 genetic dependency. J Hematol Oncol 2024; 17:91. [PMID: 39380002 PMCID: PMC11462755 DOI: 10.1186/s13045-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The epigenetic factors KAT6A (MOZ/MYST3) and KMT2A (MLL/MLL1) interact in normal hematopoiesis to regulate progenitors' self-renewal. Both proteins are recurrently translocated in AML, leading to impairment of critical differentiation pathways in these malignant cells. We evaluated the potential of different KAT6A therapeutic targeting strategies to alter the growth of KAT6A and KMT2A rearranged AMLs. METHODS We investigated the action and potential mechanisms of the first-in-class KAT6A inhibitor, WM-1119 in KAT6A and KMT2A rearranged (KAT6Ar and KMT2Ar) AML using cellular (flow cytometry, colony assays, cell growth) and molecular (shRNA knock-down, CRISPR knock-out, bulk and single-cell RNA-seq, ChIP-seq) assays. We also used two novel genetic murine KAT6A models combined with the most common KMT2Ar AML, KMT2A::MLLT3 AML. In these murine models, the catalytic activity of KAT6A, or the whole protein, can be conditionally abrogated or deleted. These models allowed us to compare the effects of specific KAT6A KAT activity inhibition with the complete deletion of the whole protein. Finally, we also tested these therapeutic approaches on human AML cell lines and primary patient AMLs. RESULTS We found that WM-1119 completely abrogated the proliferative and clonogenic potential of KAT6Ar cells in vitro. WM-1119 treatment was associated with a dramatic increase in myeloid differentiation program. The treatment also decreased stemness and leukemia pathways at the transcriptome level and led to loss of binding of the fusion protein at critical regulators of these pathways. In contrast, our pharmacologic and genetic results indicate that the catalytic activity of KAT6A plays a more limited role in KMT2Ar leukemogenicity, while targeting the whole KAT6A protein dramatically affects leukemic potential in murine KMT2A::MLLT3 AML. CONCLUSION Our study indicates that inhibiting KAT6A KAT activity holds compelling promise for KAT6Ar AML patients. In contrast, targeted degradation of KAT6A, and not just its catalytic activity, may represent a more appropriate therapeutic approach for KMT2Ar AMLs.
Collapse
Affiliation(s)
- Mathew Sheridan
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Muhammad Ahmad Maqbool
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- GSK Medicines Research Centre, Stevenage, UK
| | - Anne Largeot
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Liam Clayfield
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Jingru Xu
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Natalia Moncaut
- Genome Editing and Mouse Models, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Robert Sellers
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Jessica Whittle
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Jerome Paggetti
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Mudassar Iqbal
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Romain Aucagne
- UFR des Sciences de Santé, Inserm U1231, Université de Bourgogne, Team Epi2THM, LipSTIC Labex, Dijon, France
| | - Laurent Delva
- UFR des Sciences de Santé, Inserm U1231, Université de Bourgogne, Team Epi2THM, LipSTIC Labex, Dijon, France
| | - Syed Murtuza Baker
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Valerie Kouskoff
- Division of Developmental Biology and Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Morison LD, Van Reyk O, Baker E, Ruaud L, Couque N, Verloes A, Amor DJ, Morgan AT. Beyond 'speech delay': Expanding the phenotype of BRPF1-related disorder. Eur J Med Genet 2024; 68:104923. [PMID: 38346666 DOI: 10.1016/j.ejmg.2024.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Pathogenic variants in BRPF1 cause intellectual disability, ptosis and facial dysmorphism. Speech and language deficits have been identified as a manifestation of BRPF1-related disorder but have not been systematically characterized. We provide a comprehensive delineation of speech and language abilities in BRPF1-related disorder and expand the phenotype. Speech and language, and health and medical history were assessed in 15 participants (male = 10, median age = 7 years 4 months) with 14 BRPF1 variants. Language disorders were common (11/12), and most had mild to moderate deficits across receptive, expressive, written, and social-pragmatic domains. Speech disorders were frequent (7/9), including phonological delay (6/9) and disorder (3/9), and childhood apraxia of speech (3/9). All those tested for cognitive abilities had a FSIQ ≥70 (4/4). Participants had vision impairment (13/15), fine (8/15) and gross motor delay (10/15) which often resolved in later childhood, infant feeding impairment (8/15), and infant hypotonia (9/15). We have implicated BRPF1-related disorder as causative for speech and language disorder, including childhood apraxia of speech. Adaptive behavior and cognition were strengths when compared to other monogenic neurodevelopmental chromatin-related disorders. The universal involvement of speech and language impairment is noteable, relative to the high degree of phenotypic variability in BRPF1-related disorder.
Collapse
Affiliation(s)
- Lottie D Morison
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Australia; Speech and Language, Murdoch Children's Research Institute, Parkville, Australia.
| | - Olivia Van Reyk
- Speech and Language, Murdoch Children's Research Institute, Parkville, Australia.
| | - Emma Baker
- Speech and Language, Murdoch Children's Research Institute, Parkville, Australia; School of Psychology and Public Health, La Trobe University, Bundoora, Australia.
| | - Lyse Ruaud
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France; INSERM UMR1141, Neurodiderot, University of Paris Cité, Paris, France.
| | - Nathalie Couque
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France; Département de Génétique - UF de Génétique Moléculaire, Hôpital Robert Debré, Paris, France.
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital, Paris, France; Medical School, Paris Cité University, Paris, France.
| | - David J Amor
- Speech and Language, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Royal Children's Hospital, Parkville, Australia.
| | - Angela T Morgan
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Australia; Speech and Language, Murdoch Children's Research Institute, Parkville, Australia; Royal Children's Hospital, Parkville, Australia.
| |
Collapse
|
7
|
Sun X, Luo X, Lin L, Wang S, Wang C, Yuan F, Lan X, Yan J, Chen Y. Clinical features and underlying mechanisms of KAT6B disease in a Chinese boy. Mol Genet Genomic Med 2023; 11:e2202. [PMID: 37288707 PMCID: PMC10496035 DOI: 10.1002/mgg3.2202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/20/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Lysine acetyltransferase 6B (KAT6B) encodes a highly conserved histone acetyltransferase that regulates the expression of multiple genes and is essential for human growth and development. METHODS We identified a novel frameshift variant c.3185del (p.leu1062Argfs*52) in a 5-year-old Chinese boy and further analyzed KAT6B expression and its interacting complexes and downstream products using real-time quantitative polymerase chain reaction (qPCR). Furthermore, we assessed its three-dimensional protein structure and compared the variant with other reported KAT6B variants. RESULTS The deletion changed the leucine at position 1062 into an arginine, resulting in translation termination after base 3340, which may have affected protein stability and protein-protein interactions. KAT6B mRNA expression levels in this case were substantially different from those of the parents and controls in the same age range. There were also significant differences in mRNA expression levels among affected children's parents. RUNX2 and NR5A1, downstream products of the gene, affect the corresponding clinical symptoms. The mRNA expression levels of the two in children were lower than those of their parents and controls in the same age range. CONCLUSION This deletion in KAT6B may affect protein function and cause corresponding clinical symptoms through interactions with key complexes and downstream products.
Collapse
Affiliation(s)
- Xiaoang Sun
- Department of NeurologyShanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiaona Luo
- Department of NeurologyShanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Longlong Lin
- Department of NeurologyShanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Simei Wang
- Department of NeurologyShanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Chunmei Wang
- Department of NeurologyShanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Fang Yuan
- Department of NeurologyShanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoping Lan
- Shanghai Key Laboratory of Embryo and Reproduction Engineering, Key Laboratory of Embryo Molecular Biology of National Health CommissionShanghai Institute of Medical Genetics, Shanghai Chlidren’s Hospital, School of Medicine, Shanghai JiaoTong UniversityShanghaiChina
| | - Jingbin Yan
- Shanghai Key Laboratory of Embryo and Reproduction Engineering, Key Laboratory of Embryo Molecular Biology of National Health CommissionShanghai Institute of Medical Genetics, Shanghai Chlidren’s Hospital, School of Medicine, Shanghai JiaoTong UniversityShanghaiChina
| | - Yucai Chen
- Department of NeurologyShanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Joshi G, Basu A. Epigenetic control of cell signalling in cancer stem cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:67-88. [PMID: 38359971 DOI: 10.1016/bs.ircmb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The self-renewing cancer stem cells (CSCs) represent one of the distinct cell populations occurring in a tumour that can differentiate into multiple lineages. This group of sparsely abundant cells play a vital role in tumour survival and resistance to different treatments during cancer. The lack of exclusive markers associated with CSCs makes diagnosis and prognosis in cancer patients extremely difficult. This calls for the identification of unique regulators and markers for CSCs. Various signalling pathways like the Wnt/β-catenin pathway, Hedgehog pathway, Notch pathway, and TGFβ/BMP play a major role in the regulation and maintenance of CSCs. Epigenetic regulatory mechanisms add another layer of complexity to control these signalling pathways. In this chapter, we discuss about the role of epigenetic mechanisms in regulating the cellular signalling pathways in CSCs. The epigenetic regulatory mechanisms such as DNA methylation, histone modification and microRNAs can modulate the diverse effectors of signalling pathways and consequently the growth, differentiation and tumorigenicity of CSCs. In the end, we briefly discuss the therapeutic potential of targeting these epigenetic regulators and their target genes in CSCs.
Collapse
Affiliation(s)
- Gaurav Joshi
- Institute of Molecular Biology (IMB), Mainz, Germany.
| | - Amitava Basu
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
9
|
Weber LM, Jia Y, Stielow B, Gisselbrecht S, Cao Y, Ren Y, Rohner I, King J, Rothman E, Fischer S, Simon C, Forné I, Nist A, Stiewe T, Bulyk M, Wang Z, Liefke R. The histone acetyltransferase KAT6A is recruited to unmethylated CpG islands via a DNA binding winged helix domain. Nucleic Acids Res 2023; 51:574-594. [PMID: 36537216 PMCID: PMC9881136 DOI: 10.1093/nar/gkac1188] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners. Here, we demonstrate that a winged helix (WH) domain at the very N-terminus of KAT6A specifically interacts with unmethylated CpG motifs. This DNA binding function leads to the association of KAT6A with unmethylated CpG islands (CGIs) genome-wide. Mutation of the essential amino acids for DNA binding completely abrogates the enrichment of KAT6A at CGIs. In contrast, deletion of a second WH domain or the histone tail binding PHD fingers only subtly influences the binding of KAT6A to CGIs. Overexpression of a KAT6A WH1 mutant has a dominant negative effect on H3K9 histone acetylation, which is comparable to the effects upon overexpression of a KAT6A HAT domain mutant. Taken together, our work revealed a previously unrecognized chromatin recruitment mechanism of KAT6A, offering a new perspective on the role of KAT6A in gene regulation and human diseases.
Collapse
Affiliation(s)
- Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Yulin Jia
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Iris Rohner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Jessica King
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Martinsried 82152, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| |
Collapse
|
10
|
Yokoyama A. Role of the MOZ/MLL-mediated transcriptional activation system for self-renewal in normal hematopoiesis and leukemogenesis. FEBS J 2022; 289:7987-8002. [PMID: 34482632 PMCID: PMC10078767 DOI: 10.1111/febs.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Homeostasis in the blood system is maintained by the balance between self-renewing stem cells and nonstem cells. To promote self-renewal, transcriptional regulators maintain epigenetic information during multiple rounds of cell division. Mutations in such transcriptional regulators cause aberrant self-renewal, leading to leukemia. MOZ, a histone acetyltransferase, and MLL, a histone methyltransferase, are transcriptional regulators that promote the self-renewal of hematopoietic stem cells. Gene rearrangements of MOZ and MLL generate chimeric genes encoding fusion proteins that function as constitutively active forms. These MOZ and MLL fusion proteins constitutively activate transcription of their target genes and cause aberrant self-renewal in committed hematopoietic progenitors, which normally do not self-renew. Recent progress in the field suggests that MOZ and MLL are part of a transcriptional activation system that activates the transcription of genes with nonmethylated CpG-rich promoters. The nonmethylated state of CpGs is normally maintained during cell divisions from the mother cell to the daughter cells. Thus, the MOZ/MLL-mediated transcriptional activation system replicates the expression profile of mother cells in daughter cells by activating the transcription of genes previously transcribed in the mother cell. This review summarizes the functions of the components of the MOZ/MLL-mediated transcriptional activation system and their roles in the promotion of self-renewal.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
11
|
Zeng F, Yang Y, Xu Z, Wang Z, Ke H, Zhang J, Dong T, Yang W, Wang J. Clinical manifestations and genetic analysis of a newborn with Arboleda−Tham syndrome. Front Genet 2022; 13:990098. [PMID: 36386811 PMCID: PMC9641261 DOI: 10.3389/fgene.2022.990098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Arboleda−Tham syndrome (ARTHS) is a rare disorder first characterized in 2015 and is caused by mutations in lysine (K) acetyltransferase 6A (KAT6A, a.k.a. MOZ, MYST3). Its clinical symptoms have rarely been reported in newborns from birth up to the first few months after birth. In this study, a newborn was diagnosed with ARTHS based on the clinical symptoms and a mutation c.3937G>A (p.Asp1313Asn) in KAT6A. The clinical manifestations, diagnosis, and treatment of the newborn with ARTHS were recorded during follow-up observations. The main symptoms of the proband at birth were asphyxia, involuntary breathing, low muscle tone, early feeding, movement difficulties, weak crying, weakened muscle tone of the limbs, and embrace reflex, and facial features were not obvious at birth. There was obvious developmental delay, as well as hypotonic and oro-intestinal problems in the first few months after birth. Mouse growth factor was used to nourish the brain nerves, and touching, kneading the back, passive movements of the limbs, and audio−visual stimulation were used for rehabilitation. We hope that this study expands the phenotypic spectrum of this syndrome to newborns and the library of KAT6A mutations that lead to ARTHS. Consequently, the data can be used as a basis for genetic counseling and in clinical and prenatal diagnosis for ARTHS prevention.
Collapse
Affiliation(s)
- Feng Zeng
- Department of Neonatology, Xuancheng Central Hospital, Xuancheng, Anhui, China
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaohui Xu
- Department of Paediatrics, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ziwen Wang
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huan Ke
- Nursing Department, Xuancheng Central Hospital, Xuancheng, Anhui, China
| | - Jianhong Zhang
- Department of Neonatology, Xuancheng Central Hospital, Xuancheng, Anhui, China
| | - Tongtong Dong
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Wenming Yang, ; Jiuxiang Wang,
| | - Jiuxiang Wang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Wenming Yang, ; Jiuxiang Wang,
| |
Collapse
|
12
|
Zu G, Liu Y, Cao J, Zhao B, Zhang H, You L. BRPF1-KAT6A/KAT6B Complex: Molecular Structure, Biological Function and Human Disease. Cancers (Basel) 2022; 14:4068. [PMID: 36077605 PMCID: PMC9454415 DOI: 10.3390/cancers14174068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The bromodomain and PHD finger-containing protein1 (BRPF1) is a member of family IV of the bromodomain-containing proteins that participate in the post-translational modification of histones. It functions in the form of a tetrameric complex with a monocytic leukemia zinc finger protein (MOZ or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1 or KAT7) and two small non-catalytic proteins, the inhibitor of growth 5 (ING5) or the paralog ING4 and MYST/Esa1-associated factor 6 (MEAF6). Mounting studies have demonstrated that all the four core subunits play crucial roles in different biological processes across diverse species, such as embryonic development, forebrain development, skeletal patterning and hematopoiesis. BRPF1, KAT6A and KAT6B mutations were identified as the cause of neurodevelopmental disorders, leukemia, medulloblastoma and other types of cancer, with germline mutations associated with neurodevelopmental disorders displaying intellectual disability, and somatic variants associated with leukemia, medulloblastoma and other cancers. In this paper, we depict the molecular structures and biological functions of the BRPF1-KAT6A/KAT6B complex, summarize the variants of the complex related to neurodevelopmental disorders and cancers and discuss future research directions and therapeutic potentials.
Collapse
Affiliation(s)
- Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingli Cao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baicheng Zhao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hang Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai 200040, China
| |
Collapse
|
13
|
Hemming ML, Benson MR, Loycano MA, Anderson JA, Andersen JL, Taddei ML, Krivtsov AV, Aubrey BJ, Cutler JA, Hatton C, Sicinska E, Armstrong SA. MOZ and Menin-MLL Complexes Are Complementary Regulators of Chromatin Association and Transcriptional Output in Gastrointestinal Stromal Tumor. Cancer Discov 2022; 12:1804-1823. [PMID: 35499757 PMCID: PMC9453853 DOI: 10.1158/2159-8290.cd-21-0646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is commonly characterized by activating mutations in the receptor tyrosine kinase KIT. Tyrosine kinase inhibitors are the only approved therapy for GIST, and complementary treatment strategies are urgently needed. As GIST lacks oncogene amplification and relies upon an established network of transcription factors, we hypothesized that unique chromatin-modifying enzymes are essential in orchestrating the GIST epigenome. We identified through genome-scale CRISPR screening that MOZ and Menin-MLL chromatin regulatory complexes are cooperative and unique dependencies in GIST. These complexes were enriched at GIST-relevant genes and regulated their transcription. Inhibition of MOZ and Menin-MLL complexes decreased GIST cell proliferation by disrupting interactions with transcriptional/chromatin regulators, such as DOT1L. MOZ and Menin inhibition caused significant reductions in tumor burden in vivo, with superior effects observed with combined Menin and KIT inhibition. These results define unique chromatin regulatory dependencies in GIST and identify potential therapeutic strategies for clinical application. SIGNIFICANCE Although many malignancies rely on oncogene amplification, GIST instead depends upon epigenetic regulation of KIT and other essential genes. Utilizing genome-scale CRISPR dependency screens, we identified complementary chromatin-modifying complexes essential to GIST and characterize the consequences of their disruption, elucidating a novel therapeutic approach to this disease. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Matthew L. Hemming
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Morgan R. Benson
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael A. Loycano
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin A. Anderson
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica L. Andersen
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine L. Taddei
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrei V. Krivtsov
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon J. Aubrey
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jevon A. Cutler
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charlie Hatton
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology and Division of Hematology/Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Mondal A, Bhattacharya A, Singh V, Pandita S, Bacolla A, Pandita RK, Tainer JA, Ramos KS, Pandita TK, Das C. Stress Responses as Master Keys to Epigenomic Changes in Transcriptome and Metabolome for Cancer Etiology and Therapeutics. Mol Cell Biol 2022; 42:e0048321. [PMID: 34748401 PMCID: PMC8773053 DOI: 10.1128/mcb.00483-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From initiation through progression, cancer cells are subjected to a magnitude of endogenous and exogenous stresses, which aid in their neoplastic transformation. Exposure to these classes of stress induces imbalance in cellular homeostasis and, in response, cancer cells employ informative adaptive mechanisms to rebalance biochemical processes that facilitate survival and maintain their existence. Different kinds of stress stimuli trigger epigenetic alterations in cancer cells, which leads to changes in their transcriptome and metabolome, ultimately resulting in suppression of growth inhibition or induction of apoptosis. Whether cancer cells show a protective response to stress or succumb to cell death depends on the type of stress and duration of exposure. A thorough understanding of epigenetic and molecular architecture of cancer cell stress response pathways can unveil a plethora of information required to develop novel anticancer therapeutics. The present view highlights current knowledge about alterations in epigenome and transcriptome of cancer cells as a consequence of exposure to different physicochemical stressful stimuli such as reactive oxygen species (ROS), hypoxia, radiation, hyperthermia, genotoxic agents, and nutrient deprivation. Currently, an anticancer treatment scenario involving the imposition of stress to target cancer cells is gaining traction to augment or even replace conventional therapeutic regimens. Therefore, a comprehensive understanding of stress response pathways is crucial for devising and implementing novel therapeutic strategies.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Shruti Pandita
- Division of Hematology and Medical Oncology, St. Louis University, St. Louis, Missouri, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Raj K. Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Tej K. Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| |
Collapse
|
15
|
Pandita TK, Hunt CR, Singh V, Adhikary S, Pandita S, Roy S, Ramos K, Das C. Role of the Histone Acetyl Transferase MOF and the Histone Deacetylase Sirtuins in Regulation of H4K16ac During DNA Damage Repair and Metabolic Programming: Implications in Cancer and Aging. Subcell Biochem 2022; 100:115-141. [PMID: 36301493 DOI: 10.1007/978-3-031-07634-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accurate repair of genomic damage mediated by ionizing radiation (IR), chemo- or radiomimetic drugs, or other exogenous agents, is necessary for maintenance of genome integrity, preservation of cellular viability and prevention of oncogenic transformation. Eukaryotes have conserved mechanisms designed to perceive and repair the damaged DNA quite efficiently. Among the different types of DNA damage, double strand breaks (DSB) are the most detrimental. The cellular DNA DSB response is a hierarchical signaling network that integrates damage sensing and repair with chromatin structural changes that involve a range of pre-existing and induced covalent modifications. Recent studies have revealed that pre-existing histone modifications are important contributors within this signaling/repair network. This chapter discusses the role of a critical histone acetyl transferase (HAT) known as MOF (males absent on the first) and the histone deacetylases (HDACs) Sirtuins on histone H4K16 acetylation (H4K16ac) and DNA damage repair. We also discuss the role of this important histone modification in light of metabolic rewiring and its role in regulating human pathophysiologic states.
Collapse
Affiliation(s)
- Tej K Pandita
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA.
| | - Clayton R Hunt
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shruti Pandita
- Department of Internal Medicine, Division of Hematology, Oncology and Cellular Therapy, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Siddhartha Roy
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Kenneth Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
16
|
Conserved Structure and Evolution of DPF Domain of PHF10-The Specific Subunit of PBAF Chromatin Remodeling Complex. Int J Mol Sci 2021; 22:ijms222011134. [PMID: 34681795 PMCID: PMC8538644 DOI: 10.3390/ijms222011134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription activation factors and multisubunit coactivator complexes get recruited at specific chromatin sites via protein domains that recognize histone modifications. Single PHDs (plant homeodomains) interact with differentially modified H3 histone tails. Double PHD finger (DPF) domains possess a unique structure different from PHD and are found in six proteins: histone acetyltransferases MOZ and MORF; chromatin remodeling complex BAF (DPF1–3); and chromatin remodeling complex PBAF (PHF10). Among them, PHF10 stands out due to the DPF sequence, structure, and functions. PHF10 is ubiquitously expressed in developing and adult organisms as four isoforms differing in structure (the presence or absence of DPF) and transcription regulation functions. Despite the importance of the DPF domain of PHF10 for transcription activation, its structure remains undetermined. We performed homology modeling of the human PHF10 DPF domain and determined common and distinct features in structure and histone modifications recognition capabilities, which can affect PBAF complex chromatin recruitment. We also traced the evolution of DPF1–3 and PHF10 genes from unicellular to vertebrate organisms. The data reviewed suggest that the DPF domain of PHF10 plays an important role in SWI/SNF-dependent chromatin remodeling during transcription activation.
Collapse
|
17
|
The role of MOZ/KAT6A in hematological malignancies and advances in MOZ/KAT6A inhibitors. Pharmacol Res 2021; 174:105930. [PMID: 34626770 DOI: 10.1016/j.phrs.2021.105930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Hematological malignancies, unlike solid tumors, are a group of malignancies caused by abnormal differentiation of hematopoietic stem cells. Monocytic leukemia zinc finger protein (MOZ), a member of the MYST (MOZ, Ybf2/Sas3, Sas2, Tip60) family, is a histone acetyltransferase. MOZ is involved in various cellular functions: generation and maintenance of hematopoietic stem cells, development of erythroid cells, B-lineage progenitors and myeloid cells, and regulation of cellular senescence. Studies have shown that MOZ is susceptible to translocation in chromosomal rearrangements to form fusion genes, leading to the fusion of MOZ with other cellular regulators to form MOZ fusion proteins. Different MOZ fusion proteins have different roles, such as in the development and progression of hematological malignancies and inhibition of cellular senescence. Thus, MOZ is an attractive target, and targeting MOZ to design small-molecule drugs can help to treat hematological malignancies. This review summarizes recent progress in biology and medicinal chemistry for the histone acetyltransferase MOZ. In the biology section, MOZ and cofactors, structures of MOZ and related HATs, MOZ and fusion proteins, and roles of MOZ in cancer are discussed. In medicinal chemistry, recent developments in MOZ inhibitors are summarized.
Collapse
|
18
|
Histone Modifications in Stem Cell Development and Their Clinical Implications. Stem Cell Reports 2021; 15:1196-1205. [PMID: 33296672 PMCID: PMC7724464 DOI: 10.1016/j.stemcr.2020.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Human stem cells bear a great potential for multiple therapeutic applications but at the same time constitute a major threat to human health in the form of cancer stem cells. The molecular processes that govern stem cell maintenance or differentiation have been extensively studied in model organisms or cell culture, but it has been difficult to extrapolate these insights to therapeutic applications. Recent advances in the field suggest that local and global changes in histone modifications that affect chromatin structure could influence the capability of cells to either maintain their stem cell identity or differentiate into specialized cell types. The enzymes that regulate these modifications are therefore among the prime targets for potential drugs that can influence and potentially improve the therapeutic application of stem cells. In this review, we discuss recent findings on the role of histone modifications in stem cell regulation and their potential implications for clinical applications.
Collapse
|
19
|
Liu Y, Yang H, Liu X, Gu H, Li Y, Sun C. Protein acetylation: a novel modus of obesity regulation. J Mol Med (Berl) 2021; 99:1221-1235. [PMID: 34061242 DOI: 10.1007/s00109-021-02082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a chronic epidemic disease worldwide which has become one of the important public health issues. It is a process that excessive accumulation of adipose tissue caused by long-term energy intake exceeding energy expenditure. So far, the prevention and treatment strategies of obesity on individuals and population have not been successful in the long term. Acetylation is one of the most common ways of protein post-translational modification (PTM). It exists on thousands of non-histone proteins in almost every cell chamber. It has many influences on protein levels and metabolome levels, which is involved in a variety of metabolic reactions, including sugar metabolism, tricarboxylic acid cycle, and fatty acid metabolism, which are closely related to biological activities. Studies have shown that protein acetylation levels are dynamically regulated by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Protein acetylation modifies protein-protein and protein-DNA interactions and regulates the activity of enzymes or cytokines which is related to obesity in order to participate in the occurrence and treatment of obesity-related metabolic diseases. Therefore, we speculated that acetylation was likely to become effective means of controlling obesity in the future. In consequence, this review focuses on the mechanisms of protein acetylation controlled obesity, to provide theoretical basis for controlling obesity and curing obesity-related diseases, which is a significance for regulating obesity in the future. This review will focus on the role of protein acetylation in controlling obesity.
Collapse
Affiliation(s)
- Yuexia Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuanchen Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huihui Gu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yizhou Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
20
|
Porras-Yakushi TR, Reitsma JM, Sweredoski MJ, Deshaies RJ, Hess S. In-depth proteomic analysis of proteasome inhibitors bortezomib, carfilzomib and MG132 reveals that mortality factor 4-like 1 (MORF4L1) protein ubiquitylation is negatively impacted. J Proteomics 2021; 241:104197. [PMID: 33848640 DOI: 10.1016/j.jprot.2021.104197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Proteasome inhibitors are an important class of chemotherapeutic drugs. In this study, we performed a large-scale ubiquitylome analysis of the three proteasome inhibitors MG132, bortezomib and carfilzomib. Although carfilzomib is currently being used for the treatment of multiple myeloma, it has not yet been subjected to a global ubiquitylome analysis. In this study, we identified more than 14,000 unique sites of ubiquitylation in more than 4400 protein groups. We introduced stringent criteria to determine the correct ubiquitylation site ratios and used five biological replicates to achieve increased statistical power. With the vast amount of data acquired, we made proteome-wide comparisons between the proteasome inhibitors and indicate candidate proteins that will benefit from further study. We find that in addition to the expected increase in ubiquitylation in the majority of proteins, unexpectedly a select few are specifically and significantly decreased in ubiquitylation at specific sites after treatment with proteasome inhibitors. We chose to follow-up on Mortality factor 4-like 1 (MORF4L1), which was significantly decreased in ubiquitylation at lysine 187 and lysine 104 upon proteasome inhibition, but increased in protein abundance by approximately two-fold. We demonstrate that the endogenous protein level of MORF4L1 is highly regulated by the ubiquitin proteasome system. SIGNIFICANCE: This study provides a highly curated dataset of more than 14,000 unique sites of ubiquitylation in more than 4400 protein groups. For the proper quantification of ubiquitylation sites, we introduced a higher standard by quantifying only those ubiquitylation sites that are not flanked by neighboring ubiquitylation, thereby avoiding the report of incorrect ratios. The sites identified will serve to identify important targets of the ubiquitin proteasome system and aid to better understand the repertoire of proteins that are affected by inhibiting the proteasome with MG132, bortezomib, and carfilzomib. In addition, we investigated the unusual observation that ubiquitylation of the tumor suppressor Mortality factor 4-like (MORF4L1) protein decreases rather than increases upon proteasome inhibition, which may contribute to an additional anti-tumor effect of bortezomib and carfilzomib.
Collapse
Affiliation(s)
- Tanya R Porras-Yakushi
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Pagiatakis C, Musolino E, Gornati R, Bernardini G, Papait R. Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res 2021; 33:737-745. [PMID: 31811572 PMCID: PMC8084772 DOI: 10.1007/s40520-019-01430-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Aging is an important risk factor for several human diseases such as cancer, cardiovascular disease and neurodegenerative disorders, resulting from a combination of genetic and environmental factors (e.g., diet, smoking, obesity and stress), which, at molecular level, cause changes in gene expression underlying the decline of physiological function. Epigenetics, which include mechanisms regulating gene expression independently of changes to DNA sequence, regulate gene expression by modulating the structure of chromatin or by regulating the binding of transcriptional machinery to DNA. Several studies showed that an impairment of epigenetic mechanisms promotes alteration of gene expression underlying several aging-related diseases. Alteration of these mechanisms is also linked with changes of gene expression that occurs during aging processes of different tissues. In this review, we will outline the potential role of epigenetics in the onset of two age-related pathologies, cancer and cardiovascular diseases.
Collapse
|
22
|
O’Garro C, Igbineweka L, Ali Z, Mezei M, Mujtaba S. The Biological Significance of Targeting Acetylation-Mediated Gene Regulation for Designing New Mechanistic Tools and Potential Therapeutics. Biomolecules 2021; 11:biom11030455. [PMID: 33803759 PMCID: PMC8003229 DOI: 10.3390/biom11030455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023] Open
Abstract
The molecular interplay between nucleosomal packaging and the chromatin landscape regulates the transcriptional programming and biological outcomes of downstream genes. An array of epigenetic modifications plays a pivotal role in shaping the chromatin architecture, which controls DNA access to the transcriptional machinery. Acetylation of the amino acid lysine is a widespread epigenetic modification that serves as a marker for gene activation, which intertwines the maintenance of cellular homeostasis and the regulation of signaling during stress. The biochemical horizon of acetylation ranges from orchestrating the stability and cellular localization of proteins that engage in the cell cycle to DNA repair and metabolism. Furthermore, lysine acetyltransferases (KATs) modulate the functions of transcription factors that govern cellular response to microbial infections, genotoxic stress, and inflammation. Due to their central role in many biological processes, mutations in KATs cause developmental and intellectual challenges and metabolic disorders. Despite the availability of tools for detecting acetylation, the mechanistic knowledge of acetylation-mediated cellular processes remains limited. This review aims to integrate molecular and structural bases of KAT functions, which would help design highly selective tools for understanding the biology of KATs toward developing new disease treatments.
Collapse
Affiliation(s)
- Chenise O’Garro
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Loveth Igbineweka
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Zonaira Ali
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Mihaly Mezei
- Department of Pharmaceutical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Shiraz Mujtaba
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
- Correspondence:
| |
Collapse
|
23
|
Yusuf AP, Abubakar MB, Malami I, Ibrahim KG, Abubakar B, Bello MB, Qusty N, Elazab ST, Imam MU, Alexiou A, Batiha GES. Zinc Metalloproteins in Epigenetics and Their Crosstalk. Life (Basel) 2021; 11:186. [PMID: 33652690 PMCID: PMC7996840 DOI: 10.3390/life11030186] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
More than half a century ago, zinc was established as an essential micronutrient for normal human physiology. In silico data suggest that about 10% of the human proteome potentially binds zinc. Many proteins with zinc-binding domains (ZBDs) are involved in epigenetic modifications such as DNA methylation and histone modifications, which regulate transcription in physiological and pathological conditions. Zinc metalloproteins in epigenetics are mainly zinc metalloenzymes and zinc finger proteins (ZFPs), which are classified into writers, erasers, readers, editors, and feeders. Altogether, these classes of proteins engage in crosstalk that fundamentally maintains the epigenome's modus operandi. Changes in the expression or function of these proteins induced by zinc deficiency or loss of function mutations in their ZBDs may lead to aberrant epigenetic reprogramming, which may worsen the risk of non-communicable chronic diseases. This review attempts to address zinc's role and its proteins in natural epigenetic programming and artificial reprogramming and briefly discusses how the ZBDs in these proteins interact with the chromatin.
Collapse
Affiliation(s)
- Abdurrahman Pharmacy Yusuf
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca 21955, Saudi Arabia;
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia 35516, Egypt;
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria; (A.P.Y.); (I.M.); (K.G.I.); (B.A.); (M.U.I.)
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254 Sokoto, Nigeria
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Haidingergasse 29, 1030 Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
24
|
Kayser S, Hills RK, Langova R, Kramer M, Guijarro F, Sustkova Z, Estey EH, Shaw CM, Ráčil Z, Mayer J, Zak P, Baer MR, Brunner AM, Szotkowski T, Cetkovsky P, Grimwade D, Walter RB, Burnett AK, Ho AD, Ehninger G, Müller-Tidow C, Platzbecker U, Thiede C, Röllig C, Schulz A, Warsow G, Brors B, Esteve J, Russell NH, Schlenk RF, Levis MJ. Characteristics and outcome of patients with acute myeloid leukaemia and t(8;16)(p11;p13): results from an International Collaborative Study. Br J Haematol 2021; 192:832-842. [PMID: 33529373 DOI: 10.1111/bjh.17336] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
In acute myeloid leukaemia (AML) t(8;16)(p11;p13)/MYST3-CREBBP is a very rare abnormality. Previous small series suggested poor outcome. We report on 59 patients with t(8;16) within an international, collaborative study. Median age was 52 (range: 16-75) years. AML was de novo in 58%, therapy-related (t-AML) in 37% and secondary after myelodysplastic syndrome (s-AML) in 5%. Cytogenetics revealed a complex karyotype in 43%. Besides MYST3-CREBBP, whole-genome sequencing on a subset of 10 patients revealed recurrent mutations in ASXL1, BRD3, FLT3, MLH1, POLG, TP53, SAMD4B (n = 3, each), EYS, KRTAP9-1 SPTBN5 (n = 4, each), RUNX1 and TET2 (n = 2, each). Complete remission after intensive chemotherapy was achieved in 84%. Median follow-up was 5·48 years; five-year survival rate was 17%. Patients with s-/t-AML (P = 0·01) and those with complex karyotype (P = 0·04) had an inferior prognosis. Allogeneic haematopoietic cell transplantation (allo-HCT) was performed in 21 (36%) patients, including 15 in first complete remission (CR1). Allo-HCT in CR1 significantly improved survival (P = 0·04); multivariable analysis revealed that allo-HCT in CR1 was effective in de novo AML but not in patients with s-AML/t-AML and less in patients exhibiting a complex karyotype. In summary, outcomes of patients with t(8;16) are dismal with chemotherapy, and may be substantially improved with allo-HCT performed in CR1.
Collapse
Affiliation(s)
- Sabine Kayser
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany.,NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ralitsa Langova
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Michael Kramer
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | | | - Zuzana Sustkova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Elihu H Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carole M Shaw
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
| | - Zdeněk Ráčil
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Pavel Zak
- 4th Department of Internal Medicine-Hematology, Faculty of Medicine, Charles University and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Tomas Szotkowski
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petr Cetkovsky
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - David Grimwade
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alan K Burnett
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony D Ho
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Ehninger
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Christoph Röllig
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Angela Schulz
- Genomics and Proteomics Core Facility High Throughput Sequencing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | | | - Nigel H Russell
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Richard F Schlenk
- NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Lin YF, Lin TC, Kirby R, Weng HY, Liu YM, Niu DM, Tsai SF, Yang CF. Diagnosis of Arboleda-Tham syndrome by whole genome sequencing in an Asian boy with severe developmental delay. Mol Genet Metab Rep 2020; 25:100686. [PMID: 33318932 PMCID: PMC7723794 DOI: 10.1016/j.ymgmr.2020.100686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022] Open
Abstract
Diagnosis of a 9-month-old boy brought to our genetics clinic with chief complaints of developmental delay (DD), failure to thrive, microcephaly, trunk hypotonia and hypertonia of the extremities. Multiple congenital defects but no significant syndromes or diseases were impressed. The chromosomal analysis and array comparative genomic hybridization (aCGH) revealed no significant pathogenic changes. Whole Genome Sequencing (WGS) identified a p.Glu1139fs de novo mutation of the KAT6A gene. The patient's phenotype was consistent clinically with Arboleda-Tham syndrome (ARTHS). Reviewing the literature showed that this is the first patient in Taiwan detected by WGS and that it involves a novel mutation. Comparing the highly variable clinical presentations of this syndrome with our patient, this boy's features and severe developmental defects seem to be due to a late-truncating mutation at the carboxyl end of the KAT6A protein. Our study demonstrates the power of WGS to confirm a diagnosis within 4 weeks for this rare condition.
Collapse
Affiliation(s)
- Yung-Feng Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tzu-Ching Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ralph Kirby
- Department of Life Science, National Yang Ming University, Taipei, Taiwan
| | - Hui-Ying Weng
- Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Ming Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Dau-Ming Niu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chia-Feng Yang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Wiesel-Motiuk N, Assaraf YG. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist Updat 2020; 53:100729. [PMID: 33130515 DOI: 10.1016/j.drup.2020.100729] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Histone modifications and more specifically ε-lysine acylations are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular processes and phenotypes. Furthermore, lysine acetylation of many non-histone proteins is involved in key cellular processes including transcription, DNA damage repair, metabolism, cellular proliferation, mitosis, signal transduction, protein folding, and autophagy. Acetylation affects protein functions through multiple mechanisms including regulation of protein stability, enzymatic activity, subcellular localization, crosstalk with other post-translational modifications as well as regulation of protein-protein and protein-DNA interactions. The paralogous lysine acetyltransferases KAT6A and KAT6B which belong to the MYST family of acetyltransferases, were first discovered approximately 25 years ago. KAT6 acetyltransferases acylate both histone H3 and non-histone proteins. In this respect, KAT6 acetyltransferases play key roles in regulation of transcription, various developmental processes, maintenance of hematopoietic and neural stem cells, regulation of hematopoietic cell differentiation, cell cycle progression as well as mitosis. In the current review, we discuss the physiological functions of the acetyltransferases KAT6A and KAT6B as well as their functions under pathological conditions of aberrant expression, leading to several developmental syndromes and cancer. Importantly, both upregulation and downregulation of KAT6 proteins was shown to play a role in cancer formation, progression, and therapy resistance, suggesting that they can act as oncogenes or tumor suppressors. We also describe reciprocal regulation of expression between KAT6 proteins and several microRNAs as well as their involvement in cancer formation, progression and resistance to therapy.
Collapse
Affiliation(s)
- Naama Wiesel-Motiuk
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
27
|
Shanmugam MK, Dharmarajan A, Warrier S, Bishayee A, Kumar AP, Sethi G, Ahn KS. Role of histone acetyltransferase inhibitors in cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:149-191. [PMID: 33931138 DOI: 10.1016/bs.apcsb.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of cancer is a complex phenomenon driven by various extrinsic as well as intrinsic risk factors including epigenetic modifications. These post-translational modifications are encountered in diverse cancer cells and appear for a relatively short span of time. These changes can significantly affect various oncogenic genes and proteins involved in cancer initiation and progression. Histone lysine acetylation and deacetylation processes are controlled by two opposing classes of enzymes that modulate gene regulation either by adding an acetyl moiety on a histone lysine residue by histone lysine acetyltransferases (KATs) or via removing it by histone deacetylases (KDACs). Deregulated KAT activity has been implicated in the development of several diseases including cancer and can be targeted for the development of anti-neoplastic drugs. Here, we describe the predominant epigenetic changes that can affect key KAT superfamily members during carcinogenesis and briefly highlight the pharmacological potential of employing lysine acetyltransferase inhibitors (KATi) for cancer therapy.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunasalam Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education & Research, Chennai, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Abstract
Lysine (or histone) acetyltransferases plays a key role in genome maintenance and gene regulation and dysregulation of acetylation is a recognized feature of many diseases, including several cancers. Here, the patent landscape surrounding lysine acetyltransferase inhibitors (KATi or HATi), with a focus on small-molecule compounds, is outlined and assessed. Overall, the 36 KATi-specific patents found were categorized into two distinct groups: specific small-molecule inhibitors (compounds and molecules) and patents applying KATi for targeted disease treatment. These patents recognize the emergent potential of KATi to significantly impact on the management of many diseases (including multiple cancer types, neurological disorders and immunological syndromes), improving the range of treatments (and drug classes) available for personalized medicine.
Collapse
|
29
|
Espinosa-Cores L, Bouza-Morcillo L, Barrero-Gil J, Jiménez-Suárez V, Lázaro A, Piqueras R, Jarillo JA, Piñeiro M. Insights Into the Function of the NuA4 Complex in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:125. [PMID: 32153620 PMCID: PMC7047200 DOI: 10.3389/fpls.2020.00125] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/28/2020] [Indexed: 05/14/2023]
Abstract
Chromatin remodeling plays a key role in the establishment and maintenance of gene expression patterns essential for plant development and responses to environmental factors. Post-translational modification of histones, including acetylation, is one of the most relevant chromatin remodeling mechanisms that operate in eukaryotic cells. Histone acetylation is an evolutionarily conserved chromatin signature commonly associated with transcriptional activation. Histone acetylation levels are tightly regulated through the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In plants, different families of HATs are present, including the MYST family, which comprises homologs of the catalytic subunit of the Nucleosome Acetyltransferase of H4 (NuA4) complex in yeast. This complex mediates acetylation of histones H4, H2A, and H2A.Z, and is involved in transcriptional regulation, heterochromatin silencing, cell cycle progression, and DNA repair in yeast. In Arabidopsis and, other plant species, homologs for most of the yeast NuA4 subunits are present and although the existence of this complex has not been demonstrated yet, compelling evidence supports the notion that this type of HAT complex functions from mosses to angiosperms. Recent proteomic studies show that several Arabidopsis homologs of NuA4 components, including the assembly platform proteins and the catalytic subunit, are associated in vivo with additional members of this complex suggesting that a NuA4-like HAT complex is present in plants. Furthermore, the functional characterization of some Arabidopsis NuA4 subunits has uncovered the involvement of these proteins in the regulation of different plant biological processes. Interestingly, for most of the mutant plants deficient in subunits of this complex characterized so far, conspicuous defects in flowering time are observed, suggesting a role for NuA4 in the control of this plant developmental program. Moreover, the participation of Arabidopsis NuA4 homologs in other developmental processes, such as gametophyte development, as well as in cell proliferation and stress and hormone responses, has also been reported. In this review, we summarize the current state of knowledge on plant putative NuA4 subunits and discuss the latest progress concerning the function of this chromatin modifying complex.
Collapse
|
30
|
Perusina Lanfranca M, Thompson JK, Bednar F, Halbrook C, Lyssiotis C, Levi B, Frankel TL. Metabolism and epigenetics of pancreatic cancer stem cells. Semin Cancer Biol 2019; 57:19-26. [PMID: 30273655 PMCID: PMC6438777 DOI: 10.1016/j.semcancer.2018.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic Cancer (PDA) is an aggressive malignancy characterized by early spread and a high mortality. Current studies suggest that a subpopulation of cells exist within tumors, cancer stem cell (CSC), which are capable of self-renewal and give rise to unique progeny which form the major neoplastic cellular component of tumors. While CSCs constitute a small cellular subpopulation within the tumor, their resistance to chemotherapy and radiation make them an important therapeutic target for eradication. Along with distinctive phenotypic properties, CSCs possess a unique metabolic plasticity allowing them to rapidly respond and adapt to environmental changes. These cells and their progeny also display a significantly altered epigenetic state with distinctive patterns of DNA methylation. Several mechanisms of cross-talk between epigenetic and metabolic pathways in PDA exist which ultimately contribute to the observed cellular plasticity and enhanced tumorigenesis. In this review we discuss various examples of this metabolic-epigenetic interplay and how it may constitute a new avenue for therapy specifically targeting CSCs in PDA.
Collapse
Affiliation(s)
| | - J K Thompson
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - F Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - C Halbrook
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States; Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - C Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States; Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - B Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - T L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
31
|
Su Y, Liu J, Yu B, Ba R, Zhao C. Brpf1 Haploinsufficiency Impairs Dendritic Arborization and Spine Formation, Leading to Cognitive Deficits. Front Cell Neurosci 2019; 13:249. [PMID: 31213987 PMCID: PMC6558182 DOI: 10.3389/fncel.2019.00249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of the bromodomain and PHD finger-containing protein 1 (BRPF1) gene causes intellectual disability (ID), which is characterized by impaired intellectual and cognitive function; however, the neurological basis for ID and the neurological function of BRPF1 dosage in the brain remain unclear. Here, by crossing Emx1-cre mice with Brpf1fl/fl mice, we generated Brpf1 heterozygous mice to model BRPF1-related ID. Brpf1 heterozygotes showed reduced dendritic complexity in both hippocampal granule cells and cortical pyramidal neurons, accompanied by reduced spine density and altered spine and synapse morphology. An in vitro study of Brpf1 haploinsufficiency also demonstrated decreased frequency and amplitude of miniature EPSCs that may subsequently contribute to abnormal behaviors, including decreased anxiety levels and defective learning and memory. Our results demonstrate a critical role for Brpf1 dosage in neuron dendrite arborization, spine morphogenesis and behavior and provide insight into the pathogenesis of BRPF1-related ID.
Collapse
Affiliation(s)
- Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Junhua Liu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
32
|
Sekimata M, Yoshida D, Araki A, Asao H, Iseki K, Murakami-Sekimata A. Runx1 and RORγt Cooperate to Upregulate IL-22 Expression in Th Cells through Its Distal Enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3198-3210. [PMID: 31028121 DOI: 10.4049/jimmunol.1800672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
IL-22 is a cytokine that plays a pivotal role in regulating tissue homeostasis at barrier surfaces and is produced by activated CD4+ Th cells. Currently, the molecular mechanisms regulating Il22 gene expression are still unclear. In this study, we have identified a crucial cis-regulatory element located 32 kb upstream of the mouse Il22 promoter, termed conserved noncoding sequence (CNS)-32. We demonstrated that CNS-32 acts as an enhancer in reporter assays and contains binding motifs for Runt-related transcription factor (Runx)1 and retinoic acid-related orphan receptor γt (RORγt). Mutation of these motifs significantly abrogated the reporter activity, suggesting a role for both factors in the control of enhancer-mediated Il22 expression. Runx1 and RORγt occupancy and elevated histone H4 acetylation at CNS-32 were evident, as naive T cells differentiated into IL-22-producing Th22 cells. Overexpression of Runx1 promoted IL-22 production by inducing RORγt and IL-23 receptor, all critical to Th22 cell induction. Although Runx1 alone enhanced IL-22 production in Th22 cells, it was further enhanced in the presence of RORγt. Conversely, short hairpin RNA-mediated knockdown of core-binding factor β, a cofactor essential for Runx1 activity, was effective in limiting IL-22 production. Collectively, our results suggest that IL-22 production is controlled by a regulatory circuit in which Runx1 induces RORγt and then partners with RORγt to direct Il22 expression through their targeting of the Il22 enhancer.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Animals
- Cell Differentiation
- Cells, Cultured
- Conserved Sequence/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Enhancer Elements, Genetic/genetics
- Interleukins/genetics
- Interleukins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Protein Binding
- RNA, Small Interfering/genetics
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- Up-Regulation
- Interleukin-22
Collapse
Affiliation(s)
- Masayuki Sekimata
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan;
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Daiki Yoshida
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
33
|
Lonardo F, Lonardo MS, Acquaviva F, Della Monica M, Scarano F, Scarano G. Say-Barber-Biesecker-Young-Simpson syndrome and Genitopatellar syndrome: Lumping or splitting? Clin Genet 2019; 95:253-261. [PMID: 28857140 DOI: 10.1111/cge.13127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/20/2017] [Indexed: 12/20/2022]
Abstract
The Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome (SBBYSS) and Genitopatellar syndrome (GTPTS) are 2 rare but clinically well-described diseases caused by de novo heterozygous sequence variants in the KAT6B gene. Both phenotypes are characterized by significant global developmental delay/intellectual disability, hypotonia, genital abnormalities, and patellar hypoplasia/agenesis. In addition, congenital heart defects, dental abnormalities, hearing loss, and thyroid anomalies are common to both phenotypes. This broad clinical overlap led some authors to propose the concept of KAT6B spectrum disorders. On the other hand, some clinical features could help to differentiate the 2 disorders. Furthermore, it is possible to establish a genotype-phenotype correlation when considering the position of the sequence variant along the gene, supporting the notion of the 2 disorders as really distinct entities.
Collapse
Affiliation(s)
- F Lonardo
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
| | - M S Lonardo
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
| | - F Acquaviva
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
- Department of Translational Medical Science - Section of Pediatrics, Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - M Della Monica
- Medical Genetics Unit, Meyer Children's Hospital, Florence, Italy
| | - F Scarano
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
| | - G Scarano
- Medical Genetics Unit, A.O.R.N. "G. Rummo", Benevento, Italy
| |
Collapse
|
34
|
Emerging Role of Histone Acetyltransferase in Stem Cells and Cancer. Stem Cells Int 2018; 2018:8908751. [PMID: 30651738 PMCID: PMC6311713 DOI: 10.1155/2018/8908751] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023] Open
Abstract
Protein acetylation is one of the most important posttranslational modifications catalyzed by acetyltransferases and deacetylases, through the addition and removal of acetyl groups to lysine residues. Lysine acetylation can affect protein-nucleic acid or protein-protein interactions and protein localization, transport, stability, and activity. It regulates the function of a large variety of proteins, including histones, oncoproteins, tumor suppressors, and transcription factors, thus representing a crucial regulator of several biological processes with particular prominent roles in transcription and metabolism. Thus, it is unsurprising that alteration of protein acetylation is involved in human disease, including metabolic disorders and cancers. In this context, different hematological and solid tumors are characterized by deregulation of the protein acetylation pattern as a result of genetic or epigenetic changes. The imbalance between acetylation and deacetylation of histone or nonhistone proteins is also involved in the modulation of the self-renewal and differentiation ability of stem cells, including cancer stem cells. Here, we summarize a combination of in vitro and in vivo studies, undertaken on a set of acetyltransferases, and discuss the physiological and pathological roles of this class of enzymes. We also review the available data on the involvement of acetyltransferases in the regulation of stem cell renewal and differentiation in both normal and cancer cell population.
Collapse
|
35
|
Abstract
Cancer is one of the most serious diseases all over the world, and the cancer stem cell (CSC) model accounts for tumor initiation, metastasis, drug resistance, and relapse. The CSCs within tumor bulk have the capacity to self-renew, differentiate, and give rise to a new tumor. The self-renewal of CSCs is precisely regulated by various modulators, including Wnt/β-catenin signaling, Notch signaling, Hedgehog signaling, transcription factors, chromatin remodeling complexes, and non-coding RNAs. CSCs reside in their niches that are also involved in the self-renewal maintenance of CSCs and protection of CSCs from chemotherapy, radiotherapy, and even endogenous damages. Moreover, CSCs can also remodel their niches to initiate tumorigenesis. The mutual interactions between CSCs and their niches play a critical role in the regulation of CSC self-renewal and tumorigenesis as well. Many surface markers of CSCs have been identified, and these markers become first choices for CSC targeting. Due to heterogeneity and plasticity, targeting CSCs is still a big challenge for tumor elimination. In this review, we summarize recent progresses on the biological features of CSCs and targeting strategies against CSCs.
Collapse
Affiliation(s)
- Pingping Zhu
- 1CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zusen Fan
- 1CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
36
|
Bowkett D, Talon R, Tallant C, Schofield C, von Delft F, Knapp S, Bruton G, Brennan PE. Identifying Small-Molecule Binding Sites for Epigenetic Proteins at Domain-Domain Interfaces. ChemMedChem 2018; 13:1051-1057. [PMID: 29578648 PMCID: PMC6001751 DOI: 10.1002/cmdc.201800030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/16/2018] [Indexed: 12/27/2022]
Abstract
Epigenetics is a rapidly growing field in drug discovery. Of particular interest is the role of post-translational modifications to histones and the proteins that read, write, and erase such modifications. The development of inhibitors for reader domains has focused on single domains. One of the major difficulties of designing inhibitors for reader domains is that, with the notable exception of bromodomains, they tend not to possess a well-enclosed binding site amenable to small-molecule inhibition. As many of the proteins in epigenetic regulation have multiple domains, there are opportunities for designing inhibitors that bind at a domain-domain interface which provide a more suitable interaction pocket. Examination of X-ray structures of multiple domains involved in recognising and modifying post-translational histone marks using the SiteMap algorithm identified potential binding sites at domain-domain interfaces. For the tandem plant homeodomain-bromodomain of SP100C, a potential inter-domain site identified computationally was validated experimentally by the discovery of ligands by X-ray crystallographic fragment screening.
Collapse
Affiliation(s)
- David Bowkett
- Structural Genomics Consortium (SGC) & Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford, NDM Research BuildingRoosevelt DriveOxfordOX3 7FZUK
| | - Romain Talon
- Structural Genomics Consortium (SGC) & Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford, NDM Research BuildingRoosevelt DriveOxfordOX3 7FZUK
| | - Cynthia Tallant
- Structural Genomics Consortium (SGC) & Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford, NDM Research BuildingRoosevelt DriveOxfordOX3 7FZUK
| | - Chris Schofield
- Chemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Frank von Delft
- Structural Genomics Consortium (SGC) & Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford, NDM Research BuildingRoosevelt DriveOxfordOX3 7FZUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEUK
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006South Africa
| | - Stefan Knapp
- Structural Genomics Consortium (SGC) & Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford, NDM Research BuildingRoosevelt DriveOxfordOX3 7FZUK
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life SciencesJohann Wolfgang Goethe University60438Frankfurt am MainGermany
| | - Gordon Bruton
- GlaxoSmithKlineMedicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - Paul E. Brennan
- Structural Genomics Consortium (SGC) & Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford, NDM Research BuildingRoosevelt DriveOxfordOX3 7FZUK
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of Oxford, NDM Research BuildingRoosevelt DriveOxfordOX3 7FZUK
| |
Collapse
|
37
|
Acetylation of the Cd8 Locus by KAT6A Determines Memory T Cell Diversity. Cell Rep 2018; 16:3311-3321. [PMID: 27653692 DOI: 10.1016/j.celrep.2016.08.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022] Open
Abstract
How functionally diverse populations of pathogen-specific killer T cells are generated during an immune response remains unclear. Here, we propose that fine-tuning of CD8αβ co-receptor levels via histone acetylation plays a role in lineage fate. We show that lysine acetyltransferase 6A (KAT6A) is responsible for maintaining permissive Cd8 gene transcription and enabling robust effector responses during infection. KAT6A-deficient CD8(+) T cells downregulated surface CD8 co-receptor expression during clonal expansion, a finding linked to reduced Cd8α transcripts and histone-H3 lysine 9 acetylation of the Cd8 locus. Loss of CD8 expression in KAT6A-deficient T cells correlated with reduced TCR signaling intensity and accelerated contraction of the effector-like memory compartment, whereas the long-lived memory compartment appeared unaffected, a result phenocopied by the removal of the Cd8 E8I enhancer element. These findings suggest a direct role of CD8αβ co-receptor expression and histone acetylation in shaping functional diversity within the cytotoxic T cell pool.
Collapse
|
38
|
Di Martile M, Del Bufalo D, Trisciuoglio D. The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target. Oncotarget 2018; 7:55789-55810. [PMID: 27322556 PMCID: PMC5342454 DOI: 10.18632/oncotarget.10048] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022] Open
Abstract
Lysine acetylation is a post-translational modification that regulates gene transcription by targeting histones as well as a variety of transcription factors in the nucleus. Recently, several reports have demonstrated that numerous cytosolic proteins are also acetylated and that this modification, affecting protein activity, localization and stability has profound consequences on their cellular functions. Interestingly, most non-histone proteins targeted by acetylation are relevant for tumorigenesis. In this review, we will analyze the functional implications of lysine acetylation in different cellular compartments, and will examine our current understanding of lysine acetyltransferases family, highlighting the biological role and prognostic value of these enzymes and their substrates in cancer. The latter part of the article will address challenges and current status of molecules targeting lysine acetyltransferase enzymes in cancer therapy.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
39
|
Kang H, Jung YL, McElroy KA, Zee BM, Wallace HA, Woolnough JL, Park PJ, Kuroda MI. Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in Drosophila. Genes Dev 2017; 31:1988-2002. [PMID: 29070704 PMCID: PMC5710143 DOI: 10.1101/gad.305987.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/28/2017] [Indexed: 02/05/2023]
Abstract
Kang et al. confirm PRC1–Br140 and PRC1–Fs(1)h interactions and identify their genomic binding sites. PRC1–Br140 bind developmental genes in fly embryos, with analogous co-occupancy of PRC1 and BRD1 at bivalent loci in human ES cells. Regulatory decisions in Drosophila require Polycomb group (PcG) proteins to maintain the silent state and Trithorax group (TrxG) proteins to oppose silencing. Since PcG and TrxG are ubiquitous and lack apparent sequence specificity, a long-standing model is that targeting occurs via protein interactions; for instance, between repressors and PcG proteins. Instead, we found that Pc-repressive complex 1 (PRC1) purifies with coactivators Fs(1)h [female sterile (1) homeotic] and Enok/Br140 during embryogenesis. Fs(1)h is a TrxG member and the ortholog of BRD4, a bromodomain protein that binds to acetylated histones and is a key transcriptional coactivator in mammals. Enok and Br140, another bromodomain protein, are orthologous to subunits of a mammalian MOZ/MORF acetyltransferase complex. Here we confirm PRC1–Br140 and PRC1–Fs(1)h interactions and identify their genomic binding sites. PRC1–Br140 bind developmental genes in fly embryos, with analogous co-occupancy of PRC1 and a Br140 ortholog, BRD1, at bivalent loci in human embryonic stem (ES) cells. We propose that identification of PRC1–Br140 “bivalent complexes” in fly embryos supports and extends the bivalency model posited in mammalian cells, in which the coexistence of H3K4me3 and H3K27me3 at developmental promoters represents a poised transcriptional state. We further speculate that local competition between acetylation and deacetylation may play a critical role in the resolution of bivalent protein complexes during development.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Youngsook L Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kyle A McElroy
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Barry M Zee
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Heather A Wallace
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jessica L Woolnough
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
40
|
Liu N, Li S, Wu N, Cho KS. Acetylation and deacetylation in cancer stem-like cells. Oncotarget 2017; 8:89315-89325. [PMID: 29179522 PMCID: PMC5687692 DOI: 10.18632/oncotarget.19167] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem-like cell (CSC) model has been established to investigate the underlying mechanisms of tumor initiation and progression. The imbalance between acetylation and deacetylation of histone or non-histone proteins, one of the important epigenetic modification processes, is closely associated with a wide variety of diseases including cancer. Acetylation and deacetylation are involved in various stemness-related signal pathways and drive the regulation of self-renewal and differentiation in normal developmental processes. Therefore, it is critical to explore their role in the maintenance of cancer stem-like cell traits. Here, we will review the extensive dysregulations of acetylation found in cancers and summarize their functional roles in sustaining CSC-like properties. Additionally, the use of deacetyltransferase inhibitors as an effective therapeutic strategy against CSCs is also discussed.
Collapse
Affiliation(s)
- Na Liu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiqi Li
- Center of biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Wu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Li G, Li N, Li J, Ding Y, Yu T, Wang X, Wang J. De Novo Mutation of KAT6B Gene Causing Atypical Say-Barber-Biesecker-Young-Simpson Syndrome or Genitopatellar Syndrome. Fetal Pediatr Pathol 2017; 36:130-138. [PMID: 28426343 DOI: 10.1080/15513815.2017.1281364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in KAT6B gene are responsible for Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) and genitopatellar syndrome (GPS), with most mutations occurring in exon 18. A 4-year-old Chinese boy presented with short stature but no other clinical features of SBBYSS or GPS had a de novo novel nonsense pathogenic mutation in exon 14 of the KAT6B gene at position c.2636T>A (p.Leu879X). The correlation analysis of genotype-phenotype indicated distinctive clinical features (short stature, growth hormone deficiency, and delayed bone age) compared with the classical mutations of KAT6B gene. To the best of our knowledge, this is the first report of KAT6B gene mutation in any Chinese individual. This work expands the mutant phenotypic spectrum of the KAT6B gene.
Collapse
Affiliation(s)
- Guoqiang Li
- a Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China.,b Department of Medical Genetics , Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Niu Li
- b Department of Medical Genetics , Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Juan Li
- c Department of Endocrinology , Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yu Ding
- c Department of Endocrinology , Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Tingting Yu
- a Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Xiumin Wang
- b Department of Medical Genetics , Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China.,c Department of Endocrinology , Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jian Wang
- a Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China.,b Department of Medical Genetics , Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
42
|
Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026534. [PMID: 27881443 DOI: 10.1101/cshperspect.a026534] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
p300 and CREB-binding protein (CBP), two homologous lysine acetyltransferases in metazoans, have a myriad of cellular functions. They exert their influence mainly through their roles as transcriptional regulators but also via nontranscriptional effects inside and outside of the nucleus on processes such as DNA replication and metabolism. The versatility of p300/CBP as molecular tools has led to their exploitation by viral oncogenes for cellular transformation and by cancer cells to achieve and maintain an oncogenic phenotype. How cancer cells use p300/CBP in their favor varies depending on the cellular context and is evident by the growing list of loss- and gain-of-function genetic alterations in p300 and CBP in solid tumors and hematological malignancies. Here, we discuss the biological functions of p300/CBP and how disruption of these functions by mutations and alterations in expression or subcellular localization contributes to the cancer phenotype.
Collapse
Affiliation(s)
- Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
43
|
Valerio DG, Xu H, Chen CW, Hoshii T, Eisold ME, Delaney C, Cusan M, Deshpande AJ, Huang CH, Lujambio A, Zheng YG, Zuber J, Pandita TK, Lowe SW, Armstrong SA. Histone Acetyltransferase Activity of MOF Is Required for MLL-AF9 Leukemogenesis. Cancer Res 2017; 77:1753-1762. [PMID: 28202522 DOI: 10.1158/0008-5472.can-16-2374] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/22/2016] [Accepted: 12/31/2016] [Indexed: 01/16/2023]
Abstract
Chromatin-based mechanisms offer therapeutic targets in acute myeloid leukemia (AML) that are of great current interest. In this study, we conducted an RNAi-based screen to identify druggable chromatin regulator-based targets in leukemias marked by oncogenic rearrangements of the MLL gene. In this manner, we discovered the H4K16 histone acetyltransferase (HAT) MOF to be important for leukemia cell growth. Conditional deletion of Mof in a mouse model of MLL-AF9-driven leukemogenesis reduced tumor burden and prolonged host survival. RNA sequencing showed an expected downregulation of genes within DNA damage repair pathways that are controlled by MOF, as correlated with a significant increase in yH2AX nuclear foci in Mof-deficient MLL-AF9 tumor cells. In parallel, Mof loss also impaired global H4K16 acetylation in the tumor cell genome. Rescue experiments with catalytically inactive mutants of MOF showed that its enzymatic activity was required to maintain cancer pathogenicity. In support of the role of MOF in sustaining H4K16 acetylation, a small-molecule inhibitor of the HAT component MYST blocked the growth of both murine and human MLL-AF9 leukemia cell lines. Furthermore, Mof inactivation suppressed leukemia development in an NUP98-HOXA9-driven AML model. Taken together, our results establish that the HAT activity of MOF is required to sustain MLL-AF9 leukemia and may be important for multiple AML subtypes. Blocking this activity is sufficient to stimulate DNA damage, offering a rationale to pursue MOF inhibitors as a targeted approach to treat MLL-rearranged leukemias. Cancer Res; 77(7); 1753-62. ©2017 AACR.
Collapse
Affiliation(s)
- Daria G Valerio
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Haiming Xu
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chun-Wei Chen
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Takayuki Hoshii
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Meghan E Eisold
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher Delaney
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Monica Cusan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aniruddha J Deshpande
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chun-Hao Huang
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York
| | - YuJun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas
| | - Scott W Lowe
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott A Armstrong
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York. .,Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Identification of MYST3 as a novel epigenetic activator of ERα frequently amplified in breast cancer. Oncogene 2016; 36:2910-2918. [PMID: 27893709 PMCID: PMC5436938 DOI: 10.1038/onc.2016.433] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/24/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Estrogen receptor α (ERα) is a master driver of a vast majority of breast cancers. Breast cancer cells often develop resistance to endocrine therapy via restoration of the ERα activity through survival pathways. Thus identifying the epigenetic activator of ERα that can be targeted to block ERα gene expression is a critical topic of endocrine therapy. Here, integrative genomic analysis identified MYST3 as a potential oncogene target that is frequently amplified in breast cancer. MYST3 is involved in histone acetylation via its histone acetyltransferase domain (HAT) and, as a result, activates gene expression by altering chromatin structure. We found that MYST3 was amplified in 11% and/or overexpressed in 15% of breast tumors, and overexpression of MYST3 correlated with worse clinical outcome in estrogen receptor+ (ER+) breast cancers. Interestingly, MYST3 depletion drastically inhibited proliferation in MYST3-high, ER+ breast cancer cells, but not in benign breast epithelial cells or in MYST3-low breast cancer cells. Importantly, we discovered that knocking down MYST3 resulted in profound reduction of ERα expression, while ectopic expression of MYST3 had the reversed effect. Chromatin immunoprecipitation revealed that MYST3 binds to the proximal promoter region of ERα gene, and inactivating mutations in its HAT domain abolished its ability to regulate ERα, suggesting MYST3 functioning as a histone acetyltransferase that activates ERα promoter. Furthermore, MYST3 inhibition with inducible MYST3 shRNAs potently attenuated breast tumor growth in mice. Together, this study identifies the first histone acetyltransferase that activates ERα expression which may be potentially targeted to block ERα at transcriptional level.
Collapse
|
45
|
Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice. Blood 2016; 129:48-59. [PMID: 27827827 DOI: 10.1182/blood-2016-05-714568] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 12/26/2022] Open
Abstract
K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated. We set out to study the role of MOF in general hematopoiesis by using a Vav1-cre-induced conditional murine Mof knockout system and found that MOF is critical for hematopoietic cell maintenance and HSC engraftment capacity in adult hematopoiesis. Rescue experiments with a MOF histone acetyltransferase domain mutant illustrated the requirement for MOF acetyltransferase activity in the clonogenic capacity of HSCs and progenitors. In stark contrast, fetal steady-state hematopoiesis at embryonic day (E) 14.5 was not affected by homozygous Mof deletion despite dramatic loss of global H4K16ac. Hematopoietic defects start manifesting in late gestation at E17.5. The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoiesis at varying stages of development. MOF is therefore a developmental-stage-specific chromatin regulator found to be essential for adult but not early fetal hematopoiesis.
Collapse
|
46
|
Sundar IK, Rahman I. Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1245-L1258. [PMID: 27793800 DOI: 10.1152/ajplung.00253.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/23/2016] [Indexed: 01/23/2023] Open
Abstract
Chromatin-modifying enzymes mediate DNA methylation and histone modifications on recruitment to specific target gene loci in response to various stimuli. The key enzymes that regulate chromatin accessibility for maintenance of modifications in DNA and histones, and for modulation of gene expression patterns in response to cigarette smoke (CS), are not known. We hypothesize that CS exposure alters the gene expression patterns of chromatin-modifying enzymes, which then affects multiple downstream pathways involved in the response to CS. We have, therefore, analyzed chromatin-modifying enzyme profiles and validated by quantitative real-time PCR (qPCR). We also performed immunoblot analysis of targeted histone marks in C57BL/6J mice exposed to acute and subchronic CS, and of lungs from nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). We found a significant increase in expression of several chromatin modification enzymes, including DNA methyltransferases, histone acetyltransferases, histone methyltransferases, and SET domain proteins, histone kinases, and ubiquitinases. Our qPCR validation data revealed a significant downregulation of Dnmt1, Dnmt3a, Dnmt3b, Hdac2, Hdac4, Hat1, Prmt1, and Aurkb We identified targeted chromatin histone marks (H3K56ac and H4K12ac), which are induced by CS. Thus CS-induced genotoxic stress differentially affects the expression of epigenetic modulators that regulate transcription of target genes via DNA methylation and site-specific histone modifications. This may have implications in devising epigenetic-based therapies for COPD and lung cancer.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
47
|
You L, Li L, Zou J, Yan K, Belle J, Nijnik A, Wang E, Yang XJ. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest 2016; 126:3247-62. [PMID: 27500495 DOI: 10.1172/jci80711] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs) serve as a life-long reservoir for all blood cell types and are clinically useful for a variety of HSC transplantation-based therapies. Understanding the role of chromatin organization and regulation in HSC homeostasis may provide important insights into HSC development. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator that possesses 4 nucleosome-binding domains and activates 3 lysine acetyltransferases (KAT6A, KAT6B, and KAT7), suggesting that this protein has the potential to stimulate crosstalk between different chromatin modifications. Here, we investigated the function of BRPF1 in hematopoiesis by selectively deleting its gene in murine blood cells. Brpf1-deficient pups experienced early lethality due to acute bone marrow failure and aplastic anemia. The mutant bone marrow and fetal liver exhibited severe deficiency in HSCs and hematopoietic progenitors, along with elevated reactive oxygen species, senescence, and apoptosis. BRPF1 deficiency also reduced the expression of multipotency genes, including Slamf1, Mecom, Hoxa9, Hlf, Gfi1, Egr, and Gata3. Furthermore, BRPF1 was required for acetylation of histone H3 at lysine 23, a highly abundant but not well-characterized epigenetic mark. These results identify an essential role of the multivalent chromatin regulator BRPF1 in definitive hematopoiesis and illuminate a potentially new avenue for studying epigenetic networks that govern HSC ontogeny.
Collapse
|
48
|
Rolfe AJ, Bosco DB, Wang J, Nowakowski RS, Fan J, Ren Y. Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells. Cell Biosci 2016; 6:42. [PMID: 27293547 PMCID: PMC4902960 DOI: 10.1186/s13578-016-0110-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The single-stranded RNA Flavivirus, Zika virus (ZIKV), has recently re-emerged and spread rapidly across the western hemisphere's equatorial countries, primarily through Aedes mosquito transmission. While symptoms in adult infections appear to be self-limiting and mild, severe birth defects, such as microcephaly, have been linked to infection during early pregnancy. Recently, Tang et al. (Cell Stem Cell 2016, doi: 10.1016/j.stem.2016.02.016) demonstrated that ZIKV efficiently infects induced pluripotent stem cell (iPSC) derived human neural progenitor cells (hNPCs), resulting in cell cycle abnormalities and apoptosis. Consequently, hNPCs are a suggested ZIKV target. METHODS We analyzed the transcriptomic sequencing (RNA-seq) data (GEO: GSE78711) of ZIKV (Strain: MR766) infected hNPCs. For comparison to the ZIKV-infected hNPCs, the expression data from hNPCs infected with human cytomegalovirus (CMV) (Strain: AD169) was used (GEO: GSE35295). Utilizing a combination of Gene Ontology, database of human diseases, and pathway analysis, we generated a putative systemic model of infection supported by known molecular pathways of other highly related viruses. RESULTS We analyzed RNA-sequencing data for transcript expression alterations in ZIKV-infected hNPCs, and then compared them to expression patterns of iPSC-derived hNPCs infected with CMV, a virus that can also induce severe congenital neurological defects in developing fetuses. We demonstrate for the first time that many of cellular pathways correlate with clinical pathologies following ZIKV infection such as microcephaly, congenital nervous system disorders and epilepsy. Furthermore, ZIKV activates several inflammatory signals within infected hNPCs that are implicated in innate and acquired immune responses, while CMV-infected hNPCs showed limited representation of these pathways. Moreover, several genes related to pathogen responses are significantly upregulated upon ZIKV infection, but not perturbed in CMV-infected hNPCs. CONCLUSION The presented study is the first to report enrichment of numerous pro-inflammatory pathways in ZIKV-infected hNPCs, indicating that hNPCs are capable of signaling through canonical pro-inflammatory pathways following viral infection. By defining gene expression profiles, new factors in the pathogenesis of ZIKV were identified which could help develop new therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa J. Rolfe
- />Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Street, Tallahassee, FL 32306 USA
| | - Dale B. Bosco
- />Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Street, Tallahassee, FL 32306 USA
| | - Jingying Wang
- />Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Street, Tallahassee, FL 32306 USA
| | - Richard S. Nowakowski
- />Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Street, Tallahassee, FL 32306 USA
| | - Jianqing Fan
- />Statistical Laboratory, Princeton University, Princeton, NJ 08540 USA
| | - Yi Ren
- />Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Street, Tallahassee, FL 32306 USA
| |
Collapse
|
49
|
The BRPF2/BRD1-MOZ complex is involved in retinoic acid-induced differentiation of embryonic stem cells. Exp Cell Res 2016; 346:30-9. [PMID: 27256846 DOI: 10.1016/j.yexcr.2016.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
The scaffold protein BRPF2 (also called BRD1), a key component of histone acetyltransferase complexes, plays an important role in embryonic development, but its function in the differentiation of embryonic stem cells (ESCs) remains unknown. In the present study, we investigated whether BRPF2 is involved in mouse ESC differentiation. BRPF2 depletion resulted in abnormal formation of embryoid bodies, downregulation of differentiation-associated genes, and persistent maintenance of alkaline phosphatase activity even after retinoic acid-induced differentiation, indicating impaired differentiation of BRPF2-depleted ESCs. We also found reduced global acetylation of histone H3 lysine 14 (H3K14) in BRPF2-depleted ESCs, irrespective of differentiation status. Further, co-immunoprecipitation analysis revealed a physical association between BRPF2 and the histone acetyltransferase MOZ in differentiated ESCs, suggesting the role of BRPF2-MOZ complexes in ESC differentiation. Together, these results suggest that BRPF2-MOZ complexes play an important role in the differentiation of ESCs via H3K14 acetylation.
Collapse
|
50
|
Huang F, Saraf A, Florens L, Kusch T, Swanson SK, Szerszen LT, Li G, Dutta A, Washburn MP, Abmayr SM, Workman JL. The Enok acetyltransferase complex interacts with Elg1 and negatively regulates PCNA unloading to promote the G1/S transition. Genes Dev 2016; 30:1198-210. [PMID: 27198229 PMCID: PMC4888840 DOI: 10.1101/gad.271429.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
Abstract
KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin.
Collapse
Affiliation(s)
- Fu Huang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Anita Saraf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Thomas Kusch
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Leanne T Szerszen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ge Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Arnob Dutta
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| |
Collapse
|