1
|
Wolff JO, Ashley LJ, Schmitt C, Heu C, Denkova D, Jani M, Řezáčová V, Blamires SJ, Gorb SN, Garb J, Goodacre SL, Řezáč M. From fibres to adhesives: evolution of spider capture threads from web anchors by radical changes in silk gland function. J R Soc Interface 2024; 21:20240123. [PMID: 39081115 PMCID: PMC11289648 DOI: 10.1098/rsif.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Spider webs that serve as snares are one of the most fascinating and abundant type of animal architectures. In many cases they include an adhesive coating of silk lines-so-called viscid silk-for prey capture. The evolutionary switch from silk secretions forming solid fibres to soft aqueous adhesives remains an open question in the understanding of spider silk evolution. Here we functionally and chemically characterized the secretions of two types of silk glands and their behavioural use in the cellar spider, Pholcus phalangioides. Both being derived from the same ancestral gland type that produces fibres with a solidifying glue coat, the two types produce respectively a quickly solidifying glue applied in thread anchorages and prey wraps, or a permanently tacky glue deployed in snares. We found that the latter is characterized by a high concentration of organic salts and reduced spidroin content, showing up a possible pathway for the evolution of viscid properties by hygroscopic-salt-mediated hydration of solidifying adhesives. Understanding the underlying molecular basis for such radical switches in material properties not only helps to better understand the evolutionary origins and versatility of ecologically impactful spider web architectures, but also informs the bioengineering of spider silk-based products with tailored properties.
Collapse
Affiliation(s)
- Jonas O. Wolff
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, Greifswald 17489, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Leah J. Ashley
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Clemens Schmitt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Potsdam 14476, Germany
| | - Celine Heu
- Katharina Gaus Light Microscopy Facility (KGLMF), Mark Wainwright Analytical Centre, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Denitza Denkova
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Maitry Jani
- Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, Greifswald 17489, Germany
| | - Veronika Řezáčová
- Functional Biodiversity Team, Crop Research Institute, Drnovská 507, CZ-16106 Prague 6 – Ruzyně, Czechia
| | - Sean J. Blamires
- Evolution and Ecology Research Centre, School of Biology, Earth and Environmental Sciences, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9 Kiel, 24098, Germany
| | - Jessica Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Sara L. Goodacre
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Milan Řezáč
- Functional Biodiversity Team, Crop Research Institute, Drnovská 507, CZ-16106 Prague 6 – Ruzyně, Czechia
| |
Collapse
|
2
|
VanDyck MW, Long JH, Baker RH, Hayashi CY, Diaz C. Special Prey, Special Glue: NMR Spectroscopy on Aggregate Glue Components of Moth-Specialist Spiders, Cyrtarachninae. Biomimetics (Basel) 2024; 9:256. [PMID: 38786466 PMCID: PMC11117802 DOI: 10.3390/biomimetics9050256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Orb-weaver spiders produce upwards of seven different types of silk, each with unique material properties. We focus on the adhesive within orb-weaving spider webs, aggregate glue silk. These droplets are composed of three main components: water, glycoproteins, and a wide range of low molecular mass compounds (LMMCs). These LMMCs are known to play a crucial role in maintaining the material properties of the glycoproteins, aid in water absorption from the environment, and increase surface adhesion. Orb-weavers within the Cyrtarachninae subfamily are moth specialists and have evolved glue droplets with novel material properties. This study investigated the biochemical composition and diversity of the LMMCs present in the aggregate glue of eight moth-specialist species and compared them with five generalist orb-weavers using nuclear magnetic resonance (NMR) spectroscopy. We hypothesized that the novel drying ability of moth-specialist glue was accompanied by novel LMMCs and lower overall percentages by silk weight of LMMCs. We measured no difference in LMMC weight by the type of prey specialization, but observed novel compositions in the glue of all eight moth-catching species. Further, we quantified the presence of a previously reported but unidentified compound that appears in the glue of all moth specialists. These silks can provide insight into the functions of bioadhesives and inform our own synthetic adhesives.
Collapse
Affiliation(s)
- Max W. VanDyck
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA; (M.W.V.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - John H. Long
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA; (M.W.V.)
- Department of Cognitive Science, Vassar College, Poughkeepsie, NY 12604, USA
| | - Richard H. Baker
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; (R.H.B.); (C.Y.H.)
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; (R.H.B.); (C.Y.H.)
| | - Candido Diaz
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA; (M.W.V.)
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
3
|
Diaz C, Long JH. Behavior and Bioadhesives: How Bolas Spiders, Mastophora hutchinsoni, Catch Moths. INSECTS 2022; 13:insects13121166. [PMID: 36555076 PMCID: PMC9780859 DOI: 10.3390/insects13121166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
Spiders use various combinations of silks, adhesives, and behaviors to ensnare and trap prey. A common but difficult to catch prey in most spider habitats are moths. They easily escape typical orb-webs because their bodies are covered in sacrificial scales that flake off when in contact with the web's adhesives. This defense is defeated by spiders of the sub-family of Cyrtarachninae, moth-catching specialists who combine changes in orb-web structure, predatory behavior, and chemistry of the aggregate glue placed in those webs. The most extreme changes in web structure are shown by bolas spiders, who create a solitary capture strand containing only one or two glue droplets at the end of a single thread. They prey on male moths by releasing pheromones to draw them within range of their bolas, which they flick to ensnare the moth. We used a high-speed video camera to capture the behavior of the bolas spider Mastophora hutchinsoni. We calculated the kinematics of spiders and moths in the wild to model the physical and mechanical properties of the bolas during prey capture, the behavior of the moth, and how these factors lead to successful prey capture. We created a numerical model to explain the mechanical behavior of the bolas silk during prey capture. Our kinematic analysis shows that the material properties of the aggregate glue bolas of M. hutchinsoni are distinct from that of the other previously analyzed moth-specialist, Cyrtarachne akirai. The spring-like behavior of the M. hutchinsoni bolas suggests it spins a thicker liquid.
Collapse
|
4
|
Diaz C, Roff J. Mechanics of the Prey Capture Technique of the South African Grassland Bolas Spider, Cladomelea akermani. INSECTS 2022; 13:insects13121118. [PMID: 36555028 PMCID: PMC9785433 DOI: 10.3390/insects13121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 05/12/2023]
Abstract
Spiders use various combinations of silks, adhesives, and behaviors to ensnare prey. One common but difficult-to-catch prey is moths. They easily escape typical orb-webs because their bodies are covered in tiny sacrificial scales that flake off when in contact with the web's adhesives. This defense is defeated by spiders of the sub-family of Cyrtarachninae-moth-catching specialists who combine changes in orb-web structure, predatory behavior, and chemistry of the aggregate glue placed in those webs. The most extreme changes in web structure are shown by the bolas spiders which create only one or two glue droplets at the end of a single thread. They prey on male moths by releasing pheromones to draw them close. Here, we confirm the hypothesis that the spinning behavior of the spider is directly used to spin its glue droplets using a high-speed video camera to observe the captured behavior of the bolas spider Cladomelea akermani as it actively spins its body and bolas. We use the kinematics of the spider and bolas to begin to quantify and model the physical and mechanical properties of the bolas during prey capture. We then examine why this species chooses to spin its body, an energetically costly behavior, during prey capture. We test the hypothesis that spinning helps to spread pheromones by creating a computational fluid dynamics model of airflow within an open field and comparing it to that of airflow within a tree, a common environment for bolas spiders that do not spin. Spinning in an open environment creates turbulent air, spreading pheromones further and creating a pocket of pheromones. Conversely, spinning within a tree does little to affect the natural airflow.
Collapse
Affiliation(s)
- Candido Diaz
- Biology Department, Vassar College, Poughkeepsie, NY 12604, USA
- Correspondence:
| | - John Roff
- Independent Researcher, Pietermaritzburg 3201, Kwazulu-Natal, South Africa
| |
Collapse
|
5
|
Amarpuri G, Dhopatkar N, Blackledge TA, Dhinojwala A. Molecular Changes in Spider Viscid Glue As a Function of Relative Humidity Revealed Using Infrared Spectroscopy. ACS Biomater Sci Eng 2022; 8:3354-3360. [PMID: 35894694 DOI: 10.1021/acsbiomaterials.2c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider aggregate glue can absorb moisture from the atmosphere to reduce its viscosity and become tacky. The viscosity at which glue adhesion is maximized is remarkably similar across spider species, even though that viscosity is achieved at very different relative humidity (RH) values matching their diverse habitats. However, the molecular changes in the protein structure and the bonding state of water (both referred to here as molecular structure) with respect to the changes in RH are not known. We use attenuated total reflectance-infrared (ATR-IR) spectroscopy to probe the changes in the molecular structure of glue as a function of RH for three spider species from different habitats. We find that the glue retains bound water at lower RH and absorbs liquid-like water at higher RH. The absorption of liquid-like water at high RH plasticizes the glue and explains the decrease in glue viscosity. The changes to protein conformations as a function RH are either subtle or not detectable by IR spectroscopy. Importantly, the molecular changes are reversible over multiple cycles of RH change. Further, separation of glue constituents results in a different humidity response as compared to pristine glue, supporting the standing hypothesis that the glue constituents have a synergistic association that makes spider glue a functional adhesive. The results presented in this study provide further insights into the mechanism of the humidity-responsive adhesion of spider glue.
Collapse
Affiliation(s)
- Gaurav Amarpuri
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nishad Dhopatkar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Todd A Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Kelly SD, Opell BD, Correa‐Garwhal SM. Correlated evolution between orb weaver glue droplets and supporting fibres maintains their distinct biomechanical roles in adhesion. J Evol Biol 2022; 35:879-890. [PMID: 35694995 PMCID: PMC9327512 DOI: 10.1111/jeb.14025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022]
Abstract
Orb weaving spiders employ a 'silken toolkit' to accomplish a range of tasks, including retaining prey that strike their webs. This is accomplished by a viscous capture spiral thread that features tiny glue droplets, supported by a pair of elastic flagelliform fibres. Each droplet contains a glycoprotein core responsible for adhesion. However, prey retention relies on the integrated performance of multiple glue droplets and their supporting fibres, with previous studies demonstrating that a suspension bridge forms, whose biomechanics sum the adhesive forces of multiple droplets while dissipating the energy of the struggling insect. While the interdependence of the droplet's glycoprotein and flagelliform fibres for functional adhesion is acknowledged, there has been no direct test of this hypothesized linkage between the material properties of each component. Spider mass, which differs greatly across orb weaving species, also has the potential to affect flagelliform fibre and glycoprotein material properties. Previous studies have linked spider mass to capture thread performance but have not examined the relationship between spider mass and thread material properties. We extend earlier studies to examine these relationships in 16 orb weaving species using phylogenetic generalized least squares. This analysis revealed that glycoprotein stiffness (elastic modulus) was correlated with flagelliform fibre stiffness, and that spider mass was related to the glycoprotein volume, flagelliform fibre cross-sectional area and droplets per unit thread length. By shaping the elastic moduli of glycoprotein adhesive and flagelliform fibres, natural selection has maintained the biomechanical integration of this adhesive system.
Collapse
Affiliation(s)
- Sean D. Kelly
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Evolution, Ecology, and Organismal Biology DepartmentUniversity of California RiversideRiversideCaliforniaUSA
| | - Brent D. Opell
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | | |
Collapse
|
7
|
Beydizada N, Řezáč M, Pekár S. Use of conditional prey attack strategies in two generalist ground spider species. Ethology 2022. [DOI: 10.1111/eth.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Narmin Beydizada
- Department of Botany & Zoology Faculty of Science Masaryk University Brno Czech Republic
| | - Milan Řezáč
- Biodiversity Lab Crop Research Institute Prague‐Ruzynĕ Czech Republic
| | - Stano Pekár
- Department of Botany & Zoology Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
8
|
Stellwagen SD, Burns M. Repeat variation resolves a complete aggregate silk sequence of bolas spider Mastophora phrynosoma. Integr Comp Biol 2021; 61:1450-1458. [PMID: 33944935 DOI: 10.1093/icb/icab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many species of spider use a modified silk adhesive, called aggregate glue, to aid in prey capture. Aggregate spidroins (spider fibroins) are modified members of the spider silk family, however they are not spun into fibers as are their solid silk relatives. The genes that encode for aggregate spidroins are the largest of the known spidroin genes and are similarly highly repetitive. In this study, we used long read sequencing to discover the aggregate spidroin genes of the toad-like bolas spider, Mastophora phrynosoma, which employs the glue in a unique way, using only a single, large droplet to capture moths. While Aggregate Spidroin 1 (AgSp1) remains incomplete, AgSp2 is more than an extraordinary 62 kilobases of coding sequence, 20 kb longer than the longest spidroin on record. The structure of repeats from both aggregate silk proteins follows a similar pattern seen in other species, with the same strict conservation of amino acid residue number for much of the repeats' lengths. Interestingly, AgSp2 lacks the elevated number and groupings of glutamine residues seen in the other reported AgSp2 of a classic orb weaving species. The role of gene length in glue functionality remains a mystery, and thus discovering length differences across species will allow understanding and harnessing of this attribute for the next generation of bio-inspired adhesives.
Collapse
Affiliation(s)
- Sarah D Stellwagen
- Department of Biological Sciences, UNC Charlotte, 9201, University City Blvd, NC 28223, USA
| | - Mercedes Burns
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, MD 21250, USA
| |
Collapse
|
9
|
Belbéoch C, Lejeune J, Vroman P, Salaün F. Silkworm and spider silk electrospinning: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:1737-1763. [PMID: 33424525 PMCID: PMC7779161 DOI: 10.1007/s10311-020-01147-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 05/27/2023]
Abstract
Issues of fossil fuel and plastic pollution are shifting public demand toward biopolymer-based textiles. For instance, silk, which has been traditionally used during at least 5 milleniums in China, is re-emerging in research and industry with the development of high-tech spinning methods. Various arthropods, e.g. insects and arachnids, produce silky proteinic fiber of unique properties such as resistance, elasticity, stickiness and toughness, that show huge potential for biomaterial applications. Compared to synthetic analogs, silk presents advantages of low density, degradability and versatility. Electrospinning allows the creation of nonwoven mats whose pore size and structure show unprecedented characteristics at the nanometric scale, versus classical weaving methods or modern techniques such as melt blowing. Electrospinning has recently allowed to produce silk scaffolds, with applications in regenerative medicine, drug delivery, depollution and filtration. Here we review silk production by the spinning apparatus of the silkworm Bombyx mori and the spiders Aranea diadematus and Nephila Clavipes. We present the biotechnological procedures to get silk proteins, and the preparation of a spinning dope for electrospinning. We discuss silk's mechanical properties in mats obtained from pure polymer dope and multi-composites. This review highlights the similarity between two very different yarn spinning techniques: biological and electrospinning processes.
Collapse
Affiliation(s)
- Clémence Belbéoch
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Joseph Lejeune
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Philippe Vroman
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| | - Fabien Salaün
- ENSAIT: Ecole Nationale Superieure des Arts et Industries Textiles, Roubaix, France
| |
Collapse
|
10
|
Zhao Y, Morita M, Sakamoto T. Analysis the water in aggregate glue droplets of spider orb web by TOF‐SIMS. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Zhao
- Collaborative Open Research Center Kogakuin University Tokyo Japan
| | - Masato Morita
- Department of Applied Physics, School of Advanced Engineering Kogakuin University Tokyo Japan
| | - Tetsuo Sakamoto
- Department of Applied Physics, School of Advanced Engineering Kogakuin University Tokyo Japan
| |
Collapse
|
11
|
Kono N, Nakamura H, Mori M, Tomita M, Arakawa K. Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies. Sci Rep 2020; 10:15721. [PMID: 32973264 PMCID: PMC7515903 DOI: 10.1038/s41598-020-72888-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/08/2020] [Indexed: 01/29/2023] Open
Abstract
Orb-weaving spiders have two main methods of prey capture: cribellate spiders use dry, sticky capture threads, and ecribellate spiders use viscid glue droplets. Predation behaviour is a major evolutionary driving force, and it is important on spider phylogeny whether the cribellate and ecribellate spiders each evolved the orb architecture independently or both strategies were derived from an ancient orb web. These hypotheses have been discussed based on behavioural and morphological characteristics, with little discussion on this subject from the perspective of molecular materials of orb web, since there is little information about cribellate spider-associated spidroin genes. Here, we present in detail a spidroin catalogue of six uloborid species of cribellate orb-weaving spiders, including cribellate and pseudoflagelliform spidroins, with transcriptome assembly complemented with long read sequencing, where silk composition is confirmed by proteomics. Comparative analysis across families (Araneidae and Uloboridae) shows that the gene architecture, repetitive domains, and amino acid frequencies of the orb web constituting silk proteins are similar among orb-weaving spiders regardless of the prey capture strategy. Notably, the fact that there is a difference only in the prey capture thread proteins strongly supports the monophyletic origin of the orb web.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan.
| | - Hiroyuki Nakamura
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
| |
Collapse
|
12
|
Li X, Mi J, Wen R, Zhang J, Cai Y, Meng Q, Lin Y. Wet-Spinning Synthetic Fibers from Aggregate Glue: Aggregate Spidroin 1 (AgSp1). ACS APPLIED BIO MATERIALS 2020; 3:5957-5965. [PMID: 35021824 DOI: 10.1021/acsabm.0c00619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spidroin has the potential of wide applications in the biomedicine field as a natural biomaterial. Various synthetic fibers with outstanding mechanical properties have been produced from different spidroins. However, studies on the structural analysis or biomimetic exploration of aggregate spidroin (AgSp) remain scarce. Here, three recombinant AgSp1 spidroins (1RP, 1RC, 3RP) were constructed and expressed in Escherichia coli, followed by purification via coupling heating and ammonium sulfate precipitation. Circular dichroism (CD) spectrum-based secondary structural analysis shows that 1RP and 3RP have similar structures (mainly random coil) in water and PB buffer, while 1RC is mainly composed of α-helix structure and HFIP can change all of the recombinant AgSp1 into helix structure. Through the wet-spinning method, six types of synthetic fibers were produced from these three recombinant AgSp1 spidroins. Subsequently, the properties and structures of synthetic fibers were characterized by mechanical testing and ATR-FTIR. Synthetic fibers spun from 3RP have considerable tensile strength and extensibility (∼37.56 MPa and ∼4.5%, respectively). To the best of our knowledge, this is the first synthetic fiber obtained from AgSp spidroin. Our results demonstrated that AgSp1 can be regarded as an available source of spidroin for silklike fiber production and may provide valuable perspectives on the AgSp1 biomimetic process for certain applications.
Collapse
Affiliation(s)
- Xue Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Junpeng Mi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Jie Zhang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Yuming Cai
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
13
|
Esteves FG, Dos Santos-Pinto JRA, Ferro M, Sialana FJ, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Lubec G, Palma MS. Revealing the Venomous Secrets of the Spider's Web. J Proteome Res 2020; 19:3044-3059. [PMID: 32538095 DOI: 10.1021/acs.jproteome.0c00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Orb-weaving spiders use a highly strong, sticky and elastic web to catch their prey. These web properties alone would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets in the web, which current research is revealing. Here, we provide strong proteotranscriptomic evidence for the presence of toxin/neurotoxin-like proteins, defensins, and proteolytic enzymes on the web silk from Nephila clavipes spider. The results from quantitative-based transcriptomic and proteomic approaches showed that silk-producing glands produce an extensive repertoire of toxin/neurotoxin-like proteins, similar to those already reported in spider venoms. Meanwhile, the insect toxicity results demonstrated that these toxic components can be lethal and/or paralytic chemical weapons used for prey capture on the web, and the presence of fatty acids in the web may be a responsible mechanism opening the way to the web toxins for accessing the interior of prey's body, as shown here. Comparative phylogenomic-level evolutionary analyses revealed orthologous genes among two spider groups, Araneomorphae and Mygalomorphae, and the findings showed protein sequences similar to toxins found in the taxa Scorpiones and Hymenoptera in addition to Araneae. Overall, these data represent a valuable resource to further investigate other spider web toxin systems and also suggest that N. clavipes web is not a passive mechanical trap for prey capture, but it exerts an active role in prey paralysis/killing using a series of neurotoxins.
Collapse
Affiliation(s)
- Franciele Grego Esteves
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Milene Ferro
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Lucaciu Calin Rares
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Nussbaumer
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Mauricio Bacci Júnior
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Gert Lubec
- Paracelsus Medical University, A 5020 Salzburg, Austria
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of General and Applied Biology, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
14
|
Blamires SJ, Sellers WI. Modelling temperature and humidity effects on web performance: implications for predicting orb-web spider ( Argiope spp.) foraging under Australian climate change scenarios. CONSERVATION PHYSIOLOGY 2019; 7:coz083. [PMID: 31832193 PMCID: PMC6899225 DOI: 10.1093/conphys/coz083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 05/11/2023]
Abstract
Phenotypic features extending beyond the body, or EPs, may vary plastically across environments. EP constructs, such as spider webs, vary in property across environments as a result of changes to the physiology of the animal or interactions between the environment and the integrity of the material from which the EP is manufactured. Due to the complexity of the interactions between EP constructs and the environment, the impact of climate change on EP functional integrity is poorly understood. Here we used a dynamic model to assess how temperature and humidity influence spider web major ampullate (MA) silk properties. MA silk is the silk that absorbs the impact of prey striking the web, hence our model provides a useful interpretation of web performance over the temperature (i.e. 20-55°C) and humidity (i.e. 15-100%) ranges assessed. Our results showed that extremely high or low humidity had direct negative effects on web capture performance, with changes in temperature likely having indirect effects. Undeniably, the effect of temperature on web architecture and its interactive effect with humidity on web tension and capture thread stickiness need to be factored into any further predictions of plausible climate change impacts. Since our study is the first to model plasticity in an EP construct's functionality and to extrapolate the results to predict climate change impacts, it stands as a template for future studies that endeavour to make predictions about the influence of climate change on animal EPs.
Collapse
Affiliation(s)
- S J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - W I Sellers
- School of Earth and Environmental Sciences, The University of Manchester, Williamson Building, Manchester M13 9PL, UK
| |
Collapse
|
15
|
Opell BD, Burba CM, Deva PD, Kin MHY, Rivas MX, Elmore HM, Hendricks ML. Linking properties of an orb-weaving spider's capture thread glycoprotein adhesive and flagelliform fiber components to prey retention time. Ecol Evol 2019; 9:9841-9854. [PMID: 31534698 PMCID: PMC6745672 DOI: 10.1002/ece3.5525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 11/07/2022] Open
Abstract
An orb web's adhesive capture spiral is responsible for prey retention. This thread is formed of regularly spaced glue droplets supported by two flagelliform axial lines. Each glue droplet features a glycoprotein adhesive core covered by a hygroscopic aqueous layer, which also covers axial lines between the droplets, making the entire thread responsive to environmental humidity.We characterized the effect of relative humidity (RH) on ability of Argiope aurantia and Argiope trifasciata thread arrays to retain houseflies and characterize the effect of humidity on their droplet properties. Using these data and those of Araneus marmoreus from a previous study, we then develop a regression model that correlated glycoprotein and flagelliform fiber properties with prey retention time. The model selection process included newly determined, humidity-specific Young's modulus and toughness values for the three species' glycoproteins.Argiope aurantia droplets are more hygroscopic than A. trifasciata droplets, causing the glycoprotein within A. aurantia droplets to become oversaturated at RH greater than 55% RH and their extension to decrease, whereas A. trifasciata droplet performance increases to 72% RH. This difference is reflected in species' prey retention times, with that of A. aurantia peaking at 55% RH and that of A. trifasciata at 72% RH.Fly retention time was explained by a regression model of five variables: glue droplet distribution, flagelliform fiber work of extension, glycoprotein volume, glycoprotein thickness, and glycoprotein Young's modulus.The material properties of both glycoprotein and flagelliform fibers appear to be phylogenetically constrained, whereas natural selection can more freely act on the amount of each material invested in a thread and on components of the thread's aqueous layer. Thus, it becomes easier to understand how natural selection can tune the performance of viscous capture threads by directing small changes in these components.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | - Pritesh D. Deva
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | - Malik X. Rivas
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | | |
Collapse
|
16
|
Michalik P, Piorkowski D, Blackledge TA, Ramírez MJ. Functional trade-offs in cribellate silk mediated by spinning behavior. Sci Rep 2019; 9:9092. [PMID: 31235797 PMCID: PMC6591232 DOI: 10.1038/s41598-019-45552-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/10/2019] [Indexed: 11/09/2022] Open
Abstract
Web-building spiders are an extremely diverse predatory group due to their use of physiologically differentiated silk types in webs. Major shifts in silk functional properties are classically attributed to innovations in silk genes and protein expression. Here, we disentangle the effects of spinning behavior on silk performance of the earliest types of capture threads in spider webs for the first time. Progradungula otwayensis produces two variations of cribellate silk in webs: ladder lines are stereotypically combed with the calamistrum while supporting rail lines contain silk that is naturally uncombed, spun without the intervention of the legs. Combed cribellate silk is highly extensible and adhesive suggesting that the reserve warp and cribellate fibrils brings them into tension only near or after the underlying axial fibers are broken. In contrast, these three fiber components are largely aligned in the uncombed threads and deform as a single composite unit that is 5-10x stronger, but significantly less adhesive, allowing them to act as structural elements in the web. Our study reveals that cribellate silk can occupy a surprisingly diverse performance space, accessible through simple changes in spider behavior, which may have facilitated the impressive diversification of web architectures utilizing this ancient silk.
Collapse
Affiliation(s)
- Peter Michalik
- Zoological Institute and Museum, University of Greifswald, Loitzer Straße 26, D-17489 Greifswald, Germany.
| | | | - Todd A Blackledge
- Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH, USA
| | - Martín J Ramírez
- Division of Arachnology, Museo Argentino de Ciencias Naturales - CONICET, Buenos Aires, Argentina
| |
Collapse
|
17
|
Zhao Y, Morita M, Sakamoto T. Loss of Phosphate Determines the Versatility of a Spider Orb-web Glue Ball. ANAL SCI 2019; 35:645-649. [PMID: 30773509 DOI: 10.2116/analsci.18p480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spiders capture their prey by weaving an "invisible" orb-web that has both adhesive and fixed properties. Different types of silk in the orb-web have different functions, wherein the key to capturing a prey is the ball-like glue (glue ball), which coats the silk strands. This glue ball has highly versatile properties, but the mechanisms leading to its versatility remain unclear. The salts found in the web have been previously suggested to play an important role in terms of viscosity, not water. However, the distribution of salt and water in the glue ball has not yet been directly observed. Here, we mapped the salts in different states using a homemade time-of-flight secondary ion mass spectrometer (TOF-SIMS) with a high lateral resolution. To our surprise, the glue ball was found to contain little water. The functional transformation of the glue ball from a viscous glycoprotein (capturing prey) to a hardened protein (retaining prey) relies solely on the stimulation of mechanical forces. The phosphate is a key factor for its versatility.
Collapse
Affiliation(s)
- Yue Zhao
- Collaborative Open Research Center, Kogakuin University
| | - Masato Morita
- Department of Applied Physics, School of Advanced Engineering, Kogakuin University
| | - Tetsuo Sakamoto
- Department of Applied Physics, School of Advanced Engineering, Kogakuin University
| |
Collapse
|
18
|
Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation. G3-GENES GENOMES GENETICS 2019; 9:1909-1919. [PMID: 30975702 PMCID: PMC6553539 DOI: 10.1534/g3.119.400065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An individual orb weaving spider can spin up to seven different types of silk, each with unique functions and material properties. The capture spiral silk of classic two-dimensional aerial orb webs is coated with an amorphous glue that functions to retain prey that get caught in a web. This unique modified silk is partially comprised of spidroins (spider fibroins) encoded by two members of the silk gene family. The glue differs from solid silk fibers as it is a viscoelastic, amorphic, wet material that is responsive to environmental conditions. Most spidroins are encoded by extremely large, highly repetitive genes that cannot be sequenced using short read technology alone, as the repetitive regions are longer than read length. We sequenced for the first time the complete genomic Aggregate Spidroin 1 (AgSp1) and Aggregate Spidroin 2 (AgSp2) glue genes of orb weaving spider Argiope trifasciata using error-prone long reads to scaffold for high accuracy short reads. The massive coding sequences are 42,270 bp (AgSp1) and 20,526 bp (AgSp2) in length, the largest silk genes currently described. The majority of the predicted amino acid sequence of AgSp1 consists of two similar but distinct motifs that are repeated ∼40 times each, while AgSp2 contains ∼48 repetitions of an AgSp1-similar motif, interspersed by regions high in glutamine. Comparisons of AgSp repetitive motifs from orb web and cobweb spiders show regions of strict conservation followed by striking diversification. Glues from these two spider families have evolved contrasting material properties in adhesion (stickiness), extensibility (stretchiness), and elasticity (the ability of the material to resume its native shape), which we link to mechanisms established for related silk genes in the same family. Full-length aggregate spidroin sequences from diverse species with differing material characteristics will provide insights for designing tunable bio-inspired adhesives for a variety of unique purposes.
Collapse
|
19
|
Orb weaver glycoprotein is a smart biological material, capable of repeated adhesion cycles. Naturwissenschaften 2019; 106:10. [DOI: 10.1007/s00114-019-1607-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/26/2022]
|
20
|
Biomechanical properties of fishing lines of the glowworm Arachnocampa luminosa (Diptera; Keroplatidae). Sci Rep 2019; 9:3082. [PMID: 30816149 PMCID: PMC6395680 DOI: 10.1038/s41598-019-39098-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022] Open
Abstract
Animals use adhesive secretions in highly diverse ways, such as for settlement, egg anchorage, mating, active or passive defence, etc. One of the most interesting functions is the use of bioadhesives to capture prey, as the bonding has to be performed within milliseconds and often under unfavourable conditions. While much is understood about the adhesive and biomechanical properties of the threads of other hunters such as spiders, barely anything is documented about those of the New Zealand glowworm Arachnocampa luminosa. We analysed tensile properties of the fishing lines of the New Zealand glowworm Arachnocampa luminosa under natural and dry conditions and measured their adhesion energy to different surfaces. The capture system of A. luminosa is highly adapted to the prevailing conditions (13-15 °C, relative humidity of 98%) whereby the wet fishing lines only show a bonding ability at high relative humidity (>80%) with a mean adhesive energy from 20-45 N/m and a stronger adhesion to polar surfaces. Wet threads show a slightly higher breaking strain value than dried threads, whereas the tensile strength of wet threads was much lower. The analyses show that breaking stress and strain values in Arachnocampa luminosa were very low in comparison to related Arachnocampa species and spider silk threads but exhibit much higher adhesion energy values. While the mechanical differences between the threads of various Arachnocampa species might be consequence of the different sampling and handling of the threads prior to the tests, differences to spiders could be explained by habitat differences and differences in the material ultrastructure. Orb web spiders produce viscid silk consisting of β-pleated sheets, whereas Arachnocampa has cross-β-sheet crystallites within its silk. As a functional explanation, the low tear strength for A. luminosa comprises a safety mechanism and ensures the entire nest is not pulled down by prey which is too heavy.
Collapse
|
21
|
dos Santos-Pinto JRA, Esteves FG, Sialana FJ, Ferro M, Smidak R, Rares LC, Nussbaumer T, Rattei T, Bilban M, Bacci Júnior M, Palma MS, Lübec G. A proteotranscriptomic study of silk-producing glands from the orb-weaving spiders. Mol Omics 2019; 15:256-270. [DOI: 10.1039/c9mo00087a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A proteotranscriptomic approach provides a biochemical basis for understanding the intricate spinning process and complex structural features of spider silk proteins.
Collapse
Affiliation(s)
| | - Franciele Grego Esteves
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | | | - Milene Ferro
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Roman Smidak
- Department of Pharmaceutical Chemistry
- University of Vienna
- Austria
| | - Lucaciu Calin Rares
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Thomas Nussbaumer
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Thomas Rattei
- Division of Computational System Biology
- Department of Microbiology and Ecosystem Science
- University of Vienna
- 1090 Vienna
- Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics
- Medical University of Vienna
- Vienna
- Austria
| | - Maurício Bacci Júnior
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Mario Sergio Palma
- Center of the Study of Social Insects
- Department of Biology
- Institute of Biosciences of Rio Claro
- São Paulo State University
- Rio Claro
| | - Gert Lübec
- Paracelsus Medical University
- A 5020 Salzburg
- Austria
| |
Collapse
|
22
|
Jain D, Amarpuri G, Fitch J, Blackledge TA, Dhinojwala A. Role of Hygroscopic Low Molecular Mass Compounds in Humidity Responsive Adhesion of Spider’s Capture Silk. Biomacromolecules 2018; 19:3048-3057. [DOI: 10.1021/acs.biomac.8b00602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dharamdeep Jain
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Gaurav Amarpuri
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jordan Fitch
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Todd. A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325-3908, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
23
|
Opell BD, Clouse ME, Andrews SF. Elastic modulus and toughness of orb spider glycoprotein glue. PLoS One 2018; 13:e0196972. [PMID: 29847578 PMCID: PMC5976159 DOI: 10.1371/journal.pone.0196972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/24/2018] [Indexed: 11/19/2022] Open
Abstract
An orb web's prey capture thread features tiny glue droplets, each formed of an adhesive glycoprotein core surrounded by an aqueous layer. Small molecules in the aqueous layer confer droplet hygroscopicity and maintain glycoprotein viscoelasticity, causing droplet volume and glycoprotein performance to track changes in environmental humidity. Droplet extension combines with that of a thread's supporting flagelliform fibers to sum the adhesive forces of multiple droplets, creating an effective adhesive system. We combined measurements of the force on an extending droplet, as gauged by the deflection of its support line, with measurements of glycoprotein volume and droplet extension to determine the Young's modulus (E) and toughness of three species' glycoproteins. We did this at five relative humidities between 20-90% to assess the effect of humidity on these properties. When droplets of a thread span extend, their extensions are constrained and their glycoprotein filaments remain covered by aqueous material. This was also the case during the first extension phase of the individual droplets that we examined. However, as extension progressed, the aqueous layer was progresses disrupted, exposing the glycoprotein. During the first extension phase E ranged from 0.00003 GPa, a value similar to that of fibronectin, a glycoprotein that anchors cells in the extracellular matrix, to 0.00292 GPa, a value similar to that of resilin in insect ligaments. Second phase E increased 4.7-19.4-fold. When compared at the same humidity the E of each species' glycoprotein was less than 5% of the value reported for its flagelliform fibers. This difference may facilitate the coordinated extension of these two capture thread components that is responsible for summing the thread's adhesive forces.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mary E. Clouse
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Sheree F. Andrews
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
24
|
Hygroscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions. Nat Commun 2018; 9:1890. [PMID: 29789602 PMCID: PMC5964112 DOI: 10.1038/s41467-018-04263-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/17/2018] [Indexed: 11/28/2022] Open
Abstract
Adhesion in humid environments is fundamentally challenging because of the presence of interfacial bound water. Spiders often hunt in wet habitats and overcome this challenge using sticky aggregate glue droplets whose adhesion is resistant to interfacial failure under humid conditions. The mechanism by which spider aggregate glue avoids interfacial failure in humid environments is still unknown. Here, we investigate the mechanism of aggregate glue adhesion by using interface-sensitive spectroscopy in conjunction with infrared spectroscopy. We demonstrate that glycoproteins act as primary binding agents at the interface. As humidity increases, we observe reversible changes in the interfacial secondary structure of glycoproteins. Surprisingly, we do not observe liquid-like water at the interface, even though liquid-like water increases inside the bulk with increasing humidity. We hypothesize that the hygroscopic compounds in aggregate glue sequester interfacial water. Using hygroscopic compounds to sequester interfacial water provides a novel design principle for developing water-resistant synthetic adhesives. Spider aggregate glue avoids failure in humid environments but the fundamental mechanism behind it is still unknown. Here, the authors demonstrate that humidity-dependent structural changes of glycoproteins and sequestering of liquid water by low molecular mass compounds prevents adhesion failure of the glue in humid environments.
Collapse
|
25
|
Piorkowski D, Blackledge TA, Liao C, Doran NE, Wu C, Blamires SJ, Tso I. Humidity‐dependent mechanical and adhesive properties of
Arachnocampa tasmaniensis
capture threads. J Zool (1987) 2018. [DOI: 10.1111/jzo.12562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. Piorkowski
- Department of Life Science Tunghai University Taichung Taiwan
| | - T. A. Blackledge
- Department of Biology Integrated Bioscience Program The University of Akron Akron OH USA
| | - C.‐P. Liao
- Department of Life Science Tunghai University Taichung Taiwan
| | | | - C.‐L. Wu
- Center for Measurement Standards Industrial Technology Research Institute Hsinchu Taiwan
| | - S. J. Blamires
- Evolution and Ecology Research Centre University of New South Wales Sydney NSW Australia
| | - I.‐M. Tso
- Department of Life Science Tunghai University Taichung Taiwan
- Center for Tropical Ecology and Biodiversity Tunghai University Taichung Taiwan
| |
Collapse
|
26
|
Opell BD, Jain D, Dhinojwala A, Blackledge TA. Tuning orb spider glycoprotein glue performance to habitat humidity. J Exp Biol 2018; 221:221/6/jeb161539. [DOI: 10.1242/jeb.161539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT
Orb-weaving spiders use adhesive threads to delay the escape of insects from their webs until the spiders can locate and subdue the insects. These viscous threads are spun as paired flagelliform axial fibers coated by a cylinder of solution derived from the aggregate glands. As low molecular mass compounds (LMMCs) in the aggregate solution attract atmospheric moisture, the enlarging cylinder becomes unstable and divides into droplets. Within each droplet an adhesive glycoprotein core condenses. The plasticity and axial line extensibility of the glycoproteins are maintained by hygroscopic LMMCs. These compounds cause droplet volume to track changes in humidity and glycoprotein viscosity to vary approximately 1000-fold over the course of a day. Natural selection has tuned the performance of glycoprotein cores to the humidity of a species' foraging environment by altering the composition of its LMMCs. Thus, species from low-humidity habits have more hygroscopic threads than those from humid forests. However, at their respective foraging humidities, these species' glycoproteins have remarkably similar viscosities, ensuring optimal droplet adhesion by balancing glycoprotein adhesion and cohesion. Optimal viscosity is also essential for integrating the adhesion force of multiple droplets. As force is transferred to a thread's support line, extending droplets draw it into a parabolic configuration, implementing a suspension bridge mechanism that sums the adhesive force generated over the thread span. Thus, viscous capture threads extend an orb spider's phenotype as a highly integrated complex of large proteins and small molecules that function as a self-assembling, highly tuned, environmentally responsive, adhesive biomaterial. Understanding the synergistic role of chemistry and design in spider adhesives, particularly the ability to stick in wet conditions, provides insight in designing synthetic adhesives for biomedical applications.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dharamdeep Jain
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
27
|
Blamires SJ, Martens PJ, Kasumovic MM. Fitness consequences of plasticity in an extended phenotype. ACTA ACUST UNITED AC 2018; 221:jeb.167288. [PMID: 29361580 DOI: 10.1242/jeb.167288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/13/2017] [Indexed: 01/15/2023]
Abstract
Like regular phenotypes, extended phenotypes have demonstrable fitness advantages and their properties may vary plastically across environments. However, the fitness advantages of plasticity are only known for a select few extended phenotypes. It is known that the form and functions of spider orb webs can be manipulated by laboratory experiments. For instance, the physical and chemical properties of the spiral and gluey silks vary in property as protein intake varies. Orb web spiders thus represent good models for extended phenotypic plasticity studies. We performed experiments manipulating the protein intake of two vertically aligned orb web building spiders to determine whether variations in the chemical and physical properties of their spiral and gluey silk affect prey retention in their webs. We found in both spider species that individuals deprived of protein had a greater gluey silk glycoprotein core volume, and this correlated strongly with spiral thread stickiness and increased prey retention by the webs. Moreover, we found strong positive correlations between glue droplet volume and glycoprotein core volume for spiders in the protein-deprived treatment, but weaker correlations for protein-fed spiders. We interpreted these findings as the spiders investing more in glycoprotein when nutrient deprived. We attribute the associated increase in prey retention capacity as a fitness consequence of plasticity in the spiral properties.
Collapse
Affiliation(s)
- Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, University of New South Wales, Sydney 2052, Australia
| | - Penny J Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, University of New South Wales, Sydney 2052, Australia
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
28
|
Amarpuri G, Zhang C, Blackledge TA, Dhinojwala A. Adhesion modulation using glue droplet spreading in spider capture silk. J R Soc Interface 2018; 14:rsif.2017.0228. [PMID: 28490605 DOI: 10.1098/rsif.2017.0228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 11/12/2022] Open
Abstract
Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives.
Collapse
Affiliation(s)
- Gaurav Amarpuri
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ci Zhang
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Todd A Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
29
|
Opell BD, Buccella KE, Godwin MK, Rivas MX, Hendricks ML. Humidity-mediated changes in an orb spider's glycoprotein adhesive impact prey retention time. ACTA ACUST UNITED AC 2017; 220:1313-1321. [PMID: 28356367 DOI: 10.1242/jeb.148080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/16/2017] [Indexed: 11/20/2022]
Abstract
Properties of the viscous prey capture threads of araneoid orb spiders change in response to their environment. Relative humidity (RH) affects the performance of the thread's hygroscopic droplets by altering the viscoelasticity of each droplet's adhesive glycoprotein core. Studies that have characterized this performance used smooth glass and steel surfaces and uniform forces. In this study, we tested the hypothesis that these changes in performance translate into differences in prey retention times. We first characterized the glycoprotein contact surface areas and maximum extension lengths of Araneus marmoreus droplets at 20%, 37%, 55%, 72% and 90% RH and then modeled the relative work required to initiate pull-off of a 4 mm thread span, concluding that this species' droplets and threads performed optimally at 72% RH. Next, we evaluated the ability of three equally spaced capture thread strands to retain a house fly at 37%, 55% and 72% RH. Each fly's struggle was captured in a video and bouts of active escape behavior were summed. House flies were retained 11 s longer at 72% RH than at 37% and 55% RH. This difference is ecologically significant because the short time after an insect strikes a web and before a spider begins wrapping it is an insect's only opportunity to escape from the web. Moreover, these results validate the mechanism by which natural selection can tune the performance of an orb spider's capture threads to the humidity of its habitat.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katrina E Buccella
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Meaghan K Godwin
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Malik X Rivas
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mary L Hendricks
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
30
|
Evolutionary shifts in gene expression decoupled from gene duplication across functionally distinct spider silk glands. Sci Rep 2017; 7:8393. [PMID: 28827773 PMCID: PMC5566633 DOI: 10.1038/s41598-017-07388-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 11/08/2022] Open
Abstract
Spider silk synthesis is an emerging model for the evolution of tissue-specific gene expression and the role of gene duplication in functional novelty, but its potential has not been fully realized. Accordingly, we quantified transcript (mRNA) abundance in seven silk gland types and three non-silk gland tissues for three cobweb-weaving spider species. Evolutionary analyses based on expression levels of thousands of homologous transcripts and phylogenetic reconstruction of 605 gene families demonstrated conservation of expression for each gland type among species. Despite serial homology of all silk glands, the expression profiles of the glue-forming aggregate glands were divergent from fiber-forming glands. Also surprising was our finding that shifts in gene expression among silk gland types were not necessarily coupled with gene duplication, even though silk-specific genes belong to multi-paralog gene families. Our results challenge widely accepted models of tissue specialization and significantly advance efforts to replicate silk-based high-performance biomaterials.
Collapse
|
31
|
Wolff JO, Řezáč M, Krejčí T, Gorb SN. Hunting with sticky tape: functional shift in silk glands of araneophagous ground spiders (Gnaphosidae). J Exp Biol 2017; 220:2250-2259. [DOI: 10.1242/jeb.154682] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/09/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Foraging is one of the main evolutionary driving forces shaping the phenotype of organisms. In predators, a significant, though understudied, cost of foraging is the risk of being injured by struggling prey. Hunting spiders that feed on dangerous prey like ants or other spiders are an extreme example of dangerous feeding, risking their own life over a meal. Here, we describe an intriguing example of the use of attachment silk (piriform silk) for prey immobilization that comes with the costs of reduced silk anchorage function, increased piriform silk production and additional modifications of the extrusion structures (spigots) to prevent their clogging. We show that the piriform silk of gnaphosids is very stretchy and tough, which is an outstanding feat for a functional glue. This is gained by the combination of an elastic central fibre and a bi-layered glue coat consisting of aligned nanofibrils. This represents the first tensile test data on the ubiquitous piriform gland silk, adding an important puzzle piece to the mechanical catalogue of silken products in spiders.
Collapse
Affiliation(s)
- Jonas O. Wolff
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1–9, Kiel D-24118, Germany
- Behavioural Ecology, Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Milan Řezáč
- Biodiversity Lab, Crop Research Institute, Drnovská 507, Prague 6 – Ruzyně CZ-16106, Czechia
| | - Tomáš Krejčí
- Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6 – Suchdol CZ-16521, Czechia
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1–9, Kiel D-24118, Germany
| |
Collapse
|
32
|
Das R, Kumar A, Patel A, Vijay S, Saurabh S, Kumar N. Biomechanical characterization of spider webs. J Mech Behav Biomed Mater 2016; 67:101-109. [PMID: 27988439 DOI: 10.1016/j.jmbbm.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/26/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022]
Abstract
In light of recent focus on the behaviour of the natural structures for revolutionary technological growth, spider web seems to have seized considerable attention of product designer due to its amazing behaviour. In present work, mechanism behind the structural integrity of the spider web along with the materialistic analysis of its constituent silk threads has been extensively investigated. The nanoindentation tool both in static and dynamic mode has been utilized for complete analysis of the mechanical behaviour of the spiral and radial threads separately. Both the average elastic modulus and hardness of the radial silk thread is higher than the spiral silk thread which reveals the radial silk thread is the major structural component of the web. The sustainability of spider webs under storm, windy conditions and during the impact of pray has been investigated under dynamic conditions. The radial silk thread exhibits elastic like response and the spiral silk thread exhibits viscous like response in a wide frequency range (1-200Hz). The damping characteristic of the radial and spiral silk threads, an important parameter to investigate the energy dissipation properties of the materials has also been investigated in windy conditions.
Collapse
Affiliation(s)
- Rakesh Das
- School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India
| | - Amit Kumar
- School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India
| | - Anurag Patel
- School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India
| | - Sahil Vijay
- School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India
| | - Shashank Saurabh
- School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India
| | - Navin Kumar
- School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, Punjab, India.
| |
Collapse
|
33
|
Wang CS, Pan H, Weerasekare GM, Stewart RJ. Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk. J R Soc Interface 2016; 12:rsif.2015.0710. [PMID: 26490632 DOI: 10.1098/rsif.2015.0710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Casemaker caddisfly (Hesperophylax occidentalis) larvae use adhesive silk fibres to construct protective shelters under water. The silk comprises a distinct peripheral coating on a viscoelastic fibre core. Caddisworm silk peroxinectin (csPxt), a haem-peroxidase, was shown to be glycosylated by lectin affinity chromatography and tandem mass spectrometry. Using high-resolution H2O2 and peroxidase-dependent silver ion reduction and nanoparticle deposition, imaged by electron microscopy, csPxt activity was shown to be localized in the peripheral layer of drawn silk fibres. CsPxt catalyses dityrosine cross-linking within the adhesive peripheral layer post-draw, initiated perhaps by H2O2 generated by a silk gland-specific superoxide dismutase 3 (csSOD3) from environmental reactive oxygen species present in natural water. CsSOD3 was also shown to be a glycoprotein and is likely localized in the peripheral layer. Using a synthetic fluorescent phenolic copolymer and confocal microscopy, it was shown that csPxt catalyses oxidative cross-linking to external polyphenolic compounds capable of diffusive interpenetration into the fuzzy peripheral coating, including humic acid, a natural surface-active polyphenol. The results provide evidence of enzyme-mediated covalent cross-linking of a natural bioadhesive to polyphenol conditioned interfaces as a mechanism of permanent adhesion underwater.
Collapse
Affiliation(s)
- Ching-Shuen Wang
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Huaizhong Pan
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Russell J Stewart
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
34
|
Soler A, Zaera R. The secondary frame in spider orb webs: the detail that makes the difference. Sci Rep 2016; 6:31265. [PMID: 27507613 PMCID: PMC4978998 DOI: 10.1038/srep31265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 06/29/2016] [Indexed: 11/09/2022] Open
Abstract
Spider orb webs are multifunctional structures, the main function of which is to dissipate the kinetic energy of the impacting prey, while minimizing structural damage. There is no single explanation for their remarkable strength and ductility. However, it is clear that topology is decisive in the structural performance upon impact, and the arrangement of the different silk threads in the web must also exert an effect. The aim of this study is to show how a slight variation in the geometry markedly affects the prey-capture ability of spider orb webs. The study is focused on the secondary frame, a thread interposed between radial and primary frame strands, the importance of which has not been examined until now. The simulation of the impact performance of webs using different lengths of the secondary frame clarifies its structural role, which has proven to be decisive. Furthermore, the study explains why secondary frame threads of moderate length, as commonly encountered, enable the capture of prey with higher energy without a marked increase in the volume of silk used.
Collapse
Affiliation(s)
- Alejandro Soler
- Universidad Carlos III de Madrid, Department of Continuum Mechanics and Structural Analysis, 28911 Leganés, Madrid, Spain
| | - Ramón Zaera
- Universidad Carlos III de Madrid, Department of Continuum Mechanics and Structural Analysis, 28911 Leganés, Madrid, Spain
| |
Collapse
|
35
|
Stellwagen SD, Opell BD, Clouse ME. The impact of UVB radiation on the glycoprotein glue of orb-weaving spider capture thread. ACTA ACUST UNITED AC 2016; 218:2675-84. [PMID: 26333924 DOI: 10.1242/jeb.123067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many spider orb-webs are exposed to sunlight and the potentially damaging effects of ultraviolet B (UVB) radiation. We examined the effect of UVB on the viscoelastic glycoprotein core of glue droplets deposited on the prey capture threads of these webs, hypothesizing that webs built by species that occupy sunny habitats are less susceptible to UVB damage than are webs built by species that prefer shaded forest habitats or by nocturnal species. Threads were tested shortly after being collected in the early morning and after being exposed to UVB energy equivalent to a day of summer sun and three times this amount. Droplets kept in a dark chamber allowed us to evaluate post-production changes. Droplet volume was unaffected by treatments, indicating that UVB did not damage the hygroscopic compounds in the aqueous layer that covers droplets. UVB exposure did not affect energies of droplet extension for species from exposed and partially to mostly shaded habitats (Argiope aurantia, Leucauge venusta and Verrucosa arenata). However, UVB exposure reduced the energy of droplet extension in Micrathena gracilis from shaded forests and Neoscona crucifera, which forages at night. Only in L. venusta did the energy of droplet extension increase after the dark treatment, suggesting endogenous molecular alignment. This study adds UVB irradiation to the list of factors (humidity, temperature and strain rate) known to affect the performance of spider glycoprotein glue, factors that must be more fully understood if adhesives that mimic spider glycoprotein glue are to be produced.
Collapse
Affiliation(s)
- Sarah D Stellwagen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mary E Clouse
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
36
|
Dos Santos-Pinto JRA, Garcia AMC, Arcuri HA, Esteves FG, Salles HC, Lubec G, Palma MS. Silkomics: Insight into the Silk Spinning Process of Spiders. J Proteome Res 2016; 15:1179-93. [PMID: 26923066 DOI: 10.1021/acs.jproteome.5b01056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteins from the silk-producing glands were identified using both a bottom-up gel-based proteomic approach as well as from a shotgun proteomic approach. Additionally, the relationship between the functions of identified proteins and the spinning process was studied. A total of 125 proteins were identified in the major ampullate, 101 in the flagelliform, 77 in the aggregate, 75 in the tubuliform, 68 in the minor ampullate, and 23 in aciniform glands. On the basis of the functional classification using Gene Ontology, these proteins were organized into seven different groups according to their general function: (i) web silk proteins-spidroins, (ii) proteins related to the folding/conformation of spidroins, (iii) proteins that protect silk proteins from oxidative stress, (iv) proteins involved in fibrillar preservation of silks in the web, (v) proteins related to ion transport into and out of the glands during silk fiber spinning, (vi) proteins involved in prey capture and pre-digestion, and (vii) housekeeping proteins from all of the glands. Thus, a general mechanism of action for the identified proteins in the silk-producing glands from the Nephila clavipes spider was proposed; the current results also indicate that the webs play an active role in prey capture.
Collapse
Affiliation(s)
- José Roberto Aparecido Dos Santos-Pinto
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil.,Department of Pediatrics, Medical University of Vienna , Vienna 1090, Austria
| | - Ana Maria Caviquioli Garcia
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Helen Andrade Arcuri
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Franciele Grego Esteves
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Heliana Clara Salles
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna , Vienna 1090, Austria
| | - Mario Sergio Palma
- Center of Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP) , Rio Claro, São Paulo 13500, Brazil
| |
Collapse
|
37
|
Collin MA, Clarke TH, Ayoub NA, Hayashi CY. Evidence from Multiple Species that Spider Silk Glue Component ASG2 is a Spidroin. Sci Rep 2016; 6:21589. [PMID: 26875681 PMCID: PMC4753498 DOI: 10.1038/srep21589] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/27/2016] [Indexed: 11/16/2022] Open
Abstract
Spiders in the superfamily Araneoidea produce viscous glue from aggregate silk glands. Aggregate glue coats prey-capture threads and hampers the escape of prey from webs, thereby increasing the foraging success of spiders. cDNAs for Aggregate Spider Glue 1 (ASG1) and 2 (ASG2) have been previously described from the golden orb-weaver, Nephila clavipes, and Western black widow, Latrodectus hesperus. To further investigate aggregate glues, we assembled ASG1 and ASG2 from genomic target capture libraries constructed from three species of cob-web weavers and three species of orb-web weavers, all araneoids. We show that ASG1 is unlikely to be a glue, but rather is part of a widespread arthropod gene family, the peritrophic matrix proteins. For ASG2, we demonstrate its remarkable architectural and sequence similarities to spider silk fibroins, indicating that ASG2 is a member of the spidroin gene family. Thus, spidroins have diversified into glues in addition to task-specific, high performance fibers.
Collapse
Affiliation(s)
- Matthew A Collin
- University of California, Riverside, Department of Biology, Riverside, California 92521, United States
| | - Thomas H Clarke
- University of California, Riverside, Department of Biology, Riverside, California 92521, United States.,Washington and Lee University, Department of Biology, Lexington, Virginia 24450, United States
| | - Nadia A Ayoub
- Washington and Lee University, Department of Biology, Lexington, Virginia 24450, United States
| | - Cheryl Y Hayashi
- University of California, Riverside, Department of Biology, Riverside, California 92521, United States
| |
Collapse
|
38
|
Blamires SJ, Hasemore M, Martens PJ, Kasumovic MM. Diet-induced covariation between architectural and physicochemical plasticity in an extended phenotype. J Exp Biol 2016; 220:876-884. [DOI: 10.1242/jeb.150029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023]
Abstract
The adaptive benefits of extended phenotypic plasticity are imprecisely defined due to a paucity of experiments examining traits that are manipulable and measurable across environments. Spider webs are often used as models to explore the adaptive benefits of variations in extended phenotypes across environments. Nonetheless, our understanding of the adaptive nature of the plastic responses of spider webs is impeded when web architectures and silk physicochemical properties appear to co-vary. An opportunity to examine this co-variation is presented by modifying prey items while measuring web architectures and silk physiochemical properties. Here we performed two experiments to assess the nature of the association between web architectures and gluey silk properties when the orb web spider Argiope keyserlingi was fed a diet that varied in either mass and energy or prey size and feeding frequency. We found web architectures and gluey silk physicochemical properties to co-vary across treatments in both experiments. Specifically, web capture area co-varied with gluey droplet morphometrics, thread stickiness and salt concentrations when prey mass and energy were manipulated, and spiral spacing co-varied with gluey silk salt concentrations when prey size and feeding frequency were manipulated. We explained our results as A. keyserlingi plastically shifting its foraging strategy as multiple prey parameters simultaneously varied. We confirmed and extended previous work by showing that spiders use a variety of prey cues to concurrently adjust web and silk traits across different feeding regimes.
Collapse
Affiliation(s)
- Sean J. Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| | - Matthew Hasemore
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| | - Penny J. Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, The University of New South Wales, Sydney 2052, Australia
| | - Michael M. Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
39
|
Amarpuri G, Zhang C, Diaz C, Opell BD, Blackledge TA, Dhinojwala A. Spiders Tune Glue Viscosity to Maximize Adhesion. ACS NANO 2015; 9:11472-8. [PMID: 26513350 DOI: 10.1021/acsnano.5b05658] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.
Collapse
Affiliation(s)
| | | | | | - Brent D Opell
- Department of Biological Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | | |
Collapse
|
40
|
Observation and Manipulation of a Capillary Jet in a Centrifuge-Based Droplet Shooting Device. MICROMACHINES 2015. [DOI: 10.3390/mi6101436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Jain D, Zhang C, Cool LR, Blackledge TA, Wesdemiotis C, Miyoshi T, Dhinojwala A. Composition and Function of Spider Glues Maintained During the Evolution of Cobwebs. Biomacromolecules 2015; 16:3373-80. [DOI: 10.1021/acs.biomac.5b01040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dharamdeep Jain
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Ci Zhang
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Lydia Rose Cool
- Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United States
| | - Todd A. Blackledge
- Department
of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325-3908, United States
| | - Chrys Wesdemiotis
- Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United States
| | - Toshikazu Miyoshi
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Ali Dhinojwala
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
42
|
Structural optimization of 3D-printed synthetic spider webs for high strength. Nat Commun 2015; 6:7038. [PMID: 25975372 PMCID: PMC4479035 DOI: 10.1038/ncomms8038] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/25/2015] [Indexed: 11/08/2022] Open
Abstract
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. Spider webs have some intriguing mechanical properties, but understanding of the properties is limited to individual silk fibres. Here, the authors create mimics of spider web using 3D techniques, which enables them to acquire knowledge of mechanical strength of the entire synthetic web.
Collapse
|
43
|
Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion. Sci Rep 2015; 5:9030. [PMID: 25761668 PMCID: PMC4357010 DOI: 10.1038/srep09030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/09/2015] [Indexed: 11/09/2022] Open
Abstract
Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.
Collapse
|
44
|
Meyer A, Pugno NM, Cranford SW. Compliant threads maximize spider silk connection strength and toughness. J R Soc Interface 2015; 11:20140561. [PMID: 25008083 DOI: 10.1098/rsif.2014.0561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Millions of years of evolution have adapted spider webs to achieve a range of functionalities, including the well-known capture of prey, with efficient use of material. One feature that has escaped extensive investigation is the silk-on-silk connection joints within spider webs, particularly from a structural mechanics perspective. We report a joint theoretical and computational analysis of an idealized silk-on-silk fibre junction. By modifying the theory of multiple peeling, we quantitatively compare the performance of the system while systematically increasing the rigidity of the anchor thread, by both scaling the stress-strain response and the introduction of an applied pre-strain. The results of our study indicate that compliance is a virtue-the more extensible the anchorage, the tougher and stronger the connection becomes. In consideration of the theoretical model, in comparison with rigid substrates, a compliant anchorage enormously increases the effective adhesion strength (work required to detach), independent of the adhered thread itself, attributed to a nonlinear alignment between thread and anchor (contact peeling angle). The results can direct novel engineering design principles to achieve possible load transfer from compliant fibre-to-fibre anchorages, be they silk-on-silk or another, as-yet undeveloped, system.
Collapse
Affiliation(s)
- Avery Meyer
- Laboratory for Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Nicola M Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, Università di Trento, via Mesiano 77, 38123 Trento, Italy Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento), Italy
| | - Steven W Cranford
- Laboratory for Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
45
|
Hennebert E, Maldonado B, Ladurner P, Flammang P, Santos R. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review. Interface Focus 2015; 5:20140064. [PMID: 25657842 PMCID: PMC4275877 DOI: 10.1098/rsfs.2014.0064] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences.
Collapse
Affiliation(s)
- Elise Hennebert
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences , University of Mons , 23 Place du Parc, 7000 Mons , Belgium
| | - Barbara Maldonado
- Molecular Biology and Genetic Engineering, GIGA-R , University of Liège , 1 Avenue de l'Hôpital, 4000 Liège , Belgium
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck , University of Innsbruck , Technikerstrasse 25, 6020 Innsbruck , Austria
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences , University of Mons , 23 Place du Parc, 7000 Mons , Belgium
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária , Universidade de Lisboa, Cidade Universitária , 1649-003 Lisboa , Portugal
| |
Collapse
|
46
|
Adjustment of web-building initiation to high humidity: a constraint by humidity-dependent thread stickiness in the spider Cyrtarachne. Naturwissenschaften 2014; 101:587-93. [PMID: 24916857 DOI: 10.1007/s00114-014-1196-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/02/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Cyrtarachne is an orb-weaving spider belonging to the subfamily Cyrtarachninae (Araneidae) which includes triangular-web-building Pasilobus and bolas spiders. The Cyrtarachninae is a group of spiders specialized in catching moths, which is thought to have evolved from ordinary orb-weaving araneids. Although the web-building time of nocturnal spiders is in general related to the time of sunset, anecdotal evidence has suggested variability of web-building time in Cyrtarachne and its closely related genera. This study has examined the effects of temperature, humidity, moonlight intensity, and prey (moths) availability on web-building time of Cyrtarachne bufo, Cyrtarachne akirai, and Cyrtarachne nagasakiensis. Generalized linear mixed model (GLMM) have revealed that humidity, and not prey availability, was the essential variable that explained the daily variability of web-building time. Experiments measuring thread stickiness under different humidities showed that, although the thread of Cyrtarachne was found to have strong stickiness under high humidity, low humidity caused a marked decrease of thread stickiness. By contrast, no obvious change in stickiness was seen in an ordinary orb-weaving spider, Larinia argiopiformis. These findings suggest that Cyrtarachne adjusts its web-building time to favorable conditions of high humidity maintaining strong stickiness, which enables the threads to work efficiently for capturing prey.
Collapse
|
47
|
Blamires SJ, Sahni V, Dhinojwala A, Blackledge TA, Tso IM. Nutrient deprivation induces property variations in spider gluey silk. PLoS One 2014; 9:e88487. [PMID: 24523902 PMCID: PMC3921163 DOI: 10.1371/journal.pone.0088487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition.
Collapse
Affiliation(s)
- Sean J. Blamires
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Vasav Sahni
- Department of Polymer Science, The University of Akron, Akron, Ohio, United States of America
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio, United States of America
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio, United States of America
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Stellwagen SD, Opell BD, Short KG. Temperature mediates the effect of humidity on the viscoelasticity of glycoprotein glue within the droplets of an orb-weaving spider's prey capture threads. ACTA ACUST UNITED AC 2014; 217:1563-9. [PMID: 24501134 DOI: 10.1242/jeb.097816] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sticky viscous prey capture threads retain insects that strike araneoid orb-webs. The threads' two axial fibers support a series of glue droplets, each featuring a core of adhesive viscoelastic glycoprotein covered by an aqueous solution. After sticking, the glue extends, summing the adhesion of multiple droplets, and dissipates some of the energy of a struggling prey. As a day progresses, threads experience a drop in humidity and an increase in temperature, environmental variables that have the potential to alter thread and web function. We hypothesize that thread droplets respond to these opposing environmental changes in a manner that stabilizes their performance, and test this by examining threads spun by Argiope aurantia, a species that occupies exposed, weedy habitats. We confirmed that decreased humidity increases glycoprotein viscosity and found that increased temperature had the opposite effect. To evaluate the combined effect of temperature and humidity on a droplet's ability to transfer adhesive force and dissipate energy, we extended a droplet and measured both the deflection of the axial line supporting the droplet and the duration of its tensive load. The cumulative product of these two indices, which reflects the energy required to extend a droplet, was greatest under afternoon (hot and dry) conditions, less under morning (cool and humid) conditions, and least under hot and humid afternoon conditions. Although the opposing effects of temperature and humidity tend to stabilize glycoprotein performance, A. aurantia thread droplets appear to function optimally during the afternoon, equipping this species to capture large orthopterans, which are most active at this time.
Collapse
Affiliation(s)
- Sarah D Stellwagen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
49
|
Blamires SJ, Wu CC, Wu CL, Sheu HS, Tso IM. Uncovering Spider Silk Nanocrystalline Variations That Facilitate Wind-Induced Mechanical Property Changes. Biomacromolecules 2013; 14:3484-90. [DOI: 10.1021/bm400803z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean J. Blamires
- Department
of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Chao-Chia Wu
- Department
of Life Science, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Chung-Lin Wu
- Center
for Measurement Standards, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - I-Min Tso
- Department
of Life Science, Tunghai University, Taichung 40704, Taiwan
- Department
of Life Science, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
50
|
Opell BD, Karinshak SE, Sigler MA. Environmental response and adaptation of glycoprotein glue within the droplets of viscous prey capture threads from araneoid spider orb-webs. ACTA ACUST UNITED AC 2013; 216:3023-34. [PMID: 23619400 DOI: 10.1242/jeb.084822] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Viscous threads that form the prey capture spiral of araneoid orb-webs retain insects that strike the web, giving a spider more time to locate and subdue them. The viscoelastic glycoprotein glue responsible for this adhesion forms the core of regularly spaced aqueous droplets, which are supported by protein axial fibers. Glycoprotein extensibility both facilitates the recruitment of adhesion from multiple droplets and dissipates the energy generated by insects struggling to free themselves from the web. Compounds in the aqueous material make the droplets hygroscopic, causing an increase in both droplet volume and extensibility as humidity (RH) rises. We characterized these humidity-mediated responses at 20%, 37%, 55%, 72% and 90% RH in two large orb-weavers, Argiope aurantia, which is found in exposed habitats, and Neoscona crucifera, which occupies forests and forest edges. The volume-specific extension of A. aurantia glycoprotein reached a maximum value at 55% RH and then declined, whereas that of N. crucifera increased exponentially through the RH range. As RH increased, the relative stress on droplet filaments at maximum extension, as gauged by axial line deflection, decreased in a linear fashion in A. aurantia, but in N. crucifer increased logarithmically, indicating that N. crucifera threads are better equipped to dissipate energy through droplet elongation. The greater hygroscopicity of A. aurantia threads equips them to function in lower RH environments and during the afternoon when RH drops, but their performance is diminished during the high RH of the morning hours. In contrast, the lower hygroscopicity of N. crucifera threads optimizes their performance for intermediate and high RH environments and during the night and morning. These interspecific differences support the hypothesis that viscous capture threads are adapted to the humidity regime of an orb-weaver's habitat.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|